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Abstract

Systems neuroscience has identified a set of canonical large-scale networks in humans.

These have predominantly been characterized by resting-state analyses of the task-uncon-

strained, mind-wandering brain. Their explicit relationship to defined task performance is

largely unknown and remains challenging. The present work contributes a multivariate statis-

tical learning approach that can extract the major brain networks and quantify their configura-

tion during various psychological tasks. Themethod is validated in two extensive datasets (n

= 500 and n = 81) by model-based generation of synthetic activity maps from recombination

of shared network topographies. To study a use case, we formally revisited the poorly under-

stood difference between neural activity underlying idling versus goal-directed behavior. We

demonstrate that task-specific neural activity patterns can be explained by plausible combina-

tions of resting-state networks. The possibility of decomposing a mental task into the relative

contributions of major brain networks, the "network co-occurrence architecture" of a given

task, opens an alternative access to the neural substrates of human cognition.

Author Summary

Assuming the central importance of canonical brain networks for realizing human cogni-

tive processes, the present work demonstrates the quantifiability of relative neural net-

works involvements during psychological tasks. This is achieved by a machine-learning

approach that combines exploratory network discovery and inferential task prediction.

We show that activity levels of network sets can be automatically derived from task batter-

ies of two large reference datasets. The evidence supports the often-held suspicion that

task-specific neural activity might be due in large part to distinct recombinations of the

same underlying brain network units. The results further discourage the frequently

embraced dichotomy between exteroceptive task-associated versus interoceptive task-

unspecific brain systems. Standard fMRI brain scans can thus be used to reconstruct and

quantitatively compare the entire set of major network engagements to test targeted
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hypotheses. In the future, such network co-occurrence signatures could perhaps be useful

as biomarkers in psychiatric and neurological research.

Introduction

There is uncertainty about pertinent concepts of functional brain architecture. Systems neuro-

science has established the existence of a set of fluctuating yet robust brain networks in humans

[1, 2]. It however remains elusive how these neurophysiological phenomena relate to the reper-

toire of mental operations of an individual. This calls for methodological approaches that go

beyond computing linear correlations (e.g., [3, 4, 5]) or independent components (e.g., [6, 7,

8]) in the "resting" human brain without controlled task modulation.

The central hypothesis of the present work is that network patterns can effectively describe

fMRI data in both a resting mind-wandering and goal-directed task context. We introduce a

methodological approach that enables formal assessment of this task-rest correspondance. On

the one hand, the mostly descriptive statistical analyses used by many previous neuroimaging

studies are extended in the present work by introducing an inferential statistical approach for

the network involvement during task and at rest. On the other hand, the proposed approach

combines deriving and predicting mutually overlapping network patterns (i.e., "network co-

occurrence modeling"), whereas existing neuroimaging methods frequently focus on non-over-

lapping voxel and region patterns.

Identical neural networks have repeatedly been observed across cognitive domains using

diverging neuroscientific methods. These observations prompted widely-adopted notions,

including for instance the “default-mode network” [9], “salience network” [10], and “dorsal

attention network” [11]. Such "networks" (i.e., spatiotemporally coherent signal patterns) are

likely manifestations of electrophysiological oscillation structure [12, 13]. Developmentally,

large-scale networks emerge during late fetal growth [8], before cognitive capacities mature in

childhood. In adults, nodes of a same cohesive network probably have more similar functional

profiles than nodes from different networks [14]. Indeed, resting-state fluctuations between

large-scale networks were observed to be less stable than coupling between regions of each net-

work when assessed by intra-class correlation [15]. Between-network connections were also

less stable than intra-network connections when assessed by Kendall’s coefficient of concor-

dance [15]. During task-unrelated random thought, the dynamical engagement of major brain

networks therefore appear to be more volatile across participants and brain scans than intra-

network dynamics [15–17]. While it is currently unknown "how global network architectures

self-organize or reconfigure for specific tasks" [18], this hints at the constellation of relative net-

work involvements as an under-appreciated unit of functional brain organization.

