
Int. J. Security and Networks, Vol. 3, No. 3, 2008 147

Copyright © 2008 Inderscience Enterprises Ltd.

Formal modelling and analysis of XML firewall
for service-oriented systems

Haiping Xu*, Mihir Ayachit and Abhinay Reddyreddy

Computer and Information Science Department,

University of Massachusetts Dartmouth,

North Dartmouth, MA 02747, USA

E-mail: hxu@umassd.edu E-mail: g_mayachit@umassd.edu

E-mail: g_areddyreddy@umassd.edu

*Corresponding author

Abstract: Firewalls have been designed as a major component to protect a network or a server

from being attacked. However, due to their emphasis on packet filtering rather than verifying

user permissions and examining packet contents, conventional firewalls are not suitable for

protecting service-oriented systems from unauthorised service invocations. In this paper, we

present a formal XML firewall security model for service-oriented systems, which supports user

authentication and role-based user authorisation according to policy rules that can be updated

dynamically. The formal model consists of two major components, namely the application model

and the XML firewall model, which are designed compositionally using coloured Petri nets.

We analyse both the application model and the XML firewall model using an existing Petri net

tool, and demonstrate how key properties of the formal models can be verified, and how design

errors can be detected and corrected at an early design stage.

Keywords: XML firewall; web services; service-oriented systems; RBAC; role-based access

control; CPN; coloured petri net; formal verification.

Reference to this paper should be made as follows: Xu, H., Ayachit, M. and Reddyreddy, A.

(2008) ‘Formal modelling and analysis of XML firewall for service-oriented systems’,

Int. J. Security and Networks, Vol. 3, No. 3, pp.147–160.

Biographical notes: Haiping Xu received the PhD Degree in Computer Science from the

University of Illinois at Chicago in 2003. He is an Assistant Professor in the Computer and

Information Science Department at the University of Massachusetts Dartmouth, where he is a

co-director of the Concurrent Software Systems Laboratory. His research interests include

distributed software engineering, formal methods, internet security, multi-agent systems, and

service-oriented systems. He is a senior member of the IEEE Computer Society and a

professional member of the ACM.

Mihir Ayachit received the MS Degree in Computer Science from the University of

Massachusetts Dartmouth in 2006. He is currently a software engineer in Parametric Technology

Corporation. His research interests include web services security, formal methods, and

model-based software development.

Abhinay Reddyreddy is currently a graduate student in the Computer and Information Science

Department at the University of Massachusetts Dartmouth. His research interests include web

services security and formal methods for specification and analysis of concurrent and distributed

software, especially the application of Petri net-based models.

1 Introduction

Web services provide a standardised way that support

interoperable machine to machine interaction over the

internet (Booth et al., 2004). Web services are XML based

software components that can be dynamically incorporated

into different applications using remote method invocation

mechanisms, such as Java API for XML-based RPC

(JAX-RPC) (Nagappan et al., 2003) and Web Service

Invocation Framework (WSIF) (Juric, 2006). A web service

is designed as a loosely coupled software component

that can be described using Web Services Description

Language (WSDL), registered using Universal Description,

Discovery and Integration (UDDI), and invoked using

standard protocols, such as Simple Object Access

Protocol (SOAP) that is bound to standard underlying

protocols, e.g., HTTP.

As more businesses deploy web services over the

internet that dynamically interact with various applications

and data sources, the issue of how to secure them

from intruders and possible threats becomes more important

(Mysore, 2003). Security problems in web services

148 H. Xu et al.

are severe because the internet is a public network

infrastructure, where the information available to be

accessed over the internet has different levels of business

confidentiality. Furthermore, a service consumer may

invoke web services using false identity, access web

services with insufficient permissions, or corrupt web

services by attacking the service providers (e.g., using an

XML message based denial of service attack). Thus,

security consideration becomes very critical for the

successful deployment of service-oriented systems.

A conventional firewall typically resides at the

perimeter of a network server or a business’s private

network, and monitors the data traffic entering and exiting

the network to prevent unauthorised access to the server or

the network. Typical types of conventional firewalls include

package filtering firewalls, application-level gateways, and

stateful inspection firewalls (Pfleeger and Pfleeger, 2003;

Fernandez et al., 2005). However, a conventional firewall

may provide no security at all for web services. This is

because most of the web services are SOAP based or simply

XML based, which is bound to HTTP; thus, XML messages

can most likely pass through port 80, the default web port,

which is normally not blocked by a conventional firewall

(Windley, 2003). Furthermore, a potential intruder can

include malicious SOAP attachments, insert harmful SQL

code or executable commands into an XML packet, or send

an extremely large XML packet to overload the XML parser

on the service provider side (Moradian and Håkansson,

2006; Vorobiev and Han, 2006). A conventional firewall

usually does not examine the content of a packet; thus, it is

not able to identify threats such as SQL injection, denial of

service, schema poisoning, and XML parameter poisoning

(Gralla, 2007; Vorobiev and Han, 2006). For example, a

packet with XML data tampered with an SQL injection

attack that can erase a whole database cannot be

detected using packet filtering techniques; instead, it can

only be detected by content filtering approaches. Hence,

conventional firewalls are not sufficient to provide security

for web services. In addition, conventional firewalls usually

exist at the transport and session layer, rather than the

application layer and within the data packet or content

(Wrenn, 2004); therefore, security holes can be left to allow

an unauthorised person to attack a service provider by

accessing web services without needed permissions.

To protect web services from being attacked, we

develop a compositional formal model, called XML firewall

security model, which enforces access restrictions for web

service invocations. Our security model is derived from a

general XML firewall model presented in (Ayachit and Xu,

2006). In our proposed model, the access to web services is

only granted to those users, who are authenticated and

authorised to have access to the services. The model is

formally defined using the Petri net formalism, which is a

mature formalism with existing theory and tool support

(Murata, 1989). There are two key components in the XML

firewall security model, namely, the application model and

the XML firewall model. In the XML firewall model, we

adopt the Role-Based Access Control (RBAC) mechanism

(Feinstein et al., 1996) in order to effectively deploy user

authorisation and access rights. The RBAC mechanism we

use in our model is stateful. In other words, role assignment

and permission granting in XML firewall depend not only

on a user’s identity, but also on the current state of the

system.

The rest of the paper is organised as follows.

Section 2 summarises the related work. Section 3 presents

an architectural design of XML firewall protected

service-oriented systems. Section 4 introduces the

compositional Petri net based XML firewall security

model, including the application model and the XML

firewall model. Section 5 performs some formal analysis of

the Petri net models using an existing Petri net tool.

