
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

10-7-2015 12:00 AM

Formal models of the extension activity of DNA polymerase Formal models of the extension activity of DNA polymerase

enzymes enzymes

Srujan Kumar Enaganti, The University of Western Ontario

Supervisor: Professor Lila Kari, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Srujan Kumar Enaganti 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Enaganti, Srujan Kumar, "Formal models of the extension activity of DNA polymerase enzymes" (2015).
Electronic Thesis and Dissertation Repository. 3323.
https://ir.lib.uwo.ca/etd/3323

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3323?utm_source=ir.lib.uwo.ca%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

FORMAL MODELS OF THE EXTENSION ACTIVITY OF DNA

POLYMERASE ENZYMES

(Thesis format: Integrated Article)

by

Srujan Kumar Enaganti

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Srujan Kumar Enaganti 2015

Abstract

The study of formal language operations inspired by enzymatic actions on DNA is part

of ongoing efforts to provide a formal framework and rigorous treatment of DNA-based in-

formation and DNA-based computation. Other studies along these lines include theoretical

explorations of splicing systems, insertion-deletion systems, substitution, hairpin extension,

hairpin reduction, superposition, overlapping concatenation, conditional concatenation, con-

textual intra- and intermolecular recombinations, as well as template-guided recombination.

First, a formal language operation is proposed and investigated, inspired by the naturally oc-

curring phenomenon of DNA primer extension by a DNA-template-directed DNA polymerase

enzyme. Given two DNA strings u and v, where the shorter string v (called the primer) is

Watson-Crick complementary and can thus bind to a substring of the longer string u (called the

template) the result of the primer extension is a DNA string that is complementary to a suffix of

the template which starts at the binding position of the primer. The operation of DNA primer

extension can be abstracted as a binary operation on two formal languages: a template lan-

guage L1 and a primer language L2. This language operation is called L1-directed extension of

L2 and the closure properties of various language classes, including the classes in the Chomsky

hierarchy, are studied under directed extension. Furthermore, the question of finding necessary

and sufficient conditions for a given language of target strings to be generated from a given

template language when the primer language is unknown is answered. The canonic inverse of

directed extension is used in order to obtain the optimal solution (the minimal primer language)

to this question.

The second research project investigates properties of the binary string and language oper-

ation overlap assembly as defined by Csuhaj-Varju, Petre and Vaszil as a formal model of the

linear self-assembly of DNA strands: The overlap assembly of two strings, xy and yz, which

share an “overlap” y, results in the string xyz. In this context, we investigate overlap assembly

and its properties: closure properties of various language families under this operation, and re-

ii

lated decision problems. A theoretical analysis of the possible use of iterated overlap assembly

to generate combinatorial DNA libraries is also given.

The third research project continues the exploration of the properties of the overlap as-

sembly operation by investigating closure properties of various language classes under iterated

overlap assembly, and the decidability of the completeness of a language. The problem of

deciding whether a given string is terminal with respect to a language, and the problem of

deciding if a given language can be generated by an overlap assembly operation of two other

given languages are also investigated.

Keywords: Formal language models, bio-operations, DNA computing, combinatorial li-

brary, decidability

iii

Co-Authorship Statement

This thesis essentially consists of three research articles published in journals, and/or un-

der review. All of them are co-authored by the author of the thesis, Srujan Kumar Enaganti

(S.K.E.), the author’s supervisor Prof. Lila Kari (L.K.) and by Dr. Steffen Kopecki (S.K.).

Two of them have also been co-authored by Prof. Oscar H. Ibarra (O.H.I.). By convention,

all the authors of papers in theoretical computer science journals are ordered alphabetically by

their last names. Below is a detailed description of the contributions of all the authors in the

papers.

Paper #1, “A formal language model of DNA polymerase enzymatic activity” - Chapter 3

S.K.E. - modelling the bio-operation, framing the problem mathematically, formal defini-

tions and initial approach, all the proofs, first manuscript draft, manuscript editing;

L.K. - topics, research ideas, manuscript writing and editing;

S.K. - research ideas and results, in particular the final version of results in Section 3.4,

semantic proof revisions, manuscript editing.

Paper #2, “On the overlap assembly of strings and languages” - Chapter 4

S.K.E. - modelling the bio-operation, framing the problem mathematically, formal defini-

tions and initial approach, first manuscript draft, manuscript editing, the preliminary results of

Section 4.3 (these were later extended/superseded by results due to O.H.I., in the final version

of this section of the paper. The preliminary results by S.K.E. are included as Appendix A of

this thesis), a major part of Section 4.5;

O.H.I. - research ideas, Section 4.2 starting with paragraph, “We will use the following ...”,

all the results in Section 4.3 and in Section 4.4, manuscript writing and editing;

L.K. - topics, research ideas, manuscript writing and editing;

S.K. - research ideas, semantic proof revisions of some results in all sections, Lemma 4.5.1,

manuscript editing.

iv

Paper #3, “Further remarks on the overlap assembly operation” - Chapter 5

S.K.E. - research ideas, first manuscript draft, manuscript editing, results in Sub-section 5.2.2,

Proposition 1, Proposition 2, Theorem 5.3.2, Proposition 3 (Section 5.3), Theorems 5.4.1,

5.4.2, 5.4.3 (Section 5.4);

O.H.I. - Sub-section 5.2.3, Theorem 5.3.1 (Section 5.3), Theorem 5.4.4 and Corollar-

ies 5.4.5, 5.4.6, 5.4.7, 5.4.8 (Section 5.4), all the results in Section 5.5, manuscript writing

and editing;

L.K. - topic, research ideas, manuscript writing and editing;

S.K. - results in Sub-section 5.2.2, Proposition 1, Proposition 2, Theorem 5.3.2, Proposi-

tion 3 (Section 5.3), Theorems 5.4.1, 5.4.2, 5.4.3 (Section 5.4), semantic proof revisions of

some results in all sections, manuscript editing.

v

Acknowlegements

First and foremost, I thank my supervisor Prof. Lila Kari whose guidance and support has

helped me throughout the period of my doctoral program. I am grateful to her for suggesting

these research topics, helping me with engendering of appropriate and plausible research ideas

and the constructive criticism of my results which helped improve them, among many others.

I convey my wholehearted and utmost thanks to Dr. Steffen Kopecki without whose help

these research results in their current form would not have been possible. His help, particularly

in proofreading my drafts and rewriting some of my proofs has been instrumental.

I convey my special thanks to Prof. Oscar H. Ibarra who has extended some results and

added many other interesting results.

I am thankful to all the staff and other faculty at the Department of Computer Science

for their amicable accessibility, assistance with various tasks and facilitating access to various

resources.

This thesis would have been impossible if not for the support of my parents and my wife,

especially the latter, whose constant encouragement and support has kept me in good stead in

all situations and helped me complete my thesis.

vi

Contents

Abstract ii

Co-Authorship Statement iv

Acknowlegements vi

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.2 Molecular biology basics . 3

1.2.1 DNA structure . 3

1.2.2 Enzymes . 5

Polymerases . 6

Restriction enzymes . 6

DNA ligases . 8

1.2.3 DNA polymerases and polymerase chain reaction 8

Polymerase chain reaction . 8

1.3 Summary and organization of the thesis . 10

2 Literature review 15

2.1 Introduction . 15

vii

2.2 Definitions and notations . 16

2.3 Splicing systems . 17

2.3.1 Introduction . 17

2.3.2 Definitions of splicing systems . 18

2.3.3 Closure properties of splicing systems 21

2.3.4 Definitions of circular splicing systems 22

2.4 Insertion deletion systems . 25

2.4.1 Introduction . 25

2.4.2 Definition of insertion-deletion systems 27

2.4.3 Closure properties of InsDel systems 28

2.4.4 Insertion-only systems . 29

2.4.5 Context-free insertion-deletion systems 30

2.4.6 Circular insertion-deletion systems . 30

Circular contextual insertion . 31

Circular insertion-deletion system . 31

2.5 Hairpin completion - reduction systems . 33

2.5.1 Introduction . 33

2.5.2 Definition of hairpin completion . 34

2.5.3 Iterated hairpin completions . 35

Hairpin completion distance and common ancestors 36

2.5.4 Definition of hairpin reduction . 37

2.5.5 Closure properties for hairpin completions and reductions 39

Hairpin completions . 39

Iterated hairpin completions . 39

Hairpin reduction . 40

2.5.6 Hairpin lengthening . 41

Closure properties and complexity results 42

viii

2.6 Conclusions . 43

3 A formal language model of DNA polymerase enzymatic activity1 50

3.1 Introduction . 50

3.2 Basic definitions and notations . 52

3.3 Closure properties . 54

3.4 Equations and inverse operation . 61

3.5 Discussion and conclusions . 63

4 On the overlap assembly of strings and languages2 71

4.1 Introduction . 71

4.2 Basic definitions and notations . 73

4.3 Closure properties . 77

4.4 Decision problems . 83

4.5 Iterated overlap assembly . 87

4.6 Conclusions . 93

5 Further remarks on DNA overlap assembly3 101

5.1 Introduction . 101

5.2 Basic definitions and notations . 103

5.2.1 The overlap assembly . 103

5.2.2 Basic properties of the overlap assembly 105

5.2.3 Automata models, augmented with counters 107

5.3 The related superposition operation . 109

5.4 Iterated overlap assembly and terminal sets . 111

1Reprinted from Fundamenta Informaticae, 138(1-2), S.K. Enaganti, L. Kari, S. Kopecki, A formal language
model of DNA polymerase enzymatic activity, 179-192, Copyright (2015), with permission from IOS press

2A version of this chapter, including an abstract, has been submitted to the Natural Computing journal (S.K.
Enaganti, O.H. Ibarra, L. Kari, S. Kopecki. On the overlap assembly of strings and languages.)

3A version of this chapter, including an abstract, has been submitted to the Information and Computation
journal (S.K. Enaganti, O.H. Ibarra, L. Kari, S. Kopecki. Further remarks on DNA overlap assembly.)

ix

5.5 Decision problems . 117

5.5.1 Deciding the completeness of a language 117

5.5.2 Deciding the terminality of strings . 118

5.5.3 Deciding the given decomposition of a language 121

5.6 Concluding remarks . 122

6 Conclusions 128

7 Addendum 130

A Closure properties of overlap assembly 132

A.1 Notations . 132

A.2 Results . 133

B Copyright releases 140

Curriculum Vitae 144

x

List of Tables

2.1 Closure properties of splicing systems [56] . 22

2.2 Closure properties under hairpin operations [6, 23, 27, 34–36] 41

3.1 Summary of closure properties under directed extension 61

3.2 Closure properties under the directed extension operation, ⊕, compared to the

PA-matching and superposition operations. 65

4.1 Closure properties of language classes in the Chomsky hierarchy under overlap

assembly. 82

A.1 Summary of closure properties under directed extension 139

xi

List of Figures

1.1 DNA structure (Source: [8]) . 3

1.2 A double-stranded DNA sequence . 4

1.3 Polymerase chain reaction (Source: [11]) . 9

2.1 The bio-operation of splicing . 18

2.2 A biochemical implementation of the insertion operation 26

2.3 An illustration of the hairpin completion operation 33

2.4 An illustration of iterated hairpin completion 35

3.1 Illustration of directed extension . 52

4.1 Illustration of overlap assembly operation . 74

4.2 Illustration of cases (A) and (B) from the proof of Lemma ??. 89

5.1 Illustration of overlap assembly operation . 104

xii

Chapter 1

Introduction

Formal language theory is a fundamental part of theoretical computer science. In recent times,

advances in molecular biology and biotechnology, particularly the ones related to the inter-

actions of DNA molecules have inspired several new formal models in the field. Thomas J.

Head, in his seminal paper “Formal language theory and DNA: an analysis of the generative

capacity of specific recombinant behaviors” has initiated this area of research by formulating

an operation modelling the actions of enzymes on DNA [9].

1.1 Motivation

The underlying impetus for this research stems from the area of DNA Computing which aims

towards developing DNA and molecular biology hardware that can be used to solve com-

putational problems more efficiently than the traditional silicon-based computers. Leonard

Adleman, through his DNA-based experiments had solved an instance of the Hamiltonian Path

Problem [1], which was a proof-of-principle that a computational task can be achieved using

solely DNA-based molecular biology processes. Since then, in the last two decades, there have

been several instances of algorithms being implemented experimentally using DNA and other

bio-molecules such as RNA and proteins. This has also, in turn, inspired the development of

several formal language models of DNA-based processes such as insertion-deletions, hairpin

1

2 CHAPTER 1. INTRODUCTION

completion etc.

One of the primary goals in developing these models is to bring the study of DNA-information

and DNA-computation into a unified formal framework. There has been an enormous amount

of data that has been collected in many fields of molecular biology, but the unifying principles

governing them are still to be discovered and formulated. There is a hope that these formal lan-

guage models could contribute to condensing the vast knowledge in the field to basic concepts

akin to physical sciences. Another goal has also been to implement molecular level automata

that can implement logical functions using molecular phenomena. A practical application is a

molecular automaton that can work in a living cell, assess the biochemical parameters within

the cell in real time, and produce output molecules indicating the appropriate action such as

drug-delivery at that point in time [2,3]. Such molecular automata have the advantage of being

biological entities that are able to work at a microscopic level within a biological cell.

There are several operations inspired from enzymatic actions on DNA that have been pro-

posed in the literature such as splicing, insertion and deletion, and hairpin extension. As par-

tially referred to earlier, splicing is a formal language operation originally proposed by Tom

Head [9] to model the recombination of DNA strands under the action of restriction enzymes

and ligase enzymes. There have been various types of splicing systems that have been devel-

oped based on this phenomenon and their properties studied in, e.g., [7, 10, 12, 15, 21]. The

operations of insertion and deletion are basic to DNA processing and RNA editing in molec-

ular biology. Insertion-Deletion systems were defined as formal models of computation based

on these operations and have been widely studied in the literature, see, e.g., [6, 13, 14, 22–25].

Based on the phenomenon of hairpin formation, a naturally occurring phenomenon whereby a

DNA strand that is partially self-complementary attaches to itself, the formal language oper-

ation called hairpin completion, as well as its inverse operation called hairpin reduction, have

been defined and extensively studied in the literature [4, 16–18].

The main purpose of this thesis is to develop some more formal models that can describe

1.2. MOLECULAR BIOLOGY BASICS 3

DNA-molecular actions in a formal way, and also to study the properties of these formal models

from a computational perspective. In particular, the focus is on formalizing the action of DNA

polymerase enzymes over DNA strands as a formal operation. There have been a few models

inspired by the action of polymerase enzyme such as hairpin completion, hairpin reduction [4,

16–18] and overlapping concatenation [19].

The next section gives a brief introduction to the molecular biology of DNA and some

enzymes whose actions have inspired the bio-operations referred to earlier, and the ones studied

in this thesis. This background is given to enable any general computer science audience to

understand the rest of the contents of the thesis.

1.2 Molecular biology basics

1.2.1 DNA structure

Figure 1.1: DNA structure (Source: [8])

Deoxyribonucleic acid (DNA) is the blueprint of life. It consists of a linear sequence of

units called “nucleotides” connected through a backbone consisting of sugar and phosphate

4 CHAPTER 1. INTRODUCTION

groups. Each nucleotide is associated with a base and the nucleotides differ only by presence

of a different base. There are four nucleotides, each having one of the four bases: Adenine,

Thymine, Guanine and Cytosine, represented by letters A, T, G and C respectively. The nu-

cleotides exhibit complementary behaviour with each other according to Watson-Crick com-

plementarity: Adenine and Thymine are complementary to each other, and Guanine and Cyto-

sine are complementary to each other. Adenine-Thymine and Guanine-Cytosine are sometimes

termed as Watson-Crick base pairs. The sugar consists of five carbon atoms which are num-

bered 1’ (one prime) to 5’ (five prime). The 1’-carbon is connected to the base and the 3’ and

5’ carbons connect with the phosphate group. By convention, any (single) strand of DNA is

given a direction where the two ends of the DNA strand sequence are identified as the 5’-end

and the 3’-end respectively based on 5’ and 3’ carbon atoms of nucleotides that flank each

end respectively. To identify relative positions within a DNA sequence, the terms upstream

and downstream are used. By convention, upstream is towards the 5’ end and downstream is

towards the 3’ end of the molecule. DNA is often double stranded and the composing single

strands are anti-parallel, i.e., they run in 5’–3’ and 3’–5’ directions respectively. In addition,

the sequences of the single strands that comprise the DNA double strand have complementary

bases at each position. For example, consider the double stranded DNA shown in Figure 1.2

where one strand has the sequence 5’-ATGCTC-3. The other strand will be reverse com-

plementary to this and has the sequence 5’-GAGCAT-3’ (read in the direction of 5’ to 3’ by

convention).

Figure 1.2: A double-stranded DNA sequence

The sugar-phosphate backbone is held together with phosphodiester bonds, which are the

1.2. MOLECULAR BIOLOGY BASICS 5

covalent bonds between the phosphate group and the sugar at its 3’ and 5’ ends respectively.

The complementary bases are held together through hydrogen bonds between electronegative

hydrogen atoms and a nitrogen or oxygen atom on the other base, and other forces such as Van

der Waals forces, see Figure 1.1 and Figure 1.2. In Figure 1.2, one can see two lines between

A and T and three lines between G and C indicating the number of hydrogen bonds involved

in the respective base-pairs.

RiboNucleic Acid (RNA) also plays a vital role in life processes. RNA molecules are

similar to DNA molecules but they have the nucleotide Uracil (represented as U) instead of

Thymine (T), and the sugar in the sugar-phosphate backbone is ribose and not 2-deoxyribose

like in DNA. RNA strands are often single-stranded and can form double strands with other

self complementary RNA or DNA strands.

1.2.2 Enzymes

Enzymes are large biological molecules (mostly proteins) responsible for accelerating, or cat-

alyzing many chemical reactions that sustain life. The primary role of enzymes is to catalyze

reactions, by accelerating the rate and specificity of metabolic reactions ranging from the di-

gestion of food to the synthesis of DNA. They are highly selective with respect to their active

sites and their actions. The chemical compound they act upon is called the substrate.

Enzymes catalyze a wide variety of reactions and their standard classification is based on

the types of reactions that they are involved in. There have been six major classes identified,

namely oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. Within the

scope of this thesis, we deal with three types of enzymes, polymerases (a special kind of trans-

ferases), restriction enzymes (which are transferases and hydrolases) and DNA ligases.

6 CHAPTER 1. INTRODUCTION

Polymerases

A polymerase is an enzyme whose central biological function is the synthesis of polymers of

nucleic acids (DNA and RNA). Polymerases work by using an existing strand as an information

template and then joining nucleotides complementary to it to form a new strand complementary

to the original. They typically require a primer, which is a short strand of DNA/RNA (generally

about 18-22 nucleotides long) that serves as a starting point for DNA/RNA synthesis.

The most important classes of polymerases are DNA polymerases and RNA polymerases.

They are further divided into two classes each depending on the template strands (which are

the strands the enzymes derive their information from). DNA polymerases are used to replicate

existing DNA (as in cell division) are called DNA-based DNA polymerases. DNA polymerases

that are used to assemble a DNA strand using an existing RNA strand as a template are called

RNA-based DNA polymerases. In this thesis, the word DNA polymerase is exclusively used

to refer to DNA-based DNA polymerase enzyme. Analogously, RNA polymerases are used to

assemble RNA molecules using an existing DNA or RNA strand as a template and assembling

appropriate nucleotides using base-pairing interactions. There are many important subclasses

of polymerases such as reverse transcriptases used by viruses such as HIV, which generate

complementary DNA (cDNA) from an RNA template through a process called reverse tran-

scription.

The bio-operations that are studied in this thesis are almost exclusively inspired by the

extension activity of the DNA polymerase enzymes. More details about DNA polymerase

enzymes and some of their applications will be discussed in Sub-section 1.2.3.

Restriction enzymes

A restriction enzyme (also called restriction endonuclease) is an enzyme that cuts DNA at or

around a specific recognition nucleotide sequence known as restriction site. The restriction

enzymes are classified based on various factors such as the differences in their structure, nature

1.2. MOLECULAR BIOLOGY BASICS 7

of the substrate that they act upon, or if the recognition and cleavage sites are separate from one

another, or if they cut their DNA substrate near their recognition site or far away, among others.

All the naturally occurring restriction enzymes are classified into four major types referred to

as type I, type II, type III and type IV restriction enzymes. Type I enzymes cleave very far

(sometimes in the order of thousands of nucleotides away) from the recognition site and often

at random locations. Type II enzymes cleave within a short specific distance (typically less

than 20 nucleotides) from the recognition site and do not have a methylase function (which

is replacing a hydrogen atom with a methyl (CH3) group). Some of the type II enzymes cut

within the recognition site and some of them cut outside the recognition site. For example, the

type IIS (a subtype of type II) restriction enzyme FokI which has 5’-GGATG-3’ recognition

site is known to cut 9 nucleotides downstream and 13 nucleotides upstream of the nearest

nucleotide of the recognition site. Type III enzymes cleave within a short specific distance

from the recognition site but exist as part of a complex which has a methylase activity. Type

IV enzymes target only modified DNA such as methylated DNA. Among all these, type II

restriction enzymes are the most abundant and widely studied. A detailed discussion about the

structure and mechanism of all sub-types of type II restriction enzymes is presented in [20].

A key feature of restriction enzymes is that, when they cut a double-stranded DNA molecule,

different types of ends are produced. The two important types of ends produced are blunt ends

and sticky ends. In a blunt-ended DNA molecule, both strands terminate in a base pair. A

sticky end is an overhang, i.e., a stretch of unpaired nucleotides at the end of a DNA molecule,

of length at least two. These unpaired nucleotides can be in either strand, creating either 3’ or

5’ overhangs.

There also exist some special variants of restriction enzymes called nickases (also called

nicking endonucleases), which instead of cleaving both the strands of a double-stranded DNA

cleave only one of the strands and thus produce DNA molecules that are “nicked” rather than

cleaved.

8 CHAPTER 1. INTRODUCTION

DNA ligases

DNA ligases are a class of enzymes which facilitate the joining of DNA strands together by

catalyzing the formation of a phosphodiester bond (the covalent bond linking the 5’ or 3’

carbon atom of a sugar with a phosphate group) between adjacent nucleotides of the same

strand. They have become an indispensable tool in modern molecular biology research for

generating recombinant DNA molecules (DNA molecules that are formed by the combination

of DNA sequences from multiple sources). They are used, along with restriction enzymes, to

insert DNA fragments such as genes into plasmids (which are small and often circular DNA

sequences found in some organisms).

1.2.3 DNA polymerases and polymerase chain reaction

The DNA polymerase enzymes are among the most important enzymes in a cell since they

are useful for DNA replication, a process that is needed in cell division. They have also been

proven to be vital in the field of biotechnology, particularly for their application in the technique

called polymerase chain reaction.

Polymerase chain reaction

The polymerase chain reaction (PCR) is a widely-used technique in molecular biology and

biotechnology that is used for many applications including genotyping, cloning, mutation de-

tection, sequencing, forensics, and paternity testing. Basically, it is a process that extracts a

desired subsequence from a longer DNA sequence by exponentially replicating copies of the

sub-sequence. The sub-sequence that is amplified is usually referred to as an “amplicon”.

Most often, a DNA polymerase called the Thermus acquaticus (Taq) polymerase (extracted

from a thermophilic bacterium that lives in thermal hot springs) is used in the PCR process, as

it is a heat resistant polymerase that is more resistant to the temperature changes, and works

actively at its normal optimal temperature (which is higher than the normal optimal temperature

1.2. MOLECULAR BIOLOGY BASICS 9

for most other polymerases which is around 37). It acquired vital commercial importance due

to its widespread use in PCR.

Figure 1.3: Polymerase chain reaction (Source: [11])

A PCR process consists of usually many cycles that are repeated until a sufficient amount

of the desired output is obtained as shown in Figure 1.3. The process takes a double-stranded

DNA molecule containing the desired amplicon as a subsequence as an input, along with two

short single DNA strands that can work as primers. The short strands introduced are chosen

such that one of them matches exactly with the prefix and the other is Watson-Crick com-

plementary to the suffix of the desired amplicon. Each PCR cycle consists of three stages:

denaturation, annealing and elongation. In the stage of denaturation, the solution is heated to

temperatures of up to 95°C. At such high temperatures, the double-stranded DNA breaks up

into its constituent single strands. In the annealing stage, the temperature is lowered to 68°C

(or similar temperature depending on the primers). The primers attach themselves to either of

the template strands at the respective places, where Watson-Crick complementary sequences

are found. In the extension stage, the temperature is increased slightly to the polymerase op-

timal temperature (around 75°C for Taq polymerase). At this stage, the polymerase enzyme

is most active and starts elongating the primers in the 5’ to 3’ direction of primer. The cycles

10 CHAPTER 1. INTRODUCTION

are repeated 20–40 times (depending on the purpose) and, at the end of final extension, the

reaction mixture is held at 4 degrees and it contains the desired product (primer delimited) in

great excess.

1.3 Summary and organization of the thesis

In this thesis, two different models of computation are studied: “Directed Extension” and

“Overlap Assembly”. The directed extension is an operation that models the action of the

DNA polymerase enzyme over DNA strands. It takes two strings as input representing the

template strand (providing information for extension) and primer (providing the starting point

of extension), respectively, and produces output strings representing all possible new strands

that may be generated by the extension of the primer according to the template. The overlap

assembly is an operation between two different words with a partial overlap, where the suffix

of one overlaps with the prefix of the other, and produces a new word that is a concatenation

of both the words without the repetition of the common sub-word. Overlap assembly of DNA

strands can also be achieved by the action of the DNA polymerase enzyme.

Chapter 2 gives a survey of research literature, describing several language operations that

were inspired by enzymatic actions on DNA.

Chapters 3, 4 and 5 constitute the original research contributions of this thesis.

Chapter 3 includes a study of the directed extension operation, formulated by the author of

the thesis. The operation is defined between words, and then extended to languages. Section 3.3

studies the closure properties of various language classes, including the ones in the Chomsky

hierarchy, with respect to the operation. In Section 3.4, an inverse of the operation is defined,

and an evaluation of the necessary and sufficient conditions for the existence of an inverse is

conducted. Then, some related questions with respect to language equations are resolved.

Chapter 4 discusses the operation of overlap assembly. A study of closure properties of

the language classes within the Chomsky hierarchy, and various other classes, under overlap

1.3. SUMMARY AND ORGANIZATION OF THE THESIS 11

assembly is put forth in Section 4.3. Section 4.4 deals with related decision problems. In

Section 4.5, an iterated version of the overlap assembly operation is studied. Then a theo-

retical analysis of how it can be applied to produce a DNA combinatorial library, useful for

implementing many DNA-based algorithms, is presented.

Chapter 5 probes further into the properties of the overlap assembly operation. Section 5.3

compares overlap assembly with the related superposition operation and shows how all the

positive closure properties of the iterated version of the former follow from the latter. Using

this, closure properties of various language classes with respect to iterated overlap assembly

are re-established. Although they were previously studied in [5], some of the existing results

are strengthened here. Section 5.4 gives a study of the properties of the terminating sets of

a language, previously defined in Chapter 4. Section 5.5 studies some decidability problems.

The first problem is to decide whether a given language is complete. The other problems are

to decide if a string is terminal with respect to a language, and to decide if a language can be

generated by two other given languages.

In Chapter 6, some concluding remarks and future directions of work are given.

Bibliography

[1] L. M. Adleman. Molecular computation of solutions to combinatorial problems. Science,

266(5187):1021–1024, 1994.

[2] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular

computer for logical control of gene expression. Nature, 429(6990):423–429, 2004.

[3] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable

and autonomous computing machine made of biomolecules. Nature, 414(6862):430–434,

2001.

[4] D. Cheptea, C. Martı́n-Vide, and V. Mitrana. A new operation on words suggested by

DNA biochemistry: hairpin completion. In Proc. Transgressive Computing, TC, pages

216–228, 2006.

[5] E. Csuhaj-Varjú, I. Petre, and G. Vaszil. Self-assembly of strings and languages. Theo-

retical Computer Science, 374(1-3):74–81, 2007.

[6] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual insertions/deletions

with applications to biomolecular computation. In Proc. String Processing and Informa-

tion Retrieval, SPIRE, pages 47–54, 1999.

[7] R. W. Gatterdam. Splicing systems and regularity. Int. J. of Computer Mathematics,

31(1-2):63–67, 1989.

12

BIBLIOGRAPHY 13

[8] N. N. Genetics and G. E. C. [(http://creativecommons.org/licenses/by sa/4.0)]. DNA dou-

ble helix. http://www.geneticseducation.nhs.uk/blog/wp-content/uploads/

2014/03/DNA-diagram.jpg, 2014.

[9] T. Head. Formal language theory and DNA: an analysis of the generative capacity of

specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759, 1987.

[10] T. Head, D. Pixton, and E. Goode. Splicing systems: regularity and below. In M. Hagiya

and A. Ohuchi, editors, DNA Based Computers: DNA Computing, DNA 8, volume 2568

of LNCS, pages 262–268, 2003.

[11] E. [(http://creativecommons.org/licenses/by sa/3.0)]. Polymerase chain reaction. https:

//commons.wikimedia.org/wiki/File:Polymerase_chain_reaction.svg, 2014.

[12] L. Kari and S. Kopecki. Deciding whether a regular language is generated by a splicing

system. In D. Stefanovic and A. Turberfield, editors, DNA Computing and Molecular

Programming (DNA 18), volume 7433 of LNCS, pages 98–109, 2012.

[13] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and for-

mal languages: characterizing recursively enumerable languages using insertion-deletion

systems. In DNA Based Computers III (DNA3), volume 48 of DIMACS, pages 329–346,

1999.

[14] L. Kari and P. Sosı́k. On the weight of universal insertion grammars. Theoretical Com-

puter Science, 396(1-3):264–270, 2008.

[15] S. M. Kim. An algorithm for identifying spliced languages. In T. Jiang and D. Lee,

editors, Proc. Computing and Combinatorics Conference, COCOON, volume 1276 of

LNCS, pages 403–411, 1997.

[16] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,

412(29):3629–3638, 2011.

14 BIBLIOGRAPHY

[17] F. Manea, C. Martı́n-Vide, and V. Mitrana. On some algorithmic problems regarding the

hairpin completion. Discrete Applied Mathematics, 157(9):2143–2152, 2009.

[18] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B. Cooper,

B. Löwe, and A. Sorbi, editors, Proc. Computability in Europe, CiE, volume 4497 of

LNCS, pages 532–541, 2007.

[19] C. Martı́n-Vide, G. Păun, J. Pazos, and A. Rodrı́guez-Patón. Tissue P systems. Theoretical

Computer Science, 296(2):295–326, 2003.