In line with this contention, the onset of a given cognitive task might induce characteristic

changes in functional coupling of large-scale networks. For instance, the salience network and

dorsal attention network tend to display blood-oxygen-level-dependent (BOLD) signal

increases due to experimental stimulation, while the default-mode network often decreases

across a wide range of tasks [19]. Whether stimulus-evoked compositions of such networks

explain the majority [6] or only a fraction [4] of overall task activity is currently unresolved.

For instance, a working-memory task entailed increase in BOLD activity in dorsal attention

network regions but decrease in default-mode regions [20]. Notably, the functional connectiv-

ity did not change significantly within either dorsal attention network or default-mode network

during this neuroimaging task. During auditory event transitions in another experimental

fMRI study, both dorsal attention network and salience network increased in activity, whereas
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the default-mode network decreased in activity [21]. These changes of network constellation

are probably mechanistically relevant for unfolding behavior [7, 22–24]. This idea is supported

by evidence that proportional default-mode network recruitment impairs task performance,

which is believed to be subserved by other large-scale networks [25, 26]. The mediation

between canonical networks was tentatively proposed to involve the right anterior insula [21]

and right temporo-parietal junction [27]. Moreover, the relevance of network engagement

architectures possibly extends to psychiatric and neurological disorders [28, 29]. For instance,

reciprocal coupling between default-mode network decreases and task-recruited networks

were found to be absent in autism [30], reduced in schizophrenia [31] and major depression

[32], as well as frequency-altered in attention deficit hyperactivity disorder [33].

The neuroarchitectural difference underlying the task behaviors and the idling brain has

been investigated by what one can summarize as “dichotomy” and “manifold” hypotheses. The

dichotomic view advocates functional antagonism between so-called “task-positive” and “task-

negative” neural networks (e.g., [35]). Task-positive networks are believed to instantiate extero-

ceptive, environment-oriented mind sets to maintain task-constrained stimulus evaluation and

response. Task-negative networks are believed to instantiate interoceptive, environment-

detached mind sets to maintain adaptive mental imagery. The dichotomic view receives sup-

port from the following observations: a) the default-mode network consistently decreased in

neural activity during many (not all) neuroimaging tasks [19, 34], b) activity in task-positive

brain regions was consistently anti-correlated with activity in task-negative regions [35], and c)

the spectrum of activity patterns in subcortical, limbic, and primary sensorimotor areas was

found to be richer during task than at rest [4]. Hence, the dichotomic view predicts that

extracting network components from resting-state data will yield a dictionary of network defi-

nitions insufficient to delineate task-specific network compositions.

In contrast, the “manifold” view advocates a fluctuating equilibrium of functionally distinct

large-scale networks that is perturbed at task onset (e.g., [66]). This favors an identical ensem-

ble of neural networks underlying functional brain architecture in focused and resting brain

states. This view, in turn, receives support from the following observations: a) seed-region-

based resting-state correlations frequently recovered task-typical networks [36], b) separate

decomposition of task and rest activity maps yielded a number of topographically similar net-

works [6], and c) only 11% of whole-brain connectivity patterns always shifted at onset of dif-

ferent tasks [3]. Hence, the manifold view predicts that network components extracted from

either rest or task data will perform similarly in capturing task-specific neural activity.

While the present investigation underlines the functional integration account of human

brain organization, it will also be explicitly contrasted with the functional segregation account

more frequently embraced by previous fMRI studies. Functional integration emphasizes brain

function as an emergent property of complex connections between distinct brain regions [37,

38]. Functional specialization, in turn, emphasizes that microscopically distinguishable brain

regions are responsible for solving distinct classes of computational processes [39, 40]. For

instance, single-cell recordings and microscopic examination revealed the anatomical segrega-

tion of the occipital visual cortex into specialized V1, V2, V3, V3A/B, and V4 areas [41, 42].