Section 6 gives the conclusions and future work.

2 Related work

A closely related work to our proposed XML firewall

approach is the RBAC mechanism. The RBAC model

has been used as one of the most attractive solutions

to providing security features in different distributed

computing infrastructure (Feinstein et al., 1996). In an

RBAC model, users are assigned roles with permissions,

which ensure that only authorised users are given access to

certain data or resources. A principle motivation behind

RBAC is the ability to specify and enforce enterprise

specific security policies such that it can map naturally to an

organisation’s structure. Since in a typical organisation,

user and role associations change more frequently than role

and permission associations, RBAC results in reduced

administrative costs as compared to associating users

directly with permissions. In an RBAC model, a user is a

human being or a process within a system; while a role

defines a collection of permissions associated with a certain

job function within an organisation. A permission of a role

is an access mode that can be exercised on a particular

object or a resource in the system. A user can be related to

possibly many roles using sessions, which specify the

durations of valid role assignments. Most of the RBAC

models follow the same basic structure of subject, role and

privilege. However, in a more sophisticated RBAC model,

access decisions for an application will depend on the

combination of the required credentials of users and the

context and state of the system, as well as other factors such

as relationship, time and location (Zhang and Parashar,

2004). Giuri and Iglio (1997) proposed a RBAC model

that provided special mechanisms for the definition of

content-based access control policies. By extending the

notion of permission, they allowed the specification of

security policies, in which the permission of an object may

depend on the content of the object itself. Although much

work has been done in the area of access control, most of

the work is user-centric, where only credentials of the user

are considered when granting access permissions. Very little

work has been done to combine context information with

credentials while access control decisions are being made.

In our XML firewall model, we combine the traditional

 Formal modelling and analysis of XML firewall for service-oriented systems 149

RBAC with the state information to determine access

control; thus, our approach can be more flexible and

effective in dynamic permission assignments.

Previous work on how to protect web service providers

from being attacked is rare. Fernandez et al. proposed

to protect web services from unauthorised access by

developing a pattern-based language for XML firewall

(Fernandez, 2004; Fernandez et al., 2005). They designed

two patterns for XML firewall, namely the security

assertion coordination pattern using RBAC for access to

distributed resources, and a filter pattern for filtering XML

messages or documents according to institution policies.

Although their approach provides useful insights about

implementation of XML firewalls, the XML firewall model

they proposed is not formally defined. Cremonini et al.

(2003) proposed an XML-based approach to combining

firewalls and web services security specification. They

discussed about the security requirements of Web Service

Architecture (WSA), and presented some possible design

guidelines for semantics-aware firewalls that can be

fully integrated within the WSA. However, technical

details about implementation of their approach are still

missing. More recently, Moradian and Håkansson (2006)

summarised possible attacks on XML web services,

including SQL injection, IP spoofing, and denial of service

attacks. But no solutions are proposed to protect the service

providers from service-based attacks. Different from the

above approaches, we propose a stateful XML firewall

security model that supports dynamic role assignment and

permission granting. Furthermore, since an XML firewall

represents one of the critical components in a business

application, to ensure a correct design, we develop a formal

model using Coloured Petri Nets (CPN) (Jensen, 1992), and

demonstrate how existing Petri net tools can be used to

verify the key properties of our net model.

Some XML firewall related products are currently

available on the market for securing web services

applications. For example, the Forum Systems Company

developed an XML security appliance, called XWall, which

resides in front of servers that contain sensitive XML tagged

information (Allen, 2006). The appliance encrypts XML

fields in real time, as the data goes into the server. It then

decrypts it when the data exits the server. The appliance is

unique as it examines data on a tag-by-tag basis, and

therefore does not encrypt the unnecessary or non-critical

fields. Another implementation of the XML firewall

is the DataPowerXS40 XML Security Gateway (DataPower,

2006). This firewall requires the creation of a virtual

firewall for every service exposed to the outside world,

which then forms a path through the firewall to the back-end

server supplying the web services. Each virtual firewall is

configured with a custom firewall policy of actions on each

XML message passing through the firewall. Policy actions

are implemented through XSL style sheets and may include

XML filtering, digital signatures, signature verification,

schema validation, encryption, decryption, transformation

and routing. XML firewall vendors, as a whole, are a mix of

startup companies and older security companies looking to

enter the market.

Although the above implementations contain certain

XML firewall features and can help to protect web services,

their functionalities are still very limited. For example, they

do not support verification of user authorisation, and thus,

unauthorised user may access web services with insufficient

permissions. In addition, existing XML firewall approaches

are usually not state-based, so they cannot protect web

services from certain threats such as a denial of service

attack. In contrast, we propose a general solution to

implementing XML firewalls that supports state-based user

authentication and authorisation. More importantly, our

XML firewall model is formally defined using the Petri net

formalism, so it supports formal verification for ensuring a

correct design (e.g., deadlock-freeness), as done in our

previous work (Xu and Shatz, 2003a; Xu et al., 2005). Some

additional related work along this direction includes Xu and

Nygard’s work, where a threat-driven model is developed

using aspect-oriented Petri nets (Xu and Nygard, 2005,

2006). Their approach supports incremental modelling of

security features to improve trustworthy of software design.

Different form the above threat-oriented approach, we take

a property-oriented approach to security where security

features are explicitly defined in our model. Furthermore,

our proposed formal model can serve as a high-level design

for XML firewall implementation, and may provide a

potential solution to automated software development as

illustrated in Xu and Shatz (2003b).

3 Architectural design

An XML firewall protected service-oriented system consists

of three major types of components, namely application,

XML firewall, and web service. The system architecture of

a service-oriented system with a single XML firewall

installed is illustrated in Figure 1. As shown in the figure, a

service provider may deploy a group of web services

on a web server, which is protected by an XML firewall.

The web services can be invoked by various applications

at runtime, so the web services shall be able to interact

with different applications concurrently. Meanwhile, an

application is allowed to make multiple requests to web

services that are protected by the same XML firewall at the

same time. Therefore, the XML firewall must support

processing of various web service invocation requests

concurrently.

150 H. Xu et al.

Figure 1 XML firewall protected service-oriented system

In Figure 1, we illustrate two applications that may interact

with the same group of web services concurrently. It is

worth to be noted that an application can also interact with

different groups of web services, which are deployed by

different service providers protected by their own XML

firewalls (this scenario is not shown in Figure 1). At the

application side, a user interacts with an application through

its user interface. The application logic is the business

logic of an application, which varies from application to

application. The application logic processes the requests

from the user, and initiates service calls that may invoke a

single web service or a group of web services at the same

time. The request from the application is checked by the

XML firewall for authenticity and access limitations

depending on state information stored in the StateDB

database. If the request is valid, the XML firewall will pass

the request to the corresponding web service; otherwise, the

request is rejected. The administrator of an XML firewall

can change the policies stored in a policy database through

an administration module at runtime. Activities of changing

policies include adding a new policy, modifying an existing

policy, and deleting a policy that is no longer needed. Each

web service has its own logic to process the corresponding

method request, and returns the result to the XML firewall.