[20] A. Pingoud, M. Fuxreiter, V. Pingoud, and W. Wende. Type II restriction endonucleases:

structure and mechanism. Cellular and Molecular Life Sciences, 62(6):685–707, 2005.

[21] D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1-2):101–

124, 1996.

[22] G. Păun, M. J. Pèrez-Jimènez, and T. Yokomori. Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. of

Foundations of Computer Science, 19(4):859–871, 2008.

[23] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing Paradigms.

Springer-Verlag New York, Inc., 1998.

[24] A. Takahara and T. Yokomori. On the computational power of insertion-deletion systems.

Natural Computing, 2(4):321–336, 2003.

[25] M. Yong, J. Xiao-Gang, S. Xian-Chuang, and P. Bo. Minimizing of the only-insertion

insdel systems. Journal of Zhejiang University Science A, 6(10):1021–1025, 2005.

Chapter 2

Literature review

Summary

Computational models based on DNA bio-operations are an important part of formal lan-

guage theory due to the fact that they can be useful in directly simulating naturally occurring

DNA/RNA processes. Since Tom Head’s paper [13] which defined “splicing” as a formal lan-

guage operation modelling recombinant DNA, several other DNA-based bio-operations have

been introduced and widely studied. Herein, we present a comprehensive overview of compu-

tational systems based on bio-operations such as splicing systems, insertion-deletion systems

and hairpin completion-reduction systems. Besides describing their biological basis and mo-

tivations, we focus on noteworthy computational properties of such systems such as universal

computability, closure properties, complexity, and reversibility.

2.1 Introduction

There has been a wide variety of formal operations proposed in the literature, to model the

actions of enzymes on DNA strands. Formal systems based on such bio-operations include

splicing systems, insertion-deletion systems, hairpin completion-reduction systems etc.

Since a DNA strand is essentially a linear sequence over an alphabet of 4 nucleotides (given

15

16 CHAPTER 2. LITERATURE REVIEW

by the respective letters), it can be modelled to represent information or data. As early as 1980,

Ebling and Jiménez-Montaño have used context-free and context-sensitive grammars for the

description of polypeptides and polynucleotides [8].

The roadmap of this chapter is as follows: In Section 2.2, we briefly give the notations

followed in the chapter. In Section 2.3, we discuss splicing systems, inspired by recombinant

behaviour of DNA. In Section 2.4, we talk about insertion-deletion systems and in Section 2.5,

we talk about hairpin completion-reduction systems. Finally, we give some of our conclusions

in Section 2.6.

2.2 Definitions and notations

An alphabet A is a finite non-empty set of symbols. A∗ denotes the set of all words over A,

including the empty word λ . A+ is the set of all non-empty words over A. The length of a

word x ∈ A∗ is given by |x|. For words w,x,y,z such that w = xyz we call x, y, and z prefix,

infix, and suffix of w, respectively. The sets pref(w), inf(w), and suff(w) contain, respectively,

all prefixes, infixes, and suffixes of w. A prefix (resp., infix or suffix) x of w is proper if

x 6= w. We employ the following notation: Pref(w) = pref(w) \ {w}, Inf(w) = inf(w) \ {w},

and Suff(w) = suff(w) \ {w}. This notation is naturally extended to languages; for example,

Suff(L) =
⋃

w∈L Suff(w).

θ is called a morphism if θ(uv) = θ(u)θ(v) for all u,v∈A∗. θ is called an anti-morphism if

θ(uv) = θ(v)θ(u) for all u,v ∈ A∗. A function I : A∗→ A∗ is called an involution if I(I(x)) = x

for all x ∈ A∗. Traditionally, the Watson-Crick complementarity of DNA strands has been

modelled as an anti-morphic involution over the DNA alphabet ∆ = {A,C,G,T}.

By FIN, REG, LIN, CF, CS, and RE we denote the families of finite, regular, linear (context-

free), context-free, context-sensitive, and recursively enumerable languages, respectively. For

basic elements of formal language theory, we refer to [18].

2.3. SPLICING SYSTEMS 17

2.3 Splicing systems

2.3.1 Introduction

The formal language operation of splicing is designed to model DNA recombination under the

action of restriction enzymes and ligases. When a double-stranded DNA strand is acted upon

by certain restriction enzymes, the result is that the DNA strand is cut at specific locations,

giving rise to sticky or blunt ends (see Section 1.2.2). The sticky ends formed can sometimes

bind to sticky ends of different DNA strands if they are Watson-Crick complementary. Such

pairs of sticky ends are termed compatible sticky ends. The DNA ligase can then join the

backbone, completing thus the formation of the new double strand. Some common examples

of restriction enzymes that are used for such reactions are TaqI, SciNI, BamHI and BglII.

We illustrate this process with the example in Figure 2.1. Let there be two double-stranded

sequences in the solution, with one of them being 5′−α−TCGA−β −3′ and the other being

5′− γ−GCGC−δ −3′ where α,β ,γ and δ are sequences of DNA. Assume that we have two

restriction enzymes TaqI and SciNI added to reaction mixture. Given appropriate conditions,

the enzymes will recognize their respective recognition sequences in both the strands and cut

them according to their restriction mechanism. The enzymes TaqI and SciNI will produce the

sticky ends as shown in Figure 2.1. The compatible sticky-ends can bind together and result in

the formation of a new strand 5′−α−TCGC−δ −3′ under the action of DNA ligase enzyme.

Similarly, the other two sticky ends can bind together and form 5′− γ−GCGA−β −3′. This

is in effect the bio-operation of splicing.

The formal operation of splicing was introduced by Tom Head to formalize the recombinant

behaviour of DNA strands under the action of restriction enzymes and ligases [13].

In the next sub-sections, we give definitions for splicing systems and follow that up with

their properties, and different types of splicing systems. In Sub-section 2.3.4, we then define

circular splicing systems and their properties. Finally we give some of the results in literature

18 CHAPTER 2. LITERATURE REVIEW

Taq I

CGAθ(α)3′
Tα5′ CG

T θ(β) 5′
A β 3′

Sci NI

CGCθ(γ)3′
Gγ5′ CG

G θ(δ) 5′
C δ 3′

CGAθ(α)3′
Tα5′ CG

G θ(δ) 5′
C δ 3′

ligase

Figure 2.1: The bio-operation of splicing: The input strands 5′−α−TCGA−β −3′ and 5′−
γ−GCGC−δ−3′ are acted upon by the restriction enzymes TaqI and SciNI and these enzymes
break the strands at the restriction sites (locations indicated) resulting in the formation of sticky
ended DNA strands. Later, two of the strands with compatible sticky ends bind to each other
and with the help of DNA ligase enzyme form the new strand 5′−α −TCGC− δ − 3′. The
other two sticky ends can also bind and would analogously form the strand 5′− γ −GCGA−
β −3′ (Not shown in the picture).

about regularity properties of either types of systems.

2.3.2 Definitions of splicing systems

There are three important definitions of splicing systems that are well-studied in the literature.

Definition (Head’s [13]) A splicing system SH = (A, I,B,C) consists of a finite alphabet A, a

finite set I ⊆ A∗ of initial strings, and finite sets B and C of triples (c,x,d) with c, x and d in

A∗. Each such triple in B or C is called a pattern. For each such triple the string cxd is called

a site and the string x is called a crossing. Patterns in B are called left patterns and patterns in

C are called right patterns. The left patterns are associated with restriction enzymes produc-

ing 5’ overhangs and the right patterns are associated with restriction enzymes producing 3’

overhangs. Splicing can happen between two words only if both the corresponding patterns

involved in the operation are either left (i.e. both are in B) or right (i.e. both are in C). Given

two words ucxdv and pex f q in L, if (c,x,d) and (e,x, f) are patterns in B (resp. C), the splicing

operation generates the strings ucx f q and pexdv.

Definition A splicing scheme is a pair σ =(A,R), where A is an alphabet and R⊆A∗#A∗$A∗#A∗

2.3. SPLICING SYSTEMS 19

is a set of splicing rules.

Definition (Paun’s [44]) A splicing system SPA = (A, I,R) consists of a finite set I ⊆ A∗ as the

initial language and a corresponding splicing scheme (A,R). Each rule r in R is of the form

r = (u1,u2;u3,u4) (and represented by the string u1#u2$u3#u4), with ui ∈ A∗, for i = 1,2,3,4

and #,$ /∈ A. Given two words x = x1u1u2x2, y = y1u3u4y2, and the rule r = u1#u2$u3#u4,

the splicing operation produces w = x1u1u4y2 and w′ = y1u3u2x2. Formally, we can write

(x,y) `r {w,w′}.

The Paun’s definition of splicing is the most widely used model of splicing system in the area

of DNA computing.

Definition (Pixton’s [41]) A splicing system SPI = (A, I,R) consists of a finite alphabet A,

a finite set of strings I ⊆ A∗ as initial language, a set of rules R where for all r in R, we

have r = (α,α ′;β), for α,α ′,β ∈ A∗. Given two words x = εαη , y = ε ′α ′η ′ and the rule

r = (α,α ′;β), the splicing operation produces w = εβη ′ and w′ = ε ′βη . Formally, we can

write (εαη ,ε ′α ′η ′) `r {εβη ′,ε ′βη}.

Note that in Pixton’s definition, the word β is introduced to make the system more generic

than Paun’s system. This way we are not only cutting and pasting at the recognition site but

also substituting it with a new word given by the splicing rule.

Every splicing system generates a language by the iterated application of splicing rules to

its initial language. Thus, every splicing system is associated with a corresponding splicing

language. Formally, let R0(L) = L and R(L) = {w ∈ A∗ | ∃w′,w′′ ∈ L,∃r ∈ R : (w′,w′′) `r w}.

For each non-negative integer i, we have Ri+1(L) = Ri(L)∪R(Ri(L)). The language R∗(L) =

∪{Ri(L) : i ≥ 0} is the language generated from L through the iterated application of the rule

set R.

A language is said to be a splicing language if there is a splicing system that can generate it.

Formally, a language L is a splicing language if L=R∗(I) for some splicing system S=(A, I,R)

(defined by either Paun’s or Pixton’s definitions).

20 CHAPTER 2. LITERATURE REVIEW

A splicing system S = (A, I,R) is said to be a finite splicing system if both R and I are

finite sets. A language generated by such a system is called finite splicing language. For finite

splicing systems, it was proved that the family of languages generated by Head’s system is

strictly included in the family generated by Paun’s system which is in turn strictly included in

the family generated by Pixton’s system [5].

Sometimes, splicing systems that have a splicing scheme with some restrictions are studied.

Definition [15] A splicing scheme R is reflexive if for every splicing rule (u,u′;v′,v) (Paun’s

definition) in R, there is a corresponding rule (u,u′;u,u′) that is in R. A splicing system using a

reflexive splicing scheme is called reflexive splicing system and correspondingly, the language

generated by such a system is called as a reflexive splicing language.

Definition [15] A splicing scheme R is symmetric if for every splicing rule (u,u′;v′,v) (Paun’s

definition) in R, there is a corresponding rule (v′,v;u,u′) that is in R. A splicing system with

a symmetric splicing scheme is called a symmetric splicing system and correspondingly, the

language generated by such a system is called as a symmetric splicing language.

Restricted versions of splicing systems based on the type and size of splicing rules are also

defined. These include the following:

Definition [40] A splicing system S = (A, I,R) (Paun’s version) in which all rules in R have

the form (a,λ ;a,λ) where a ∈ A is called simple splicing system.

Definition [11] A splicing system S = (A, I,R) (Paun’s version) in which I and A are finite

and every rule in R has the form (a,λ ;b,λ), where a, b are in A is called a semi-simple splicing

system.

Definition [13] A null-context splicing system is a splicing system S = (A, I,B,C) (Head’s

version) for which each cleavage pattern in B and C has the form (λ ,x,λ).

2.3. SPLICING SYSTEMS 21

Definition [28] A splicing system (A, I,R) (Paun’s version) in which I and R are finite and

every rule in R has the form (u,λ ;v,λ), where u , v are in A+ is called a semi-null splicing

system.

Definition [13] A uniform splicing system is a null-context splicing system S = (A, I,X ,X)

(Head’s version) for which there is a positive integer P such that X = AP.

Definition [1] A splicing system S = (A, I,R) (Paun’s version) in which A is finite and every

rule in R has the form (u1,u2;u3,u4), where u1,u2,u3,u4 are in A or equal to λ is called an

alphabetic splicing system.

Several relationships among the splicing systems defined above are established: If A,B

are two classes of splicing systems, let A ⊆ B (i.e., subset inclusion) mean that A is a special

case of B. Then, it was proved that, simple splicing system ⊆ semi-simple splicing system ⊆

semi-null splicing system ⊆ uniform splicing system ⊆ null-context splicing system [49, 55].

2.3.3 Closure properties of splicing systems

The study of closure properties is of particular interest for finite splicing systems. Culik

and Harju proved that every finite splicing system (Head’s definition) produces a regular lan-

guage [19]. Pixton proved the same property for Paun’s variant and then for his own variant of

splicing [41]. Gatterdam gave an example of a regular language that cannot be generated by

any finite splicing system [10]. A natural question was if it can be decided whether any given

regular language can be generated by some finite splicing system.

There were several attempts for solving this problem that have been proposed in the liter-

ature. Kim has solved the problem for a special case of regular languages [26]. Goode, Head

and Pixton have resolved the special case of determining if a regular language can be gener-

ated by a reflexive splicing system [16]. Finally, Kari and Kopecki solved the problem for the

general case of the problem for all variants of splicing [21].

22 CHAPTER 2. LITERATURE REVIEW

It was proved that splicing systems with suitable I and R can reach the power of any Turing

machine [17, 44]. Table 2.1 summarizes the closure properties of splicing systems. The rows

represent the class to which the initial language I belongs to and the column represents the

class in which the language of rules R is in.

I\R Fin Reg CF CS RE
Fin REG RE RE RE RE
Reg REG RE RE RE RE
CF CF RE RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Table 2.1: Closure properties of splicing systems [56]

2.3.4 Definitions of circular splicing systems

Splicing systems were introduced for circular languages by Tom Head in [14].

Definition An equivalence relation is a binary relation ∼ satisfying three properties:

• For every element a in X , a∼ a (reflexivity),

• For every two elements a and b in X , if a∼ b, then b∼ a (symmetry),

• For every three elements a, b, and c in X , if a∼ b and b∼ c, then a∼ c (transitivity).

The equivalence class of an element a is denoted [a] and is defined as the set

[a] = {x ∈ X | a∼ x}.

Definition A circular word is an equivalence class with respect to the conjugacy relation ∼

defined by xy∼ yx, for x,y in A∗. A circular language C =∼ L is a set of circular words.

Definition A full linearization of a circular language C, denoted by Lin(C), is the set of all the

words in A∗ corresponding to the elements of C, i.e. Lin(C) = {w ∈ A∗ |∼ w ∈C}.

2.3. SPLICING SYSTEMS 23

Definition A circular language obtained from a regular language is called circular regular

language (belong to class REG∼). Formally, REG∼= {C ⊆∼ A∗ | ∃L ∈ REG : such that

∼ L =C}. It is observed that C ∈ REG∼ if and only if Lin(C) is regular.

There are three main types of splicing systems based on circular languages.

Definition (Head’s) [14] A circular splicing system SCH = (A, I,T,P), where I ⊆∼ A∗ is

the initial circular language, T ⊆ A∗×A∗×A∗ and P is a binary relation on T , such that if

(p,x,q), (u,y,v) ∈ T and (p,x,q)P(u,y,v) then x = y. Given ∼ hpxq, ∼ kuxv ∈∼ A∗ with

(p,x,q)P(u,x,v), the splicing operation produces ∼ hpxvkuxq.

Definition (Paun’s) [17] A system SCPA = (A, I,R), where I ⊆∼ A∗ is the initial circular lan-

guage, R⊆ A∗#A∗$A∗#A∗, with #,$ /∈ A, is the set of rules. Then given a rule r = u1#u2$u3#u4

and two circular words ∼ hu1u2, ∼ ku3u4, the rule cuts and linearizes the two strings obtaining

u2hu1 and u4ku3, and pastes and circularizes them obtaining ∼ u2hu1u4ku3. Formally, we can

write (∼ hu1u2,∼ ku3u4) `r∼ u2hu1u4ku3.

Definition (Pixton’s) [41] A system SCPI = (A, I,R), where I ⊆∼ A∗ is the initial circular lan-

guage, R⊆A∗×A∗×A∗ is the set of rules. R is such that for every r =(α,α ′;β)∈R there exists

β ′ such that r = (α ′,α;β ′) ∈ R. Given rules r, r, and two circular words ∼ αε , ∼ α ′ε ′, the

two rules r, r cut and linearize the two strings, obtaining εα,ε ′α ′ and then paste, substitute and

circularize them producing ∼ εβε ′β ′. Formally, we can write (∼ αε,∼ α ′ε ′) `r,r∼ εβε ′β ′.

Any pair of rules (r,r) of the given form can be used.

Analogous to linear splicing systems, every circular splicing system generates a circular

language by the iterated application of splicing rules to its initial circular language. Thus, every

circular splicing system is associated with a corresponding circular language called circular

splicing language. Formally, let R0(L) = L and for any language C ⊆∼ A∗, let R(C) = {w ∈∼

A∗ | ∃w′,w′′ ∈C,∃r ∈ R : (w′,w′′) `r w}. For each non-negative integer i, we have Ri+1(L) =

Ri(L)∪ R(Ri(L)). The language R∗(L) = ∪{Ri(L) : i ≥ 0} is the language generated from

24 CHAPTER 2. LITERATURE REVIEW

L through the iterated application of the rule set R. We note that for Pixton’s systems, the

splicing operation is combined action of the pair of rules r and r.

The definitions of splicing scheme, and the definitions of splicing systems based on types of

splicing schemes (such as symmetric/reflexive splicing) are all defined analogously for circular

splicing systems as they are for linear splicing systems. Restricted versions of circular splicing

systems based on the type and size of splicing rules are also analogously defined as that of

linear splicing systems.

It was proven that Head’s splicing system and Paun’s splicing system are equally power-

ful [2, 4] and Pixton’s splicing system is more powerful than these [4].

Closure properties of circular languages

The computational power of circular splicing systems is unknown even if I and R are finite

(without any other assumptions) [56]. Many questions such as characterizing the class of

languages that finite circular splicing systems generate, are still to be answered. Unlike the

linear case, it is proved that a finite circular splicing system (Head’s definition) can generate

non-regular languages [4]. Some results related to finite circular splicing systems and circular

regular languages are given below.

Pixton proved that if R is a symmetric and reflexive splicing system scheme and C0 is a

circular regular language (i.e. C0 ∈ REG ∼) then the circular splicing language L(SPI) deter-

mined by SPI = (A,R,C0) (Pixton’s definition), is regular [41]. Bonizzoni et al. proved that

it is decidable whether a circular regular language L on a one-letter alphabet is generated by

a finite (Paun) circular splicing system in [3]. They also proved that there exists a circular

regular language that cannot be generated by any finite circular splicing system. Berstel et al.

proved that given a circular splicing language and a circular regular language, it is decidable

whether they are equal [1]. They also proved that the language generated by a finite alphabetic

circular splicing system is always context-free.

2.4. INSERTION DELETION SYSTEMS 25

2.4 Insertion deletion systems

2.4.1 Introduction

The formalization of the insertion of a string into another has been considered first with

linguistic motivation [37] already in the 60’s. The insertion operation and its iterated variant is

considered as a generalization of Kleene’s operations of concatenation and closure [12].

The operations of insertion and deletion are also of interest in the field of molecular ge-

netics. Gene insertion-deletion operations are basic to DNA processing and RNA editing in

molecular biology. For example, it was reported that the insertion/deletion of a DNA fragment

can effect the cell life [47]. There are many occasions where insertion-deletions correspond to

a mismatched annealing of DNA sequences [46].

The operation of insertion of a word into another results in the set of all words that are

formed when the first word is inserted into the second word (most often in a specified context).

The operation of deletion of a word from another word results in all possible words obtained

by deletion of all occurrences one at a time of the first word from the latter. The operations can

be naturally extended to languages.

Before delving into the definitions of the formal model, a biological basis for the insertion

operation will be explained below, with an example. Let us imagine a situation where we have

a DNA strand x1uvx2z in the test-tube where x1, x2, u, v and z are all strings. If we add a strand

θ(u)θ(y)θ(v) into the test tube where θ(u) and θ(v) are the Watson-Crick complements of u

and v respectively and θ(y) is the Watson-Crick complement of y, then the following process

illustrated in Figure 2.2, can take place.

The strand x1uvx2z will anneal to θ(u)θ(y)θ(v) such that u sticks to θ(u) and v sticks to

θ(v) and the strand θ(y) will fold up as in (b) of Figure 2.2. When the phosphodiester bond

between u and v is broken by a special type of restriction enzyme such as a nickase (which can

26 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: A biochemical implementation of the insertion operation. (a) Initially, there are two
single strands of DNA x1uvx2z and θ(v)θ(y)θ(u) in the reaction mixture. (b) u anneals to θ(u)
and v anneals to θ(v) due to Watson-Crick complementarity. (c) Then the phosphodiester bond
between segments u and v is broken by a special type of restriction enzyme such as nickase
and a DNA polymerase enzyme along with a short strand θ(z) (that shall act as a primer) are
added to the reaction mixture. (d) The primer θ(z) anneals to the segment z of the strand
x1uvx2z and then the DNA polymerase enzyme extends it. With the help of DNA ligase, this
eventually results in the formation of the double strand of θ(z)θ(x2)θ(v)θ(y)θ(u)θ(x1) and its
complement u1uvx2z. (e) Upon heating, the double-stranded DNA breaks apart and we get two
complementary single strands. In effect, y has been inserted into x1uvx2z forming x1uyvx2z.:
The picture is a modified version of the one from [46].

cut exactly the upper strand x1uvx2z), we get to the configuration (c) in Figure 2.2. Now we

use θ(z) as primer and then the enzyme DNA polymerase can create the complement of the

rest of the strand and result in the formation of θ(z)θ(x2)θ(v)θ(y)θ(u)θ(x1). Analogously its

complement x1uyvx2z is also created as shown in (d) of Figure 2.2. Then we heat the solution

and the double strand breaks into its constituent single strands. We then can separate the single

strand x1uyvx2z and this is effectively the string obtained by the insertion of y into x1uvx2z

between u and v. This shows how string insertion can be achieved biochemically. Analogously,

one can also show how the operation of deletion of strings can be achieved biochemically. An

2.4. INSERTION DELETION SYSTEMS 27

alternative way to simulate insertion and deletion operations biochemically could be to use

site-directed mutagenesis [20], a process that is used to create targeted, specific changes in

double-stranded plasmid DNA. Other than insertions and deletions, the process can also make

specific DNA alterations such as substitutions. It is used for investigating the structure and

biological activity of DNA, RNA and protein molecules.

The formal model of Insertion-Deletion (InsDel) systems is based on the operations of

insertion and deletion. Various types of InsDel systems have been defined in the literature and

their respective properties have also been widely studied. A problem that has been pursued

with interest is the universal computability of an InsDel system, and finding the smallest size

of an InsDel system that can produce any given recursively enumerable language.

2.4.2 Definition of insertion-deletion systems

Formally, an Insertion-Deletion (InsDel) system [22] is a construct

γ = (V,T,A, I,D)

where V is an alphabet, T ⊆ V , A is a finite subset of V ∗, and I, D are finite subsets of V ∗×

V ∗×V ∗.

For x,y ∈V ∗, x⇒ y iff one of the following two cases holds:

(i) x = x1uvx2,y = x1uzvx2, for some x1,x2 ∈V ∗ and (u,z,v) ∈ I (an insertion step);

(ii) x = x1uzvx2,y = x1uvx2, for some x1,x2 ∈V ∗ and (u,z,v) ∈ D (a deletion step).

The language generated by γ is:

L(γ) = {w ∈ T ∗ | x⇒∗ w, for some x ∈ A}.

The complexity of an insertion-deletion system is often characterized by the maximum

lengths of the words in the insertion and deletion rules. Such maximum lengths of the words

28 CHAPTER 2. LITERATURE REVIEW

are termed as weights of the InsDel system. Formally, an InsDel system γ = (V,T,A, I,D) is

said to be of weight (n,m, p,q) if

- max{|z| | (u,z,v) ∈ I}= n

- max{|u| | (u,z,v) ∈ I or (v,z,u) ∈ I}= m

- max{|z| | (u,z,v) ∈ D}= p

- max{|u| | (u,z,v) ∈ D or (v,z,u) ∈ D}= q

By INSm
n DELq

p, we denote the family of languages that can be generated by any InsDel

system respecting the weight limits of m,n, p,q. When one of the weights is unbounded, we

replace it with infinity (∞).

2.4.3 Closure properties of InsDel systems

A fundamental property of insertion-deletion systems is that INSm
n DELq

p ⊆ INSm′
n′ DELq′

p′ , for

all 0≤ n≤ n′, 0≤ m≤ m′, 0≤ p≤ p′ and 0≤ q≤ q′.

It was shown that RE = INS∞
∞DEL∞

∞ [25, 39]. The authors in [25] showed that an InsDel

system in the family INS6
3DEL7

2 is Turing universal while the authors in [39] had given a

construction of an InsDel system in the family INS2
3DEL0

3 that is Turing universal. A natural

question was to find the minimal complexity (i.e. minimum values of m,n, p,q) of an insertion-

deletion system that generates any recursively enumerable language. There have been several

attempts to solve this problem that have been proposed in the literature. Kari et al. have given

few low complexity values for insertion-deletion systems that can generate any RE language

[22]. In particular, it was proved that the insertion deletion systems INS2
1DEL1

1, INS1
2DEL0

2

or INS2
1DEL0

2 can generate all recursively enumerable languages [22]. Paun et al. improved

the result by showing that any recursively enumerable language can be generated by a system

of complexity INS1
1DEL0

2 [46]. Takahara et al. further improved the result by proving that a

system of complexity INS1
1DEL1

1 can generate any RE language [52].

2.4. INSERTION DELETION SYSTEMS 29

2.4.4 Insertion-only systems

An InsDel system where the deletion rules are completely absent is called an Insertion-Only

system. A formal definition for an insertion-only system is given as follows:

Definition: A (pure) insertion grammar of weight n≥ 0 is a triple G = (V,A,P), where

- V is a finite alphabet

- A⊆V ∗ is a finite set of axioms

- P is a finite set of insertion rules of the form (u,x,v), for u,x,v ∈V ∗

- n = max{|u||(u,x,v) ∈ P or (v,x,u) ∈ P}

The families INSm
∞DEL0

0 for all m ≥ 1 are also exactly those generated by Galiukschov

grammars defined in [9]. The following results have been arrived in [9], [42], [43], [51] :

- FIN ⊂ INS0
∞DEL0

0 ⊂ INS1
∞DEL0

0 ⊂ ...⊂ INS∞
∞DEL0

0 ⊂CS,

- The set of regular languages is incomparable with all families INSm
∞DEL0

0, for all m≥ 0,

and REG⊂ INS∞
∞DEL0

0,

- The family INS1
∞DEL0

0 is within CF , but the class of context-free languages is incompa-

rable with INSm
∞DEL0

0 for all m≥ 2.

The problem of finding the minimal complexity for insertion-only grammars that can gener-

ate any recursively enumerable language has been widely studied, similar to the same problem

for a general insertion-deletion system.

Martin-Vide et al. proved that any RE language can be written in the form of L= g(h−1(L
′
)),

where g is a weak coding, h is a morphism and L
′ ∈ INS7

4DEL0
0 [39]. Yong et al. improved the

result by proving that any language L ∈ RE can be written in the form L = g(h−1(L
′
)) where

g is a weak coding, h is a morphism and L
′ ∈ INS4

2DEL0
0 [54]. Paun et al. gave a further

result by proving that any language L ∈ RE can be represented in the form L = h(L
′ ∩D),

where L
′ ∈ INS0

3DEL0
0, where h is a projection, and D is a Dyck language [45]. Kari and

30 CHAPTER 2. LITERATURE REVIEW

Sosik in [24] further improved the result by proving that for any recursively enumerable lan-

guage L there exists a morphism h, a weak coding g and a language L1 ∈ INS3
3DEL0

0 such that

L = g(h−1(L1)).

2.4.5 Context-free insertion-deletion systems

Insertion-Deletion systems without any context controlling the insertion and deletion opera-

tions were first investigated in [38]. Contrary to expectation, the authors found that such a

system can generate a particular RE language even with one axiom and can generate any RE

language if it has two axioms.

A context-free insertion deletion system is an insertion-deletion system where the insertions

and deletions can happen at any context. Formally, in a context-free insertion-deletion system

all the insertion rules of the form (λ ,α,λ)∈ I and all the deletion rules of the form (λ ,α,λ)∈

D, where λ denotes the empty string. INS0
∞DEL0

∞ denotes the family of languages generated

by context-free InsDel systems.

Margenstern et al. proved that INS0
∞DEL0

∞ is universal [38]. The authors then improved

the bound and arrived at Theorem 2.4.1.

Theorem 2.4.1. RE = INS0
2DEL0

3 and RE = INS0
3DEL0

2.

Verlan proved in [53], that INS0
2DEL0

2 = INS0
2DEL0

0⊂CF and that INS0
mDEL0

1 = INS0
mDEL0

0⊂

CF for any m > 0. It was also established [53] that INS0
2DEL0

2 is incomparable with REG but

that INS0
1DEL0

p ⊂ REG for any p > 0.

2.4.6 Circular insertion-deletion systems

Insertions and deletions of circular strands of DNA into or from long linear strands occur in

biological systems. For example, this is the way in which some viruses insert themselves into

the host DNA and thus infect them.

2.4. INSERTION DELETION SYSTEMS 31

Daley, Kari, Gloor and Siromoney proposed a generalization of insertions and deletion of

words to model these processes [7].

Circular contextual insertion

The operation of circular insertion consists of two distinct phases. In the first phase, a

circular string is cut at some location to form a linear string. In the second phase, the newly

generated linear string is inserted into a specific location on a previously existing linear string.

The authors [7] define circular contextual guided insertion of a circular string ∼ v into the

linear string u as follows:

Definition A circular insertion scheme is a triple I = (X ,C,G) where X is an alphabet, C ⊆

X∗×X∗ is a context set and G⊆ X∗×X∗ is a guide set.

A guide set is a set of locations on the circular string which indicate where it may be cut to

produce a linear strand (that can be inserted). A context set is a set of locations (i.e. borders of

locations) where an insertion can be made.