Tissue lesion of the mid-fusiform gyrus of the visual system, as another example, is known to

impair identity recognition from others' faces [43]. In neuroimaging research, specialized brain

regions are frequently revealed by clustering algorithms [44, 45], such as k-means or hierarchi-

cal (ward) clustering. Functional brain network, however, are often extracted via matrix factori-

zation methods [46], such as independent component analysis (ICA) and principal component

analysis (PCA). It is important to appreciate that functional segregation findings necessitate

neuroscientific interpretation according to non-overlapping, discrete region compartments,

whereas network integration findings are to be interpreted by embracing cross-regional
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integration by overlapping network compartments. These considerations motivate the central

question of the present study: To what extent do task-evoked fMRI signals lend themselves

more to encoding and reconstruction in a network space rather than in a region space?

The present study systematically evalutes the possibility of analyzing fMRI tasks as co-recruit-

ment of the entire set of major networks using multivariate statistical learning. A multi-step

framework capitalized on two independent, large datasets (n = 500 and n = 81) with a total of 36

typical neuroimaging tasks. Each of these two task batteries attempted to cover the diversity of

human cognitive processes. In an unsupervised learning step (i.e., naive to task labels), we first

derived a small number of representative brain networks from these extensive neuroimaging

resources. This first step yielded explicit models of possible network patterns with minimal statis-

tical assumptions and without recourse to cognitive theory. In a supervised learning step (i.e.,

based on task labels), the dimensionality-reduced neuroimaging data were then submitted to an

18-task classification problem. For each task, this second step determined a plausible combina-

tion of the modes of variation in fMRI signals from the brain. This quantitative association with

traditional psychological concepts made the data-driven results human-interpretable. In a valida-

tion step, we recovered task activation patterns from the respective component loadings in the

learned statistical models. This third step evaluated how well formal network models can gener-

ate realistic task activation patterns. To show the usefulness of network co-occurrence modeling,

we quantitatively revisited to what extent network activity underlying idling brain states can

explain the variation of neural activity patterns during engagement in task performance.

Results

Overview

The analyses, results, and figures are divided into two different sections (see schematic in Fig

1). In the first section (Figs 2–5, entitled "network co-occurrence modeling"), we statistically

tested whether neural activity patterns measured with fMRI in humans can be largely explained

by changes in cohesive network units. The term “network” henceforth refers to spatiotemporal

modes of variation extracted from time series of fMRI activity whose weighted linear combina-

tion sum up to whole-brain activity patterns [6, 47, 48]. Whole-brain activity maps were

expressed as a linear combination of 40 spatiotemporally coherent patterns (i.e., network com-

ponents). The distributed BOLD signals from voxel space were thus reduced to 40 component

loadings in a network space. The network engagement pattern is shown to successfully classify

and restore neural activity from the 18 psychological tasks across two large datasets. In the sec-

ond section (Figs 6–8, entitled "task-rest correspondence"), this possibility to compress neural

activity maps into low-dimensional summaries of brain network involvements was used to

revisit the relationship between the functional brain architecture during defined psychological

tasks and unconstrained task-free mental activity. While the first section used a same task data-

set (either HCP or ARCHI) for both unsupervised network discovery and supervised multi-

task classification, the applied second section probed diverging ways of deriving the network

dictionary for subsequent classification. In particular, networks from i) the same task data data-

set, ii) the respective other task dataset, iii) rest data, and iv) Gaussian noise were quantitatively

assessed for their commonalities and differences in restoring task activity patterns.

Establishing an approach to quantifying the implication of network sets:
Network co-occurrence modeling

We first assessed the predictive accuracy of network co-occurrence models across methodolog-

ical choices and datasets (Figs 2–5). Without using any rest maps, ICA and sparse PCA were
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Fig 1. Overview of experimental analyses. The schematic summaries the modeling experiments
undertaken in the present study. Symbols are introduced that describe how the HCP task data (green), the
ARCHI task data (yellow), and the rest data (blue) were used to (A) evaluate the idea of network co-
occurrence modeling and (B) test explicit hypotheses about the commonalities and differences between
human brain activity in task-constrained and idling brain states [3, 6]. Stars indicate brain networks derived as
mutually overlapping spatiotemporal patterns from independent component analysis (ICA), principle
component analysis (PCA), sparse PCA, and factor analysis (FA). Cubes indicate discrete brain regions
derived as mutually disjoint voxel groups from k-means and ward clustering. Empty stars or cubes indicate
learning a network decomposition or region segregation from brain activity maps without the task labels (i.e.,
"unsupervised statistical learning"). Filled stars or cubes indicate learning a classification algorithm of 18
typical psychological tasks based on brain activity maps summarized as networks or regions with the task
labels (i.e., "supervised statistical learning"). The origin of the arrows indicate from what data (HCP tasks,
ARCHI tasks, or rest) the networks and regions were obtained. The arrows point to the set of psychological
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applied to 50% of the task maps to then translate the remaining 50% of task activity maps into