Upon receiving the result from a web service, the XML

firewall then passes the result to the application. When the

application receives the result from the XML firewall,

the application logic processes the result for further

computation, and will send appropriate messages to the user

through its user interface. The refinement of the XML

firewall module in a service-oriented system is illustrated in

Figure 2, which describes the important components inside

an XML firewall module.

As shown in Figure 2, to start an application, a user first

needs to log into the application. If the user is a valid one,

the application logic will process the user’s access requests,

and based on the user’s requests, the application logic

initiates the needed service calls. A service call with the

user’s information is intercepted by the XML firewall for

authentication and authorisation. The user is authenticated

by checking against certified user information stored

in a database, called UserInfoDB, as shown in Figure 2.

If the user’s identification is valid, he is assigned a role

defined in the Role database (i.e., RoleDB); otherwise, an

access denied message is sent to the application. The role

assignment is based on the system state including the user’s

current state, which is determined by the status of the

incoming message as well as the information stored in the

StateDB database. After the role assignment process is

completed, a user space, which contains a session and

access permissions of the user, is created based on policies

from the PolicyDB database. The user space is then

compared with the service request to determine whether the

incoming request from the user has permissions to invoke a

web service; meanwhile, the incoming message is inspected

for any malicious contents within the user space. If the user

has the needed permissions, and the XML-based message

does not contain any malicious contents, the web service

request will be dispatched to the corresponding web service

by the XML firewall; otherwise, an access denied message

will be sent to the application. If the web service request is a

valid one, the web service will process the request, and

return the result to the XML firewall, which is then passed

back to the application.

Figure 2 Refinement of the XML firewall module in Figure 1

 Formal modelling and analysis of XML firewall for service-oriented systems 151

4 CPN-based compositional XML firewall

security model

Petri nets are a well-founded process modelling technique

that has formal semantics to allow specification, design,

verification, and simulation of a system (Murata, 1989).

Petri nets have been widely used to model and analyse

various types of processes and systems including security

protocols (Bouroulet et al., 2004), web services (Hamadi

and Benatallah, 2003; Liu and Chen, 2005), manufacturing

systems (Toumodge, 1995; Jalilvand and Khanmohammadi,

2004), and business processes (Aalst, 2002). A Petri net is a

directed, connected, and bipartite graph, in which each node

is either a place or a transition. In a Petri net model, tokens

are used to specify information or conditions in the places.

When there is at least one token in every input place of a

transition, the transition is enabled. An enabled transition

can be fired by removing one token from every input

place, and depositing one token in each output place

of the transition. Coloured Petri Nets (CPN or CP-net) are

an extension of ordinary Petri nets, which allow different

values (represented by different colours) for the tokens

(Jensen, 1992; Jensen and Rozenberg, 1991). CPN have a

formal syntax and semantics that leads to compact models

of rather complex systems for modular design and analysis

(Christensen and Petrucci, 1992; Jensen, 1998). In addition,

a CPN allows associating guards and executable code

written in a high-level programming language – the ML

language (Clack et al., 1993) – with a transition. The

modelling and analysis of CPN models are supported

by powerful Petri net tools, such as the CPN Tools

(Ratzer et al., 2003).

Petri nets are a graphical and mathematical modelling

tool applicable to many systems. In this section, we develop

a compositional XML firewall security model for web

services invocation using CPN. As mentioned previously,

we design our XML firewall protected service oriented

system modularly with the basic components, i.e., the

application module and the XML firewall module, where

the interfaces between these modules are well defined.

In our CPN models, we introduce a few types of tokens

that denote the different types of inputs and outputs of

transitions. For example, if a transition results in a Boolean

decision, a BOOL token will be placed at the output place of

the transition. In addition, we associate guards with some

transitions to model the decision making processes.

4.1 Application model

An application invokes web services according to its

application logic, which may involve concurrency. Figure 3

shows a CPN model for an application that invokes two web

services concurrently. We assume the web services are

deployed on different web hosts, so they must be protected

by different XML firewalls. The two web services are

represented by two abstract transitions WS_Logic1 and

WS_Logic2 (denoted by boxes with thicker border line in

Figure 3). An abstract transition is a high-level transition

that represents an activity, which can be refined in a more

detailed design. The refinement of an abstract transition into

a new Petri net is beyond the scope of this paper, but it can

be modelled as a substitution transition that stands for a

CPN module in a hierarchical net structure supported

by the CPN Tools (Ratzer et al., 2003; Jensen et al., 2007).

In Figure 3, the XML firewall module is abstracted into

a subnet with a few places and transitions (enclosed in a

dashed line box in Figure 3), which will be refined into

a more detailed design in Section 4.2.

Figure 3 CPN model of an application that invokes two web services (see online version for colours)

152 H. Xu et al.

An XML firewall can be used to protect one or a group of

web services deployed on a web server (only one web

service is shown in Figure 3 behind each XML firewall).

Web services are invoked by various applications according

to users’ access requests. To protect both the application and

the web services, a user is required to provide his

credentials (e.g., user name and password) when he logs

into the application. This is represented by a token (denoted

as 1`1 in Figure 3, meaning one token with value 1) placed

in the Login_Request place. The token is passed to the

Username_Pass place when the Get_Login_Request

transition fires. The checking of the username and password

is done by firing the transition Check_UserDB, which

verifies a user’s identity with the information of certified

users stored in a database called User_DB. Note that the

information stored in the database User_DB is represented

by a unit token denoted as 1`e in Figure 3. A failure result

from the authentication process indicates that the user is not

a valid one, so a Boolean token ‘false’ will be deposited into

place N1, which enables the transition Not_Valid. Note that

the guard [b=false] associated with the transition

Not_Valid evaluates to true when a ‘false’ token is present

in place N1. The firings of the transitions Not_Valid and

Access_Denied sequentially will inform the user that the

access to the application was denied, and a token will be

returned to the Login_Request place. On the other hand, if

the user is verified as a valid one after firing the transition

Check_UserDB, a Boolean token ‘true’ will be deposited

into place N1, which enables the transition Valid. The firing

of transition Valid deposits a token in both of the places N2

and Ready_To_Accept_Req. A token in place N2 enables the

transition Get_User_Details that can fetch a user’s detailed

information from the User_DB database, and deposit a

token into place User_Details. Meanwhile, a token in

place Ready_To_Accept_Req enables both of the transitions

Accept_Request and Logout to allow an access request to

web services and a logout request, respectively. Note that

although there is an initial token in place User_Request

that represents a request from the user, the transition

Accept_Request cannot fire until a token is present in place

Ready_To_Accept_Req, which indicates that the user’s

authentication check has been passed, and thus, any

requests from the user can now be processed. As a result of

firing the Accept_Request transition, a token is deposited

into the Dispatch_Request place for further processing.