Definition Given two words u, v ∈ X∗, the circular contextual guided insertion of ∼ v in to u

according to the circular insertion scheme I is defined as:

u←∼ v = {u1xαwβyu2 | (x,y) ∈C,(α,β) ∈ G,u = u1xyu2,∼ v =∼ αwβ ,u1,u2,w ∈ X∗}

Note that the circular contextual guided insertion of ∼ v into u with guide set (α,β) in a

context (x,y) can result in multiple strings where all linearizations of∼ v of the form αwβ can

be inserted into u between any substrings x and y of u such that u = u1xyu2.

The authors [7] proved a series of closure properties resulting in Theorem 2.4.2.

Theorem 2.4.2. The classes of regular, context-free, context-sensitive and recursively enumer-

able languages are closed under circular guided contextual insertion.

32 CHAPTER 2. LITERATURE REVIEW

Circular insertion-deletion system

The authors [7], state that, as rewriting mechanisms, the insertion-type rules alone are not

sufficient to generate any RE language. In order to define systems that can achieve the compu-

tational power of any Turing machine, they combine the circular insertions with some (linear)

deletions and define a circular insertion-deletion system. Formally, a circular insertion-deletion

system [7] is a tuple

ID� = (X ,T, I�,D,A)

where

- X is an alphabet (cardinality of X is at least 2),

- T ⊆ X is the terminal alphabet,

- I� ⊆ X∗×X∗×∼ X∗×X∗×X∗ is the finite set of circular insertion rules,

- D⊆ X∗×X∗×X∗ is finite set of deletion rules, and

- A⊆ X+ is a linear strand called the axiom.

If u, v ∈ X∗, u derives v according to ID� and we write u⇒ v if v is obtained from u by

either a guided contextual circular insertion or by a linear contextual deletion, that is, one of

the following two cases happen:

- u = αc1c2β , v = αc1|g1x′g2|c2β and I� contains the circular insertion rule (c1,g1,

∼ x,g2,c2)I where g1x′g2 ∈ Lin(∼ x),

- u = αc1xc2β , v = αc1c2β and D contains the linear deletion rule (c1,x,c2)D.

The sequence of derivations u1⇒u2⇒...⇒uk, k ≥ 0 is denoted by u1 ⇒∗ uk. The language

L(ID�) accepted by the circular insertion-deletion system ID� is

L(ID�) = {v ∈ T ∗ | A⇒∗ v, A is the axiom}

2.5. HAIRPIN COMPLETION - REDUCTION SYSTEMS 33

It was proved that the circular insertion-deletion system is Turing universal through the

following result in Theorem 2.4.3:

Theorem 2.4.3. [7] If a language is accepted by a Turing machine TM, then there exists a

circular insertion-deletion system ID� accepting the same language.

2.5 Hairpin completion - reduction systems

2.5.1 Introduction

Hairpins are naturally occurring DNA secondary structures whereby a DNA strand attaches

to itself due to the presence of a Watson-Crick complementary sequence(s) present elsewhere in

the same strand. Hairpin formations by single-stranded DNA molecules are used in the field of

DNA computing to explore the feasibility of building an autonomous molecular computer. For

example, a solution of an instance of satisfiability problem using molecular biology techniques

and involving hairpin formations was reported in [48].

γ

α β
θ(α)

annealing

γ
α

β

θ
(
α
)

θ
(
γ)

extension

denaturation

γ

α β
θ(α) θ(γ

)

hairpin completion

Figure 2.3: An illustration of the hairpin completion operation: In the first step of annealing,
the input string γαβθ(α) forms a hairpin structure with the segments α and θ(α) attached
with each other. In the second step of extension, the polymerase enzyme extends the hairpin
structure to form a new DNA segment θ(γ), using γ as a template. In the final step of denatu-
ration, the hairpin structure is broken (as all double strands break apart upon heating) and the
strand γαβθ(α)θ(γ) is obtained as the output of the operation.

The hairpin completion as a bio-operation consists of three essential steps: annealing, ex-

tension of DNA strand and denaturation. These steps are quite similar to the steps discussed

34 CHAPTER 2. LITERATURE REVIEW

in Section 1.2.3 about Polymerase Chain Reaction. In the process of annealing, a part of DNA

strand attaches to itself because of Watson-Crick complementary sequence present elsewhere in

the strand. In the process of extension, a DNA polymerase enzyme extends the primer (which

is the part that got annealed) by attaching complementary bases to the remaining part of the

template. Finally the DNA hairpin becomes a single strand through the process of denaturation

where the double-stranded parts of the strand are separated.

Figure 2.5.1 illustrates hairpin completion. We consider an example where we have a test

tube with a solution containing a population of DNA strands γαβθ(α). Through the process

of annealing, the strands α and θ(α) attach to each other due to their Watson-Crick comple-

mentarity. Then the polymerase enzyme acts and extends the string θ(α) by the string θ(γ).

Finally, the process of denaturation breaks the weak hydrogen bonds connecting the comple-

mentary bases and results in the single strand γαβθ(α)θ(γ).

Inspired by the above biochemical reaction, a formal operation called “hairpin completion”

has been proposed by Mitrana et al [6].

2.5.2 Definition of hairpin completion

The hairpin completion can happen in both directions, i.e. to the left or to the right of the word.

The result set of hairpin completion is the union of sets obtained by the hairpin completion

to the left and to the right. Let A be an alphabet. For any w ∈ V+ we define its k-hairpin

completion, denoted by HCk(w), as follows:

(Left) HCPk(w) = {θ(γ)w | w = αβθ(α)γ, |α|= k,α,β ∈ A+,γ ∈ A∗},

(Right) HCSk(w) = {wθ(γ) | w = γαβθ(α), |α|= k,α,β ∈ A+,γ ∈ A∗},

(Both) HCk(w) = HCPk(w)∪ HCSk(w).

2.5. HAIRPIN COMPLETION - REDUCTION SYSTEMS 35

The hairpin completion of w is defined as:

HC(w) =
⋃
k≥1

HCk(w).

The hairpin completion is naturally extended to languages and is defined as:

HCk(L) =
⋃

w∈L

HCk(w).

2.5.3 Iterated hairpin completions

The iterated hairpin completion is the result of applying the operation of hairpin completion

repeatedly, which may produce new strings since there can be new sub-words in the outputs

which can be involved in hairpin formations. The operation of iterated hairpin completion can

also be seen as naturally inspired because, after hairpin completion, the newer strand is longer

and potentially there is a chance that it contains new parts that are Watson-Crick complemen-

tary to each other. Thus, another step of hairpin completion may continue and produce newer

outputs and this cycle may continue indefinitely. The situation is described in Figure 2.4.

|
α
|

u
|
θ(α)
|

v

|
α

||
θ(α)
|
θ(u)

|
α
|

u
|
θ(α)
|

v
|
α
|

θ(u)

|
θ(α)
||

θ(α)
|
θ(u)

|
α

|
θ(v)

|
θ(α)
|
θ(u)

|
α

|
θ(v)
|
θ(α)
|

uθ(α)vαθ(u)

|
α
||

α
|

u
|
θ(α)
|

v

Figure 2.4: Example of iterated hairpin completion. Given an initial strand αuθ(α)vα , the
hairpin completion will give the strand αuθ(α)vαθ(u)θ(α). The new strand can also un-
dergo hairpin completion, as it contains θ(α) that can anneal to α and be extended further.
Thus another application of hairpin completion will happen giving rise to the new strand
αuθ(α)vαθ(u)θ(α)θ(v)αθ(u)θ(α). This strand again can undergo yet another hairpin com-
pletion. Thus the process continues until no further strands are produced through another
hairpin completion.

36 CHAPTER 2. LITERATURE REVIEW

The iterated version of the hairpin completion is defined as:

HC0
k (w) = {w}, HCn+1

k (w) = HCk(HCn
k (w)), HC∗k (w) =

⋃
n≥0

HCn
k (w),

HC0(w) = {w}, HCn+1(w) = HC(HCn(w)), HC∗(w) =
⋃
n≥0

HCn(w).

The iterated hairpin completion is extended to languages as:

HC∗k (L) =
⋃

w∈L

HC∗k (w) and HC∗(L) =
⋃

w∈L

HC∗(w).

Now, we will briefly describe some algorithmic problems based on hairpin completion and

its iterated version.

Hairpin completion distance and common ancestors

The hairpin completion distance between two words x and y is defined as the minimal num-

ber of hairpin completions which can be applied either to x in order to obtain y, or to y in order

to obtain x. If none of them can be obtained from each other, the distance is said to be infinity

and is denoted as ∞.

Formally, the k-hairpin completion distance between x and y is given as:

HCDk(x,y) =

 min{p | x ∈ HCp
k (y) or y ∈ HCp

k (x)},

∞, if neither x ∈ HC∗k (y) nor y ∈ HC∗k (x).

The problem of finding a word at a certain k-hairpin completion distance from a given initial

word was studied by Manea et al [30]. They established that, given a word x, and k,n ∈ N, the

problem of whether there exists a yn such that HCDk(x,yn) = n is decidable in O(|x|) time.

They further gave an algorithm to compute the k-hairpin completion distance between two

words x and y in O(n3) time where n is the length of the longest word among x and y. Later,

Manea improved it by giving an algorithm that runs in O(n2 logn) time and using O(n2) space,

2.5. HAIRPIN COMPLETION - REDUCTION SYSTEMS 37

where the longest word has length n [29].

Definition A word w is called a k-hairpin completion ancestor of two words x and y if {x,y} ⊆

HC∗k (w). It is called the minimum-distance common ancestor if it further satisfies the property

that HCDk(w,x) + HCDk(w,y) ≤ HCDk(w′,x) + HCDk(w′,y), for all w′ such that {x,y} ⊆

HC∗k (w
′). It is called as the maximum-distance common ancestor if it further satisfies the

property that HCDk(w,x) + HCDk(w,y) ≥ HCDk(w′,x) + HCDk(w′,y), for all w′ such that

{x,y} ⊆ HC∗k (w
′).

Manea and Mitrana proved, [34], that the existence of a common k-hairpin completion

ancestor for two given words x and y is decidable in O(max(|x|, |y|)3) time for any k≥ 1. They

gave an algorithm that finds such an ancestor in cubic time, if it exists.

Manea improved this result and gave a quadratic time algorithm for finding an arbitrary

common hairpin completion ancestor of two words [29] stating that given two words x and w,

and an integer k, a common k-hairpin completion ancestor of the words x and w in O(max(|x|, |w|)2)

time and space.

Manea also gave an efficient algorithm that can compute the minimum-distance common

hairpin completion ancestor [29]. He stated that given two words x and w, and an integer

k, his algorithm can compute the minimum-distance common k-hairpin completion ancestor

of the words x and w in time O(max(|x|, |w|)2log2(max(|x|, |w|))), using O(max(|x|, |w|)2)

space. Manea explained how the results extend to maximum-distance common k-hairpin com-

pletion ancestor and stated that given two words x and w, and an integer k, the maximum-

distance common k-hairpin completion ancestor of the words x and w can be found in time

O(max(|x|, |w|)2log2(max(|x|, |w|))), using O(max(|x|, |w|)2) space. He further proved that all

the maximum-distance common k-hairpin ancestors of the words x and w can be identified in

O(max(|x|, |w|)2) time and space [29].

38 CHAPTER 2. LITERATURE REVIEW

2.5.4 Definition of hairpin reduction

Hairpin reduction is the formal operation defined as the mathematical inverse of hairpin forma-

tion. As such, it does not have a direct analogy in DNA biochemistry. The intuitive idea behind

the operation is to see whether, given a string, it is possible to determine if it is produced by

hairpin completion of another string and if so, determine it. The words obtained as the result of

hairpin reduction of a string are those whose hairpin completion will produce the given string.

Let V be an alphabet and k ≥ 1. For any w ∈ V+ we define the k-hairpin reduction of w,

denoted by HRk(w), as follows:

(Left) HRPk(w) = {αβθ(α)θ(γ) | w = γαβθ(α)θ(γ), |α|= k,α,β ,γ ∈V+},

(Right) HRSk(w) = {γαβθ(α) | w = γαβθ(α)θ(γ), |α|= k,α,β ,γ ∈V+},

(Both) HRk(w) = HRPk(w)∪HRSk(w).

The hairpin reduction of w is defined by

HR(w) =
⋃
k≥1

HRk(w)

The hairpin reduction is extended to languages as:

HRk(L) =
⋃

w∈L

HRk(w) and HR(L) =
⋃

w∈L

HR(w).

The iterated version of hairpin reduction is defined as:

HR0
k(w) = {w}, HRn+1

k (w) = HRk(HRn
k(w)), HR∗k(w) =

⋃
n≥0

HRn
k(w),

HR0(w) = {w}, HRn+1(w) = HR(HRn(w)), HR∗(w) =
⋃
n≥0

HRn(w).

2.5. HAIRPIN COMPLETION - REDUCTION SYSTEMS 39

The iterated hairpin reduction is extended to languages as:

HR∗k(L) =
⋃

w∈L

HR∗k(w) and HR∗(L) =
⋃

w∈L

HR∗(w).

Now, we will look into the closure properties and complexity results of hairpin completion,

hairpin reduction and iterated hairpin completion.

2.5.5 Closure properties for hairpin completions and reductions

Before we give the properties, we give definition of space constructible functions.

Definition [50] A function f : N→ N is space constructible if the function that maps the

string 1n to the binary representation of f (n) is computable in space O(f (n)).

Hairpin completions

Cheptea et al. stated that the classes of regular and context-free languages are not closed under

hairpin completion [6]. They further proved that the hairpin completion of a regular language

is always linear and that the hairpin completion of a context-free language is always context-

sensitive [6]. For space complexity classes, it is proved that if f (n) ≥ logn is any space-

constructible function, the class NSPACE(f (n)) is closed under hairpin completion [6]. That

implies that the class of languages accepted by a non-deterministic Turing machine using f (n)

workspace on input words of length n, for any f (n)≥ logn, is closed under hairpin completion.

Since we know that any language in CS is accepted by a Turing machine using linear space

(which is greater than logarithmic), i.e., CS is in NSPACE(f (n)) for f (n)≥ logn, we conclude

that the class of context-sensitive languages is closed under the hairpin completion.

For time complexity classes, it was proved that if L is in NTIME(f (n)), then HCk(L) ∈

NTIME(n f (n)) and if L ∈ DTIME(f (n)), then HCk(L) ∈ DTIME(n f (n)) for all k ≥ 1, [6].

This led to the fact that both classes PTIME and NPTIME are closed under the hairpin com-

pletion operation.

40 CHAPTER 2. LITERATURE REVIEW

Iterated hairpin completions

If f (n) ≥ logn is a space-constructible function, the class NSPACE(f (n)) was proved to be

closed under iterated hairpin completion, [6]. By an argument similar to that of non-iterated

hairpin completion, one can see that the class of context-sensitive languages is closed under

iterated hairpin completion. It was proved that, for any k≥ 1, the iterated k-hairpin completion

of a regular language is not even necessarily a context-free language, [6]. Further, it was

established that if L is a regular language, then HC∗k (L) will always be in PTIME for any

k ≥ 1, [6].

The problem of determining the class of languages obtained by the iterated hairpin comple-

tion of singleton languages was pursued with interest. In [36], the authors state the problem of

determining if the class is contained within REG or CF as open. Kopecki answered this by giv-

ing an example of a singleton language whose iterated hairpin completion is not context-free

and further proved that the result of the iterated hairpin completion of any singleton language is

in the class NSPACE(logn) [27]. The result also proved that the iterated hairpin completion of

either of the classes of regular and context-free languages is not within CF. Kari et al. resolved

the problem of deciding if the iterated hairpin completion of a singleton is in REG and gave

necessary and sufficient conditions for the same [23].

Hairpin reduction

It was proved that the class of regular languages is closed under k-hairpin reduction for any

k ≥ 1, but the class of context-free languages is not closed under the same [34]. Later, it was

proved that the class of linear languages is not closed under hairpin reduction [35]. But, it

has been proven that for every k ≥ 1, if L is recognizable in O(f (n)) time, then HRk(L) is

recognizable in O(n f (n)) time [34, 35]. This led to the conclusion that the classes PTIME

and NPTIME are closed under hairpin reduction. For space complexity classes, Manea et

al. proved in [34] that if f (n)≥ logn be a space-constructible function such that f (n+n/2) ∈

2.5. HAIRPIN COMPLETION - REDUCTION SYSTEMS 41

O(f (n)), then NSPACE(f (n)) and DSPACE(f (n)) are closed under k-hairpin reduction for any

k ≥ 1. The result was extended in [35] to include all space constructible functions f ≥ logn

satisfying the condition f (2n) ∈ O(f (n)). It is clear that f (n) = cn for some c > 0 satisfies

these conditions and hence it follows that the class of context-sensitive languages is closed

under hairpin reduction.

It is obvious that the class of recursively enumerable languages is closed under (non-iterated

and iterated) hairpin completion and hairpin reduction. Here, we summarize all the important

results stated thus far about the closure of various language classes under these operations in

Table 2.2.

Operation\L REG CF CS RE
Hairpin Completion LIN CS CS RE
Iterated HpC Not CF Not CF CS RE
Hairpin Reduction REG Not CF CS RE

Table 2.2: Closure properties under hairpin operations [6, 23, 27, 34–36]

2.5.6 Hairpin lengthening

The formal operation of hairpin completion is directly inspired by the molecular process of

hairpin formation in DNA bio-chemistry. However, in order to model hairpin formations more

closely to the biological reality, a variant of hairpin completion called hairpin lengthening, was

proposed by Manea et al. in [31]. This is because, in most practical scenarios, the hairpin loop

may not be extended fully by the DNA polymerase enzyme. Thus, the hairpin lengthening is

different from hairpin completion because the extension may not be complete.

Let A be an alphabet. For any w ∈ A+ and k ≥ 1, the k-hairpin lengthening of w, denoted

42 CHAPTER 2. LITERATURE REVIEW

by HLk(w), is defined as follows:

(Left) HLPk(w) = {θ(δ)w | w = αβθ(α)γ, |α|= k,α,β ,γ ∈V+,δ ∈ pref(γ)},

(Right) HLSk(w) = {wθ(δ) | w = γαβθ(α), |α|= k,α,β ,γ ∈V+,δ ∈ suff(γ)},

(Both) HLk(w) = HLPk(w)∪HLSk(w).

Similar to hairpin completion, the lengthening can happen at the left or at the right of the word.

Hence, the result of the operation is the union of the words formed through lengthening of the

initial word in either direction.

The hairpin lengthening of w is defined by HL(w)=
⋃

k≥1 HLk(w). The hairpin lengthening

is naturally extended to languages as:

HLk(L) =
⋃

w∈L

HLk(w).

The iterated version of hairpin lengthening for a word w and a language L is defined as:

HL0
k(w) = {w}, HLn+1

k (w) = HLk(HLn
k(w)),

HL∗k(w) =
⋃
n≥0

HLn
k(w), HL∗k(L) =

⋃
w∈L

HL∗k(w).

Closure properties and complexity results

Manea et al. proved that the class of regular languages is not closed under k-hairpin lengthening

for k ≥ 1 [33]. Later, it was proved that the classes of linear and context-free languages are

not closed under k-hairpin lengthening for k ≥ 1 [32]. On the other hand, it was proved that

the class of regular languages is closed under iterated k-hairpin lengthening for k ≥ 1 [33]

and later, it was proved that the classes of linear and context-free languages are closed under

iterated k-hairpin lengthening for k ≥ 1 [32].

The operation of hairpin lengthening has also been studied from the complexity point of

2.6. CONCLUSIONS 43

view. It was proved that, for every k ≥ 1, and every language L recognizable in O(f (n)) time,

the k-hairpin lengthening of L is recognizable in O(n f (n)) time, and the iterated k-hairpin

lengthening of L is recognizable in O(n2 f (n)) time, [31]. Further, it was proved that if L is

regular, HLk(L) is recognizable in O(n) time, and if L is context-free, HLk(L) is recognizable

in O(n3) time, [31]. Also it was proved that, for every k ≥ 1 and every linear language L, the

iterated k-hairpin lengthening of L is recognizable in quadratic time, and for every context-free

language L the iterated k-hairpin lengthening of L is recognizable in cubic time [32].

Another related complexity measure called the k-hairpin lengthening distance was defined

between any two words [31]. Informally, it is the number of times that the operation of hairpin

lengthening has to be applied to one of the strings to obtain the other. If it is impossible to

obtain one from the other, the distance is taken to be infinity and noted as (∞). Formally, the

k-hairpin lengthening distance between x and y, denoted by HLDk(x,y), is defined by:

HLDk(x,y) =

 min{p | x ∈ HLp
k (y) or y ∈ HLp

k (x)},

∞, if neither x ∈ HLp
k (y) nor y ∈ HLp

k (x).

Manea et al. proved that the k-hairpin lengthening distance between two words x and w can

be computed in O(max(|x|, |w|)2) time, [31].

2.6 Conclusions

In this chapter, we have seen a review of three major formal systems based on operations

inspired from DNA processes mediated by enzymes. Further work can include refinement of

models to capture the biological reality more closely. Another future direction is to model some

other enzymatic actions, for, e.g., restriction enzymes that cut away from their recognition sites

as they can create wide variety of interesting newer sequences.

Bibliography

[1] J. Berstel, L. Boasson, and I. Fagnot. Splicing systems and the Chomsky hierarchy.

Theoretical Computer Science, 436:2–22, 2012.

[2] P. Bonizzoni, C. D. Felice, G. Mauri, and R. Zizza. Circular splicing and regularity.

Theoretical Informatics and Applications, 38:189–228, 2004.

[3] P. Bonizzoni, C. D. Felice, G. Mauri, and R. Zizza. On the power of circular splicing.

Discrete Applied Mathematics, 150:51–66, 2005.

[4] P. Bonizzoni, C. D. Felice, and R. Zizza. A characterization of (regular) circular lan-

guages generated by monotone complete splicing systems. Theoretical Computer Sci-

ence, 411:4149–4161, 2010.

[5] P. Bonizzoni, C. Ferretti, G. Mauri, and R. Zizza. Separating some splicing models.

Information Processing Letters, 79(6):255–259, 2001.

[6] D. Cheptea, C. Martı́n-Vide, and V. Mitrana. A new operation on words suggested by

DNA biochemistry: hairpin completion. In Proc. Transgressive Computing, TC, pages

216–228, 2006.

[7] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual insertions/deletions

with applications to biomolecular computation. In Proc. String Processing and Informa-

tion Retrieval, SPIRE, pages 47–54, 1999.

44

BIBLIOGRAPHY 45

[8] W. Ebeling and M. A. Jiménez-Montaño. On grammars, complexity, and information

measures of biological macromolecules. Mathematical Biosciences, 52(12):53–71, 1980.

[9] B. Galiukschov. Semicontextual grammars. Mat. logica i mat. lingv., Kalinin Univ., pages

38–51, 1981.

[10] R. W. Gatterdam. Splicing systems and regularity. Int. J. of Computer Mathematics,

31(1-2):63–67, 1989.

[11] E. Goode and D. Pixton. Semi-simple splicing systems. In C. Martı́n-Vide and V. Mitrana,

editors, Where Mathematics, Computer Science, Linguistics and Biology Meet, pages

343–352. Springer Netherlands, 2001.

[12] D. Haussler. Insertion languages. Information Sciences, 31(1):77–89, 1983.

[13] T. Head. Formal language theory and DNA: an analysis of the generative capacity of

specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759, 1987.

[14] T. Head. Splicing schemes and DNA. In G. Rozenberg and A. Salomaa, editors, Linden-

mayer Systems: Impacts on Theoretical Computer Science and Developmental Biology,

1992.

[15] T. Head. Splicing languages generated with one sided context. In G. Păun, editor, Com-

puting with Bio-molecules: Theory and Experiments, 1998.

[16] T. Head, D. Pixton, and E. Goode. Splicing systems: regularity and below. In M. Hagiya

and A. Ohuchi, editors, DNA Based Computers: DNA Computing, DNA 8, volume 2568

of LNCS, pages 262–268, 2003.

[17] T. Head, G. Păun, and D. Pixton. Language theory and molecular genetics: Generative

mechanisms suggested by DNA recombination. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, pages 295–360, 1997.

46 BIBLIOGRAPHY

[18] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Inc., 1978.

[19] K. C. II and T. Harju. Splicing semigroups of dominoes and DNA. Discrete Applied

Mathematics, 31(3):261–277, 1991.

[20] N. E. B. Inc. Site-directed mutagenesis. https://www.neb.com/applications/

cloning-and-synthetic-biology/site-directed-mutagenesis/.

[21] L. Kari and S. Kopecki. Deciding whether a regular language is generated by a splicing

system. In D. Stefanovic and A. Turberfield, editors, DNA Computing and Molecular

Programming (DNA 18), volume 7433 of LNCS, pages 98–109, 2012.

[22] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and for-

mal languages: characterizing recursively enumerable languages using insertion-deletion

systems. In DNA Based Computers III (DNA3), volume 48 of DIMACS, pages 329–346,

1999.

[23] L. Kari, S. Seki, and S. Kopecki. On the regularity of iterated hairpin completion of a

single word. Fundamenta Informaticae, 110(1-4):201–215, 2011.

[24] L. Kari and P. Sosı́k. On the weight of universal insertion grammars. Theoretical Com-

puter Science, 396(1-3):264–270, 2008.

[25] L. Kari and G. Thierrin. Contextual insertions/deletions and computability. Information

and Computation, 131(1):47–61, 1996.

[26] S. M. Kim. An algorithm for identifying spliced languages. In T. Jiang and D. Lee,

editors, Proc. Computing and Combinatorics Conference, COCOON, volume 1276 of

LNCS, pages 403–411, 1997.

[27] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,

412(29):3629–3638, 2011.

BIBLIOGRAPHY 47

[28] E. G. Laun. Constants and Splicing Systems. PhD thesis, State University of New York

at Binghamton, 1999.

[29] F. Manea. A series of algorithmic results related to the iterated hairpin completion. The-

oretical Computer Science, 411(48):4162–4178, 2010.

[30] F. Manea, C. Martı́n-Vide, and V. Mitrana. On some algorithmic problems regarding the

hairpin completion. Discrete Applied Mathematics, 157(9):2143–2152, 2009.

[31] F. Manea, C. Martı́n-Vide, and V. Mitrana. Hairpin lengthening. In F. Ferreira, B. Löwe,

E. Mayordomo, and L. M. Gomes, editors, Programs, Proofs, Processes, volume 6158 of

LNCS, pages 296–306, 2010.

[32] F. Manea, C. Martı́n-Vide, and V. Mitrana. Hairpin lengthening: language theoretic and

algorithmic results. Journal of Logic and Computation, 25(4):987–1009, 2015.

[33] F. Manea, R. Mercas, and V. Mitrana. Hairpin lengthening and shortening of regular

languages. In H. Bordihn, M. Kutrib, and B. Truthe, editors, Languages Alive, volume

7300 of LNCS, pages 145–159, 2012.

[34] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B. Cooper,

B. Löwe, and A. Sorbi, editors, Proc. Computability in Europe, CiE, volume 4497 of

LNCS, pages 532–541, 2007.

[35] F. Manea, V. Mitrana, and T. Yokomori. Two complementary operations inspired by

the DNA hairpin formation: completion and reduction. Theoretical Computer Science,

410(45):417–425, 2009.

[36] F. Manea, V. Mitrana, and T. Yokomori. Some remarks on the hairpin completion. Inter-

national Journal of Foundations of Computer Science, 21(5):859–872, 2010.

[37] S. Marcus. Algebraic Linguistics: Analytical Models. Mathematics in Science and Engi-

neering. Academic Press, 1967.

48 BIBLIOGRAPHY

[38] M. Margenstern, G. Păun, Y. Rogozhin, and S. Verlan. Context-free insertion-deletion

systems. Theoretical Computer Science, 330(2):339–348, 2005.

[39] C. Martı́n-Vide, G. Păun, and A. Salomaa. Characterizations of recursively enumer-

able languages by means of insertion grammars. Theoretical Computer Science, 205(1-

2):195–205, 1998.

[40] A. Mateescu, G. Păun, G. Rozenberg, and A. Salomaa. Simple splicing systems. Discrete

Applied Mathematics, 84(13):145–163, 1998.

[41] D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1-2):101–

124, 1996.

[42] G. Păun. On semicontextual grammars. Bull. Math. Soc. Sci. Math. Roumanie, 28(76):63–

68, 1984.

[43] G. Păun. Two theorems about Galiukschov semicontextual languages. Kybernetika,

21(5):360–365, 1985.

[44] G. Păun. On the splicing operation. Discrete Applied Mathematics, 70(1):57–79, 1996.

[45] G. Păun, M. J. Pèrez-Jimènez, and T. Yokomori. Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. of

Foundations of Computer Science, 19(4):859–871, 2008.

[46] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing Paradigms.

Springer-Verlag New York, Inc., 1998.

[47] B. Rigat, C. Hubert, F. Alhenc-Gelas, F. Cambien, P. Corvol, and F. Soubrier. An

insertion/deletion polymorphism in the angiotensin I-converting enzyme gene account-

ing for half the variance of serum enzyme levels. Journal of Clinical Investigation,

86(4):13431346, 1990.

BIBLIOGRAPHY 49

[48] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya.

Molecular computation by DNA hairpin formation. Science, 288(5469):1223–1226,

2000.

[49] N. H. Sarmin, Y. Yusof, and F. Wan Heng. Some characterizations in splicing systems.

In C. Ozel and A. Kilicman, editors, Proc. International Conference on Mathematical

Science, ICMS, volume 1309 of American Institute of Physics Conference Series, pages

411–418, 2010.

[50] M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing,

1996.

[51] C. C. Squier. Semicontextual grammars: an example. Bull. Math. Soc. Sci. Math.

Roumanie, 32(80):167–170, 1988.

[52] A. Takahara and T. Yokomori. On the computational power of insertion-deletion systems.

Natural Computing, 2(4):321–336, 2003.

[53] S. Verlan. On minimal context-free insertion-deletion systems. Journal of Automata,

Languages and Combinatorics, 12(1-2):317–328, 2007.

[54] M. Yong, J. Xiao-Gang, S. Xian-Chuang, and P. Bo. Minimizing of the only-insertion

insdel systems. Journal of Zhejiang University Science A, 6(10):1021–1025, 2005.

[55] Y. Yusof, N. H. Sarmin, T. E. Goode, M. Mahmud, and F. W. Heng. Hierarchy of certain

types of DNA splicing systems. International Journal of Modern Physics: Conference

Series, 9:271–277, 2012.

[56] R. Zizza. Splicing systems. Scholarpedia, 5(7):9397, 2010. revision #137071.