sets of network loadings. l1-penalized support vector machines (SVM) with C-hyperparameter

tuning on ICA and sparse PCA loadings (i.e., second 50% data) correctly detected 18 tasks 90%

to 93% of the time in both HCP and ARCHI datasets (Fig 2). Note that l1 penalization in these

and below classification model estimations increased interpretability by introducing zeros into

the model weights corresponding to network loadings (cf. methods section). Note further that

chance level is at 5.6% in an 18-class scenario. To evaluate diagnostic metrics typically used in

machine learning [49] for ICA and sparse PCA, the recall (How many brain images labeled as a

cognitive task were correctly recognized to belong to that class?) ranged between 90% and 93%,

while the precision (How many brain images recognized to belong to a certain class were really

labeled as that class?) ranged between 87% and 90%. We deemphasized results based on PCA

and factor analysis whose lower accuracy scores ranged between 87% and 92%. Additionally,

ICA and sparse PCA also yielded higher model sparsity (induced by l1-norm penalization to

bias the SVM estimation) than PCA and factor analysis, computed by sparsity = ∑ [||weights||1 /

||weights||F] based on the vectorized SVM weights of all 18 classes. This parsimony-based metric

of model "effectiveness" ranged between 8.55 and 13.19 for ICA and sparse PCA (a lower number

indicates a sparser weights of the SVMmodel), whereas it ranged between 13.33 and 14.51 for

PCA and factor analysis. We thus found that activity maps can be described more correctly

(according to model performance metrics) and more effectively (according to a model sparsity

metric) by the learned network sets based on ICA and sparse PCA compared to components

tasks that was captured by a predictive model based on the previously derived networks and regions. These
symbols indicate the provenance of the results shown in the other figures.

doi:10.1371/journal.pcbi.1004994.g001

Fig 2. Network co-occurrence modeling: Workflow. The three steps of the proposed analysis approach
are outlined. (1) In two large neuroimaging datasets (HCP with n = 500, ARCHI with n = 81), the spatial
patterns of neural activity dominant across time series were discovered by data-driven decomposition of
neural activity maps (first half of the data). The repertoire of major networks in the human brain was hence
derived without access to what experimental task each activity map belongs. (2) This dictionary of explicit
network definitions allowed reducing the remaining task activity maps (second half of the data) underlying
traditional psychological concepts into 40 component loadings per neural activity map. Statistical learning
based on these biologically motivated features found a linear model to distinguish 18 tasks by leave-one-
participant-out cross-validation. A characteristic configuration of network engagements was thus
automatically derived for each of 18 experimental tasks. (3) As face-validity criterion, task activity maps were
generated from the weights of the trained classification models. These allowed quantifying the recovery
performance of a given statistical model as a measure of biological meaningfulness of the learned model
parameters (cf. methods section).

doi:10.1371/journal.pcbi.1004994.g002
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obtained from PCA and factor analysis. More generally, the observation of many zeros among

the averaged model weights suggests that the “true” decomposition of task activity maps is a lin-

ear combination of few network components. Indeed, 18 diverse cognitive tasks could be very

well distinguished solely based on 40 loadings of large-scale networks. The approach has been

validated using four different decomposition methods in both HCP [50] and ARCHI [51] data-

sets. In sum, using task-derived network dictionaries (from an identical dataset), the extraction of

and projection into network sets from ICA and sparse PCA achieved the highest prediction accu-

racies, precision and recall scores, as well as the most parsimonious model parameters. ICA and

sparse PCA hence identified hidden networks underlying task settings that allowed the most effi-

cient quantification of distinctive neural activity aspects.