If the user request is a logout request, then the Logout

transition will fire. If the Logout transition fires, the tokens

in the three places Ready_To_Accept_Req, User_Details,

and Dispatch_Request are removed, and a new token

is returned to the initial place Login_Request and the

place User_Request. Since there is no token in the

Ready_To_Accept_Req place now, a user must login again

before he can make any further requests.

If the request made by the user is an access request

to web services, the Create_Request transition can fire,

and a token will be deposited into the Request_Details

place. A token in the Request_Details place contains

the information retrieved from the User_Details place

combined with the information from the incoming user

request. This enables the Application_Logic transition

representing the business logic of the application. Note that

the Application_Logic transition is defined as an abstract

transition that can be refined into a detailed design

according to the actual functionalities of the application.

When the transition Application_Logic fires, the application

applies its business logic to the incoming request, and

generates requests for web services invocation. To illustrate

concurrent invocations of two web services, the CPN model

contains two web services that are protected by two

different XML firewalls. To simplify matters, we assume

that the user has to wait for both of the results returned from

the web service invocations before any further requests can

be processed. The goal of the XML firewall is to perform

the authentication and authorisation activities for incoming

user requests from an application. If the user is authorised

and has the needed permissions to access a web service,

then the web service is invoked. This logic is shown in

Figure 3 using the XML_FW1 and XML_FW2 transition for

XML Firewall 1 and XML Firewall 2, respectively.

If the user request is authentic, and the user has all the

necessary permissions to invoke a web service protected

by an XML firewall, a ‘true’ token will be deposited

into its Done_Checking place (Done_Checking1 or

Done_Checking2), which enables the corresponding

Req_for_WS transition (representing the action of request

for web services). If the transition Req_for_WS fires, a

token representing this request will be deposited into

place WS_Req (Web Service Request), and enables the

corresponding WS_Logic transition that is defined as an

abstract transition for the web service logic. After

processing the request by a web service, a token

representing the result will be placed in the corresponding

FW_Result place. On the other hand, if the web service

access is denied, the corresponding Access_Denied

transition fires, and a token representing an access denied

message is placed in the FW_Result place.

When there is a token in both of the FW_Result1 and

FW_Result2 place, the Accept_Result transition in the

application module can fire. Once the result is accepted, a

token is deposited into the Init_Result place, which implies

the availability of the return results from the web services.

This enables the Application_logic transition, and the return

results can now be used by the Application_Logic transition

for further processing. When the Application_Logic

transition fires, any needed computations are performed,

and a token is returned to the User_Request place, which

enables a new user access request.

4.2 XML firewall model

In Figure 3, the XML firewalls are designed as

compositional modules (displayed inside the dashed line

boxes) that have well-defined interfaces with both of

applications and web services. The XML firewall module

in Figure 3 can now be refined into a more detailed

design as shown in Figure 4. To make the CPN model

 Formal modelling and analysis of XML firewall for service-oriented systems 153

of an XML firewall self-contained, we have shown an

abstraction of the application module with two places

(i.e., User_Request and Init_Result_1) and two transitions

(i.e., Application_Logic and Accept_Result) in Figure 4.

In addition, we also include an abstract web service

module that is represented by the abstract transition

WS_Logic. Note that different from Figure 3, we only

show one XML firewall in Figure 4; however, due to the

compositional modular design of our net model, it is

straightforward to extend the CPN model in Figure 4

into a system that includes two XML firewalls as shown in

Figure 3.

Figure 4 CPN model of an XML firewall with one application and one web service (see online version for colours)

As we discussed earlier, the application logic in an

application handles all the incoming requests coming

from the user and invokes the corresponding web services.

In Figure 4, when the Application_Logic generates a web

service invocation request, a token is placed into the

WS_Request place indicating a web service invocation.

The Check_If_Existing transition is enabled, and can fire to

check if the user, who makes the request, is an existing user

or a new one. If the user’s identity is not found in the

database UserInfo_DB, then the user is recognised as a first

time user, and a ‘false’ token is deposited into place N1,

which enables the transition First_Time_User. For each first

time user, the PerformBG_Check transition is fired, and a

background check is performed according to users’

background information stored in database BG_DB.

A user becomes a valid member if the background check is

passed, and a token is deposited into place Valid_User.

Then the Update_DBs transition must fire to update the user

information database UserInfo_DB as well as the role

information database Role_DB. Meanwhile, a token is

deposited into place Valid_User_Req indicating the current

request is from a valid user. On the other hand, if the user

authentication fails, the Check_Failed transition is fired, and

a token indicating access denied is deposited into the

FW_Result_1 place.

A user is identified as a regular user if his user

profile exists in the UserInfo_DB database. For a regular

user, the Existing_User transition is fired, and a token is

deposited into the Valid_User_Req place. Once a token is

present in the Valid_User_Req place, the authorisation

process can start by firing the Start_Authorization transition.

The state information for the incoming request is generated

by firing the Fetch_State_Info transition, which uses

state information that is already stored in the database

State_DB, as well as information extracted from the

incoming request message (e.g., the time of the request).

After the state information is generated, a token indicating

the current state of the request is placed into the State_Info

place. The Assign_Role transition is now enabled and can

fire to assign roles to the user according to information

154 H. Xu et al.

stored in the databases UserInfo_DB and Role_DB.

In addition, a user session is created by firing the

Create_Session transition. The user session defines the

period of time during which, a user can interact with an

application when invoking a web service. If the session

expires during an invocation (the session information will

be passed along with a user space token to the WS_Logic

transition as described later), the WS_Logic transition

returns a timeout result to the XML firewall, so a new web

service invocation request needs to be placed. The next task

is to fetch a policy from the Policy_DB. The Fetch_Policy

transition can fire when there is a token in the User_Role

place, the State_Info place, and the Sync place. A policy is

fetched from the Policy_DB database based on the user’s

role and user’s current state. After a policy is fetched

and a session is created, a user space is created, which

contains the user information, permissions and the session

information. A token representing a user space will be

deposited into the UserSpace place. Note that ideally, both

the session token and the user space token should be defined

as coloured tokens that contain the needed information;

however, to simplify our CPN model, we use tokens of type

INT to represent both sessions and user spaces.