Chapter 3

A formal language model of DNA

polymerase enzymatic activity1

3.1 Introduction

Computational models inspired by nature abound in theoretical computer science. Several for-

mal language operations that have their basis on naturally occurring biochemical reactions have

been proposed and studied. The actions of various enzymes on DNA strands, most of which

are widely used in the field of biotechnology, are of particular interest. In this paper we pro-

pose and investigate a formal language operation that models the activity of DNA polymerase

enzymes, enzymes that play a major role in the replication of DNA strands.

Other bio-inspired operations in the literature include splicing, insertion and deletion, sub-

stitution, and hairpin extension. Splicing is a formal language operation originally proposed

by Tom Head [10] to model the recombination of DNA strands under the action of restriction

enzymes and ligase enzymes. Various types of splicing systems have been developed based on

this phenomenon and their properties were studied in, e.g., [9,11,15,19,29]. Insertion-deletion

operations are basic to DNA processing and RNA editing in molecular biology. Insertion-

1Reprinted from Fundamenta Informaticae, 138(1-2), S.K. Enaganti, L. Kari, S. Kopecki, A formal language
model of DNA polymerase enzymatic activity, 179-192, Copyright (2015), with permission from IOS press

50

3.1. INTRODUCTION 51

Deletion systems were defined as formal models of computation based on these operations and

have been widely studied in the literature, see, e.g., [5,17,18,30,31,33,34]. Insertion-deletion

systems that are context-free [27], that have one sided-context [23,28], and that are graph con-

trolled [6] were also proposed. P-systems with insertion-deletion rules have been extensively

studied in [1, 2, 7, 8, 22, 24]. A type of substitution operation inspired by errors occurring in

biologically encoded information was proposed in [16]. Hairpin formation is a naturally oc-

curring phenomenon whereby a DNA strand that is partially self-complementary attaches to

itself. Based on this phenomenon, the formal language operation called hairpin completion as

well as its inverse operation called hairpin reduction have been defined and extensively studied

in the literature [4, 21, 25, 26].

In this paper we define and investigate a formal language operation that models the exten-

sion activity of DNA Polymerase enzymes on DNA strands. Recall that a DNA single-strand

consists of four different types of units called nucleotides or bases strung together by an ori-

ented backbone like beads on a wire. The distinct ends of a DNA single strand are called the

5’ end and the 3’ end respectively. The bases are Adenine (A), Guanine (G), Cytosine (C)

and Thymine (T), and A can chemically bind to an opposing T on another single strand, while

C can similarly bind to G. Bases that can thus bind are called Watson/Crick (W/C) comple-

mentary, and two DNA single strands with opposite orientation and with W/C complementary

bases at each position can bind to each other to form a DNA double strand in a process called

base-pairing.

The activity of DNA polymerase presupposes the existence of a DNA single strand called

template (Figure 3.1 (a)), and of a second short DNA strand called primer, that is Watson-Crick

complementary to the template (Figure 3.1 (b)). Given a supply of individual nucleotides, the

DNA polymerase enzyme extends the primer, at one of its ends only, by adding invididual

nucleotides complementary to the template nucleotides, one by one, until the end of the tem-

plate is reached (Figure 3.1 (c)). The newly formed DNA strand is a strand that starts with the

primer and is partially Watson-Crick complementary to the template (Figure 3.1 (d)). In molec-

52 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

ular biology laboratories, an iterated version of this process is used to obtain an exponential

replication of DNA strands, in a protocol called Polymerase Chain Reaction, or PCR.

Figure 3.1: Template directed extension of a primer, effected by DNA Polymerase enzyme. By
θ(x) we denote the Watson-Crick complement of a DNA strand x.

In this paper we introduce a simplified formal language model of DNA Polymerase enzy-

matic activity, called template-directed extension, or simply directed extension. The paper is

organized as follows. Section 3.2 contains definitions and notations, including the definition

of directed extension. In Section 3.3, we give proofs for the closure properties of the various

language classes under directed extension. In particular, we show that the directed extension

between two languages in LOGSPACE can result in an undecidable language. In Section 3.4,

we define an inverse of directed extension and study language equations involving this opera-

tion. In Section 3.5, we compare our operation with related string operations, and we discuss

iterated versions of directed extension.

3.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ . Σ+ is the set of all non-empty words over Σ. For words w,x,y,z

such that w = xyz we call x, y, and z prefix, infix, and suffix of z, respectively. The sets Pref(w),

Inf(w), and Suff(w) contain, respectively, all proper prefixes, infixes, and suffixes of w. This

3.2. BASIC DEFINITIONS AND NOTATIONS 53

notation is extended to languages as follows: Suff(L) =
⋃

w∈L Suff(w). The complement of a

language L⊆ Σ∗ is Lc = Σ∗\L. By FIN, REG, LIN, CF, CS, and RE we denote the families of

finite, regular, linear (context-free), context-free, context-sensitive, and recursively enumerable

languages, respectively.

An involution is a function θ : Σ∗→ Σ∗ with the property that θ 2 is identity. θ is called an

antimorphism if θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick complementarity of lan-

guages has been modelled as an antimorphic involution over the DNA alphabet ∆= {A,C,G,T},

[12, 14]. Assuming the convention that a word x over this alphabet represents the DNA single

strand x in the 5’ to 3’ direction, the activity of DNA polymerase in Figure 3.1, given a template

αyβ and a primer y that occurs only once in αyβ , can be modelled as:

αyβ • θ(y) = θ(y)θ(α) = θ(αy).

Assuming that all involved DNA strands are initially double-stranded, that is, whenever

the strand x is available also its Watson-Crick complement θ(x) is available, we can further

simplify this model and, given two words x,y over an alphabet Σ, we can define the left x-

directed extension of y as

x⊕′ y = {w ∈ Σ
∗ | ∃α,β ∈ Σ

∗ : x = αyβ ,w = αy},

and the right x-directed extension of y as

x⊕ y = {w ∈ Σ
∗ | ∃α,β ∈ Σ

∗ : x = αyβ ,w = yβ},

From a mathematical point of view the left- and right-directed extensions are similar. For

the remainder of this paper we will consider only the right-directed extension, which we will

call simply directed extension.

Note also that, from a biological point of view, the primer needs to be of some minimal

length and it does not make sense to consider an “empty primer” (a primer with length 0),

54 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

but from a mathematical point of view this is well-defined and y = λ is valid. We extend the

definition of directed extension to languages in a natural way:

Lx⊕Ly =
⋃

x∈Lx,y∈Ly

x⊕ y = {w ∈ Σ
∗ | ∃α,β ∈ Σ

∗,y ∈ Ly : αyβ ∈ Lx,w = yβ}.

3.3 Closure properties

In this section we study closure properties of various language classes under directed exten-

sion. Throughout this section all languages are considered to be defined over a fixed alphabet

Σ. The next lemma expresses the directed extension operation in terms of concatenation, inter-

section and suffix.

Lemma 3.3.1. If Lx and Ly are two languages over Σ, then Lx⊕Ly = Suff(Lx)∩LyΣ∗.

Proof. For the direct inclusion, consider w ∈ Lx⊕Ly. This implies that w = yβ where y ∈ Ly

and αyβ ∈ Lx. Therefore, w ∈ LyΣ∗ and w ∈ Suff(Lx).

Conversely, let w ∈ Suff(Lx)∩LyΣ∗. Because w ∈ Suff(Lx), there exists α ∈ Σ∗ such that

αw ∈ Lx. Because w ∈ LyΣ∗, there exists y ∈ Ly and β ∈ Σ∗ such that w = yβ . Thus, w ∈

Lx⊕Ly.

Corollary 3.3.2. Let X and Y be two language classes where X is closed under the suffix

operator and Y is closed under concatenation with Σ∗.

i.) If X is closed under intersection with languages from Y , then for all Lx ∈X and Ly ∈Y

we have Lx⊕Ly ∈X .

ii.) If Y is closed under intersection with languages from X , then for all Lx ∈X and Ly ∈Y

we have Lx⊕Ly ∈ Y .

3.3. CLOSURE PROPERTIES 55

In particular, REG and RE are closed under directed extension and, if X is LIN (CF) and

Y is REG, then the result Lx⊕Ly is in LIN (CF). Similarly, if X is REG and Y is LIN (CF),

then the result Lx⊕Ly is in LIN (CF).

Next, we show that directed extension can “simulate” intersection by utilizing markers at

the beginning and end of words.

Lemma 3.3.3. Let L1 and L2 be languages over the alphabet Σ and let $ /∈ Σ be a new symbol.

Then,

$L1$⊕$L2$ = $(L1∩L2)$.

Proof. For the direct inclusion, let x ∈ L1 and y ∈ L2. If the word x has a factorization

x = αyβ , it is clear that x = y and α = β = λ because $ does not occur as letter in x.

Therefore, if w ∈ x⊕y for some x ∈ L1 and y ∈ Ly, then w ∈ $(L1∩L2)$.

For the converse inclusion, let w be any string in (L1∩L2). This implies that w ∈ $L1$

and w ∈ $L2$. Thus w ∈ $L1$⊕$L2$.

Lemma 3.3.3 allows us to classify the result of directed extension between two (linear)

context-free languages.

Theorem 3.3.4. Let Lx be a context-free language and Ly be a context-free (or context-sensitive)

language. The language Lx⊕Ly is context-sensitive, but not necessarily context-free.

Proof. Consider the two (linear) context-free languages

Lx = {$ambncn$ | m≥ 1,n≥ 1}, Ly = {$anbncm$ | m≥ 1,n≥ 1}.

By Lemma 3.3.3, the Lx-directed extension of Ly yields the context-sensitive but not context-

free language

Lx⊕Ly = {$anbncn$ | n≥ 1}. (3.1)

56 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

In order to show that Lx⊕Ly is context-sensitive for Lx ∈CF and Ly ∈CS, we use Lemma 3.3.1

and note that the suffix operator applied to a context-free language gives a context-free lan-

guage and that the class of context-sensitive languages is closed under intersection.

Let LOG = DSPACE(log) be the language class which contains all languages that can

be accepted by a deterministic Turing Machine using at most O(logn) space on an input of

length n. For a language Lx ∈ LOG we will show that the Lx-directed extension of a singleton

language can produce an undecidable language. In order to do so, we utilize the undecid-

able Post Correspondence Problem (PCP) in the following formulation: Determine, for an

arbitrary set (x1,y1),(x2,y2), · · · ,(xk,yk) of pairs of corresponding non-null strings over the al-

phabet {a,b}, whether or not there exists a solution n, i1, i2, i3, · · · , in such that xi1xi2xi3 · · ·xin =

yi1yi2yi3 · · ·yin, n≥ 1, i j ∈ {1,2, · · · ,k}.

Theorem 3.3.5. There exists a language L1 in LOG and a singleton language L2 such that

L1⊕L2 is not decidable.

Proof. Let L1 be a language over Σ∪{$} consisting of all strings of the form α$β where $

does not appear within α or β . Here β is the encoding of an instance of the PCP and α is

the encoding of a solution of this instance. We let L2 be the singleton language {$}. The

resulting language L1⊕L2 contains all strings of the form $β such that α$β ∈ L1; therefore,

$β ∈ L1⊕ L2 if and only if β is the encoding of an instance of PCP which has a solution.

Formally,

L1 = {α$β | β is a PCP instance and α is a solution to β},

L2 = {$},

L1⊕L2 = {$β | β is a PCP instance that has a solution}.

Because PCP is undecidable, it will follow that the language L1⊕ L2 is undecidable as

well. Let us show next how to encode α and β in a word α$β ∈ Lx and how to decide Lx using

logarithmic space.

3.3. CLOSURE PROPERTIES 57

Let x1,x2, ...,xk and y1,y2, ...,yk be an instance of PCP and let i1, i2, ..., in be a solution to

this instance. We encode each integer i j using a binary encoding, symbolized as |i j|, which is

of length dlog2 ke or less. Let α$β be encoded as

|i1|M|i2|M|i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

where M and C are separating symbols.

In order to decide if an arbitrary string w is in L1, the first step is to verify that it is of the

format described above and the second step is to verify that the integer sequence α is a solution

of β . In order to decide L1 we have to verify whether or not xi1xi2xi3 · · ·xin and yi1yi2yi3 · · ·yin

are equal. We can easily see that the first step can be done in logarithmic space and that the

second step can (at least) be decided. Thus, the language L1 is decidable.

Now, we give a high-level construction of a Turing Machine which uses logarithmic work-

ing space with respect to the length of the input and decides whether α is a solution to β or

not. Instead of generating both strings completely and then comparing them, we generate and

compare both strings letter by letter. In order to do so, we only need to store pointers to the

input tape on the work tape which can be implemented using only logarithmic space. A more

detailed description of this Turing Machine follows.

We may assume the symbol S is written to the left of input and refer to it as the start symbol.

The strings xi1xi2 · · ·xin and yi1yi2 · · ·yin are referred to as x and y respectively.

When we say address, we refer to the address on the input tape with respect to S, i.e. the

number of symbols we have to move to the right starting from S on the input tape. The input

tape looks as follows:

S|i1|M|i2|M|i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

The computation of the Turing Machine is described by Algorithm 1. We use the following

58 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

variables in the pseudo-code:

xaddr − The address of current symbol of x that is being looked into

yaddr − The address of current symbol of y that is being looked into

xsoln − The value of the current index (i.e. i j) of x

ysoln − The value of the current index (i.e. i j) of y

xsolnAddr − Contains the address of xsoln

ysolnAddr − Contains the address of ysoln

AddrValue − A buffer storing the address to be calculated/used

Moreover, we use following simple functions:

- Addr(s), where s is one of the symbols S,$,C, returns the unique address of the symbol

s on the input tape,

- ValueAt(addr), where addr is an address, returns the symbol on the input tape at address

addr,

- ReadIndex(index,addr), where index is a variable on the work tape and addr is an ad-

dress, copies the binary representation of an index i j which begins at address addr into

index; it also increments the address addr such that it points to the first bit of |i j+1| if

j < n and to Addr($) if j = n.

Then Algorithm 1 will always halt with either a yes or a no because there is only a finite

number of indexes encoded in α and hence in the case of not-finding a mismatch (including

the mismatch due to one string finishing earlier than the other), the condition a = b = $ will

be satisfied giving a yes answer. The variables used in this algorithm, xaddr, yaddr, xsoln, ysoln,

xsolnAddr, ysolnAddr and AddrValue. All of them except for xsoln and ysoln are pointers to lo-

cations on read-tape and, hence, require only logarithmic space with respect to the input. We

3.3. CLOSURE PROPERTIES 59

Algorithm 1
xaddr := Addr($);
yaddr := Addr(C);
xsolnAddr = ysolnAddr := Addr(S);
repeat

xaddr := xaddr +1;
yaddr := yaddr +1;
if ValueAt(xaddr) = M then

if ValueAt(xsolnAddr) = $ then
xaddr := Addr($);

else
ReadIndex(xsoln,xsolnAddr);
AddrValue := Addr($);
while xsoln > 0 do

if ValueAt(AddrValue) = M then
xsoln := xsoln−1;

end if
AddrValue := AddrValue+1;

end while
xaddr := AddrValue;

end if
end if
a :=ValueAt(xaddr);
if ValueAt(yaddr) = M then

if ValueAt(ysolnAddr) = $ then
yaddr := Addr($);

else
ReadIndex(ysoln,ysolnAddr);
AddrValue := Addr(C);
while ysoln > 0 do

if ValueAt(AddrValue) = M then
ysoln := ysoln−1;

end if
AddrValue := AddrValue+1;

end while
yaddr := AddrValue;

end if
end if
b :=ValueAt(yaddr);

until (a 6= b)OR(a = b = $)
if a 6= b then

return no;
else

return yes;
end if

60 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

already know that xsoln and ysoln are within dlog2 ke space and hence within logarithmic space

with respect to the input. Since all the variables can be stored in space logarithmic with respect

to the input, we conclude that L1 can be decided in logarithmic space. We conclude that if L1

is in LOG and L2 is a singleton language, then L1⊕L2 can be an undecidable language.

Theorem 3.3.5 can be extended to any time or space complexity class which contains LOG

as well as to decidable languages. In particular, CS is not closed under directed extension of

singleton languages.

Corollary 3.3.6. The family of context-sensitive languages is not closed under directed exten-

sion. More precisely, for Lx ∈ CS the Lx-directed extension of a singleton language may not be

decidable.

Corollary 3.3.7. The language classes NTIME, DTIME, NSPACE and DSPACE (all of which

include LOG) are not closed under directed extension. More precisely, if Lx is in NTIME,

DTIME, NSPACE, DSPACE then the Lx-directed extension of a singleton language may not

be decidable.

In Table 3.1 we summarize the results from this section. For two language classes X and

Y , it shows the language class Z from the Chomsky hierarchy such that for all Lx ∈X and

Ly ∈Y we have Lx⊕Ly ∈Z . Note that if we consider two language classes X , Y which both

contain the free monoid Σ∗ for any alphabet Σ, we will require that L = L∩$Σ∗$ ∈Z for

all languages L ∈X or L ∈ Y which are defined over Σ, due to Lemma 3.3.3. If we restrict

ourselves to classes in the Chomsky hierarchy (or standard space/time complexity classes), this

statement can be strengthened as X ∪Y ⊆ Z . This shows that all entries in Table 3.2 can

also be considered “lower bounds” for the language class Z .

Finally, let us also note that if Lx is a finite language, then Lx⊕Ly is finite for any Ly, even

though it is not necessarily effectively finite if Ly is undecidable.

3.4. EQUATIONS AND INVERSE OPERATION 61

Lx\Ly FIN or REG CF CS RE

REG
REG CF CS RE

(Cor. 3.3.2) (Cor. 3.3.2) (Cor. 3.3.2) (Cor. 3.3.2)

CF
CF CS RE

(Cor. 3.3.2) (Thm. 3.3.4) (Cor. 3.3.2)

CS
RE

(Cor. 3.3.2 and Cor. 3.3.6)

RE
RE

(Cor. 3.3.2)

Table 3.1: Summary of closure properties: each entry shows which language class Lx⊕ Ly
belongs to if Lx is from the corresponding language class in the left column and Ly is from the
corresponding language class in the top row.

3.4 Equations and inverse operation

In this section we investigate the following problem: Given two languages Lx, L0 over Σ∗,

does there exist a language Y over Σ∗ such that Lx⊕Y = L0? Furthermore, we show how to

effectively construct maximal and minimal solutions, with respect to the inclusion relation.

Throughout this section, we consider the languages Lx and L0 to be constants. For the equation

Lx⊕Y = L0 we call a language Ly a solution if it satisfies Lx⊕Ly = L0.

We can use the canonical right-inverse of the directed extension in order to decide the

existence of a solution as well as to find the maximal solution. The canonical right-inverse of

an arbitrary binary language operation ′′+′′ is the binary language operation ′′−′′ defined as

x−w = {y ∈ Σ
∗ | w ∈ x+ y}.

It was proved that, if there exists a solution Ly of the equation Lx +Y = L0, then Lmax =

(Lx − Lc
0)

c is also a solution, and every other solution L′y of this equation is contained in

Lmax [13]. In other words, for languages Lx, Ly, and L0

Lx +Ly = L0 ⇐⇒ Ly ⊆ (Lx−Lc
0)

c.

62 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

It is easy to see that the right-inverse of directed extension is

x	w = {y ∈ Σ
∗ | w ∈ x⊕ y}

=


Pref(w) if x = αw

/0 otherwise.

Therefore, we obtain that Lmax = (Lx	Lc
0)

c is the maximal solution (with respect to inclusion)

of (Lx⊕Y = L0) if and only if Lx⊕Y = L0 has at least one solution.

This already implies that we can decide whether or not the equation Lx⊕Y = L0 has a

solution Ly. Yet, we want to present a “more direct” approach to test solvability of this equation:

we will show that the equation has a solution if and only if Lx⊕L0 = L0.

Theorem 3.4.1. The equation Lx⊕Y = L0 has a solution Ly if and only if L0 is a solution as

well.

Proof. Trivially, if Lx⊕L0 = L0, then there exists an Ly such that Lx⊕Ly = L0.

Conversely, we need to prove that if Lx⊕Ly = L0, then Lx⊕L0 = Lx⊕Ly. Let us consider a

string w ∈ Lx⊕Ly. This implies that w is a suffix of a word x ∈ Lx and, therefore, w ∈ x⊕w⊆

Lx⊕L0. This proves that Lx⊕L0 ⊇ Lx⊕Ly.

Now, take any w′ ∈ Lx⊕w for some w ∈ L0 = Lx⊕Ly. Hence, w′ is a suffix of some word

x ∈ Lx and, furthermore, there exists a word y ∈ Ly which is a prefix of w which in turn is a

prefix of w′ by Lemma 3.3.1. Clearly, this implies that w′ ∈ x⊕ y ⊆ Lx⊕ Ly. We conclude

Lx⊕L0 = Lx⊕Ly.

Next, we investigate solutions which are minimal with respect to inclusion; that is, a solu-

tion Ly of the equation Lx⊕Y = L0 is minimal if for all words y ∈ Ly the language Ly \{y} is

not a solution: Lx⊕ (Ly \{y}) 6= L0. We present a general method to find a minimal solution if

we already know one solution.

3.5. DISCUSSION AND CONCLUSIONS 63

Theorem 3.4.2. If Lx ⊕Y = L0 has the solution Ly, then Lmin = (Ly\LyΣ+)∩ Inf(Lx) is a

minimal solution.

Proof. First, let us show that Lmin is indeed a solution. Because Lmin⊆ Ly, we have Lx⊕Lmin⊆

Lx⊕Ly = L0. Vice versa, for every w ∈ L0 there exists x ∈ Lx and y ∈ Ly such that w ∈ x⊕ y.

Let y′ be the shortest prefix of y such that y′ ∈ Ly. Because y′ does not have a shorter prefix in

Ly and because y′ is an infix of x, we obtain that y′ ∈ Lmin. Now, since y′ is also a prefix of w,

we obtain that w ∈ x⊕ y′ ⊆ Lx⊕Lmin.

For the sake of obtaining a contradiction, let us assume that Lmin is not a minimal solution.

This implies that either (a) there is y ∈ Lmin such that Lx⊕ y = /0 or (b) there are two distinct

strings y1,y2 ∈ Lmin such that a word w in Lx⊕ y1 ∩ Lx⊕ y2 exists. Case (a) does not hold

because it would imply that y is not an infix of any word in Lx. Case (b) implies that y1 and

y2 are both prefixes of the word w which means that we may assume that y1 is a prefix of y2

without loss of generality. Since both words have to belong to Ly and y2 ∈ y1Σ∗, we conclude

that y2 /∈ Lmin — a contradiction.

From the two results in this section, Theorems 3.4.1 and 3.4.2, we infer that if the equation

Lx⊕Y = L0 has a solution, then L0,min = (L0\L0Σ+)∩ Inf(Lx) is a minimal solution.

3.5 Discussion and conclusions

We now compare the directed extension operation with two other formal language operations

that are biologically motivated and extend strings: the PA-matching operation and the super-

position operation. The PA-matching operation is a binary operation proposed by Kobayashi

et al [20] and inspired by the PA-Match operation that was part of Parallel Associate Memory

(PAM) model proposed by Reif [32].

The PA-matching operation is meant to be implemented by some recombinant DNA pro-

cesses and is defined as follows. Given two words x ∈ V+
1 and y ∈ V+

2 , the result of the PA-

64 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

matching between x and y is defined as:

PAm(x,y) = {uv|x = uw,y = wv, for some w ∈ (V1∩V2)
+, and u ∈V ∗1 ,v ∈V ∗2 }

Note that PA-matching results in the extension of a word x by a suffix of y, if x has a suffix

which is the same with a prefix of y. The main difference between this operation and directed

extension is that here the common suffix/prefix that guides the extension is deleted from the

result, while in the case of directed extension no deletion takes place.

The superposition operation is a binary operation proposed by Bottoni et al in [3] and

can be implemented by the use of DNA polymerase enzymes. The result of the superposition

operation between words x ∈V+
1 and y ∈V+

2 , denoted by x� y, consists of the set of all words

z∈ (V1∪V̄2)
+ defined as follows (ȳ denotes the complement of y, that is, the image of y through

a morphic involution):

1. If there exist u ∈V ∗1 ,w ∈V+
1 ,v ∈V ∗2 such that x = uw,y = w̄v, then z = uwv̄.

2. If there exist u,v ∈V ∗1 such that x = uȳv, then z = uȳv.

3. If there exist u ∈V ∗2 ,w ∈V ∗1 such that x = wv,y = uw̄, then z = ūwv.

4. If there exist u,v ∈V ∗2 such that y = ux̄v, then z = ūxv̄.

The superposition operation also extends words but, in the case of superposition the ex-

tension can be bidirectional, while in the case of directed extension the extension is always

uni-directional. This and other differences lead to the two operations being different, as illus-

trated by the difference in the closure properties of the two operations.

Table 3.2 summarizes the closure properties of the operations of directed extension, PA-

matching and superposition.

We end this paper by several remarks on iterated directed extension. When investigating

language operations, it is common to investigate an iterated version of the operation as well.

3.5. DISCUSSION AND CONCLUSIONS 65

Class of Lx and Ly ⊕ PAm �
Regular Closed Closed Closed
Context Free Not Closed Not Closed Not Closed
Context Sensitive Not Closed Not Closed Closed
Recursively Enumerable Closed Closed Closed

Table 3.2: Closure properties under the directed extension operation, ⊕, compared to the PA-
matching and superposition operations.

In particular, when studying biologically motivated operations as is the case here, the iterated

version is sometimes the operation that better reflects the biological phenomenon in question

(DNA replication) or experimental lab protocols (Polymerase Chain Reaction). Let us present

here three natural versions of the iterated directed extension. We define

1. the iterated self-directed extension of L as µ∗(L) = limn→∞ µn(L) where µ(L) = L∪(L⊕

L),

2. the L-iteration-directed extension of Ly as ν∗Ly
(L) = limn→∞ νn

Ly
(L) where νLy(L) = L∪

(L⊕Ly), and

3. the iterated Lx-directed extension of L as ξ ∗Lx
(L) = limn→∞ ξ n

Lx
(L) where ξLx(L) = L∪

(Lx⊕L).

Here, we use the notation that for any domain D and function h : D→ D we have h0(L) = L

and hi(L) = h(hi−1(L)) for i≥ 1.

Let us show that in all three cases we have h∗(L) = h(L) for h ∈ {µ,νLy,ξLx} which means

that the results that we obtained in this paper can easily be extended to the iterated versions.

Indeed, the only difference is that we add the term h0(L) = L to the directed extension.

For case 1.) consider a word w ∈ µ2(L), that is (a) w ∈ µ(L) or (b) w = x⊕ y for x,y =

µ(L) = L∪ (L⊕L). If (b) holds, we obtain from Lemma 3.3.1 that there exists x′ ∈ L such that

x is a suffix of x′ and y′ ∈ L such that y′ is a prefix of y (note that we do allow x = x′ or y = y′).

Clearly, we also have w ∈ x′⊕ y′ and may conclude that w ∈ L⊕L ⊆ µ(L). This implies that

µ2(L) ⊆ µ(L) and, due to the inductive definition of µ i we have µ i(L) = µ(L) for any i ≥ 1.

66 CHAPTER 3. FORMAL MODEL OF DNA POLYMERASE ENZYMATIC ACTIVITY

We conclude that µ∗(L) = µ(L). The result follows by analogous arguments for the cases 2.)

and 3.).

Bibliography

[1] A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. P systems with insertion and

deletion exo-operations. Fundamenta Informaticae, 110(1-4):13–28, 2011.

[2] A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. P systems with minimal inser-

tion and deletion. Theoretical Computuer Science, 412(1-2):136–144, 2011.

[3] P. Bottoni, A. Labella, V. Manca, and V. Mitrana. Superposition based on Watson-Crick-

like complementarity. Theory of Computing Systems, 39(4):503–524, 2006.

[4] D. Cheptea, C. Martı́n-Vide, and V. Mitrana. A new operation on words suggested by

DNA biochemistry: hairpin completion. In Proc. Transgressive Computing, TC, pages

216–228, 2006.

[5] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual insertions/deletions

with applications to biomolecular computation. In Proc. String Processing and Informa-

tion Retrieval, SPIRE, pages 47–54, 1999.

[6] R. Freund, M. Kogler, Y. Rogozhin, and S. Verlan. Graph-controlled insertion-deletion

systems. In I. McQuillan and G. Pighizzini, editors, Proc. Descriptional Complexity of

Formal Systems, DCFS, volume 31 of EPTCS, pages 88–98, 2010.

[7] R. Freund, Y. Rogozhin, and S. Verlan. P systems with minimal left and right insertion and

deletion. In J. Durand-Lose and N. Jonoska, editors, Proc. Unconventional Computation

and Natural Computation, UCNC, volume 7445 of LNCS, pages 82–93, 2012.

67

68 BIBLIOGRAPHY

[8] R. Freund, Y. Rogozhin, and S. Verlan. Generating and accepting P systems with minimal

left and right insertion and deletion. Natural Computing, 13(2):257–268, 2014.

[9] R. W. Gatterdam. Splicing systems and regularity. Int. J. of Computer Mathematics,

31(1-2):63–67, 1989.

[10] T. Head. Formal language theory and DNA: an analysis of the generative capacity of

specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759, 1987.

[11] T. Head, D. Pixton, and E. Goode. Splicing systems: regularity and below. In M. Hagiya

and A. Ohuchi, editors, DNA Based Computers: DNA Computing, DNA 8, volume 2568

of LNCS, pages 262–268, 2003.

[12] S. Hussini, L. Kari, and S. Konstantinidis. Coding properties of DNA languages. Theo-

retical Computer Science, 290(3):1557–1579, 2003.

[13] L. Kari. On language equations with invertible operations. Theoretical Computer Science,

132(1-2):129–150, 1994.

[14] L. Kari, R. Kitto, and G. Thierrin. Codes, involutions, and DNA encodings. In W. Brauer,

H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal and Natural Computing, volume

2300 of LNCS, pages 376–393, 2002.

[15] L. Kari and S. Kopecki. Deciding whether a regular language is generated by a splicing

system. In D. Stefanovic and A. Turberfield, editors, DNA Computing and Molecular

Programming (DNA 18), volume 7433 of LNCS, pages 98–109, 2012.

[16] L. Kari and E. Losseva. Block substitutions and their properties. Fundamenta Informati-

cae, 73(1-2):165–178, 2006.

[17] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and for-

mal languages: characterizing recursively enumerable languages using insertion-deletion

BIBLIOGRAPHY 69

systems. In DNA Based Computers III (DNA3), volume 48 of DIMACS, pages 329–346,

1999.

[18] L. Kari and P. Sosı́k. On the weight of universal insertion grammars. Theoretical Com-

puter Science, 396(1-3):264–270, 2008.

[19] S. M. Kim. An algorithm for identifying spliced languages. In T. Jiang and D. Lee,

editors, Proc. Computing and Combinatorics Conference, COCOON, volume 1276 of

LNCS, pages 403–411, 1997.