After validating the proportional implication of large-scale networks as a salient property of

task activity, we aimed at the interpretability of the network co-occurrence models from task

maps (without any recourse to rest maps). The 18-task classification problem was solved by

l2-penalized SVM of the selected k most important network loadings for each task (k = 40, 20,

10, 5, and 1) (Fig 3). As an exception to the generally employed l1-regularization of the SVM

models, l2 penalization is used at this point because variable selection is already induced by the

preliminary ANOVA-based selection (cf. methods section). The k best predictors for each task

were inferred by classical univariate ANOVA tests for the network features that explain most

variance between each task and the respective other tasks (Fig 4). Importantly, the determined

Fig 3. Network co-occurrence modeling: Predictive accuracy across network dictionary sizes. 40 ICA
networks (upper row) and 40 sparse PCA networks (lower row) were discovered in HCP task data (left
column) and ARCHI task data (right column) and used for feature engineering to facilitate classification of 18
psychological tasks (l2-penalized support vector machines, multi-class, one-versus-rest). One half of the task
data (i.e., 4325 activity maps from HCP, 702 activity maps from ARCHI) were used for discovery of the ICA
and sparse PCA networks. The network loadings of the previously unseen half of the task data (i.e., 4325
HCPmaps, 702 ARCHI maps) were then submitted to an 18-task classification problem. The support vector
machines were penalized by l2-regularization because classifier fitting was preceded by automatic selection
of the k most relevant networks for each task (cf. methods section). We used a univariate feature selection
procedure to evaluate the classification performance (y axis) as a function of k known network loadings per
task (x axis). A two-step procedure therefore first subselected the k = 40, 20, 10, 5, and 1 most important
network predictors for each task by univariate ANOVA tests and subsequent multivariate support vector
machine fitting on the k most relevant network loadings per task. Note that each psychological task could
therefore be associated with a different subselection of network loading features. To measure generalization
performance, all task maps of one selected participant were left out in each cross-validation fold. See Fig 4
and S1–S3 Figs for the network topographies and the complete task-network assignments for each k.

doi:10.1371/journal.pcbi.1004994.g003
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single most important ICA or sparse PCA network loading per task yielded classification scores

between 83% (ICA, standard deviation [SD] computed across participant-wise data folds in

cross-validation scheme: 1.3) and 46% (Sparse PCA, across-fold SD = 1.7) for HCP as well as

between 72% (ICA, SD = 3.0) and 38% (sparse PCA, SD = 4.7) for ARCHI. Increasing the num-

ber of k discriminative networks per task rapidly saturated the predictive accuracy. In both

datasets, the classification accuracy was virtually identical when knowing all 40 or only the 20

most distinctive network loadings, which in turn was comparable to knowing only 10 and 5

network loadings. In sum, when assuming existence of 40 major networks, experimentally

Fig 4. Network co-occurrence modeling: Sparse PCA network decomposition of ARCHI taskmaps and network-task assignment. 40 network
components underlying 18 ARCHI tasks have been discovered by sparse PCA (Comp1-40 on the left). The ensuing network loadings from the second half
of the ARCHI task data were submitted to classification of the psychological tasks based on the implication of brain networks (l2-penalized support vector
machines, multi-class, one-versus-rest). l2-penalized support vector machines was employed to choose the most discriminative network variables by a
preceding classical univariate test in a discrete fashion rather than by sparse variable selection based on l1 penalization (cf. methods section). This
diagnostic analysis (right) revealed the most distinctive k = 1, 5, 10, and 20 network features (red cubes) for each experimental condition of the task battery
(cf. Fig 3). The thus discretely selected network features per task were then fed into supervised multi-task classification as a feature space of activity-map-
wise continuous activity values. The color intensity of the k cubes quantifies how often the corresponding brain network was selected as important for a
task across cross-validation folds. This diagnostic test performed inference on a) the single most discriminative network for each task at k = 1, b) the
network variables that are added step-by-step to the feature space of network implications with increasing k, and c) what network variables are unspecific
(i.e., not selected) for a given task at k = 20. See tables for the corresponding descriptions of task 1–18. See S1–S3 Figs for analogous plots based on
different matrix factorizations and datasets.

doi:10.1371/journal.pcbi.1004994.g004
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evoked neural activity patterns can be well discriminated by the relative implication of five

task-activity-derived large-scale networks per experiment.