A token in the Access_Req place represents a

web service invocation request in XML format.

The Mesg_Inspection transition can fire in order to check

the following two aspects:

• the entire XML message is scanned in order to discover

whether the message contains any malicious contents

• the web service invocation request is verified if it can

be granted within the user space created according to

the user’s role and permissions.

A Boolean token representing the result will be deposited

into the place Insp_Result. If the message does not contain

any malicious contents, and the user has the needed

permissions to invoke the web service, the Pass transition

can fire, and a web service request will be dispatched to the

corresponding web service. After the web service request

is processed (i.e., the firing of the WS_Logic transition),

a token representing the result of the web service invocation

is deposited into the FW_Result place. This token enables

the Update_StateDB transition, which updates the state

information in the database State_DB, and also deposits a

token in place FW_Result_1. On the other hand, if the XML

message contains any malicious contents, or the user does

not have sufficient permissions to invoke a web service,

the Fail transition fires, and a token is placed into the

Access_Failed place. When the transition Access_Denied

fires, a token that indicates the web service access is denied

is deposited into the FW_Result_1 place. From the above

description, we can see that the FW_Result_1 place may

hold two types of tokens: one representing an access denied

message, and another one representing the result from web

service invocation. With a token in the FW_Result_1 place,

the transition Accept_Result defined in the simplified

application module can fire. As a result, a token will

be deposited into the Init_Result_1 place, and the

Application_Logic transition determines the next step of

actions. When the Application_Logic transition fires, a

token will be returned to the place User_Request, and the

CPN model for the XML firewall will go back to its initial

state. Note that in the Init_Result_1 place, initially there are

two tokens denoted by 2`1. This allows a user to make two

concurrent requests to web services protected by the same

XML firewall, and it requires that the XML firewall have

the capability of processing more than one web service

request at the same time.

At the bottom of Figure 4, we introduce an

Administration subnet that models the administration

process of adding new policies into the database policyDB.

The abstract transition Comp_Logic in Figure 4 represents

the computation logic to capture a user’s request for adding

a new policy into plicyDB. When the transition Comp_Logic

fires, a token representing a new policy is deposited into

place New_Policy. Then the transition Check_Conflict must

fire to ensure the new policy is consistent with existing

policies stored in the policyDB. If there is no conflict

between the new policy and the existing policies, the

new policy will be accepted by firing the transition

Accept_Policy, and the PolicyDB is updated when the

transition Update_Policy fires. Otherwise, the Reject_Policy

transition fires, and the PolicyDB shall remain unchanged.

Notice that we have introduced a synchronisation place Sync

that initially contains a unit token to synchronise the

processes of fetching a policy and updating the policyDB.

When the Check_Conflict transition fires, the unit token in

place Sync is removed, so the transition Fetch_Policy

cannot fire even if there is a token in each of the places

User_Role and State_Info. The Fetch_Policy transition can

become enabled again once the unit token returns to the

Sync place when the PolicyDB has been properly updated

(i.e., when the transition Update_Policy fires). Due to the

modular design of our CPN models, our CPN models can be

easily extended to support modelling the activity of

modifying or deleting an existing policy from the PolicyDB.

5 Analysis of application model and XML

firewall model

One of the advantages of using CPN to model XML firewall

protected service-oriented systems is due to its support for

formal analysis using existing Petri net analysis tools.

In this section, we show how to use the CPN Tools

(Ratzer et al., 2003) to analyse some key properties of our

CPN models.

The CPN Tools is a program that supports editing,

simulating, and analysing CPN (Jensen et al., 2007). In CPN

Tools, a fast simulator is available for handling both timed

and untimed Petri nets efficiently. The CPN Tools include a

state space analysis engine that can generate a full or partial

state space, and produce a standard state space report

containing information such as boundedness, liveness,

and deadlock-freeness properties. The functionality of the

 Formal modelling and analysis of XML firewall for service-oriented systems 155

simulation engine and the state space facilities are

developed based on a previous version of the tool, called

Design/CPN (Albert et al., 1989), which is a widespread

tool for CPN. To verify the correctness of our XML firewall

security models, we utilise some key definitions for Petri net

behaviour properties as adapted from Murata (1989).

Definition 5.1: Reachability. In a Petri net N with initial

marking M0, denoted as (N, M0), a marking Mn is said to be

reachable from the marking M0 if there exists a sequence of

firings that transforms M0 to Mn. A firing or occurrence

sequence is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or

simply σ = t1 t2 … tn. In this case, Mn is reachable from M0

by σ, and we write M0 [σ > Mn.

Definition 5.2: Boundedness. A Petri net (N, M0), is said to

be k-bounded or simply bounded if the number of tokens in

each place does not exceed a finite number k for any

marking reachable from M0. A Petri net (N, M0) is said to be

safe if it is 1-bounded.

Definition 5.3: Liveness. A Petri net (N, M0), is said to be

live if for any marking M that is reachable from M0, it is

possible to ultimately fire any transition of the net by

progressing some further firing sequence.

Definition 5.4: Reversibility. A Petri net (N, M0) is said to

be reversible if, for each marking M that is reachable from

the initial marking M0, M0 is reachable from M.

Definition 5.5: Home marking. A marking Mhome of a

Petri net (N, M0) is said to be a home marking if Mhome can

be reached from any reachable marking Mn.

Definition 5.6: Dead marking. A marking Mdead of a

Petri net (N, M0) is said to be a dead marking if, in marking

Mdead, no transition is enabled in the net.

We first input our application net model defined in Figure 3

into the CPN Tools. The state space analysis tool produces

the results as listed in Table 1.

Table 1 Analysis results of the CPN application model in Figure 3

Statistics Boundedness Properties

----------------------------------- ---

 State Space Best Integer Bounds Upper Lower

 Nodes: 260 Dispatch_Request 1 0

 Arcs: 823 Done_Checking1 1 0

 Secs: 0 Done_Checking2 1 0

 Status: Full FW_Result1 1 0

 FW_Result2 1 0

 Home Properties Failure 1 0

----------------------------------- Init_Result 1 0

 Home Markings Login_Request 1 0

 All Ready_To_Accept_Req 1 0

 Request_Details 1 0

Liveness Properties User_DB 1 1

----------------------------------- User_Details 1 0

 Dead Markings User_Request 1 0

 None Username_Pass 1 0

 WS_Req1 1 0

 Dead Transition Instances WS_Req2 1 0

 None WS_Request1 1 0

 WS_Request2 1 0

 Live Transition Instances

 All

The analysis results in Table 1 show that the full state

space has been calculated, and the net has an upper

bound of 1 (due to space limitation, we only list the

boundedness properties of some key places of the

application model in the right column of Table 1).