[20] S. Kobayashi, V. Mitrana, G. Păun, and G. Rozenberg. Formal properties of PA-matching.

Theoretical Computer Science, 262(1-2):117–131, 2001.

[21] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,

412(29):3629–3638, 2011.

[22] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of P systems with

small size insertion and deletion rules. In T. Neary, D. Woods, A. K. Seda, and N. Murphy,

editors, Proc. Complexity of Simple Programs, CSP, volume 1 of EPTCS, pages 108–117,

2008.

[23] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Further results on insertion-deletion sys-

tems with one-sided contexts. In C. Martı́n-Vide, F. Otto, and H. Fernau, editors, Proc.

Language and Automata Theory and Applications, LATA, volume 5196 of LNCS, pages

333–344, 2008.

[24] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of insertion-deletion

(P) systems with rules of size two. Natural Computing, 10(2):835–852, 2011.

[25] F. Manea, C. Martı́n-Vide, and V. Mitrana. On some algorithmic problems regarding the

hairpin completion. Discrete Applied Mathematics, 157(9):2143–2152, 2009.

70 BIBLIOGRAPHY

[26] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B. Cooper,

B. Löwe, and A. Sorbi, editors, Proc. Computability in Europe, CiE, volume 4497 of

LNCS, pages 532–541, 2007.

[27] M. Margenstern, G. Păun, Y. Rogozhin, and S. Verlan. Context-free insertion-deletion

systems. Theoretical Computer Science, 330(2):339–348, 2005.

[28] A. Matveevici, Y. Rogozhin, and S. Verlan. Insertion-deletion systems with one-sided

contexts. In J. Durand-Lose and M. Margenstern, editors, Proc. Machines, Computations,

and Universality, MCU, volume 4664 of LNCS, pages 205–217, 2007.

[29] D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1-2):101–

124, 1996.

[30] G. Păun, M. J. Pèrez-Jimènez, and T. Yokomori. Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. of

Foundations of Computer Science, 19(4):859–871, 2008.

[31] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing Paradigms.

Springer-Verlag New York, Inc., 1998.

[32] J. H. Reif. Parallel molecular computation. In Proc. Symposium on Parallel Algorithms

and Architectures, SPAA, pages 213–223, 1995.

[33] A. Takahara and T. Yokomori. On the computational power of insertion-deletion systems.

Natural Computing, 2(4):321–336, 2003.

[34] M. Yong, J. Xiao-Gang, S. Xian-Chuang, and P. Bo. Minimizing of the only-insertion

insdel systems. Journal of Zhejiang University Science A, 6(10):1021–1025, 2005.

Chapter 4

On the overlap assembly of strings and

languages1

4.1 Introduction

In this paper we investigate properties of a formal language operation that models the linear

self-assembly of DNA strands which partially “overlap”. This binary operation which, given

input the strands xy and yz (where the overlap y is non-empty), produces the output xyz, was in-

troduced in [7] where it was called “(self)-assembly” of strings and languages. To distinguish

it from other types of DNA self-assembly, this operation is herein called overlap assembly.

Experimentally, (parallel) overlap assembly of DNA strands under the action of DNA Poly-

merase enzymes was used for gene shuffling in, e.g., [47]. In the context of experimental

DNA Computing, overlap assembly was used in, e.g., [8, 13, 25, 42] for the formation of com-

binatorial DNA or RNA libraries. This operation can also be viewed as modelling a special

case of an experimental procedure called cross-pairing PCR, introduced in [15] and studied in,

e.g., [14, 16, 17, 35].

Conceptually, the study of overlap assembly as a formal language operation is part of a

1A version of this chapter, including an abstract, has been submitted to the Natural Computing journal (S.K.
Enaganti, O.H. Ibarra, L. Kari, S. Kopecki. On the overlap assembly of strings and languages.)

71

72 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

larger effort of formalizing DNA processes as computations, which dates back to 1987 when

Tom Head proposed splicing as a formal language operation that models the recombination of

DNA strands under the cut-and-paste action of restriction enzymes and ligases. Various types

of splicing systems have been defined and their properties were studied in, e.g., [18, 19, 27, 31,

43]. Other bio-operations include insertions and deletions of strands, which are basic processes

in RNA editing in molecular biology: based on these, insertion-deletion systems were defined

as formal models of computation and have been widely studied, see, e.g., [9, 29, 30, 45, 46, 48,

49].

Another example of a bio-inspired operation is a type of substitution operation that mod-

els errors occurring in DNA-encoded information, and that was proposed in [28]. Hairpin

formation is a naturally occurring phenomenon whereby a DNA strand that is partially self-

complementary attaches to itself. Based on this phenomenon, the formal language operation

called hairpin completion as well as its inverse operation called hairpin reduction have been

defined and extensively studied, see [5, 32, 36, 37]. In the context of studies of cellular com-

puting, the operations of contextual intra- and inter-molecular recombinations were proposed

in [26, 33], the operations of loop, direct-repeat excision (ld), hairpin, inverted-repeat exci-

sion/reinsertion (hi) and double loop, alternating direct-repeat excision-reinsertion (dlad) were

proposed in [11, 44], and the template-guided recombination was introduced in [2], as models

for gene assembly in ciliates. Lastly, in [12], a language operation called directed extension

was proposed, that models the enzymatic activity of DNA Polymerase enzymes. The activity

of DNA Polymerase presupposes the existence of a DNA single strand called template, and of

a second short DNA strand called primer, that is Watson-Crick complementary to the template

and binds to it. Given a supply of individual nucleotides, DNA polymerase then extends the

primer, at one of its ends only, by adding individual nucleotides complementary to the template

nucleotides, one by one, until the end of the template is reached. Experimentally, the iteration

of this process is used to obtain an exponential replication of DNA strands, in a protocol called

Polymerase Chain Reaction (PCR).

4.2. BASIC DEFINITIONS AND NOTATIONS 73

Among operations related to overlap assembly we cite the superposition operation, which

was studied in [3, 38]. Superposition extends DNA strands in both directions, assuming the

existence of Okazaki fragments in the solution. Another related operation, called overlapping

concatenation was introduced as part of a study of tissue P systems, [39], that was designed

to solve the shortest common superstring problem efficiently [34]. The overlapping concate-

nation between two words returns the longer word if it contains the other word as an infix, and

otherwise returns the shortest string which contains the first word as a prefix and the second

word as a suffix. Lastly, an operation called conditional concatenation was introduced in [10]:

the conditional concatenation of two words returns their concatenation only when among their

substrings (scattered substrings, of various forms) one can find a pair in a given control set.

This paper, which is a theoretical analysis of overlap assembly as a formal language op-

eration, is organized as follows. Section 4.2 contains definitions and notations, including the

definition of overlap assembly. In Sections 4.3, 4.4 we prove closure properties of various

language classes under overlap assembly and investigate related decision problems. In Sec-

tion 4.5, we investigate the iterated overlap assembly and demonstrate that, in theory, it can be

an effective tool to generate a DNA combinatorial library.

4.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ . Σ+ is the set of all non-empty words over Σ. For words w,x,y,z

such that w = xyz we call the subwords x, y, and z prefix, infix, and suffix of w, respectively.

The sets Pref(w), Inf(w), and Suff(w) contain, respectively, all proper prefixes, infixes, and

suffixes of w. By proper, we mean that the sets do not include the word w itself. This notation

is extended to languages as follows: Suff(L) =
⋃

w∈L Suff(w). The complement of a language

L⊆ Σ∗ is Lc = Σ∗\L.

An involution is a function θ : Σ∗→ Σ∗ with the property that θ 2 is the identity. θ is called

74 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

an antimorphism if θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick complementarity of

DNA strands has been modeled as an antimorphic involution over the DNA alphabet ∆ =

{A,C,G,T}.

Figure 4.1: (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to each other through
their complementary segments v and θ(v), forming a partially double-stranded DNA complex.
(b) DNA Polymerase extends the 3’ end of the strand uv. (c) DNA polymerase extends the 3’
end of the other strand. The resulting DNA double strand is considered to be the output of the
overlap assembly of the two input single strands.

Using the convention that a word x over this alphabet represents the DNA single strand x

in the 5’ to 3’ direction, the overlap assembly of a strand uv with a strand θ(w)θ(v) first forms

a partially double-stranded DNA molecule with v in uv and θ(v) in θ(w)θ(v) attached to each

other, see Figure 1(a). DNA Polymerase enzyme will extend the 3’ end of uv with the strand w,

see Figure 1(b). Similarly, the 3’ end of θ(w)θ(v) will be extended, resulting in a full double

strand whose upper strand is uvw, see Figure 1(c). Formally, the overlap assembly between uv

and θ(w)θ(v) is uvw. Assuming that all involved DNA strands are initially double-stranded,

that is, whenever the strand x is available, its Watson-Crick complement θ(x) is also available,

this model can be simplified as follows: Given two words x,y over an alphabet Σ, the overlap

assembly of x with y is defined as, [7],

x� y = {z ∈ Σ
+ | ∃u,w ∈ Σ

∗,∃v ∈ Σ
+ : x = uv,y = vw;z = uvw}

The definition of overlap assembly can be extended to languages in the natural way. Note that,

for a realistic model, we would need additional restrictions such as the fact that the “overlap”

v should be of a sufficient length for the Watson-Crick pairing to happen, and should also not

appear as a substring in other strings involved. In this paper, however, we do not invoke any of

4.2. BASIC DEFINITIONS AND NOTATIONS 75

these restrictions.

A similar operation, the superposition, has been proposed by Bottoni et al. [3]. The result of

the superposition operation between words x,y ∈ Σ+, denoted by x�y, consists of the set of all

words z ∈ Σ+ obtained by any of the four following cases (̄ denotes the morphic complement,

i.e., ¯ is a mapping such that uv = uv and u = u for all words u,v):

1. If there exist u,v ∈ Σ∗,w ∈ Σ+ such that x = uw,y = wv, then z = uwv ∈ x�1 y.

2. If there exist u,v ∈ Σ∗ such that x = uyv, then z = uyv ∈ x�2 y.

3. If there exist u,v ∈ Σ∗,w ∈ Σ+ such that x = wv,y = uw, then z = uwv ∈ x�3 y.

4. If there exist u,v ∈ Σ∗ such that y = uxv, then z = uxv ∈ x�4 y.

As before, the superposition is naturally extended to languages. The superposition operation

and the overlap assembly are closely related. In particular, when we replace the complement

¯ by the identity, then case 1 is identical to the overlap assembly x� y = x �1 y; case 3 is

symmetrical to the overlap assembly x� y = y �3 x; furthermore, cases 2 and 4 give x �2 y =

y �4 x = x if y is an infix of x. From this observation, it easily follows that when we consider

the overlap assembly of one language L by itself, we have L� L = L � L. However, in the

general case of two languages or when we consider a “real” complement function, the overlap

assembly Lx�Ly does not give the same result as the superposition Lx �Ly.

We will use the following notations: NPDA for nondeterministic pushdown automaton;

DPDA for deterministic pushdown automaton; NCA for an NPDA that uses only one stack

symbol in addition to the bottom of the stack symbol, which is never altered; DCA for de-

terministic NCA; NFA for nondeterministic finite automaton; DFA for deterministic finite

automaton; NLBA for nondeterministic linear-bounded automaton; DLBA for deterministic

linear-bounded automaton; NTM for nondeterministic Turing machine; DTM for deterministic

Turing machine. As is well-known, NFAs, NPDAs, NLBAs, halting DTMs, and DTMs, ac-

cept exactly the regular languages, context-free languages (CFLs), context-sensitive languages

76 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

(CSLs), recursive languages, and recursively enumerable languages. We refer the reader to [20]

for the formal definitions of these devices.

A counter is an integer variable that can be incremented by 1, decremented by 1, left un-

changed, and tested for zero. It starts at zero and cannot store negative values. Thus, a counter

is a pushdown stack on unary alphabet, in addition to the bottom of the stack symbol which is

never altered.

An automaton (NFA, NPDA, NCA, etc.) can be augmented with a finite number of coun-

ters, where the “move” of the machine also now depends on the status (zero or non-zero) of the

counters, and the move can update the counters. It is well known that a DFA augmented with

two counters is equivalent to a DTM [41].

In this paper, we will restrict the augmented counter(s) to be reversal-bounded in the sense

that each counter can only reverse (i.e., change mode from nondecreasing to nonincreasing and

vice-versa) at most r times for some given r. In particular, when r = 1, the counter reverses

only once, i.e., once it decrements, it can no longer increment. Note that a counter that makes

r reversals can be simulated by d r+1
2 e 1-reversal counters. Closure and decidable properties of

various machines augmented with reversal-bounded counters have been studied in the literature

(see, e.g., [21, 22]). We will use the notation NFCM, NPCM, NCM, etc, to denote an NFA,

NPDA, NCA, etc., augmented with reversal-bounded counters.

Example 1. L = {xxr | x ∈ (a+ b)+, |x|a = |x|b} can be accepted by an NPCM M with two

1-reversal counters. (The notation |x|a denotes the number of a’s in the string x.) Note that L is

not a CFL.

Briefly, M operates as follows: It scans the input and uses the pushdown stack to check

that the input is a palindrome (this requires M to “guess” the middle of the string) while using

two counters C1 and C2 to store the numbers of a’s and b’s it encounters. Then, at the end of

the input, on λ -transitions (i.e., without reading any input symbol), M decrements C1 and C2

simultaneusly and verifies that they become zero at the same time. Note that the counters are

4.3. CLOSURE PROPERTIES 77

1-reversal.

Example 2. Lk = {x1# · · ·#xk | xi ∈ (a+b)+,x j 6= xk for j 6= k} can be accepted by an NFCM

Mk with k(k+1)/2 1-reversal counters.

Mk operates as follows: It reads the input and verifies that for 1 ≤ i < j ≤ k, xi and x j

disagree in at least one position. To accomplish this, while scanning xi, Mk stores in counter Ci

a “guessed” position pi of xi and records in the state the symbol api in that location. Then later,

when it is scanning x j, Mk stores in counter C j a guessed location p j of x j and records in the

state the symbol ap j in that location. At the end of the input, on λ -transitions, Mk checks that

api 6= ap j and pi = p j (by decrementing counters Ci and C j simultaneously and confirming that

they become zero at the same time).

4.3 Closure properties

In this section we study closure properties of various language classes under overlap assembly.

We begin with the following general result.

Theorem 4.3.1. Let A and B be two families of languages satisfying the following properties,

where # is a symbol not in Σ:

1. If Lx ⊆ Σ∗ is in A and Ly ⊆ Σ∗ is in B, then:

L#
x = {u#v | |v|> 0,uv ∈ Lx} is in A , and

L#
y = {v#w | |v|> 0,vw ∈ Ly} is in B.

2. If L1 ⊆ Σ∗ is in A , then L1#Σ∗ is in A .

If L2 ⊆ Σ∗ is in B, then Σ∗#L2 is in B.

3. A is closed under intersection with languages in B.

4. If L ⊆ Σ∗#Σ+#Σ∗ is in A and h is a homomorphism that maps # to λ (the empty word)

and leaves all other symbols unchanged, then h(L) is in A .

78 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

Then A is closed under overlap assembly with B, i.e., for any Lx ∈A and Ly ∈B, Lx�Ly is

in A .

Proof. Let Lx,Ly ⊆ Σ∗ be in A and B, respectively. Let # be a symbol not in Σ. Then by

(1), L#
x is in A and L#

y is in B. Then by (2), L#
x#Σ∗ is in A and Σ∗#L#

y in B. Since A is

closed under intersection with languages in B by (3), L#
x#Σ∗ ∩Σ∗#L#

y is in A . Finally, from

(4), Lx�Ly = h(L#
x#Σ∗∩Σ∗#L#

y) is in A .

A symmetric theorem also holds when the roles of A and B in above theorem are switched.

Corollary 4.3.2. The families of regular languages, context-sensitive languages, recursive lan-

guages, recursively enumerable languages, and NFCM languages are closed under overlap

assembly.

Proof. Consider the case A = B. It is known or easily verified that the families above satisfy

the properties in Theorem 4.3.1. In fact, for each family, one can effectively construct the

machines satisfying the closure properties listed in the theorem. See, e.g., [20, 21].

Corollary 4.3.3.

1. If Lx is regular (resp., context-free, context-sensitive, recursive, recursively enumerable)

and Ly is regular, then is Lx�Ly is regular (resp., context-free, context-sensitive, recur-

sive, recursively enumerable).

2. If Lx is regular and Ly is regular (resp., context-free, context-sensitive, recursive, recur-

sively enumerable), then Lx�Ly is regular (resp., context-free, context-sensitive, recur-

sive, recursively enumerable).

Proof. Part 1 follows from Theorem 4.3.1. Part 2 follows from the symmetric version of The-

orem 4.3.1 with the roles of A and B switched.

Corollary 4.3.4. If one of Lx and Ly is accepted by an NPCM and the other is accepted by an

NFCM, then Lx�Ly is accepted by an NPCM.

4.3. CLOSURE PROPERTIES 79

Proof. This follows from Theorem 4.3.1 and its symmetric version by taking A to be the class

of NPCM languages and B to be the class of NFCM languages.

DSPACE(S(n)) (resp., NSPACE(S(n))) denotes the family of languages accepted by S(n)

space-bounded DTMs (resp., NTMs). PTIME denotes the family of languages accepted by

polynomial time-bounded DTMs.

Theorem 4.3.5. Let Lx and Ly be CFLs (i.e., accepted by NPDAs). Then

1. Lx�Ly is in DSPACE((logn)2).

2. Lx�Ly is in PTIME.

Proof. Let Lx,Ly ⊆ Σ∗ be languages. It is known that CFLs can be accepted by DTMs in

(logn)2 space, i.e., they are in DSPACE((logn)2). So let Mx and My be (logn)2 space-bounded

DTMs that accept Lx and Ly, respectively. We construct a (logn)2 space-bounded DTM M

accepting Lx� Ly as follows. Given input z of length n , M needs to determine if there is a

partition z = uvw for some u,w ∈ Σ∗ and v ∈ Σ+ such that |v| > 0, uv ∈ Lx and vw ∈ Ly. To

do this, M needs two counters to record the positions i and j where v begins and ends. These

counters need logn space to implement on the DTM. M can systematically examine all possible

values of 1≤ i≤ j≤ n to see if for some i≤ j, uv is accepted by Mx and vw is accepted by My.

Clearly, M operates in (logn)2 space.

The construction for Part 2 follows from Part 1 by noting that CFLs are in PTIME.

Corollary 4.3.6. If Lx and Ly are CFLs, then Lx�Ly is a DCSL (deterministic CSL), but not

necessarily a CFL.

Proof. That Lx�Ly is a DCSL follows from Theorem 4.3.5 and the observation that DSPACE((logn)2)

is properly contained in DSPACE(n)(the family of DCSLs). Now let

Lx ={#ambmcn$ | m,n≥ 1}

Ly ={#ambncm$ | m,n≥ 1}

80 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

Clearly, Lx and Ly are LCFLs. In fact, they can be accepted by DCAs that make only one

reversal on the counters. However, Lx�Ly = {#ambmcm$ | m≥ 1} is not CF.

The ideas in the proof of Theorem 4.3.5 can be used to show the following:

Corollary 4.3.7. The space classes NSPACE(S) and DSPACE(S) are each closed under over-

lap assembly for any space bound S(n)≥ logn.

As stated in Corollary 4.3.2, the family of NFCM languages is closed under overlap assem-

bly. We give another proof below as the construction is needed later. For easy reference, since

Corollary 4.3.2 includes other families, we restate the result for NFCM only, in the theorem

below.

Theorem 4.3.8. The family of languages accepted by NFCMs is closed under overlap assem-

bly.

Proof. Let Lx and Ly be accepted by NFCMs Mx and My, respectively. We construct an NFCM

M to accept Lx�Ly as in the proof of Theorem 4.3.5. The only change is that when given input

z, M guesses the beginning and end locations i and j of v in the partition z = uvw. M simulates

Mx on the prefix of z that ends in position j (i.e., on uv) and starts simulating My starting in

position i of the input z. M accepts if both Mx and My accepts. Note that if Mx and My have

k1 and k2 reversal-bounded counters, respectively, then M will have k1 + k2 reversal-bounded

counters.

Let N be the set of non-negative integers and k be a positive integer. A subset Q of Nk

is a linear set if there exist vectors ~v0,~v1, . . . ,~vn ∈ Nk such that Q = {~v0 + i1~v1 + · · ·+ in~vn |

i1, . . . , in ∈ N}. A finite union of linear sets is called a semilinear set.

A bounded language L⊆ w∗1 · · ·w∗k (for some k≥ 1 and non-null words w1, . . . ,wk) is semi-

linear if there is a semilinear set Q⊆ Nk such that L = {wi1
1 · · ·w

ik
k | (i1, . . . , ik) ∈ Q}.

Corollary 4.3.9. The family of semilinear languages is closed under overlap assembly.

4.3. CLOSURE PROPERTIES 81

Proof. It is known that a bounded language L (i.e., ⊆ w∗1 · · ·w∗k for some k ≥ 1 and words

w1, . . . ,wk) is semilinear if and only if it can be accepted by an NFCM [21]. The result follows

from Theorem 4.3.8.

Corollary 4.3.10. The family of bounded languages accepted by DFCMs (i.e., DFAs aug-

mented with reversal-bounded counters) is closed under overlap assembly.

Proof. This follows from Corollary 4.3.9 and the fact that every NFCM accepting a bounded

language can be converted to an equivalent DFCM [23].

Finally, we consider the family of languages accepted by visibly pushdown automata. A

visibly pushdown automaton (VPDA) [1], also known as input-driven pushdown automaton

[40], is a restricted version of an NPDA. It is an NPDA where the input symbol determines the

(push/stack) operation of the stack. It has a distinguished symbol ⊥ at the bottom of the stack

which is never altered or occur anywhere else. The input alphabet Σ is partitioned into three

disjoint alphabets: Σc, Σr, Σ`. The machine pushes a specified symbol on the stack if it reads

a call symbol in Σc on the input; it pops a specified symbol if the specified symbol is at top

of the stack and it is not the bottom of the stack ⊥ (otherwise it it does not pop ⊥) if it reads

a return symbol in Σr on the input; it does not use the (top symbol of) the stack and can only

change state if it reads a local symbol in Σ` on the input. The partition into call, return, and

local symbols is a property that is inherent to the alphabet Σ. Therefore, if two machines Mx

and My operate on the same input alphabet Σ, then they have the same set of call, return, and

local symbols, respectively.

A VPDA augmented with reversal-bounded counters is called VPCM. We allow the ma-

chine to have ε-moves, but in such moves, the stack is not used, only the state and counters are

used and updated. Acceptance of an input string is when machine eventually falls off the right

end of the input in an accepting state. See [22] for a formal definition.

Theorem 4.3.11. The family of languages accepted by VPCMs is closed under overlap assem-

bly.

82 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

Proof. The proof is similar to that of Theorem 4.3.8. In that proof, Mx and My are VPCMs. The

VPCM M constructed from Mx and My needs only one pushdown stack, since the operations on

the stack of these two machines (being input-driven) are synchronized, i.e., Mx pushes, pops, or

leaves the stack unchanged if and only if My pushes, pops, or leaves the stack unchanged.

Clearly, if both Mx and My are VPDAs (i.e., have no reversal-bounded counters), then so is

M. Hence:

Corollary 4.3.12. The family of languages accepted by VPDAs is closed under overlap assem-

bly.

We summarize this section’s results regarding closure properties of language classes in

the Chomsky hierarchy (plus finite languages) under overlap assembly in Table 4.1. For two

language classes X and Y , the intersection of row X with column Y shows the language

class Z from the Chomsky hierarchy such that for all Lx ∈X and Ly ∈ Y we have Lx�Ly ∈

Z . Noting that FIN ⊆ REG⊆CF ⊆CS⊆ RE (modulo the condition that λ is not allowed in

CS languages), all the entries in Table 4.1 (except for the case when Lx and Ly are finite) follow

from Corollary 4.3.2. The case when Lx ∈ FIN and Ly ∈ FIN, the result is in FIN is obvious.

Also note that each entry in the table is the smallest class from the Chomsky hierarchy

which includes Lx�Ly for all Lx ∈X and Ly ∈ Y . This follows from Corollary 4.3.6 and the

following observation: For a language L ⊆ Σ∗ and a symbol $ /∈ Σ, the languages $L and L$

belong to the same classes in the Chomsky hierarchy as L. Furthermore, L$�{$} = L$ and

{$}�$L = $L.

X \Y FIN REG CF CS RE
FIN FIN REG CF CS RE
REG REG REG CF CS RE
CF CF CF CS CS RE
CS CS CS CS CS RE
RE RE RE RE RE RE

Table 4.1: Closure properties of language classes in the Chomsky hierarchy under overlap
assembly.

4.4. DECISION PROBLEMS 83

4.4 Decision problems

We have seen in Corollary 4.3.6 that the families of context-free languages (CFLs) and linear

context-free languages (LCFLs) are not closed under overlap assembly. We will show that it is

undecidable whether or not the overlap assembly of two CFLs (resp., LCFLs) is a CFL (resp.,

LCFL).

An NPDA (resp., DPDA) is 1-reversal if its stack makes only one reversal, i.e., once it

pops, it can no longer push. It is well-known that 1-reversal NPDAs accept exactly the LCFLs.

In the following theorems, “DCAs” always means a general DCA, i.e., there is no restriction

on counter reversals.

Theorem 4.4.1. It is undecidable, given 1-reversal DPDAs (resp., DCAs) Mx and My accepting

languages Lx and Ly, respectively, whether Lx�Ly is a CFL or not.

Proof. Let L1,L2 ⊆ Σ∗ be accepted by 1-reversal DPDAs. Let a,b,c,#,$ be new symbols.

Define the following languages:

Lx = {#amwbmcn$ | m,n≥ 1,w ∈ L1}

Ly = {#amwbncm$ | m,n≥ 1,w ∈ L2}

It is easily verified that Lx and Ly can also be accepted by 1-reversal DPDAs. Then L = Lx�

Ly = Lx∩Ly. Clearly, L = /0 if and only if L1∩L2 = /0. Now if L = /0, then it is obviously a CFL.

If L 6= /0, we claim that it is not a CFL. For suppose L is a CFL. Apply a homomorphism that

maps all symbols in Σ to λ (the empty word) and leaves all other symbols unchanged. Then the

resulting language, L′, must also be context-free, since CFLs are closed under homomorphism.

We get a contradiction, since L′ = {#ambmcm$ | m ≥ 1} is not context-free. The result now

follows, since the emptiness of intersection of two languages accepted by 1-reversal DPDAs is

undecidable [20].

84 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

If L1,L2 ⊆ Σ∗ are accepted by DCAs, define the languages:

Lx = {#wambmcn$ | m,n≥ 1,w ∈ L1}

Ly = {#wambncm$ | m,n≥ 1,w ∈ L2}

Note that Lx and Ly can be accepted by DCAs as well. Using the same arguments as before,

Lx�Ly is context-free if and only if L1∩L2 = /0. However, the emptiness of intersection of two

languages accepted by DCAs is undecidable [21].

We need the notion of Parikh map of a language in the proof of the next result. Let Σ =

{a1, . . . ,ak}. The Parikh map of a language L⊆ Σ∗ is defined as

{(|w|a1, . . . , |w|ak) | w ∈ L},

where |w|ai is the number of ai’s in w.

Theorem 4.4.2. It is undecidable, given 1-reversal DPDAs (resp., DCAs) Mx and My accepting

languages Lx and Ly, respectively, whether Lx�Ly can be accepted by an NFCM.

Proof. Let L1,L2 ⊆ Σ∗ be accepted by 1-reversal DPDAs, and a,b,c,#,$ be new symbols.

Define the following languages:

Lx = {#zwczR$ | z ∈ (a+b)+,w ∈ L1}

Ly = {#zwczR$ | z ∈ (a+b)+,w ∈ L2}

It is easily verified that Lx and Ly can be accepted by 1-reversal DPDAs. Then L = Lx�Ly =

Lx ∩ Ly. If L = /0, then it is obvious that it can be accepted by an NFCM. If L 6= /0 and is

accepted by an NFCM, then we can construct another NFCM that accepts the language, L′,

obtained by applying a homomorphism that maps all symbols in Σ to λ and leaves all other

symbols unchanged. Clearly, L′ = {#zczR$ | z ∈ (a+ b)+}. But it is known that L′ cannot be

4.4. DECISION PROBLEMS 85

accepted by an NFCM [6]. It follows that L cannot be accepted by an NFCM. Hence, it is

undecidable whether Lx�Ly can be accepted by an NFCM.

For the second part, let L1,L2 ⊆ Σ∗ be accepted by DCAs, and a,b,#,$ be new symbols.

Define the following languages:

Lx = {#ai1bai1+1bai2bai2+1 · · ·aikbaik+1w$ |

k ≥ 1, i1, · · · , ik ≥ 1, i1 = 1,w ∈ L1}

Ly = {#a j1ba j2ba j2+1 · · ·a jk−1ba jk−1+1ba jkw |

k ≥ 1, j1, · · · , jk ≥ 1, j1 = 1,w ∈ L2}

Then Lx�Ly = {#a1ba2ba3ba4 · · ·a2k−1ba2kw$ | k≥ 1,w∈ L1∩L2}. Hence, Lx�Ly = /0 if and

only if L1∩L2 = /0. Suppose Lx�Ly 6= /0. One can verify that the Parikh map of if Lx�Ly 6= /0 is

not a semilinear set. Since the Parikh map of any NFCM language is semilinear [21], it follows

that if Lx�Ly 6= /0, it cannot be accepted by an NFCM. We conclude that Lx�Ly is accepted

by an NFCM if and only if L1∩L2 = /0, which is undecidable.

Another interesting decision question is to decide, whether Lx � Ly is empty, finite, or

infinite.

Theorem 4.4.3.

1. It is decidable, given Lx and Ly, one of which is accepted by an NPCM and the other by

an NFCM, whether Lx�Ly is empty, finite, or infinite.

2. It is decidable, given Lx and Ly, accepted by VPCMs, whether Lx�Ly is empty, finite, or

infinite.

Proof. This follows from Corollary 4.3.4 and Theorem 4.3.11 and the fact that it is decidable,

given an NPCM, whether the language it accepts is empty, finite, or infinite.

86 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

We end this section with a discussion of a special case of overlap assembly, when the

languages Lx and Ly are the same. More precisely, if L⊆ Σ∗, let

L� = L�L = {uvw | v ∈ Σ
+,u,w ∈ Σ

∗,uv,vw ∈ L}.