We then inspected the learned classification models based on task-derived network dictio-

naries as to whether they were fit for purpose [52]. The fitted model weights were unboxed by

back-projection into whole-brain space (cf. methods section). It was thus quantified to what

extent the winning explicit models capture genuine properties of fMRI task activity. This pro-

vided a real-world face-validity criterion to disambiguate whether task-immanent aspects of

neural activity or arbitrary discriminative aspects (e.g., structured noise, participant/scanner-

related idiosyncracies) explain the discriminative performance of a statistical model (Fig 5).

Whole-brain activity maps were thus generated from the network co-occurrence models for

each task (S6 and S7 Figs). The model-derived activity maps were then Pearson correlated with

the mean first-level activity maps as a measure of recovery performance. For ICA

Fig 5. Network co-occurrencemodeling: Comparing whole-brain reconstruction performance to region co-occurrence models. 40 networks from
ICA or sparse PCA decomposition and 40 regions from ward or k-means clustering were discovered in HCP task data (upper rows) or ARCHI task data
(lower rows) and used for classifying (l1-penalized support vector machines, multi-class, one-versus-rest) 18 psychological tasks in the remaining 50% of
that same task data. For three exemplary tasks from HCP and ARCHI, the mean activity pattern across all participants is depicted (leftmost column). The
corresponding whole-brain task activity derived from the network decomposition models ICA and sparse PCA capture proxies of functional brain networks by
emphasis on functional integration (S4–S7 Figs). In contrast, task activity derived from the region parcellation models ward clustering (all region voxels are
always spatially connected) and k-means clustering (no spatial constraint) capture proxies of functional brain regions by emphasis on regional specialization
(S8–S10 Figs). The correlation values r quantify the voxel-wise similarity between the reconstructed activity map and the average activity map for each task
and network decomposition method. This measure of recovery performance indicates the information loss incurred when first expressing activity maps as 40
network-wise loading values or 40 region-wise activity averages and then translating these values back into whole-brain space (cf. methods section).
Consequently, learning network co-occurrence models outperformed region co-occurrence models in recovering realistic task activity, given an equal
number of latent network and region components.

doi:10.1371/journal.pcbi.1004994.g005
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decomposition, the mean linear correlation across 18 tasks reached r = 0.81 (HCP, standard

deviation computed across tasks = 0.20) and r = 0.88 (ARCHI, SD = 0.07). For sparse PCA

decomposition, in turn, mean correlations reached r = 0.69 (HCP, SD = 0.21) and r = 0.70

(ARCHI, SD = 0.15). As a side note, these findings were confirmed against the negative tests by

pseudo-network priors derived from decomposition of Gaussian noise (i.e., 1000 noise maps

with smoothed random activations). The corresponding correlation analyses between first-

level task maps and model-derived task maps ranged between r = 0.32 (across-task SD = 0.07)

and r = 0.25 (SD = 0.06). In sum, fMRI-task-activity derived neurobiological networks allowed

significantly better reconstruction into the original activity space of>60.000 voxels than a