This implies that any place in the application net model can

contain at most one token at any time, and the net is

bounded and safe. The reason why the application net model

is bounded and safe is because there is only one token in the

Init_Result place initially (as shown in Figure 3). Therefore,

after the Application_Logic transition fires for the first time,

it cannot fire again until the result of the previous web

services invocation returns. Similarly, the lower bound of a

place is the number of tokens that the place must contain at

156 H. Xu et al.

any time. For example, the lower bound of place User_DB

is 1, thus the place User_DB must contain at least one token

at any time.

The home properties in Table 1 shows that all markings,

including the initial marking M0, are home markings.

According to Definition 5.5, a home marking Mhome can be

reached from any reachable marking; thus, at any time, the

initial marking M0 can be reached by progressing some

further firing sequence. This proves that the application

CPN model is reversible, and the net can always return

to its initial state without leaving residual tokens in the net.

Since the initial marking M0 represents that there are no web

service requests being processed at the net, the reversibility

property indicates that every web service request can be

processed successfully.

The analysis results tell us that there are no dead

markings in our net model, and all transitions are live. Since

a live transition means, from any reachable marking, we can

always find a firing sequence containing the transition,

according to Definition 5.3, our net model is live. Thus, for

any marking M that is reachable from M0, it is possible to

ultimately fire any transition of the net. As a consequence,

as long as there are valid user requests with the needed

permissions, both the WS_Logic1 and WS_Logic2 transition

can fire eventually.

The analysis results also show that there are no dead

transitions. A transition is dead if, in all reachable markings,

the transition is not enabled. Dead transitions correspond to

parts of the model that can never be activated, and they can

be removed from the model without changing the model

behaviours (Jensen et al., 2007). Therefore, our analysis

result proves that all transitions in our net model can be

activated eventually.

Similarly, we input our XML firewall net model defined

in Figure 4 into the CPN Tools, the state space analysis tool

produces the results as listed in Table 2. The analysis results

show that our net model is 2-bounded. Since there are two

tokens in the Init_Result_1 place of the application model

initially, we expect that there can be at most two tokens in

the WS_Request place, which represent two concurrent web

service requests. This is proved by the upper bound of 2 in

the WS_Request place as shown in Table 2. Similarly, the

upper bound of 2 in the WS_Req place shows that two

concurrent web service requests can actually be made if the

user has passed the authentication, and has the needed

permissions.

Table 2 Analysis results of the CPN model in Figure 4

Statistics Boundedness Properties

-- --

 State Space Best Integer Bounds Upper Lower

 Nodes: 2065 Access_Req 2 0

 Arcs: 6740 Acess_Failed 2 0

 Secs: 2 Add_Policy_Req 1 1

 Status: Full Decision 1 0

 FW_Result 2 0

 Home Properties FW_Result_1 2 0

-- Init_Result_1 2 0

 Home Markings Init_Result_2 1 0

 [1604] Insp_Result 2 0

 New_Policy 1 0

 Liveness Properties New_Policy_1 1 0

-- Session 2 0

 Dead Markings State_Info 2 0

 [1604] Sync 1 0

 User_Info 2 0

 Dead Transition Instances User_Perm 2 0

 None User_Request 1 1

 User_Role 2 0

 Live Transition Instances User_Space 2 0

 None Valid_User 2 0

 Valid_User_Req 2 0

 WS_Req 2 0

 WS_Request 2 0

 Formal modelling and analysis of XML firewall for service-oriented systems 157

From the home properties of the net model as shown in

Table 2, we find that there is only one home making,

which has the node number 1604. Since the node number

of the initial marking M0 is always 1, the result shows

that the initial marking is not a home marking; thus,

the XML firewall net model is not reversible. Furthermore,

from the liveness properties, the single home marking

(node 1604) is a dead marking. From Definition 5.6, we

know that, in a dead marking, no transition is enabled.

Therefore, when the net model reaches the dead marking,

the net becomes dead, and cannot process further by

firing any transitions. This indicates a deadlock error in our

net model, and the net model is not live. To find out the

cause of the deadlock error, we again use the state space

analysis tool provided by the CPN Tools to trace the dead

marking. As shown in Figure 5, we find the following

firing sequence σ that leads to the dead marking, i.e.,

M0 [σ > M1603, where the initial marking M0 is numbered as

node N1, and the dead marking M1603 is numbered as node

N1604.

Figure 5 State space tracing of the dead marking state M1603 (i.e., Node 1604) (see online version for colours)

σ = N1, Application_Logic, N2, Application_Logic, N4,

Checking_If_Existing, N10, Checking_If_Existing, N21,

Existing_User, N42, Existing_User, N76, Start_Authorization,

N129, Start_Authorization, N204, Assign_Role, N303,

Assign_Role, N423, Fetch_State_Info, N563, Fetch_State_Info,

N715, Comp_Logic, N876, Check_Conflict, N1038,

Create_Session, N1186, Reject_Policy, N1341, Create_Session,

N1466, Comp_Logic, N1604.

By simulating the XML firewall net model according

to the firing sequence σ, it is easy to see that the

existence of the dead marking M1603 (N1604) is due

to the firing of the transition Check_Conflict, which takes

away the unit token in place Sync. If the new policy is

accepted and the policy database has been properly updated

(i.e., when the transition Update_Policy fires), the unit

token will be returned to the Sync place. In this case, the

Fetch_Policy transition can fire as long as there are tokens

in place State_Info and User_Role. However, if the new

policy is rejected (as illustrated in the firing sequence σ),

there will be no token returned to the Sync place;

in this case, the transition Fetch_Policy becomes disabled

forever, and thus, a deadlock situation occurs. The deadlock

error can be corrected by adding a new arc from the

transition Reject_Policy to place Sync, so a unit token

can be returned to the Sync place when the new policy is

rejected. Now we input our revised net model into the

CPN Tools again, and we get the analysis results as listed in

Table 3.