Obviously, the positive closure and decidable results in the previous section and this section

when the class A = class B also hold for this special case of overlap assembly (by taking

Ly = Lx). However the proofs for the non-closure and undecidable results need to be modified.

Theorem 4.4.4. If L is accepted by a DCA, then L� need not be a CFL.

Proof. Let L = {%am#bmcn | m,n ≥ 1}∪{#bmcm$ | m ≥ 1}. Clearly, L can be accepted by a

DCA that makes only one reversal on its counter.

Suppose L� is a CFL. Define the regular language L′ = %a+#b+c+$. Then the language

L′′ = L�∩L′ must also be a CFL. We get a contradiction since L′′ = {%am#bmcm$ | m≥ 1} is

not a CFL.

Theorem 4.4.5. It is undecidable, given a language L accepted by a 1-reversal DPDA (resp.,

DCA) M, whether L� is a CFL.

Proof. Let L1,L2 ⊆ Σ∗ be accepted by 1-reversal DPDAs. Define

L ={%am#bnwcm$ | m,n≥ 1,w ∈ L1}∪

{#bmwcm$$ | m≥ 1,w ∈ L2}.

It can be verified that L can be accepted by a 1-reversal DPDA. Then by an argument similar to

that in the proof of Theorem 4.4.1, L� is a CFL if and only if L1∩L2 = /0, which is undecidable.

4.5. ITERATED OVERLAP ASSEMBLY 87

Now, let L1,L2 ⊆ Σ∗ be accepted by DCAs. Define

L ={%am#bncmw$ | m,n≥ 1,w ∈ L1}∪

{#bmcmw$$ | m≥ 1,w ∈ L2}.

It can be verified that L can be accepted by a DCA. By an argument similar to that in the proof

of Theorem 4.4.1, L� is a CFL if and only if L1∩L2 = /0, which is undecidable.

4.5 Iterated overlap assembly

We define a combinatorial library of words as a set of the form

{α1α2 · · ·αn | αi ∈ {Xi,Yi} for i = 1, . . . ,n}

where X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn ∈ Σ+ are distinct sequences. It is often required that all Xi

and Yi are of the same length. However, some experiments use the fact that Xi and Yi have

different lengths: for example, in [42] all Xi have the same length which is shorter than the

length of all Yi, thus allowing to use gel electrophoresis to separate the strings from this library

by how many Xi they contain.

Combinatorial libraries of DNA strands have applications in many areas, including DNA

computing where, e.g., a mix-and-split procedure was used to generate the solution space (a

combinatorial library of binary numbers) for a chess problem, [13]. A similar technique was

used to generate the pool of solutions to a 20-variable solution of the 3-SAT problem, [4], the

largest experiment to date that solved a computational problem with a DNA algorithm. Effi-

cient generation of combinatorial libraries of this type, obtained by using XPCR, was initially

proposed in [14], and further investigated in [16].

In this section we formally prove that the iterated overlap assembly can theoretically gen-

erate this library with some restrictions on the words Xi, Yi. We consider the following library

88 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

where an additional symbol $ is inserted between every pair of Xi/Yi and Xi+1/Yi+1:

{α1$α2$ · · ·αn$ | αi ∈ {Xi,Yi} for i = 1 . . . ,n}. (4.1)

For simplicity, we view $ as an additional letter that does not appear inside any of the words

Xi or Yi. The purpose of introducing the letters $ is that each letter $ has to match the position

of another letter $ during overlap assembly (i.e., no proper suffix of αi$ is identical to a proper

prefix of α j$). If one prefers to avoid the introduction of this additional letter in the strings

(e.g., for practical purposes), it is sufficient to design the set of strings

C = {X1, . . . ,Xn,Y1, . . . ,Yn}

such that either C contains only equal-length words that are overlap-free or, less restrictive, C

is a solid code (i.e., overlap- and infix-free), see e.g., [24]. In this case, the symbols $ in the

library (4.1) become markers (of width 0) which match during overlap assembly because of

the design of the set C.

We start by generalizing the definition of L� = L�L . The iterated overlap assembly of a

language L, [7], is defined as follows:

µ0(L) = L µi+1(L) = µi(L)�µi(L)

µ∗(L) =
⋃
i≥0

µi(L)

In particular µ1(L) = L� L = L�. Since w ∈ w�w for any non-empty word w, from the

definition it easily follows that µi(L)⊆ µi+1(L) for L∈Σ+. It can be shown (using intersections

with appropriate regular languages) that Theorems 4.4.4 and 4.4.5 also hold for iterated overlap

assembly.

We will now show that we can generate the combinatorial library (4.1) by (i) starting with

4.5. ITERATED OVERLAP ASSEMBLY 89

a set of strands

{αk$αk+1$ | 1≤ k ≤ n−1,αi ∈ {Xi,Yi} for i = 1, . . . ,n},

(ii) iteratedly applying overlap assembly until no new strands are produced anymore (Theorem

4.5.5), and (iii) extracting the longest strands from the result. We will also show (Theorem

4.5.4) that the number of steps of this process is logarithmic in the size of the input.

Definition A string x ∈ L is said to be terminal with respect to language L if x�L = L� x =

{x}.

Definition A set of strings T (L) ⊆ L is said to be the maximal terminating set of L if every

w ∈ T (L) is terminal with respect to L and for all w ∈ L\T (L), w is not terminal with respect

to L, that is,

T (L) = {w ∈ L | w�L = L�w = {w}}

Lemma 4.5.1. If t ∈ T (L), then t ∈ T (µ1(L)). More generally, if t ∈ T (L), then t ∈ T (µ∗(L))

Proof. We prove the contrapositive: if t /∈ T (L� L), then t /∈ T (L) for any t ∈ L (if t /∈ L

the statement is obviously true). There exists w ∈ µ1(L) and u 6= t such that either u ∈ w� t or

u∈ t�w. If w∈ L, then t /∈ T (L). Thus, w∈ µ1(L)\L. There are w1,w3 ∈ Σ∗,w2 ∈ Σ+ such that

w = w1w2w3 ∈w1w2�w2w3 where w1w2,w2w3 ∈ L. If u∈ t�w, there are u1,u3 ∈ Σ∗,u2 ∈ Σ+

such that u = u1u2u3, where u = u1u2 and w = u2u3 = w1w2w3. There are two cases possible:

(A) either u2 is a proper prefix of w1w2, or (B) w1w2 is a prefix of u2.

Figure 4.2: Illustration of cases (A) and (B) from the proof of Lemma 4.5.1.

90 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

In case (A), there is u1w1w2 6= t in t �w1w2 ⊆ t �L and therefore t /∈ T (L). In case (B),

there is u ∈ t�w2w3 ⊆ t�L and therefore t /∈ T (L) because w2 6= ε . We can similarly prove

that t /∈ T (L) when w ∈ µ1(L) and u 6= t exists such that u ∈ w� t. Hence, we prove that

t ∈ T (L) implies t ∈ T (µ1(L)). By applying this result recursively, we can similarly prove that

if t ∈ T (L), then t ∈ T (µ∗(L)).

Definition We define zk1,k2 for any k1 ≤ k2 as follows.

zk1,k2 = {αk1$αk1+1$ · · ·αk2$ | αi ∈ {Xi,Yi},k1 ≤ i≤ k2]}

zk1,k2 is not defined for k1 > k2.

Informally, zk1,k2 is the set of words consisting of the catenation of k2− k1 +1 consecutive

words α , separated by dollar signs. Note that, with this notation, z1,n represents the required

combinatorial library.

Definition We define Z(m,n) for all m ≥ 2 as equal to the union of all zk1,k2 such that 1 ≤

k2− k1 < m for m≤ n, and equal to Z(n,n) for m > n:

Z(m,n) =


⋃

p=1,...,m−1
⋃

k1=1,...,n−p zk1,k1+p if 2≤ m≤ n

Z(n,n) if m > n.

Informally, Z(m,n) is the set of all strands consisting of at most m consecutive words α

(separated by dollar signs), where 2≤ m≤ n. With this notation, Z(2,n) represents the initial

starting set, and Z(n,n) contains all strands consisting of catenations of consecutive words

α , with the minimum number of consecutive words α in such a catenation being 2, and the

maximum number being n. Note that Z(n,n) contains the desired library z1,n as a subset.

Lemma 4.5.2. Let x = αk1$ · · ·αk2$ and y = βl1$ · · ·βl2$ be words where αi,βi ∈ {Xi,Yi} and

1≤ k1,k2, l1, l2 ≤ n. If k1 ≤ l1 ≤ k2 ≤ l2 and αi = βi for i = l1, l1 +1, . . . ,k2, then

x� y = {αk1$αk1+1$ · · ·αk2$βk2+1$βk2+2$ · · ·βl2$}.

4.5. ITERATED OVERLAP ASSEMBLY 91

Otherwise, x� y = /0.

Proof. It is easy to see that

αk1$αk1+1$ · · ·αk2$βk2+1$βk2+2$ · · ·βl2$ ∈ x� y

if k1 ≤ l1 ≤ k2 ≤ l2 and αi = βi for i = l1, l1 +1, . . . ,k2, because

αl1$αl1+1$ · · ·αk2$ = βl1$βl1+1$ · · ·βk2$

can serve as overlap of x and y.

The words x and y cannot overlap in any other way since the symbols $ have to match up

in both words and all words X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn are distinct. In particular, when one

of the conditions k1 ≤ l1 ≤ k2 ≤ l2 and αi = βi for i = l1, l1 +1, . . . ,k2 is not satisfied, the two

words x and y cannot form an overlap at all and, therefore, x� y = /0.

Lemma 4.5.3. If 2≤ m1,m2 ≤ n, then Z(m1,n)�Z(m2,n) = Z(m1 +m2−1,n).

Proof. Let x ∈ Z(m1,n), y ∈ Z(m2,n) and w ∈ x� y. Clearly, we have x = αk1$αk1+1$ · · ·αk2$

and y = βl1$βl1+1$ · · ·βl2$ where 1 ≤ k1,k2, l1, l2 ≤ n, k2− k1 < m1, and l2− l1 < m2. From

Lemma 4.5.2 we obtain that w ∈ x� y is only possible if l1 ≤ k2 and

w = αk1$αk1+1$. . .αk2$βk2+1$βk2+2$. . .βl2$.

This implies that l2−k1≤ l2− l1+k2−k1 <m1+m2−1; note that we also have l2−k1 < n. We

conclude w ∈ Z(m1 +m2−1,n) and, more general, Z(m1,n)�Z(m2,n)⊆ Z(m1 +m2−1,n).

Conversely, consider a word w = αk$αk+1 · · ·αl$ ∈ Z(m1 +m2− 1,n) where 1 ≤ k, l ≤ n,

1 ≤ l − k < min(m1 + m2 − 1,n), and αi ∈ {Xi,Yi}. If l − k < m1, then w ∈ Z(m1,n) and

y = αl−1$αl$ ∈ Z(m2,n); this implies that w ∈ w� y ⊆ Z(m1,n)�Z(m2,n). Otherwise, we

let j = k+m1−1 and note that x = αk$αk+1 · · ·α j$ ∈ Z(m1,n). Furthermore, because l− k <

92 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

m1+m2−1, we have that l− j = l−k−m1+1 < m2 which implies that y = α j$α j+1 · · ·αl$∈

Z(m2,n). By Lemma 4.5.2, we have w ∈ x� y⊆ Z(m1,n)�Z(m2,n).

The following theorem shows that, starting from an initial set Z(2,n) we will obtain, after

dlog2(n− 1)e or more overlap assemblies, the set Z(n,n) which is a superset of the combina-

torial library z1,n.

Theorem 4.5.4. For L = Z(2,n) and k ≥ 0, we have µk(L) = Z(2k +1,n). Moreover, µ∗(L) =

Z(n,n).

Proof. We prove the statement by induction. Clearly, the statement holds for the base case

where k = 0 as µ0(L) = L = Z(2,n).

Using the induction hypothesis µk(L) = Z(2k +1,n) and Lemma 4.5.3, we obtain that

µk+1(L) = µk(L)�µk(L) = Z(2k +1,n)�Z(2k +1,n)

= Z(2 · (2k +1)−1,n) = Z(2k+1 +1,n).

Because Z(m,n)⊆ Z(n,n) for all m ∈ N, we obtain the second statement µ∗(L) = Z(n,n).

Next, we prove the main result of this section, namely that the maximal terminal set of

µ∗(L) = µk(L) is the desired combinatorial library z1,n.

Theorem 4.5.5. For L = Z(2,n) we have T (µ∗(L)) = z1,n.

Proof. From Theorem 4.5.4, we know that µ∗(L) = Z(n,n). First, note that for every word

w = α1$α2$ · · ·αn$ ∈ z1,n ⊆ Z(n,n) there does not exist any word v ∈ Z(n,n), such that any

suffix (resp., prefix) of w (including w itself) is a proper prefix (resp., suffix) of v. Therefore, we

must have w�Z(n,n) = Z(n,n)�w = {w}. Thus, z1,n only contains words which are terminal

with respect to µ∗(L).

4.6. CONCLUSIONS 93

Next, consider a word

w = αk1$αk1+1$. . .αk2$ ∈ Z(n,n)\z1,n

where αi ∈ {Xi,Yi}, 1≤ k1 < k2 ≤ n, and k1 > 1 or k2 < n. If k1 > 1, then it is easy to see that

w 6= Xk1−1$αk1$αk1+1 · · ·αk2$ ∈ Xk1−1$αk1$�w⊆ Z(n,n)�w.

Otherwise, k2 < n, and we have

w 6= αk1$αk1+1$ · · ·αk2$Xk2+1$ ∈ w�αk2$Xk2+1$⊆ w�Z(n,n).

In either case, w is not terminal with respect to µ∗(L). We conclude that T (µ∗(L)) = z1,n.

Observe that the result of iterated overlap assembly applied to the initial set Z(2,n) pro-

duces the set Z(n,n) that contains the required library z1,n, but it contains also other interme-

diate strings. One can use various techniques to extract the library z1,n from this solution. For

example, gel electrophoresis can be used to separate strands by length, and the longest strands,

which are the desired combinatorial library strands, can then be extracted.

4.6 Conclusions

This paper studies properties of the operation of overlap assembly, a formal language operation

that models the process of linear overlap assembly of DNA strands: Two DNA strands that

partially “overlap”, in the sense that the suffix of one is the Watson-Crick complement of

a prefix of another, can be concatenated with the aid of a DNA Polymerase enzyme. We

obtain closure properties of various language classes under this operation, and discuss various

decision problems. We also investigate the iterated overlap assembly and demonstrate that,

under some simplifying assumptions, it can be used to generate a DNA combinatorial library.

94 CHAPTER 4. ON THE OVERLAP ASSEMBLY OPERATION

Acknowledgements

We thank Giuditta Franco for useful suggestions and discussions on experimental aspects of

XPCR, as well as Sepinoud Azimi and Florin Manea for pointing out important references.

Bibliography

[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. ACM Symposium on

Theory of Computing, STOC, pages 202–211. ACM-Press, 2004.

[2] A. Angeleska, N. Jonoska, M. Saito, and L. F. Landweber. RNA-guided DNA assembly.

Journal of Theoretical Biology, 248(4):706–720, 2007.

[3] P. Bottoni, A. Labella, V. Manca, and V. Mitrana. Superposition based on Watson-Crick-

like complementarity. Theory of Computing Systems, 39(4):503–524, 2006.

[4] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman. Solution

of a 20-variable 3-SAT problem on a DNA computer. Science, 296(5567):499–502, 2002.

[5] D. Cheptea, C. Martı́n-Vide, and V. Mitrana. A new operation on words suggested by

DNA biochemistry: hairpin completion. In Proc. Transgressive Computing, TC, pages

216–228, 2006.

[6] E. Chiniforooshan, M. Daley, O. H. Ibarra, L. Kari, and S. Seki. One-reversal counter

machines and multihead automata: revisited. Theoretical Computer Science, 454:81–87,

2012.

[7] E. Csuhaj-Varjú, I. Petre, and G. Vaszil. Self-assembly of strings and languages. Theo-

retical Computer Science, 374(1-3):74–81, 2007.

[8] A. R. Cukras, D. Faulhammer, R. J. Lipton, and L. F. Landweber. Chess games: a model

for RNA based computation. Biosystems, 52(1-3):35–45, 1999.

95

96 BIBLIOGRAPHY

[9] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual insertions/deletions

with applications to biomolecular computation. In Proc. String Processing and Informa-

tion Retrieval, SPIRE, pages 47–54, 1999.

[10] J. Dassow, C. Martı́n-Vide, G. Păun, and A. Rodrı́guez-Patón. Conditional concatenation.

Fundamenta Informaticae, 44(4):353–372, 2000.

[11] A. Ehrenfeucht, I. Petre, D. M. Prescott, and G. Rozenberg. Circularity and other invari-

ants of gene assembly in ciliates, page 8197. World Scientific, 2001.

[12] S. K. Enaganti, L. Kari, and S. Kopecki. A formal language model of DNA polymerase

activity. Fundamenta Informaticae, 138:179–192, 2015.

[13] D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber. Molecular computation:

RNA solutions to chess problems. Proceedings of the National Academy of Sciences,

97(4):1385–1389, 2000.

[14] G. Franco. A polymerase based algorithm for SAT. In M. Coppo, E. Lodi, and G. Pinna,

editors, Theoretical Computer Science, volume 3701 of LNCS, pages 237–250. Springer

Berlin Heidelberg, 2005.

[15] G. Franco, C. Giagulli, C. Laudanna, and V. Manca. DNA extraction by XPCR. In

C. Ferretti, G. Mauri, and C. Zandron, editors, Proc. DNA Computing, (DNA 11), volume

3384 of LNCS, pages 104–112, 2005.

[16] G. Franco and V. Manca. Algorithmic applications of XPCR. Natural Computing,

10(2):805–819, 2011.

[17] G. Franco, V. Manca, C. Giagulli, and C. Laudanna. DNA recombination by XPCR. In

A. Carbone and N. A. Pierce, editors, Proc. DNA Computing, (DNA 12), volume 3892 of

LNCS, pages 55–66, 2006.

BIBLIOGRAPHY 97

[18] R. W. Gatterdam. Splicing systems and regularity. Int. J. of Computer Mathematics,

31(1-2):63–67, 1989.

[19] T. Head, D. Pixton, and E. Goode. Splicing systems: regularity and below. In M. Hagiya

and A. Ohuchi, editors, DNA Based Computers: DNA Computing, DNA 8, volume 2568

of LNCS, pages 262–268, 2003.

[20] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Inc., 1978.

[21] O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.

ACM, 25(1):116–133, 1978.

[22] O. H. Ibarra. Automata with reversal-bounded counters: a survey. In Proc. Descriptional

Complexity of Formal Systems, DCFS, pages 5–22, 2014.

[23] O. H. Ibarra and S. Seki. Characterizations of bounded semilinear languages by one-

way and two-way deterministic machines. Int. J. Foundations of Computer Science,

23(6):1291–1305, 2012.

[24] H. Jürgensen and S. Konstantinidis. Codes. In Handbook of Formal Languages, pages

511–607. Springer, 1997.

[25] P. D. Kaplan, Q. Ouyang, D. S. Thaler, and A. Libchaber. Parallel overlap assembly

for the construction of computational DNA libraries. Journal of Theoretical Biology,

188(3):333–341, 1997.

[26] L. Kari, J. Kari, and L. Landweber. Reversible molecular computation in ciliates. In

J. Karhumäki, H. Maurer, G. Păun, and G. Rozenberg, editors, Jewels are Forever, pages

353–363. Springer Berlin Heidelberg, 1999.

98 BIBLIOGRAPHY

[27] L. Kari and S. Kopecki. Deciding whether a regular language is generated by a splicing

system. In D. Stefanovic and A. Turberfield, editors, DNA Computing and Molecular

Programming (DNA 18), volume 7433 of LNCS, pages 98–109, 2012.

[28] L. Kari and E. Losseva. Block substitutions and their properties. Fundamenta Informati-

cae, 73(1-2):165–178, 2006.

[29] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of DNA computing and for-

mal languages: characterizing recursively enumerable languages using insertion-deletion

systems. In DNA Based Computers III (DNA3), volume 48 of DIMACS, pages 329–346,

1999.

[30] L. Kari and P. Sosı́k. On the weight of universal insertion grammars. Theoretical Com-

puter Science, 396(1-3):264–270, 2008.

[31] S. M. Kim. An algorithm for identifying spliced languages. In T. Jiang and D. Lee,

editors, Proc. Computing and Combinatorics Conference, COCOON, volume 1276 of

LNCS, pages 403–411, 1997.

[32] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,

412(29):3629–3638, 2011.

[33] L. F. Landweber and L. Kari. The evolution of cellular computing: natures solution to a

computational problem. Biosystems, 52(13):3–13, 1999.

[34] L. Ledesma, D. Manrique, and A. Rodrı́guez-Patón. A tissue P system and a DNA mi-

crofluidic device for solving the shortest common superstring problem. Soft Computing,

9(9):679–685, 2005.

[35] V. Manca and G. Franco. Computing by polymerase chain reaction. Mathematical Bio-

sciences, 211(2):282–298, 2008.

BIBLIOGRAPHY 99

[36] F. Manea, C. Martı́n-Vide, and V. Mitrana. On some algorithmic problems regarding the

hairpin completion. Discrete Applied Mathematics, 157(9):2143–2152, 2009.

[37] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B. Cooper,

B. Löwe, and A. Sorbi, editors, Proc. Computability in Europe, CiE, volume 4497 of

LNCS, pages 532–541, 2007.

[38] F. Manea, V. Mitrana, and J. Sempere. Some remarks on superposition based on Watson-

Crick-like complementarity. In V. Diekert and D. Nowotka, editors, Developments in

Language Theory, volume 5583 of LNCS, pages 372–383, 2009.

[39] C. Martı́n-Vide, G. Păun, J. Pazos, and A. Rodrı́guez-Patón. Tissue P systems. Theoretical

Computer Science, 296(2):295–326, 2003.

[40] K. Mehlhorn. Pebbling moutain ranges and its application of DCFL-recognition. In Proc.

Automata, Languages and Programming, ICALP, pages 422–435. Springer-Verlag, 1980.

[41] M. L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics in

theory of Turing machines. The Annals of Mathematics, 74(3):437–455, 1961.

[42] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique

problem. Science, 278(5337):446–449, 1997.

[43] D. Pixton. Regularity of splicing languages. Discrete Applied Mathematics, 69(1-2):101–

124, 1996.

[44] D. M. Prescott, A. Ehrenfeucht, and G. Rozenberg. Molecular operations for DNA pro-

cessing in hypotrichous ciliates. European Journal of Protistology, 37(3):241–260, 2001.

[45] G. Păun, M. J. Pèrez-Jimènez, and T. Yokomori. Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. of

Foundations of Computer Science, 19(4):859–871, 2008.

100 BIBLIOGRAPHY

[46] G. Păun, G. Rozenberg, and A. Salomaa. DNA computing: new computing paradigms.

Texts in Theoretical Computer Science. Springer, 2006.

[47] W. P. Stemmer. DNA shuffling by random fragmentation and reassembly: in vitro re-

combination for molecular evolution. Proceedings of the National Academy of Sciences,

91(22):10747–10751, 1994.

[48] A. Takahara and T. Yokomori. On the computational power of insertion-deletion systems.

Natural Computing, 2(4):321–336, 2003.

[49] M. Yong, J. Xiao-Gang, S. Xian-Chuang, and P. Bo. Minimizing of the only-insertion

insdel systems. Journal of Zhejiang University Science A, 6(10):1021–1025, 2005.

Chapter 5

Further remarks on DNA overlap

assembly1

5.1 Introduction

The word and language operation overlap assembly was first introduced by Csuhaj-Varju, Pe-

tre, and Vaszil - under the name (self-)assembly - in [5], and later studied in [7], as a formal

model of the linear self-assembly of DNA strands. Formally, the overlap assembly is a bi-

nary operation which, when applied to two input strings xy and yz (where y is their non-empty

overlap), produces the output xyz.

The study of overlap assembly as a formal language operation is part of ongoing efforts

to provide a formal framework and rigorous treatment of DNA-based information and DNA-

based computation. More specifically, this study can be placed in the context of studies of DNA

bio-operations enabled by the actions of DNA polymerase enzymes, such as hairpin completion

and its inverse operation, hairpin reduction [4, 26, 28, 29], overlapping concatenation [31], and

directed extension [8].

The activity of DNA Polymerase presupposes the existence of a DNA single strand, called

1A version of this chapter, including an abstract, has been submitted to the Information and Computation
journal (S.K. Enaganti, O.H. Ibarra, L. Kari, S. Kopecki. Further remarks on DNA overlap assembly.)

101

102 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

template, and of a second short DNA strand, called primer, that is Watson-Crick complemen-

tary to the template and binds to it. Given a supply of individual nucleotides, a DNA poly-

merase then extends the primer, at one of its ends only, by adding individual nucleotides com-

plementary to the template nucleotides, one by one, until the end of the template is reached.

In the wet lab, the iteration of this process is used to obtain an exponential replication of

DNA strands, in a protocol called Polymerase Chain Reaction (PCR). Experimentally, (paral-

lel) overlap assembly of DNA strands under the action of DNA Polymerase enzyme was used

for gene shuffling in, e.g., [35]. In the context of experimental DNA Computing, overlap as-

sembly was used in, e.g., [6,9,23,33] for the formation of combinatorial DNA or RNA libraries.

Overlap assembly can also be viewed as modelling a special case of an experimental procedure

called cross-pairing PCR, introduced in [11] and studied in, e.g., [10, 12, 13, 27].

This paper is a continuation of the theoretical analysis of overlap assembly, as a formal lan-

guage operation, that was started in [5] and [7]. Following Section 5.2 comprising definitions,

notations and basic properties of overlap assembly, in Section 5.3 we correlate the overlap

assembly operation with the superposition operation introduced in [3] and determine closure

properties of iterated overlap assembly. A string w is terminal with respect to a language L if

w ∈ L and the result of the overlap assembly between w and L equals {w}, and the terminal

set T (L) contains all words that are terminal with respect to L. In Section 5.4 we investigate

the closure properties of terminal sets of complete languages (languages closed under overlap

assembly). In Section 5.5 we study three decision problems: deciding the completeness of

an arbitrary language, deciding whether a string is terminal with respect to a language, and

deciding whether a language is generated by an overlap assembly operation of two other given

languages. Section 5.6 contains concluding remarks.

5.2. BASIC DEFINITIONS AND NOTATIONS 103

5.2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ,

including the empty word λ . Σ+ is the set of all non-empty words over Σ. For words w,x,y,z

such that w = xyz we call the subwords x, y, and z prefix, infix, and suffix of w, respectively.

The sets pref(w), inf(w), and suff(w) contain, respectively, all prefixes, infixes, and suffixes of

w. A prefix (resp., infix or suffix) x of w is proper if x 6= w. We employ the following notation:

Pref(w) = pref(w)\{w}, Inf(w) = inf(w)\{w}, and Suff(w) = suff(w)\{w}. This notation is

naturally extended to languages; for example, Suff(L) =
⋃

w∈L Suff(w). The complement of a

language L⊆ Σ∗ is Lc = Σ∗\L.

Let N be the set of non-negative integers and k be a positive integer. A subset Q of Nk

is a linear set if there exist vectors ~v0,~v1, . . . ,~vn ∈ Nk such that Q = {~v0 + i1~v1 + · · ·+ in~vn |

i1, . . . , in ∈ N}. A finite union of linear sets is called a semilinear set.

Let Σ = {a1, . . . ,ak}. The Parikh map of a language L⊆ Σ∗, denoted Ψ(L), is defined as

Ψ(L) = {(|w|a1 , . . . , |w|ak) | w ∈ L},

where |w|ai is the number of ai’s in w.

5.2.1 The overlap assembly

An involution is a function θ : Σ∗ → Σ∗ with the property that θ 2 is the identity. θ is called

an antimorphism if θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick complementarity of

DNA strands has been modeled as an anti-morphic involution over the DNA alphabet ∆ =

{A,C,G,T}, [18, 24].

Using the convention that a word x over this alphabet represents the DNA single strand x in

the 5’ to 3’ direction, the overlap assembly of a strand uv with a strand θ(w)θ(v) first forms a

partially double-stranded DNA molecule with v in uv and θ(v) in θ(w)θ(v) attaching to each

other, see Figure 1(a). DNA polymerase enzyme will extend the 3’ end of uv with the strand

104 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

Figure 5.1: (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to each other through
their complementary segments v and θ(v), forming a partially double-stranded DNA complex.
(b) DNA polymerase extends the 3’ end of the strand uv. (c) DNA polymerase extends the 3’
end of the other strand. The resulting DNA double strand is considered to be the output of the
overlap assembly of the two input single strands.

w, see Figure 1(b). Similarly, the 3’ end of θ(w)θ(v) will extended, resulting in a full double

strand whose upper strand is uvw, see Figure 1(c). Formally, the overlap assembly between uv

and θ(w)θ(v) is uvw. Assuming that all involved DNA strands are initially double-stranded,

that is, whenever the strand x is available, its Watson-Crick complement θ(x) is also available,

one can further simplify this model and, given two words x,y over an alphabet Σ, define the

overlap assembly of x with y, [5], as:

x� y = {z ∈ Σ
+ | ∃u,w ∈ Σ

∗,∃v ∈ Σ
+ : x = uv,y = vw,z = uvw}.

The definition of overlap assembly can be extended to languages in the natural way.

The iterated overlap assembly µ∗(L) of a language L is defined as:

µ0(L) = L, µi+1(L) = µi(L)�µi(L), µ∗(L) =
⋃
i≥0

µi(L).

Since w ∈ w�w for any non-empty word w, it easily follows that µi(L)⊆ µi+1(L) for L ∈ Σ+.

A string w∈ L is said to be terminal with respect to the language L if w�L = L�w = {w}.

A set of strings T (L) ⊆ L is said to be the (maximal) terminal set of L if every w ∈ T (L) is

terminal with respect to L and for all w ∈ L\T (L), w is not terminal with respect to L, that is,

T (L) = {w ∈ L | w�L = L�w = {w}}.

5.2. BASIC DEFINITIONS AND NOTATIONS 105

A complete language is a language closed under overlap assembly, that is, L�L = L. For

every language L, the language µ∗(L) is complete and µ∗(L) = L if and only if L is complete.

The investigation of the terminal set T (L) makes most sense if L is complete, but it is well-

defined for all languages L.

5.2.2 Basic properties of the overlap assembly

In this section we present a few basic properties of the (iterated) overlap assembly and complete

languages.

The operation of overlap assembly is not associative, as seen in the next example.

Example 5.2.1. The following example shows that overlap assembly is not associative

(aba�a)�bac = {abac}, aba� (a�bac) = /0.