Fig 6. Task-rest correspondence: Composition of resting networks underlying psychological tasks. As a use case for network co-
occurrence modeling, an insufficiently understood question of human brain organization has been quantitatively revisited: the
correspondence between neural activity during goal-directed tasks and idling mind-wandering. 40 sparse PCA networks were revealed in
rest data and used for supervised classification (l1-penalized support vector machines, multi-class, one-versus-rest) of 18 psychological
tasks from the ARCHI task battery. (1) Seven examples from the 40 spatiotemporal activity patterns drawn from task-unrelated resting-
state fluctuations using sparse PCA decomposition. This enabled translation of whole-brain task activity maps (>60,000 voxels) from the
ARCHI task data into 40 network component loadings per activity map. (2) These measures of network implication served as basis for
statistical learning of a sparse classification model that disambiguates activity maps from the 18 psychological task. In the depicted matrix,
each square represents an automatically determined classification model weight that corresponds to the importance of one specific large-
scale network (x axis) during a given cognitive task (y axis). l1-penalization of the classification algorithm induced zero model weights
(white) for automatic variable selection of the resting-state networks that are specifically associated with a given task (red or blue), in
contrast to discrete selection of the k best network features (Figs 3 and 4). (3) The network weights of the fitted model is exploited for de-
novo generation of realistic whole-brain activity maps for each of the 18 tasks. This is exemplified by gender judgments and trustworthiness
judgments on visually presented faces: Consistent with previously published experimental fMRI studies [53], the default-mode network
(black square), implicated in higher-order social processing, exhibited significant increase with trustworthiness judgments but decrease
with gender judgments on faces. Both face discrimination tasks rely on the visual cortex (yellow square), the limbic system (red square),
and the reward- and choice-related ventromedial prefrontal cortex (brown square). The dorsal attention/visual network (orange square) was
detected as non-discriminatory for the two facial judgments tasks (i.e., weight is zero). Further, the frontoparietal network with extensive
dorsolateral prefrontal cortex implication (purple square) was only associated with gender judgments, whereas the sensorimotor network
(blue square) was only associated with trustworthiness judgments.

doi:10.1371/journal.pcbi.1004994.g006
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dictionary of Gaussian random network templates. As an alternative to network co-occurrence

models, whole-brain task activity was also captured by region co-occurrence models (Figs 5, S9

and S10). Capturing task activity in local cluster units, rather than distributed network units,

was much less successful as clearly indicated by the acid test of reconstructing task-specific

whole-brain activity from a few numbers alone (Figs 5, S9 and S10). Indeed, building a feature

space that summarizes neural activity based on a ward cluster segregation of gray matter (out-

of-sample accuracy 85% for HCP and 90% for ARCHI), the mean linear correlation between

average class images and class reconstruction across 18 tasks reached only r = 0.11 (HCP,

across-task SD = 0.12) and r = 0.26 (ARCHI, SD = 0.13). Summarizing neural activiy in k-

means clusters (out-of-sample accuracy 86% for HCP and 89% for ARCHI), the mean linear

correlation reached only r = 0.32 (HCP, across-task SD = 0.18) and r = 0.27 (ARCHI, across-

task SD = 0.16). Finally, the network- and region-based reconstruction performances were

Fig 7. Task-rest correspondence: Reconstructing two similar tasks from two different datasets based on the same
resting networks. 40 sparse PCA networks were discovered from the same rest data and used for feature engineering as a
basis for classification (l1-penalized support vector machines, multi-class, one-versus-rest) of 18 psychological tasks from
HCP (left) and from ARCHI (right).Middle column: Examples of resting-state networks derived from decomposing rest data
using sparse PCA. Networks B and Cmight be related to semantics processing in the anterior temporal lobe [54], network D
covers extended parts of the parietal cortex, while networks E and F appear to be variants of the so-called “salience”
network [10]. Left/Right column: Examples of task-specific neural activity generated from network co-occurrence models of
the HCP/ARCHI task batteries. Arrows: A diagnostic subanalysis indicated what rest networks were automatically ranked
top-five in distinguishing a given task from the respective 17 other tasks (i.e., k = 5 analogous to analyses in Figs 3 and 4).
Although the experimental tasks in the HCP and ARCHI repositories, “story versus math” and “sentences versus
computation” were the most similar cognitive contrasts in both datasets. For these four experimental conditions the model-
derived task maps are highly similar. Consequently, two independent classification problems in two independent datasets
with a six-fold difference in sample size resulted in two independent explicit models that, nevertheless, generated
comparable task-specific maps. This indicated that network co-occurrence modeling indeed captures genuine aspects of
neurobiology rather than arbitrary discriminatory aspects of the data.