158 H. Xu et al.

Table 3 Analysis results of the revised CPN model in Figure 4

Statistics Boundedness Properties

-- --

 State Space Best Integer Bounds Upper Lower

 Nodes: 1475 Access_Req 2 0

 Arcs: 5135 Acess_Failed 2 0

 Secs: 1 Add_Policy_Req 1 1

 Status: Full Decision 1 0

 FW_Result 2 0

 Home Properties FW_Result_1 2 0

-- Init_Result_1 2 0

 Init_Result_2 1 0

 Home Markings Insp_Result 2 0

 All New_Policy 1 0

 New_Policy_1 1 0

 Liveness Properties Session 2 0

-- State_Info 2 0

 Dead Markings Sync 1 0

 None User_Info 2 0

 User_Perm 2 0

 Dead Transition Instances User_Request 1 1

 None User_Role 2 0

 User_Space 2 0

 Live Transition Instances Valid_User 2 0

 All Valid_User_Req 2 0

 WS_Req 2 0

 WS_Request 2 0

From the analysis results in Table 3, we can see that all

markings including the initial marking are home markings.

Thus, our revised XML firewall net model is reversible.

Furthermore, there are no dead markings, and all transitions

are live. This proves that our revised net model is live. As a

result, as long as there are valid user requests with needed

permissions, the WS_Logic transition can fire eventually.

Note that the CPN models we have developed in this

paper are compositional. This means we can easily develop

a CPN model that consists of multiple applications, multiple

firewalls, and multiple web services. Since both of the

application model and the revised XML firewall model have

been proved to be reversible, bounded, and live, due to the

modular design of our formal approach, a compositional

model with multiple applications, firewalls and web services

is also reversible, bounded, and live.

6 Conclusions and future work

The security issues in service-oriented systems have become

more and more important. Effective security mechanisms

are critical for ensuring the successful deployment of web

services. In this paper, we introduced a compositional CPN

model for XML firewall protected service-oriented systems.

We used the CPN formalism because it has a distinct

advantage of being easy to understand and use due

to its graphical notations and powerful rules for defining

system structure and dynamic behaviours (Murata, 1989;

Jensen, 1992). A CPN provides an executable model that

directly defines the concept of a system’s state space.

Although most research on automated analysis of

concurrent and distributed systems uses some type of

state-space exploration approach and cannot avoid the

associated state-space explosion problem, based on our

significant experience with Petri nets for many years, the

Petri net formalism is capable of achieving an effective

balance between theoretical concepts and practical

techniques.

Our proposed model supports secured web services

invocation, which only allows user requests with needed

permissions. The effectiveness of our approach is due to the

incorporation of the RBAC mechanism into our security

model, so user roles and permissions for web services

invocation can be assigned dynamically. Although there are

some existing implementations of XML firewall with

limited functionality, our proposed approach provides a

better solution to protecting service providers, where

state-based user authentication and authorisation are

 Formal modelling and analysis of XML firewall for service-oriented systems 159

supported explicitly for web services invocation. More

importantly, our XML firewall security model is formally

defined using CPN, thus certain behavioural properties

such as deadlock-freeness can be formally verified.

The compositional CPN model we proposed consists of the

application model and the XML firewall model, which can

be analysed separately; therefore the state-space explosion

problem in our formal approach is not significant.

To demonstrate the advantages of our formal approach, we

used the CPN Tools to verify some key properties of our net

model. Our analysis results show that our proposed net

model (the revised model) is live and bounded, which

indicate that our net model is deadlock free and only

requires bounded resources. Different from other existing

work, our approach ensures a correct design of XML

firewall, which can serve as a reliable high-level software

design for implementation. In our future work, we plan to

refine our CPN models into a more detailed design using

coloured tokens with more semantics such as users, their

roles, access permissions, and constraints, and show how to

implement XML firewalls based on our proposed formal

CPN models.

Acknowledgement

This material is based upon work supported by the

Chancellor’s Research Fund and UMass Joseph P. Healey

Endowment Grants, and the Research Seed Initiative

Fund (RSIF), College of Engineering, UMass Dartmouth.

We thank all anonymous referees for the careful review of

this paper and the many suggestions for improvements they

provided.

References

Albert, K., Jensen, K. and Shapiro, R. (1989) ‘DESIGN/CPN:

a tool package supporting the use of colored nets’, Petri Net

Newsletter, Gesellschaft für Informatik (GI), Special Interest

Group on Petri Nets and Related System Models, Bonn,

Germany, No. 32, April, pp.22–35.

Allen, D. (2006) Forum Systems’ XWall Web Services Firewall,

Retrieved on February 29, 2006, from http://www.network

magazine.com/shared/article/showArticle.jhtml?articleId=189

00090

Ayachit, M. and Xu, H. (2006) ‘A Petri net based XML firewall

security model for web services invocation’, Proceedings of

the International Conference on Communication, Network,

and Information Security (CNIS 2006), October, MIT,

Cambridge, Massachusetts, USA, pp.61–67.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, I.M.,

Ferris, C. and Orchard, D. (2004) ‘Web services architecture’,

W3C Working Group Note, February 11, Retrieved on

January 18, 2007, from http://www.w3.org/TR/2004/

NOTE-ws-arch-20040211/

Bouroulet, R., Klaudel, H. and Pelz, E. (2004) ‘A semantics of

security protocol language (SPL) using a class of composable

high-level Petri nets’, Proceedings of the Fourth International

Conference on Application of Concurrency to System Design

(ACSD’04), Hamilton, Ontario, Canada, pp.99–110.

Christensen, S. and Petrucci, L. (1992) ‘Towards a modular

analysis of colored Petri nets’, in Jensen, K. (Ed.):

Proceedings of the 13th International Conference on

Application and Theory of Petri Nets (ICATPN-92), Lecture

Notes in Computer Science, Springer-Verlag, Sheffield, UK,

Vol. 616, June, pp.113–133.

Clack, C., Myers, C. and Poon, E. (1993) Programming

with Standard ML, Prentice-Hall, Upper Saddle River,

NJ, USA.

Cremonini, M., Vimercati, S.D.C., Damiani, E. and Samarati, P.

(2003) ‘An XML-based approach to combine firewalls and

web services security specifications’, Proceedings of the 2003

ACM Workshop on XML Security, pp.69–78.

DataPower (2006) WebSphere DataPower SOA Appliances:

XS40 XML Security Gateway, Retrieved on March 15, from

http://www.datapower.com/products/xs40.html

Feinstein, H., Sandhu, R., Coyne, E. and Youman, C. (1996)

‘Role-based access control models’, IEEE Computer, Vol. 29,

No. 2, pp.38–47.

Fernandez, E.B. (2004) ‘Two patterns for web services

security’, Proceedings of the 2004 International Symposium

on Web Services and Applications (ISWS’04), Las Vegas, NV.