The words in the example are chosen such that a and bac cannot form an overlap; note that,

however, aba�bac = (aba�a)�bac in this example.

However, overlap assembly does satisfy a property related to associativity, as seen in the

following result.

Lemma 5.2.1. For languages Lx, Ly and Lz, we have

((Lx�Ly)�Lz)∪ (Lx�Lz) = (Lx� (Ly�Lz))∪ (Lx�Lz).

Proof. Consider a word w ∈ ((Lx� Ly)� Lz)∪ (Lx� Lz). If w ∈ (Lx� Lz), then w clearly

belongs to (Lx� (Ly�Lz))∪ (Lx�Lz). Otherwise, there exist x ∈ Lx, y ∈ Ly and z ∈ Lz such

that w = (x� y)� z. Because w /∈ x� z, we can factorize y = uy′v such that w = xy′z, u is

a nonempty suffix of x, and v is a nonempty prefix of z. We conclude uy′z ∈ (y� z) and

w = xy′v ∈ x� (y� z). The converse inclusion follows by similar arguments.

106 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

The next lemma considers a word w ∈ µ∗(L) and its infixes that belong to L. It is not

difficult to see that the entire word w is “covered” by overlapping words from L. We formalize

this observation by saying that every two consecutive letters in the word w are covered by an

infix v of w that belongs to L.

Lemma 5.2.2. Let L and w = a1a2 · · ·an ∈ µ∗(L) for letters a1,a2, . . . ,an ∈ Σ. For each integer

k with 1≤ k < n there exist integers j, ` such that 1≤ j ≤ k < `≤ n and a ja j+1 · · ·a` ∈ L.

Proof. The statement is trivially true if |w| = n < 2 or w ∈ µ0(L) = L. By induction, assume

that the statement holds for all words in µi(L) and consider w ∈ µi+1(L) \ µi(L). We have

w ∈ x� y for some x,y ∈ µi(L). If k < |x|, we find j, ` such that 1 ≤ j ≤ k < ` ≤ |x| and

a ja j+1 · · ·a` ∈ L because x is a proper prefix of w. If k≥ |x| ≥ n−|y|+1, we find j, ` such that

n−|y|+1≤ j ≤ k < `≤ n and a ja j+1 · · ·a` ∈ L because y is a proper suffix of w.

Lemma 5.2.2 leads to the following statement, that allows us to identify non-terminal words

in a language µ∗(L).

Lemma 5.2.3. For a language L and a word w ∈ µ∗(L)\T (µ∗(L)), there exist z ∈ µ∗(L)\{w}

and x ∈ L such that z ∈ w� x or z ∈ x�w.

Proof. A word w ∈ µ∗(L) is not terminal with respect to µ∗(L) if there exists y ∈ µ∗(L) and

v 6= w such that v ∈ w� y or v ∈ y�w. Due to symmetry, we only consider the case when

v∈w�y. Let y = y1y2 such that v = wy2 and y1 is a suffix of w. We will use Lemma 5.2.2 with

the following interpretation: since y = y1y2 ∈ µ∗(L), there are x1,x2 ∈ Σ+ with x = x1x2 ∈ L

such that x1 is a suffix of y1 and x2 is a prefix of y2. Let z = wx2 and observe that z ∈ w�x and

z ∈ µ∗(L)\{w}.

Finally, let us state a simple observation on complete languages.

Lemma 5.2.4. For any L⊆ Σ∗ and # /∈ Σ, the languages #L and L# are complete.

Proof. Since every word in #L contains exactly one letter #, this letter has to match in an

overlap assembly. Therefore, #w ∈ #x�#y for x,y,w ∈ Σ+ if and only if x is a prefix of y and

w = y.

5.2. BASIC DEFINITIONS AND NOTATIONS 107

5.2.3 Automata models, augmented with counters

We will use the following notations: NPDA for nondeterministic pushdown automaton; DPDA

for deterministic pushdown automaton; NCA for an NPDA that uses only one stack symbol in

addition to the bottom of the stack symbol, which is never altered; DCA for deterministic NCA;

NFA for nondeterministic finite automaton; DFA for deterministic finite automaton; NLBA for

nondeterministic linear-bounded automaton; DLBA for deterministic linear-bounded automa-

ton; NTM for nondeterministic Turing machine; DTM for deterministic Turing machine. As

is well-known, NFAs, NPDAs, NLBAs, halting DTMs, and DTMs, accept exactly the regu-

lar languages, context-free languages (CFLs), context-sensitive languages (CSLs), recursive

languages, and recursively enumerable languages. We refer the reader to [17] for the formal

definitions of these devices.

A counter is an integer variable that can be incremented by 1, decremented by 1, left un-

changed, and tested for zero. It starts at zero and cannot store negative values. Thus, a counter

is a pushdown stack on unary alphabet, in addition to the bottom of the stack symbol which is

never altered. Note that an NCA (DCA) is equivalent to an NFA (DFA) which is augmented

with a counter.

An automaton (NFA, NPDA, NCA, etc.) can be augmented with a finite number of coun-

ters, where the “move” of the machine also now depends on the status (zero or non-zero) of the

counters, and the move can update the counters. It is well known that a DFA augmented with

two counters is equivalent to a DTM [32].

In this paper, we will restrict the augmented counter(s) to be reversal-bounded in the sense

that each counter can only reverse (i.e., change mode from non-decreasing to non-increasing

and vice-versa) at most r times for some given r. In particular, when r = 1, the counter reverses

only once, i.e., once it decrements, it can no longer increment. Note that a counter that makes

r reversals can be simulated by d r+1
2 e 1-reversal counters. Closure and decidable properties of

various machines augmented with reversal-bounded counters have been studied in the literature

(see, e.g., [19, 20]). We will use the notation NFCM, NPCM, NCM, etc, to denote an NFA,

108 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

NPDA, NCA, etc., augmented with reversal-bounded counters.

Automata with reversal-bounded counters can “count”, as seen in the following example.

Example 5.2.2. L = {xxr | x ∈ {a,b}+, |x|a = |xb|} can be accepted by an NPCM M with two

1-reversal counters. Briefly, M operates as follows: It scans the input and uses the push down

stack to check that the input is a palindrome (this requires M to “guess” the middle of the string)

while using two counters C1 and C2 to store the numbers of a’s and b’s it encounters. Then, at

the end of the input, on λ -transitions (i.e., without reading any input symbol), M decrements

C1 and C2 simultaneously and verifies that they become zero at the same time. Note that the

counters are 1-reversal.

A non-deterministic stack automaton (NSA) is a generalization of an NPDA in that during

the computation, the machine can enter the stack in a read-only mode. It can only push and

pop by returning to the top of the stack [14].

A non-deterministic stack-counter automaton (NSCA) is a special case of an NSA in that

the the stack alphabet is unary, except for the bottom of the stack symbol which is never altered

and only used for this purpose [15]. So, again, the machine can enter the unary storage in a

read-only mode, and it can only increment/decrement the storage by returning to the top of the

stack. Note that an NSCA is strictly more powerful than an NCA. For example, the languages

L1 = {(an#)k | n,k ≥ 1} and L2 = {a1#a2# · · ·#ak | k ≥ 1} can be accepted by NSCAs (in fact,

deterministically for the case of L2), but cannot be accepted by NCAs, since these languages

have non-semilinear Parikh maps but languages accepted by NCAs (in fact, by NPCMs) have

semilinear Parikh maps [19].

NSPACE(S(n)) and NTIME(T (n)) denote the classes of languages accepted by non-deterministic

Turing machines in S(n) space and T (n) time, respectively. DSPACE(S(n)) and DTIME(T (n))

are the the corresponding deterministic classes. PTIME denotes the class of languages accepted

but deterministic Turing machines in polynomial time.

5.3. THE RELATED SUPERPOSITION OPERATION 109

5.3 The related superposition operation

The superposition operation is a binary operation proposed by Bottoni, Labella, Manca, and

Mitrana in [3] to model the actions of DNA Polymerase enzymes. The result of the superposi-

tion operation between words x,y ∈ Σ+, denoted by x�y, consists of the set of all words z ∈ Σ+

obtained by any of the four following cases (̄ denotes the morphic complement, that is, ¯ is a

morphism such that u = u for all words u):

1. If there exist u,v ∈ Σ∗,w ∈ Σ+ such that x = uw,y = wv, then z = uwv ∈ x�1 y.

2. If there exist u,v ∈ Σ∗ such that x = uyv, then z = uyv ∈ x�2 y.

3. If there exist u,v ∈ Σ∗,w ∈ Σ+ such that x = wv,y = uw, then z = uwv ∈ x�3 y.

4. If there exist u,v ∈ Σ∗ such that y = uxv, then z = uxv ∈ x�4 y.

The superposition operation can be naturally extended to languages. For more on the su-

perposition operation between two words (languages), the reader is referred to [3, 30].

The superposition operation and the overlap assembly are closely related. In particular,

when we replace the complement ¯ by the identity, then case 1 above is identical to overlap

assembly, i.e., x� y = x�1 y; case 3 above is symmetrical to the overlap assembly, i.e., x� y =

y�3 x; furthermore, cases 2 and 4 above give x �2 y = y�4 x = x if y is an infix of x. However,

in the general case of two languages or when we consider a “real” complement function, the

overlap assembly Lx�Ly does not give the same result as the superposition Lx �Ly.

If ¯ is the identity, then the overlap assembly of a language L with itself gives µ1(L) =

L� L = L � L and, moreover, the iterated overlap assembly coincides with the analogously

defined2 iterated superposition µ∗(L) = �∗(L). In other words, the iterated overlap assembly

is a special case of the iterated superposition. Therefore, the (positive) closure results for the

iterated superposition, obtained in [3, 30], also hold for the iterated overlap assembly. Indeed,

2When ¯ is not the identity, the iterated superposition has to be defined slightly different than the iterated
overlap assembly, because L⊆ L�L does not necessarily hold. In [3,30] two iterated versions of the superposition
are defined which turn out to yield the same language.

110 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

the same results were independently obtained in [5], in its study of closure properties of iterated

overlap assembly:

Proposition 1 ([5]). The language classes of regular, context-sensitive, recursive and recur-

sively enumerable languages are closed under iterated overlap assembly.

The result that the family of context-free languages is not closed under iterated overlap

assembly (resp., iterated superposition) was proven in [5] (resp., [3]). The following statement

strengthens that result.

Theorem 5.3.1. There is a language L accepted by a 1-reversal DCA (i.e., a DFA with one

counter that makes only 1 reversal) whose iterated overlap assembly, µ∗(L), cannot be ac-

cepted by any NPCM (i.e., an NPDA with reversal-bounded counters).

Proof. Let L = {$ai#$ai+1# | i≥ 1}. Clearly, L can be accepted by a 1-reversal DCA. Suppose

µ∗(L) could be accepted by an NPCM. Then µ∗(L)∩$a#($a+#)+= {$a1#$a2# · · ·$ak#$ak+1# | k≥

1} could also be accepted by an NPCM. This is not possible since the Parikh map of this lan-

guage is not semilinear, but it is known that the Parikh map of any NPCM language is semilin-

ear [19].

In contrast to the previous result, for any k and NFCM language L, µk(L) can be accepted

by an NFCM. This follows from the fact that L�L is an NFCM language if L is an NFCM

language [7].

In [3], the notion of maximal (adult) language is defined, which is analogous to the terminal

set of a language. The authors consider maximal (adult) words with respect to the iterated

superposition of some language L: A word x is a maximal word with respect to �∗(L) if x ∈

�∗(L) and x � (�∗(L)) ⊆ {x}. Also, max �∗ (L) is defined as the set of all maximal words with

respect to �∗(L). We immediately obtain that T (µ∗(L)) is the special case of max�∗ (L) where

the complement ¯ is replaced by the identity. From the results in [3,30] we obtain the following

result for terminal sets of complete, regular languages:

5.4. ITERATED OVERLAP ASSEMBLY AND TERMINAL SETS 111

Proposition 2. The terminal set T (L) of a complete, regular language L is regular. In particu-

lar, the terminal set T (µ∗(L)) is regular if L is regular.

It is known from [3] that there exists a context-sensitive L language such that the maximal

language max�∗ (L) is undecidable. This result can be strengthened as follows.

Theorem 5.3.2. There exists a (complete) language L ∈ DSPACE(logn), such that T (L) and

T (µ∗(L)) are undecidable.

Proof. Let M be a deterministic Turing machine with input alphabet Σ and let $,# /∈ Σ. Note

that the languages L1 = $Σ∗# and

L2 = {$w#n | w ∈ Σ
∗,n≥ 1, and M accepts w using at most log(n) space}

can be decided in deterministic log-space. Observe that the language L = L1∪L2 is complete

(Lemma 5.2.4), hence T (L) = T (µ∗(L)); no word in L2 belongs to T (L); and a word $w# ∈ L1

belongs to T (L) if and only if M does not accept w. Because M may accept an undecidable

language, we cannot decide T (L) in general.

A closure property of superposition with respect to the language class PTIME has been

stated in [30]. Thus, we have:

Proposition 3. The class PTIME is closed under iterated overlap assembly.

5.4 Iterated overlap assembly and terminal sets

In this section we further explore the iterated overlap assembly and terminal sets. In the previ-

ous section we have seen that the terminal set of a complete context-sensitive language can be

undecidable (Theorem 5.3.2). In this section we will show that the terminal set of a complete

context-free language is always context-sensitive (Theorem 5.4.2). We also show that, for a

112 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

context-free language L, the language T (µ∗(L)) is context-sensitive (Theorem 5.4.3). We es-

tablish space and time complexities for deciding T (L) when L is complete and given via certain

automata models (Theorem 5.4.4 and Corollaries 5.4.5–5.4.8). Lastly, we establish a relation

between Schützenburger constants and the iterated overlap assembly (Theorem 5.4.9).

We start with an observation about terminal sets of complete languages.

Theorem 5.4.1. The terminal set of a complete language L is given by

T (L) = L\ (Pref(L)∪Suff(L))

Proof. First, we prove T (L) ⊆ L \ (Pref(L)∪ Suff(L)) by contradiction: suppose there were

w∈ T (L)∩Pref(L)⊆ L. There is x∈ L such that w is a proper prefix of x. Therefore, x∈w�x⊆

w�L which contradicts that w ∈ T (L). A similar case can be made when w ∈ T (L)∩Suff(L).

Now, let w ∈ L \ (Pref(L)∪Suff(L)) and suppose that w /∈ T (L). There is x 6= w such that

x ∈ w� L or x ∈ L�w; by symmetry, we assume x ∈ w� L. Note that x ∈ L because L is

complete. Since w is a proper prefix of x ∈ L we obtain a contradiction.

Note that Proposition 2 now follows as a corollary of Theorem 5.4.1, since regularity is

preserved under the used operations. Next, we consider terminal sets of context-free languages.

Theorem 5.4.2. The terminal set of a complete, context-free language L is not necessarily a

context-free language, but is always a context-sensitive language.

Proof. We first prove that T (L) for a complete, context-free language L may not be context-free

using a counter-example. Let

L = {#aib jck | i, j,k ≥ 1,k ≤ i∨ k ≤ j}.

Note that L is clearly context-free and complete (using Lemma 5.2.4), but the terminal set T (L)

is not context-free:

T (L) = {#aib jck | i, j,k ≥ 1,k = max{i, j}}.

5.4. ITERATED OVERLAP ASSEMBLY AND TERMINAL SETS 113

If L is a context-free language, then the language M = Pref(L)∪Suff(L) is context-free as

well. Because the family of context-sensitive languages is closed under intersection [17] and

complementation [22, 36], we have that T (L) = L∩Mc is context-sensitive.

Later, in Corollary 5.4.7, we will see that T (L) is, in fact, in DSPACE(log2 n) and also in

DTIME(n2.373).

So far, we have seen that the iterated overlap assembly of a context-free language is context-

sensitive (Theorem 5.4.2), and that the terminal set of a context-sensitive language can be

undecidable (Theorem 5.3.2). Next we prove that, for context-free language L, the language

T (µ∗(L)) is context-sensitive.

Theorem 5.4.3. The terminal set of µ∗(L) is context-sensitive if L is context-free.

Proof. In order to decide w ∈ T (µ∗(L)) we decide the two properties

1. w ∈ µ∗(L) and

2. (pref(w)∩Suff(L)∩Σ+)∪ (suff(w)∩Pref(L)∩Σ+) = /0.

Both properties can be decided in linear space when L is context-free; see Proposition 1 for

property 1. Furthermore, it is clear that properties 1 and 2 are necessary for w to belong to

T (µ∗(L)).

In order to show that the conditions are sufficient, consider w /∈ T (µ∗(L)). If w /∈ µ∗(L),

then condition 1 is violated. Otherwise, there exist z∈ µ∗(L)\{w} and x∈ L such that z∈w�x

or z ∈ x�w, by Lemma 5.2.3. If z ∈ w� x, then suff(w)∩Pref(L)∩Σ+ 6= /0; and if z ∈ x�w,

then pref(w)∩Suff(L)∩Σ+ 6= /0 — hence, property 2 is violated.

Next, we investigate the terminal set T (L) for various complete languages L. For conve-

nience, we assume that all (one-way) machines have a right end marker in their read-only input

tape. For non-deterministic machines, this assumption can be made without loss of generality,

since such a machine can “guess” the end of the input and simulate the computation on the end

marker using λ -moves at the end of the input.

114 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

Theorem 5.4.4. If L is a complete language accepted by an NSCA, then T (L) is in NSPACE(logn)

and is also in PTIME.

Proof. Let L be accepted by an NSCA M. We claim that Pref(L) and Suff(L) can be accepted

by NSCAs. We construct an NSCA M1 accepting Pref(L). M1, when given input x, will accept

x if there is some non-empty y such that xy is accepted by M. M1 operates as follows: It

simulates M on x faithfully. Then after processing x, M1, on λ -moves, guesses some suffix-

string y symbol-by-symbol and continues simulating the computation of M on y and accepts

if M accepts. Similarly, an NSCA M2 accepting Suff(L) can be constructed, but in this case,

given input x, M2, on λ -moves, guesses some non-empty prefix-string y and simulates M. After

guessing and processing y, M2 reads x and continues simulating M and accepts if M accepts.

Clearly, from M1 and M2, we can also construct an NSCA M3 accepting L3 = Pref(L)∪Suff(L).

It is known that every NSCA can be converted to an equivalent quasi-real time NSCA,

i.e., there is a d such that during the computation, the number of consecutive λ moves on the

input is bounded by d (hence the NSCA runs in linear time) [15]. We can then convert M3

to an equivalent quasi-real time NSCA M4. It follows that the stack-counter values during

the accepting computation is linear on the length of the input. Clearly, the stack-counter can

be simulated by two ordinary counters whose values would also be linear in the length of the

input. Hence the stack-counter of M4 can be stored in logn space on a read/write tape. It

follows that L3 = Pref(L)∪ Suff(L) is in NSPACE(logn). Now the complement Lc
3 of L3 is

also in NSPACE(logn) [22, 36]. Since NSPACE(logn) is clearly closed under intersection, by

Theorem 5.4.1, T (L) = L\ (Pref(L)∪Suff(L)) = L∩Lc
3 is also in NSPACE(logn). That T (L)

is in PTIME follows from the fact that NSPACE(logn)⊆ PTIME.

We can use a similar construction as in the proof of Theorem 5.4.4 to obtain the following

results.

Corollary 5.4.5. If L is a complete language accepted by an NCA, then T (L) is in NSPACE(logn)

and DTIME(n2).

5.4. ITERATED OVERLAP ASSEMBLY AND TERMINAL SETS 115

Proof. T (L) in NSPACE(logn) follows from Theorem 5.4.4 since NCA is a special case of

NSCA. The time complexity follows from the proof of Theorem 5.4.4 and the fact that ev-

ery language accepted by an NCA is in DTIME(n2) [16] and that this class is closed under

complementation and intersection.

Corollary 5.4.6. If L is a complete language accepted by an NFCM, then T (L) is in NSPACE(logn)

and also in PTIME.

Proof. If L is accepted by an NFCM M, then, as in the proof of Theorem 5.4.4, we can construct

an NFCM M3 accepting L3 = Pref(L)∪Suff(L). It is known that for any NFCM, there is a fixed

constant d such that any string of length n accepted by the NFCM can be accepted in dn steps,

i.e., the values of the counters are at most dn [1]. It follows that any NFCM language is in

NSPACE(logn). Then, as in the proof of Theorem 5.4.4, T (L) = L∩Lc
3 is in NSPACE(logn)

and, hence, also in PTIME.

The next corollary strengthens Theorem 5.4.2.

Corollary 5.4.7. If L is a complete language accepted by an NPDA (i.e., L is a complete

context-free language), then T (L) is in DSPACE(log2 n) and DTIME(n2.373) (= complexity of

matrix multiplication).

Proof. This follows by similar constructions as in Theorem 5.4.4 using the fact that every lan-

guage accepted by an NPDA is in DSPACE(log2 n) and also in DTIME(n2.373) (= complexity

of matrix multiplication [37]), and the fact that these classes are closed under complementation

and intersection.

Similarly, since the family of linear context-free languages is in DTIME(n2) [25], we have:

Corollary 5.4.8. If L is a complete linear context-free language (i.e., accepted by a 1-reversal

NPDA), then T (L) is in DTIME(n2).

116 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

Lastly, we consider the relation between Schützenburger constants [34] and the iterated

overlap assembly. A word w ∈ Σ+ is a (Schützenberger) constant for L if w ∈ inf(L) and for all

words u1,u2,v1,v2 ∈ Σ∗, we have that

u1wv1 ∈ L and u2wv2 ∈ L =⇒ u1wv2 ∈ L.

The existence of constants in a language seems to have a close connection to languages that

are generated by some biologically inspired systems; for example, every splicing language has

a constant [2].

Theorem 5.4.9. Every word w ∈ Σ+ in µ∗(L)\ Inf(L) is a constant for µ∗(L). If, in addition,

w also satisfies w ∈ inf(T (µ∗(L))), then w is a constant for T (µ∗(L)) as well.

Proof. Let w ∈ µ∗(L)\ Inf(L) and let u1,v1,u2,v2 ∈ Σ∗ such that u1wv1 ∈ µ∗(L) and u2wv2 ∈

µ∗(L). Let us show that u1w ∈ µ∗(L). Let x1 be the longest suffix of u1w that belongs to µ∗(L).

If u1 is a proper prefix of x1, then u1w ∈ x1�w ⊆ µ∗(L). Otherwise (x1 is a prefix of u1),

let x2 such that x1x2 = u1wv1. Lemma 5.2.2 implies that there are y1,y2 ∈ Σ+ with y1y2 ∈ L

such that y1 is a suffix of x1 and y2 is a prefix of x2. Since w cannot be an infix of y2, we

obtain that x1y2 ∈ x1� y1y2 ⊆ µ∗(L) is a prefix of u1w; this contradicts the choice of x1 which

is supposed to be the longest prefix with that property. By a symmetric argument, we can show

that wv2 ∈ µ∗(L), and therefore, u1wv2 ∈ u1w�wv2 ⊆ µ∗(L). We conclude that w is a constant

for µ∗(L).

Now, consider the case when u1wv1 ∈ T (µ∗(L)) and u2wv2 ∈ T (µ∗(L)) and, hence, w ∈

inf(T (µ∗(L))). As before, u1wv2 ∈ µ∗(L). In order to obtain a contradiction, suppose that

u1wv2 /∈ T (µ∗(L)). By Lemma 5.2.3 there exist z ∈ µ∗(L) \ {w} and x ∈ L such that z ∈

u1wv2� x or z ∈ x�u1wv2. Due to symmetry, we only consider the case when z ∈ u1wv2� x.

Let y be the nonempty suffix of x such that z = u1wv2y. Because x cannot have w as proper

infix, we have u2wuv2y ∈ u2wv2� x which contradicts the premise u2wv2 ∈ T (µ∗(L)).

5.5. DECISION PROBLEMS 117

5.5 Decision problems

In this section we consider three decision problems: whether a language is complete (Sub-

section 5.5.1), whether a string is terminal with respect to a language (Subsection 5.5.2), and

whether the overlap assembly of two given languages equals a given third one (Subsection

5.5.3).

5.5.1 Deciding the completeness of a language

The problem of deciding if a given language is complete was studied in [5] for language classes

in Chomsky hierarchy. In this subsection we narrow the gap between the language classes

whose completeness is decidable and those for which it is undecidable. Recall first a result

from [5]:

Proposition 4 ([5]).

1. It is decidable if any given regular language is complete.

2. It is undecidable if any given context-free(resp., context-sensitive, recursively enumer-

able) language is complete.

The following shows that Proposition 4, part 1 holds for DFCMs (i.e., DFAs augmented

with reversal bounded counters).

Theorem 5.5.1. It is decidable, given a DFCM M, if L(M) is complete.

Proof. Given a DFCM M accepting L, we construct an NFCM M′ accepting L′ = L� L as

follows:

M′, when given input z, guesses a partition z = uvw for some u,v,w with v 6= λ , and checks

that uv is in L by running M on uv, and vw is in L by running another copy of M on vw, and

accepts z if and only if M accepts uv and vw. Note that M′ uses two sets of counters of M

to simulate the two copies of M. Clearly, L(M′) = L� L. It follows that L� L = L if and

only if L(M′) ⊆ L, and if and only if L(M′)∩Lc = /0. Since the family of DFCM languages

118 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

is effectively closed under complementation, we can construct from M a DFCM accepting

Lc [19]. The result follows, since we can construct, given two NFCMs, an NFCM accepting

their intersection language, and emptiness of NFCMs is decidable [19].

In contrast to Theorem 5.5.1, for the case of NFCM we have the following result which

strengthens Proposition 4, part 2:

Theorem 5.5.2. It is undecidable, given a 1-reversal NCA (i.e., an NFA augmented with one

counter which makes only 1 reversal) M, whether L(M) is complete.

Proof. We reduce the problem to the undecidability of the halting problem for deterministic

Turing machines (DTMs) on an initially blank tape.

Let Z be single-tape DTM. Without loss of generality, we assume that if Z halts on an

initially blank tape, it makes at least two moves. We construct a 1-reversal NCA M which

accepts the language:

L(M) = {w | w 6= ID1#ID2 · · ·#IDk, where k ≥ 3, ID1 is the initial configuration of Z on

an initially blank tape, IDk is the (unique) halting configuration of Z if it halts, and IDi+1

is the valid successor of IDi}.

Let Σ be the alphabet over which L(M) is defined. Clearly, L(M) = Σ∗ (which is complete)

if Z does not halt on blank tape. However, if Z halts on blank tape, L(M) = Σ∗ \ {x} for

exactly one string x of the form ID1#ID2# · · ·#IDk, k ≥ 3, and it is not complete because:

ID1#ID2 is in L(M) (since it is not x) and ID2# · · ·#IDk is also in L(M) (since it is not x).

Hence, x = ID1#ID2# · · ·#IDk is in L(M)�L(M), but it is not in L(M). It follows that L(M) is

complete if and only if Z does not halt on blank tape, which is undecidable.

5.5.2 Deciding the terminality of strings

We now investigate the problem of deciding whether a given string is terminal with respect to

a language. The following result gives sufficient conditions for the decidability of whether a

string w is terminal with respect to a language.

5.5. DECISION PROBLEMS 119

Theorem 5.5.3. Let M be a class of machines, and let L be the corresponding class of

accepted languages, satisfying:

1. if L is in L , then for any string w, w�L and L�w are also in L ;

2. L is closed under intersection with regular sets;

3. L has a decidable emptiness problem;

and items 1 and 2 are effective. Then it is decidable, given a machine M in M and a string w

in L(M), if w is terminal with respect to L(M).

Proof. Let L be a language accepted by a machine M ∈M and w be a string in L. Then, by

item 1, we can construct machines in M accepting L1 = w�L and L2 = L�w. To check that

L1 = {w}, we do the following: since L is closed under intersection with regular sets (item 2)

and has a decidable emptiness problem (item 3), we check that L1∩{w}c = /0 (note that w ∈ L1

is always true). Similarly, we can check that L2 = {w}.

Almost all classes of one-way nondeterministic machines satisfy condition 1 in Theorem

5.5.3. Indeed, given M accepting L and w ∈ L, we construct a machine M′ accepting w� L

which, on a given input z, guesses a decomposition of z into uvx and checks that that uv = w

and vx is accepted by M. Similarly, we can construct a machine M
′′

to accept L�w.

As examples, the classes of languages accepted by NPCMs and NSAs satisfy condition 1

of Theorem 5.5.3, while condition 2 is also clearly satisfied. Since emptiness for NPCMs and

NSAs is decidable [14, 19], we have:

Corollary 5.5.4. It is decidable, given an NPCM (resp., NSA) M and a string w in L(M),

whether w is terminal with respect to L(M).

Next we show that condition 3 in Theorem 5.5.3 is a necessary condition. We say that

a class of languages L is closed under distinct-symbol concatenation if, given L ∈L and a

symbol $, not in the alphabet of L, $L and L$ are in L .

120 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

Theorem 5.5.5. Let M be a class of machines, and L be the corresponding class of accepted

languages. Assume that L is effectively closed under distinct-symbol concatenation and union

with a singleton language. If L has an undecidable emptiness problem, then it is undecidable,

given a language L in L and a string w in L, whether w is terminal with respect to L.

Proof. Let M1 be a machine in M accepting a language L1 ⊆ Σ∗. Let %,#,$ be new symbols

not in Σ. Consider the string w = %#. Construct a machine M in M accepting the language

L = {%#}∪{%#x$ | x ∈ L1}. Clearly, %#�L = L�%# = {%#} if and only if L1 = /0. We

cannot decide if w is terminal, since emptiness for L is undecidable.

An example of a class L such as the one in Theorem 5.5.5 is the class of languages ac-

cepted by real-time DFAs augmented with two unrestricted counters (real-time deterministic

2-counter machines). Real-time here means that the machines have no λ -moves. It is known

that it is undecidable, given a deterministic machine Z which has no input tape but with two

counters that are initially zero, whether it will halt [32]. We construct from Z, a real-time de-

terministic 2-counter machine M which, when given a unary string an, simulates Z’s counters

while reading an input symbol on each move, and accepts if and only if Z halts after n steps.

Hence, L(M) = /0 if and only if Z does not halt. It follows that the emptiness problem for real-

time deterministic 2-counter machines is undecidable. Clearly, the assumptions in Theorem

5.5.5 are satisfied. Hence, we have:

Corollary 5.5.6. It is undecidable, given a real-time deterministic 2-counter machine M and a

string w in L(M), whether w is terminal with respect to L(M).

As above, we can also construct a (one-way) real-time deterministic logn space-bounded

DTM to simulate Z. Hence, the emptiness problem for these machines is also undecidable.