Fernandez, E.B., Larrondo-Petrie, M.M., Seliya, N., Delessy, N.

and Herzberg, A. (2003) ‘A pattern language for firewalls’,

Proceedings of the 10th Pattern Languages of Programs

Conference (PLoP 2003), Robert Allerton Park, Monticello,

IL, USA.

Giuri, L. and Iglio, P. (1997) ‘Role templates for content-based

access control’, Proceedings of the Second ACM Workshop

on Role Based Access Control, Virginia, USA.

Gralla, P. (2007) XML Firewalls, The Web Services

Advisor, January 7, Retrieved on January 9, from http://

searchwebservices.techtarget.com/tip/1,289483,sid26_gci855

052,00.html

Hamadi, R. and Benatallah, B. (2003) ‘A Petri net-based

model for web service composition’, in Schewe, K.D.

and Zhou, X. (Eds.): Database Technologies 2003,

Australian Computer Science Society Inc., Sydney, Australia,

pp.191–200.

Jalilvand, A. and Khanmohammadi, S. (2004) ‘Modeling of

flexible manufacturing systems by timed Petri net’,

Proceedings of the International Conference on

Computational Intelligence, pp.141–144.

Jensen, K. (1992) ‘Coloured petri nets: basic concepts,

analysis methods and practical use’, Vol. I: Basic Concepts,

EATCS Monographs on Theoretical Computer Science,

Springer-Verlag, New York.

Jensen, K. (1998) ‘An introduction to the practical use of coloured

Petri nets’, in Reisig, W. and Rozenberg, G. (Eds.): Lectures

on Petri Nets II: Applications, Lecture Notes in Computer

Science, Vol. 1492, Springer-Verlag, pp.237–292.

Jensen, K. and Rozenberg, G. (Eds.) (1991) High-level Petri Nets:

Theory and Application, Springer-Verlag, New York.

Jensen, K., Kristensen, L.M. and Wells, L. (2007) ‘Coloured Petri

nets and CPN tools for modelling and validation of concurrent

systems’, International Journal on Software Tools for

Technology Transfer (STTT), Vol. 9, No. 3, Springer-Verlag,

Berlin, Heidelberg, pp.213–254.

Juric, M.B. (2006) ‘Extending BPEL with WSIF for

enterprise application integration’, BPEL Cookbook: Best

Practices for SOA-Based Integration and Composite

Applications Development, Packt Publishing, Birmingham,

UK.

160 H. Xu et al.

Liu, B. and Chen, H. (2005) ‘Web service composition and

analysis: a Petri-net based approach’, Proceeding of the First

International Conference on Semantics, Knowledge and Grid

(SKG’05), Beijing, China, pp.111–113.

Moradian, E. and Håkansson, A. (2006) ‘Possible attacks on XML

web services’, IJCSNS International Journal of Computer

Science and Network Security, Vol. 6, No. 1B, January,

pp.154–170.

Murata, T. (1989) ‘Petri nets: properties, analysis and

applications’, Proceedings of the IEEE, Vol. 77, No. 4, April,

pp.541–580.

Mysore, S. (2003) Securing Web Services – Concepts, Standards,

and Requirements, White Paper, Sun Microsystems, Santa

Clara, CA, USA.

Nagappan, R., Skoczylas, R. and Sriganesh, R.P. (2003)

Developing Java Web Services: Architecting and

Developing Secure Web Services using Java, Wiley,

Hoboken, NJ, USA.

Pfleeger, C.P. and Pfleeger, S.L. (2003) Security in Computing,

3/e, Prentice-Hall, Upper Saddle River, NJ, USA.

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F.,

Stissing, M.S., Westergaard, M., Christensen, S. and

Jensen, K. (2003) ‘CPN tools for editing, simulating,

and analysing coloured Petri nets’, Proceedings of the

24th International Conference on the Application and

Theory of Petri Nets, Eindhoven, The Netherlands, June,

pp.450–462.

Toumodge, S. (1995) ‘Applications of Petri nets in manufacturing

systems: modeling, control, and performance analysis’,

IEEE Control Systems Magazine, Vol. 15, No. 6, December,

pp.93–94.

van der Aalst, W.M.P. (2002) ‘Making work flow: on

the application of Petri nets to business process management’,

in Esparza, J. and Lakos, C. (Eds.): Application and Theory

of Petri Nets 2002, Lecture Notes in Computer Science,

Springer-Verlag, Berlin, Vol. 2360, pp.1–22.

Vorobiev, A. and Han, J. (2006) ‘Security attack ontology for

web services’, Proceedings of the Second International

Conference on Semantics, Knowledge, and Grid (SKG’06),

p.42.

Windley, P.J. (2003) ‘Closing the XML security gap’, InfoWorld,

October 17, Retrieved on December 22, 2006, from

http://www.infoworld.com/

Wrenn, G. (2004) ‘Securing web services: a job for the

XML firewall’, Web Services Tips for XML Developers,

March 8, Retrieved on January 18, 2007, from

http://searchwebservices.techtarget.com/tip/1,289483,sid26_g

ci955191,00.html

Xu, D. and Nygard, K.E. (2005) ‘A threat-driven approach to

modeling and verifying secure software’, Proceedings of the

2005 IEEE/ACM International Conference on Automated

Software Engineering (ASE’05), November, pp.342–346.

Xu, D. and Nygard, K.E. (2006) ‘Threat-driven modeling

and verification of secure software using aspect-oriented

Petri nets’, IEEE Transactions on Software Engineering

(IEEE TSE), Vol. 32, No. 4, April, pp.265–278.

Xu, H. and Shatz, S.M. (2003a) ‘A framework for model-based

design of agent-oriented software’, IEEE Transactions on

Software Engineering (IEEE TSE), Vol. 29, No. 1, January,

pp.15–30.

Xu, H. and Shatz, S.M. (2003b) ‘ADK: an agent development kit

based on a formal model for multi-agent systems’, Journal of

Automated Software Engineering (AUSE), Vol. 10, No. 4,

October, pp.337–365.

Xu, H., Zhang, Z. and Shatz, S.M. (2005) ‘A security based model

for mobile agent software systems’, International Journal of

Software Engineering and Knowledge Engineering (IJSEKE),

Vol. 15, No. 4, August, pp.719–746.

Zhang, G. and Parashar, M. (2004) ‘Context-aware dynamic

access control for pervasive applications’, Proceedings of the

Communication Networks and Distributed Systems Modeling

and Simulation Conference (CNDS 2004), 2004 Western

MultiConference (WMC), San Diego, CA, USA.