Thus, we have:

Corollary 5.5.7. It is undecidable, given a real-time deterministic logn space-bounded DTM

M and a string w in L(M), whether w is terminal with respect to L(M).

5.5. DECISION PROBLEMS 121

Unlike NPCMs, it can be shown that an NSA when augmented with even only two reversal-

bounded counters, call this NSCM(2), has an undecidable emptiness problem. The proof of

this result (using the techniques in [19]) is a reduction to the undecidability of Hilbert’s Tenth

Problem. Hence, we have:

Corollary 5.5.8. It is undecidable, given an NSCM(2) M and a string w in L(M), whether w is

terminal with respect to L(M).

5.5.3 Deciding the given decomposition of a language

Finally, we consider the problem of deciding, given languages L,L1,L2, whether L = L1�L2.

Theorem 5.5.9.

1. It is undecidable, given a language L accepted by a 1-reversal NCA and regular lan-

guages L1 and L2, whether L = L1�L2.

2. It is undecidable, given a regular language L and languages L1 and L2 accepted by

1-reversal DPDAs (resp., DCAs), whether L = L1�L2.

Proof. For part 1, let L ⊆ Σ+ be accepted by a 1-reversal NCA and let L1 = L2 = Σ+. Hence,

L1�L2 = Σ+. The result follows, since it is undecidable whether the language accepted by a

1-reversal NCA is equal to Σ+ (as seen in the proof of Theorem 5.5.2).

For part 2, let L′1,L
′
2 ⊆ Σ+ be accepted by 1-reversal DPDAs (resp., DCAs). Let #,$ be new

symbols not in Σ. Let L = {$$}, L1 = #L′1$∪{$$}, and L2 = #L′2$∪{$$}. Clearly, L1 and

L2 can also be accepted by 1-reversal DPDAs (resp., DCAs). Then L = L1�L2 if and only if

L′1∩L′2 = /0. The result now follows since it is undecidable if the intersection of two languages

accepted by 1-reversal DPDAs (resp., DCAs) is empty [17, 19].

In contrast to Theorem 5.5.9, part 2, when L is accepted by a deterministic machine we

have the following result.

Theorem 5.5.10. It is decidable, given a language L accepted by a DFCM (resp., DPCM) and

regular languages L1 and L2, whether L = L1�L2.

122 CHAPTER 5. FURTHER REMAKRS ON DNA OVERLAP ASSEMBLY

Proof. Clearly, L3 = L1�L2 is regular. Now L = L1�L2 if and only if L∩Lc
3 = /0, and Lc∩

L3 = /0. The result follows since the class of DFCM (resp., DPCM) languages is closed under

intersection with regular sets and complementation, and has a decidable emptiness problem

[19, 21].

Finally, in contrast to Theorem 5.5.9, when the problem concerns “containment”, we have:

Theorem 5.5.11. 1. It is decidable, given languages L1 and L2 accepted by NFCMs and a

language L accepted by a DPCM, whether L1�L2 ⊆ L.

2. It is decidable, given a language L accepted by an NPCM and regular languages L1 and

L2, whether L⊆ L1�L2.

Proof. The claims follow from the following known results:

1. The family of DPCM (resp., regular) languages is closed under complementation [21].

2. The family of NFCM (resp., regular) languages is closed under the overlap operation

� [7].

3. The family of NPCM (resp., DCM) languages is closed under intersection with NFCM

languages [19].

4. The emptiness problem for NPCMs (resp., NFAs) is decidable [19].

5.6 Concluding remarks

This paper continues the exploration, started in [5] and [7], of the properties of the overlap

assembly operation. In particular, it strengthens the results given in [5] regarding the closure

of language classes under iterated overlap assembly and the decidability of the completeness

of a language. It also enhances the results regarding closure properties of terminating sets

5.6. CONCLUDING REMARKS 123

of languages (which are almost equivalent to maximal (adult) languages in [3, 30]). Finally,

it investigates the problem of deciding whether a given string is terminal with respect to a

language, and the problem of deciding if a given language can be generated by an overlap

assembly operation of two given others. Further directions of research include investigations

of decision problems such as those studied in Section 5.5.3 for various other language classes,

and finding an efficient algorithm that, given a language L, outputs a pair of languages (if they

exist) whose overlap assembly equals L.

Bibliography

[1] B. S. Baker and R. V. Book. Reversal-bounded multipushdown machines. Journal of

Computer and System Sciences, 8(3):315–332, 1974.

[2] P. Bonizzoni and N. Jonoska. Existence of constants in regular splicing languages. Infor-

mation and Computation, 242:340–353, 2015.

[3] P. Bottoni, A. Labella, V. Manca, and V. Mitrana. Superposition based on Watson-Crick-

like complementarity. Theory of Computing Systems, 39(4):503–524, 2006.

[4] D. Cheptea, C. Martı́n-Vide, and V. Mitrana. A new operation on words suggested by

DNA biochemistry: hairpin completion. In Proc. Transgressive Computing, TC, pages

216–228, 2006.

[5] E. Csuhaj-Varjú, I. Petre, and G. Vaszil. Self-assembly of strings and languages. Theo-

retical Computer Science, 374(1-3):74–81, 2007.

[6] A. R. Cukras, D. Faulhammer, R. J. Lipton, and L. F. Landweber. Chess games: a model

for RNA based computation. Biosystems, 52(1-3):35–45, 1999.

[7] S. K. Enaganti, O. H. Ibarra, L. Kari, and S. Kopecki. On the overlap assembly of strings

and languages. Submitted.

[8] S. K. Enaganti, L. Kari, and S. Kopecki. A formal language model of DNA polymerase

activity. Fundamenta Informaticae, 138:179–192, 2015.

124

BIBLIOGRAPHY 125

[9] D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber. Molecular computation:

RNA solutions to chess problems. Proceedings of the National Academy of Sciences,

97(4):1385–1389, 2000.

[10] G. Franco. A polymerase based algorithm for SAT. In M. Coppo, E. Lodi, and G. Pinna,

editors, Theoretical Computer Science, volume 3701 of LNCS, pages 237–250. Springer

Berlin Heidelberg, 2005.

[11] G. Franco, C. Giagulli, C. Laudanna, and V. Manca. DNA extraction by XPCR. In

C. Ferretti, G. Mauri, and C. Zandron, editors, Proc. DNA Computing, (DNA 11), volume

3384 of LNCS, pages 104–112, 2005.

[12] G. Franco and V. Manca. Algorithmic applications of XPCR. Natural Computing,

10(2):805–819, 2011.

[13] G. Franco, V. Manca, C. Giagulli, and C. Laudanna. DNA recombination by XPCR. In

A. Carbone and N. A. Pierce, editors, Proc. DNA Computing, (DNA 12), volume 3892 of

LNCS, pages 55–66, 2006.

[14] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way stack automata. J. ACM,

14(2):389–418, 1967.

[15] S. Ginsburg and G. F. Rose. The equivalence of stack-counter acceptors and quasi-

realtime stack-counter acceptors. Journal of Computer and System Sciences, 8(2):243–

269, 1974.

[16] S. A. Greibach. A note on the recognition of one counter languages. ITA, 9(2):5–12,

1975.

[17] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Inc., 1978.

126 BIBLIOGRAPHY

[18] S. Hussini, L. Kari, and S. Konstantinidis. Coding properties of DNA languages. In

N. Jonoska and N. C. Seeman, editors, Proc. DNA Computing, (DNA 7), volume 2340 of

LNCS, pages 57–69, 2002.

[19] O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.

ACM, 25(1):116–133, 1978.

[20] O. H. Ibarra. Automata with reversal-bounded counters: a survey. In Proc. Descriptional

Complexity of Formal Systems, DCFS, pages 5–22, 2014.

[21] O. H. Ibarra and H.-C. Yen. On the containment and equivalence problems for two-way

transducers. Theoretical Computer Science, 429(0):155–163, 2012.

[22] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-

put., 17(5):935–938, 1988.

[23] P. D. Kaplan, Q. Ouyang, D. S. Thaler, and A. Libchaber. Parallel overlap assembly

for the construction of computational DNA libraries. Journal of Theoretical Biology,

188(3):333–341, 1997.

[24] L. Kari, R. Kitto, and G. Thierrin. Codes, involutions, and DNA encodings. In W. Brauer,

H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal and Natural Computing, volume

2300 of LNCS, pages 376–393, 2002.

[25] T. Kasami. A note on computing time for recognition of languages generated by linear

grammars. Information and Control, 10(2):209–214, 1967.

[26] S. Kopecki. On iterated hairpin completion. Theoretical Computer Science,

412(29):3629–3638, 2011.

[27] V. Manca and G. Franco. Computing by polymerase chain reaction. Mathematical Bio-

sciences, 211(2):282–298, 2008.

BIBLIOGRAPHY 127

[28] F. Manea, C. Martı́n-Vide, and V. Mitrana. On some algorithmic problems regarding the

hairpin completion. Discrete Applied Mathematics, 157(9):2143–2152, 2009.

[29] F. Manea and V. Mitrana. Hairpin completion versus hairpin reduction. In S. B. Cooper,

B. Löwe, and A. Sorbi, editors, Proc. Computability in Europe, CiE, volume 4497 of

LNCS, pages 532–541, 2007.

[30] F. Manea, V. Mitrana, and J. Sempere. Some remarks on superposition based on Watson-

Crick-like complementarity. In V. Diekert and D. Nowotka, editors, Developments in

Language Theory, volume 5583 of LNCS, pages 372–383, 2009.

[31] C. Martı́n-Vide, G. Păun, J. Pazos, and A. Rodrı́guez-Patón. Tissue P systems. Theoretical

Computer Science, 296(2):295–326, 2003.

[32] M. L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics in

theory of Turing machines. The Annals of Mathematics, 74(3):437–455, 1961.

[33] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique

problem. Science, 278(5337):446–449, 1997.

[34] M.-P. Schützenberger. Sur certaines opérations de fermeture dans les langages rationnels.

In Symposia Mathematica, volume 15, pages 245–253, 1975.

[35] W. P. Stemmer. DNA shuffling by random fragmentation and reassembly: in vitro re-

combination for molecular evolution. Proceedings of the National Academy of Sciences,

91(22):10747–10751, 1994.

[36] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

Informatica, 26(3):279–284, 1988.

[37] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc. ACM

Symposium on Theory of Computing, STOC, pages 887–898, 2012.

Chapter 6

Conclusions

This thesis investigates two formal operations that model the action of the DNA Polymerase

enzyme on DNA strands, and studies their properties. First, an overview of results on some

well-studied formal language systems in the literature, based on operations inspired by enzy-

matic reactions on DNA is presented in Chapter 2. Although these bio-inspired operations are

based on various enzymes such as restriction enzymes, ligases, polymerases etc., the focus of

the original contributions of the current thesis is exclusively on modelling of the actions of the

DNA polymerase enzyme.

The operation of “directed extension” is proposed, extended to languages and its closure

properties for various classes of languages are studied in Chapter 3. The language equations

involving the operation are studied, along with the definition of the inverse of the operation.

Some relevant questions such as finding necessary and sufficient conditions for the existence

of an inverse operation are answered, and a solution to finding an optimal inverse is given.

The operation of “overlap assembly” that was originally proposed by Csuhaj-varju, Petre

and Vaszil is studied in Chapter 4. After settling closure properties of various language classes

under this operation, some decision problems are solved. A theoretical analysis of how the

iterated version of the operation can be useful in creating a DNA combinatorial library, known

to have practical applications, is presented.

128

129

The study of the overlap assembly operation is continued in Chapter 5. This operation is

compared with the related superposition operation, and it is shown how the positive closure

properties of the iterated version of overlap assembly follow from their counterparts for the

iterated superposition. Next, closure and related properties of the terminating sets are studied,

and some decision problems are solved.

The operations studied in this thesis are exclusively inspired by the actions of the DNA

polymerase enzyme. As a future work, it may be worthwhile to formulate formal operations

that can model the actions of other enzymes such as restriction endonucleases, along with poly-

merases. As another future direction of study, it would be interesting to examine complexity

problems for both operations described here. An example is finding lower and upper bounds

for the complexity of the result language when the operation is applied between two initial

languages of known complexity. Some complexity results of the iterated version of overlap as-

sembly may also be interesting to address. It is possible that optimal algorithms to solve some

well-known string problems, such as the shortest common super-string problem, may become

easier to design and analyze using such results.

Chapter 7

Addendum

Since this thesis is formatted as integrated-article, all the technical chapters should contain

exactly the same content of the published articles and no change is allowed. Therefore, we list

the modifications implemented according to the comments provided by the thesis examiners as

follows.

Implementation of the comments

- page 50, lines 5-6: “models the action of DNA Polymerase enzyme, an enzyme that

plays a major role” is changed to “models the activity of DNA polymerase enzymes,

enzymes that play a major role”.

- page 50, line 11 and page 51, lines 2, 3, 5, 10: Grouped multiple citations in each of

these locations.

- page 51, lines 11-12: “the action of the DNA Polymerase on DNA strands” is changed

to “the extension activity of DNA polymerase enzymes on DNA strands”.

- page 54, equation after line 2: w ∈ Σ+ in the equation is replaced by w ∈ Σ∗.

- page 55, line 2: Added the sentence “Similarly, if X is REG and Y is LIN (CF), then

130

131

the result Lx⊕Ly is in LIN (CF).”

- page 64, line 6 after the equation: “of the DNA Polymerase enzyme” is replaced by

“of DNA polymerase enzymes”.

Appendix A

Closure properties of overlap assembly

A.1 Notations

Throughout this appendix, all languages are considered to be defined over a fixed alphabet Σ.

The sets pref(w), inf(w), and suff(w) contain, respectively, all prefixes, infixes, and suffixes of

w. A prefix (resp., infix or suffix) x of w is proper if x 6= w. We employ the following notation:

Pref(w) = pref(w)\{w}, Inf(w) = inf(w)\{w}, and Suff(w) = suff(w)\{w}. This notation is

naturally extended to languages; for example, Suff(L) =
⋃

w∈L Suff(w).

We use � to represent catenation. Formally, x � y = xy for all x,y ∈ Σ∗.

By FIN, REG, LIN, CF, CS, and RE we denote the families of finite, regular, linear (context-

free), context-free, context-sensitive, and recursively enumerable languages, respectively. The

complexity class NSPACE(f (n)) (resp. DSPACE(f (n))) is the set of decision problems that

can be solved by a non-deterministic (resp. deterministic) Turing machine, M, using space

O(f (n)), where f (n) is the maximum number of tape cells that M scans on any input of length

n. The complexity notations of O and Ω are used as usually defined in the literature.

132

A.2. RESULTS 133

A.2 Results

In this section we study closure properties of various language classes under overlap as-

sembly. The next lemma expresses the overlap assembly operation in terms of concatenation,

intersection, prefix and (infinite) union.

Lemma A.2.1. If L1 and L2 are two languages over Σ, then

L1�L2 =
⋃

x∈L1,y∈L2

[x �Suff(y)∩Pref(x) � y]

Proof. First, let z ∈ L1�L2. Since z = uvw where uv ∈ L1 and vw ∈ L2, there exists x = uv ∈

L1 and y = vw ∈ L2 such that z ∈ x� y. Since w ∈ Suff(y) and u ∈ Pref(x), we obtain that

z ∈ x �Suff(y) and z ∈ Pref(x) � y which implies the result.

Conversely, let z ∈ x �Suff(y)∩Pref(x) � y for some x ∈ L1 and y ∈ L2. Let u ∈ Pref(x) such

that z = uy and let v be a string such that uv = x. Let w ∈ Suff(y) such that z = xw and let v′ be

a string such that v′w = y. We thus have z = uv′w = uvw which can be true only when v = v′.

We then have z = uvw where uv = x ∈ L1 and vw = y ∈ L2. Therefore, z ∈ (L1�L2).

Clearly, we can re-write the expression of L1�L2 in Lemma A.2.1, as Suff(y) is common

to both terms in the intersection:

L1�L2 =
⋃

x∈L1,y∈L2

[x �Σ∗∩Pref(x) � y] =
⋃

x∈L1

[x �Σ∗∩Pref(x) �L2] (A.1)

Symmetrically , it also follows that:

L1�L2 =
⋃

x∈L1,y∈L2

[x �Suff(y)∩Σ
∗ � y] =

⋃
y∈L2

[L1 �Suff(y)∩Σ
∗ � y] (A.2)

The following corollaries follow from the above expressions.

134 CHAPTER A. CLOSURE PROPERTIES OF OVERLAP ASSEMBLY

Corollary A.2.2. The class of finite languages is closed under overlap assembly. If L1 (resp.

L2) is a finite language, the result of L1�L2 will remain in the same class of Chomsky hierarchy

as that of L2 (resp. L1).

Proof. Let L1 and L2 be finite languages. By Lemma A.2.1, the overlap assembly

L1�L2 =
⋃

x∈L1,y∈L2

[x �Suff(y)∩Pref(x) � y]

is a finite union of finite sets. Hence, the class of finite languages is closed under overlap

assembly.

Let L1 be a finite language and L2 be a language in one of the classes of Chomsky hierarchy.

From Equation (A.1), we have that

L1�L2 =
⋃

x∈L1

[x �Σ∗∩Pref(x) �L2].

The result of L1�L2 will be in the same class of that of L2 because all classes of languages

in the Chomsky hierarchy are closed under concatenation with a finite set, intersection with

regular languages and finite union.

The same argument applies in case of L2 being a finite language, by using Equation (A.2).

Corollary A.2.3. The class of recursively enumerable languages is closed under overlap as-

sembly. If one of either L1 or L2 is a recursively enumerable language, then L1� L2 is not

necessarily a context-sensitive language.

Proof. Consider two languages L1 and L2, both of whom are recursively enumerable. From

Lemma A.2.1, we have

L1�L2 =
⋃

x∈L1,y∈L2

[x �Suff(y)∩Pref(x) � y].

A.2. RESULTS 135

For any x ∈ L1 and y ∈ L2, the set [x �Suff(y)∩Pref(x) � y] is finite. The union of such sets over

a countable (even if infinite) set will result in a countable set, and hence will be recursively

enumerable. Hence, the set of all recursively enumerable languages is closed under overlap

assembly.

Now we will prove that even if one of L1 and L2 is recursively enumerable and the other is

finite, the result of L1�L2 can be recursively enumerable. Consider two languages L1 and L2

as follows:

L1 = {#$}, L2 = {$w | w ∈ L}

where L is a recursively enumerable but not context-sensitive language whose alphabet does

not contain the symbols # and $. Clearly, the result of L1� L2 is {#$w | w ∈ L} which is

recursively enumerable but not context-sensitive.

Similarly, we can prove that if L1 = {w$ | w ∈ L} and L2 = {$#} for a recursively enumer-

able but not context-sensitive language L, with no symbols # and $, the result of L1�L2 will

be {w$# | w ∈ L} which is recursively enumerable but not context-sensitive.

Theorem A.2.4. The family of regular languages is closed under overlap assembly.

Proof. Let M1 defined as M1 = {S1,Σ,δ1,s0,{s f }} be a finite state automaton that accepts

the regular language L1 with the state set S1 = {s0,s1,s2, ...,sn} with initial state s0 and final

state s f . We define L1i, j to be the set of all strings that are generated between states si and s j

formally defined as L1i, j = {w | δ ∗1 (si,w) = s j}. If L1 and L2 are regular languages, the result

of the operation between L1 and L2 can be written as

L1�L2 =
⋃

∀i:L1i, f 6= /0

L10,i � ([(L1i, f \{λ}) �Σ
∗]∩L2) (A.3)

We will prove the expression in both the directions. Let z ∈ L1�L2. From Equation (A.1) we

136 CHAPTER A. CLOSURE PROPERTIES OF OVERLAP ASSEMBLY

have,

z ∈
⋃

x∈L1,y∈L2

(x �Σ∗∩Pref(x) � y)

which means z ∈ x �Σ∗ and z ∈ Pref(x) � y for some x ∈ L1 and y ∈ L2. Let w ∈ Σ∗ such that

z = xw. Let u ∈ Pref(x) which would mean for some v 6= λ , we have x = uv. Hence, z = uvw

for some w ∈ Σ∗ where uv = x for some x ∈ L1 and z = uy for y ∈ L2. Since uv = x ∈ L1, there

is i ≤ n such that u ∈ L10,i and v ∈ L1i, f . Therefore, z belongs to L10,i � (L1i, f \{λ}) �Σ∗ and z

belongs to L10,i �L2. Hence, z ∈ L10,i � ((L1i, f \{λ}) �Σ∗∩L2) which gives us the result.

Conversely, there exists z such that z = uvw with u ∈ L10,i for some i ≤ n, v ∈ L1i, f , v 6= λ ,

w ∈ Σ∗ and y ∈ L2 such that z = u � v �w and z = u � y. Clearly, x = uv ∈ L1 and y = vw ∈ L2.

Therefore, z ∈ x� y⊆ L1�L2.

Since each of the sets L1i, j is regular and L2 is regular, and regularity is preserved under

concatenation, intersection and finite union, the language L1�L2 is regular.

We give a corollary for the situation when exactly one of L1 or L2 is regular and the other

is context-free or context-sensitive.

Corollary A.2.5. (i) If L1 is a regular language and L2 is a context-free or context-sensitive

language, then L1�L2 will be a context-free or context-sensitive language respectively. (ii) If

L2 is a regular language and L1 is a context-free or context-sensitive language, then L1�L2

will be a context-free or context-sensitive language respectively.

Proof. (i) Consider the Equation (A.3) which is still valid when L1 is a regular language and

L2 is not. Let L2 be a context-free or context-sensitive language.

We know that the class of context-free languages is closed under concatenation, intersection

with regular language and finite union. The result of L1�L2 according to the expression in

Equation (A.3) is context-free. The same argument applies for context-sensitive languages.

(ii) If L2 is a regular language, we define S2 = {s0,s1,s2, ...,sn} to be the set of all states of

the finite state automaton M2 defined as M2 = {S2,Σ,δ2,s0,{s f }} that accepts L2 with s0 being

the initial state and s f being the final state of M2. Let L2i, j represent set of all strings generated

A.2. RESULTS 137

by M2 between states si and s j formally defined as L2i, j = {w | δ ∗2 (si,w) = s j}. We can derive

an expression for L1�L2 similar to Equation (A.3) and use Equation A.2 to show that:

L1�L2 =
⋃

∀i:L20,i 6= /0

(L1∩ [Σ∗ � (L20,i\{λ})]) �L2i, f

We know that the class of context-free languages is closed under concatenation, intersection

with regular language and finite union. Hence, the result of L1�L2 is also context-free. The

same argument applies to context-sensitive languages.

Theorem A.2.6. Let L1 and L2 be context-free (resp. linear) languages. Then the language

L1�L2 is context-sensitive, but not necessarily context-free (resp. linear).

Proof. Consider the two (linear) context-free languages

L1 = {an$bn# | n≥ 1}, L2 = {$bn#cn | n≥ 1}.

We can easily see that the result of overlap assembly of L1 with L2 yields the context-sensitive

but not context-free language

L1�L2 = {an$bn#cn | n≥ 1}.

The fact that L1�L2 will be in CS for all possible context-free (resp. linear) languages L1 and

L2 is established in Theorem A.2.7.

The next result shows that L1�L2 is context-sensitive for L1 ∈ CF and L2 ∈ CF.

Theorem A.2.7. Let f (n)∈Ω(logn) be a monotone function. The classes NSPACE(f (n)) and

DSPACE(f (n)) are each closed under overlap assembly.

Proof. First, consider two NSPACE(f (n)) languages L1 and L2 where f (n) ∈ Ω(logn) is a

monotone function. Let M1 and M2 be the Turing machines that decide the language L1 and

L2, respectively, in NSPACE(f (n)). We define two procedures:

138 CHAPTER A. CLOSURE PROPERTIES OF OVERLAP ASSEMBLY

- Len(Input) returns the length of the input.

- Simulate(M, I,J) simulates the Turing machine M with the input in between (and includ-

ing) markers I and J of the input and returns “accept”or “reject”according to the output

of the simulation.

Let Mz be the Turing machine that non-deterministically guesses two positive integers I,J

such that 1≤ I ≤ J ≤ Len(Input) and accepts only if Simulate(M1,1,J) and Simulate(M2, I,

Len(Input)) both return “accept”. Since an input word w belongs to L1� L2 if and only if

there is a prefix x and a suffix w of y such that x and y overlap, the Turing machine Mz decides

L1�L2. Note that M1 and M2 can be simulated on prefixes and suffixes of the input word w

using at most Z(|w|) space, because Z is monotone. Additionally, the markers I and J require

log(|w|) space in binary encoding. We conclude the algorithm works in NSPACE(f (n)).

Now, consider that L1 and L2 are decided by deterministic Turing machines M1 and M2,

respectively, in DSPACE(f (n)). Algorithm 2 determines the longest prefix x of the input w

which belongs to L1, and then, attempts to find the longest suffix y of w that belongs to L2 and

overlaps with x; it accepts if and only if such a suffix y exists. Clearly, this algorithm works in

DSPACE(f (n)) and decides L1�L2.

Algorithm 2

J := Len(Input);
while J ≥ 1 and Simulate(M1,1,J) = “reject” do

J := J−1;
end while
I := 1;
while I ≤ J and Simulate(M2, I,Length(Input)) = “reject” do

I := I +1;
end while

if I ≤ J then
return “accept”;

else
return “reject”;

end if

A.2. RESULTS 139

Corollary A.2.8. The family of recursive languages is closed under overlap assembly.

Proof. The proof of theorem A.2.7 applies with the restriction on space taken by the working-

tape being lifted.

In Table A.1 we summarize the results from this section. For two language classes X and

Y , it shows the language class Z from the Chomsky hierarchy such that for all L1 ∈X and

L2 ∈ Y we have L1�L2 ∈Z . This shows that all entries in Table A.1 can also be considered

“lower bounds” for the language class Z .

L1\L2 FIN REG CF CS RE

FIN
FIN REG CF CS RE

Corr A.2.2 Corr A.2.2 Corr A.2.2 Corr A.2.2 Corr A.2.2, A.2.3

REG
REG REG CF CS RE

Corr A.2.2 Thm A.2.4 Corr A.2.5 Corr A.2.5 Corr A.2.3

CF
CF CF CS CS RE

Corr A.2.2 Corr A.2.5 Thm A.2.6 Thm A.2.7 Corr A.2.3

CS
CS CS CS CS RE

Corr A.2.2 Corr A.2.5 Thm A.2.7 Thm A.2.7 Corr A.2.3

RE
RE RE RE RE RE

Corr A.2.2, A.2.3 Corr A.2.3 Corr A.2.3 Corr A.2.3 Corr A.2.3

Table A.1: Summary of closure properties: each entry shows which language class L1� L2
belongs to if L1 is from the corresponding language class in the left column and L2 is from the
corresponding language class in the top row.

Appendix B

Copyright releases

The contents of Chapter 3 were published in the journal “Fundamenta Informaticae” by IOS

press. I requested them to grant me permission to reuse the article for my thesis and I got their

kind permission from them through the following email.

From: Carry Koolbergen <C.Koolbergen@iospress.nl>

Date: Tue 2015-07-07 8:47 AM

To: Srujan Kumar Enaganti;

Dear Srujan Kumar Enaganti,

We hereby grant you permission to reproduce the below mentioned material in print

and electronic format at no charge subject to the following conditions:

1. If any part of the material to be used (for example, figures) has appeared

in our publication with credit or acknowledgement to another source, permission

must also be sought from that source. If such permission is not obtained then

140

141

that material may not be included in your publication/copies.

2. Suitable acknowledgement to the source must be made, either as a footnote or

in a reference list at the end of your publication, as follows:

‘‘Reprinted from Publication title, Vol number, Author(s), Title of

article, Pages No., Copyright (Year), with permission from IOS Press’’.

3. This permission is granted for non-exclusive world English rights only. For

other languages please reapply separately for each one required.

4. Reproduction of this material is confined to the purpose for which permission

is hereby given.

Yours sincerely

Carry Koolbergen (Mrs.)

Contracts, Rights & Permissions Coordinator

Not in the office on Wednesdays

IOS Press BV

Nieuwe Hemweg 6B

1013 BG Amsterdam

The Netherlands

Tel.: +31 (0)20 687 0022

142 CHAPTER B. COPYRIGHT RELEASES

Fax: +31 (0)20 687 0019

Email: [c.koolbergen@iospress.nl]c.koolbergen@iospress.nl /

[publisher@iospress.nl]publisher@iospress.nl

URL: [www.iospress.nl]www.iospress.nl

Twitter: @IOSPress_STM

G+: IospressSTM

Facebook: publisheriospress

P Please consider the environment before printing this email.

Van: Srujan Kumar Enaganti [mailto:senagant@uwo.ca]

Verzonden: maandag 6 juli 2015 19:41

Aan: Carry Koolbergen

Onderwerp: Copyright Access

Hello,

I am an author of one of the papers you published in the journal

Fundamenta Informaticae. The link to the paper is:

http://ip.ios.semcs.net/articles/fundamenta-informaticae/fi138-1-2-14

Can I use the paper to publish my PhD thesis through my University?

Please let me know if you retain the copyright rights.

143

Thanks very much.

Warm regards,

--

Srujan Kumar Enaganti

Curriculum Vitae

Name: Srujan Kumar Enaganti

Education and
Degrees: 2002 - 2006 B.Tech.

Indian Institute of Technology Guwahati
Guwahati, India

2008 - 2010 M.Sc.
University of British Columbia
Vancouver, BC, Canada

2011 - 2015 Ph.D.
University of Western Ontario
London, ON, Canada

Related Work Junior Research Associate
Experience: Infosys Technologies Limited

2006 - 2008

Teaching Assistant
The University of British Columbia
2008 - 2010

Research Engineer
University of Pau and Pays de l’Adour
2010 - 2011

Teaching Assistant
The University of Western Ontario
2011 - 2015

144

145

Publications:

1. Srujan Kumar Enaganti, Lila Kari, Steffen Kopecki: A Formal Language Model of DNA

Polymerase Enzymatic Activity. Fundamenta Informaticae 138(1-2): 179-192 (2015)

2. Srujan Kumar Enaganti, Anish Damodaran, Anirban Chakrabarti: A Framework for

Analysis of Legacy Code Migration to Grid Environment. CoreGRID 2007: 215-224

Publications under review:

1. Srujan Kumar Enaganti, Oscar H. Ibarra, Lila Kari, Steffen Kopecki: On the overlap

assembly of strings and languages.(Submitted)

2. Srujan Kumar Enaganti, Oscar H. Ibarra, Lila Kari, Steffen Kopecki: Further remarks on

DNA overlap assembly.(Submitted)

	Formal models of the extension activity of DNA polymerase enzymes
	Recommended Citation

	tmp.1447357046.pdf.PgtTY