doi:10.1371/journal.pcbi.1004994.g007
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compared to fitting the same l1-penalized support vector machine models on all 61,472 gray-

matter voxels without the initial feature-learning step, that is, without recourse to global spatio-

temporal components or local voxel clusters. Neurobiologically uninformed support vector

machines applied to the raw voxel features (89% out-of-sample performance for HCP and 93%

for ARCHI), otherwise identical to above classifier training by multi-class, one-versus-rest, and

leave-one-participant-out design, achieved correlations between z-scored class average maps

and z-scored model weights of r = 0.24 (across-task SD = 0.04) for HCP and r = 0.11 (across-

task SD = 0.05) for ARCHI. Consequently, cluster-based and voxel-based multivariate predic-

tive models were less successful in capturing the original task activity patterns than network

co-occurrence models.

Applying network co-occurrence modeling to test hypotheses: Task-rest
correspondence

After evaluating network co-occurrence models, they were put into practice by testing explicit

hypotheses about the difference between functional brain architecture of the human brain dur-

ing tasks and at rest. In contrast to the above results, these experiments also performed

Fig 8. Task-rest correspondence: Recovery performance across network and region atlases. 40 networks (upper row) were discovered in
independent component analysis (ICA) and sparse principal component analysis (sparse PCA). 40 regions (lower row) were derived from k-
means and ward clustering based on four diverging types of neural activity data. Network and region atlases were derived from i) identical task-
data as positive test (dark blue), ii) non-identical task-data (medium blue), iii) resting-state data (light blue), and iv) Gaussian noise as negative
test (red). The ensuing networks and regions were then used to create a feature space of neural activity patterns for 18-task classification
(l1-penalized support vector machines, multi-class, one-versus-rest) and subsequently measure the per-task recovery performance. The
recovery performance of all 18 tasks (radial columns) is measured by the Pearson correlation between the model-derived task activity maps and
the average first-level task map. As an important observation, network dictionaries derived from different tasks and from rest data were similarly
successful in recovering whole-brain activity during diverging experimental tasks, while specialized regions achieved much worse recovery
performances in both datasets. See S11 and S12 Figs for additional analyses.

doi:10.1371/journal.pcbi.1004994.g008
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regions/network discovery step and region/network-based task classification step based on

non-identical data: HCP task maps, ARCHI task maps, and rest maps (Figs 6–8).

We formally tested whether given task activity patterns can be accounted for by network sets

obtained from a diverging task battery and from the task-free resting brain (Figs 8, S11 and S12).

To this end, recovery performance was compared between network sets learned from non-identi-

cal task data and from rest data. The rationale is that if functional brain architecture during task

and at rest is similarly rich in variation patterns as measured by fMRI, then a rest-derived coordi-

nate system should be able to effectively encode and reconstruct task activity maps as expressions

on its 40 axes with little loss of information. Howmuch information on the actual 3D activation

patterns is lost by information compression in a network space is measured by the recovery per-

formance. Learning network co-occurrence models from a non-identical task battery (i.e., net-

works fromHCP task data and classification in ARCHI task data, or vice versa) yielded recovery

performances between r = 0.50 (across-task SD = 0.17) and r = 0.43 (SD = 0.17) across two

decompositions and datasets. Importantly, learning network co-occurrences models from task-

unrelated resting-state correlations yielded very similar recovery performances between r = 0.51

(SD = 0.15) and r = 0.46 (SD = 0.11). Assessed by independent t-tests, recovery performance

based on network sets from different task data was in no instance significantly better than recov-

ery from networks discovered in task-unrelated rest data. This suggests that the network ecosys-

tem of the mind-wandering brain as measured with fMRI scanning is recruited in a characteristic

fashion in response to environmental challenges. The application of network co-occurrence

models to the task-rest correspondence thus indicates that the directions of variation observed in

the human brain at rest are sufficiently rich to explain the directions of variation observed in the

human brain during task performance.

Discussion

We confirm the central hypothesis that fMRI brain activity can be formally assessed in sets of

macroscopical network units in a goal-direct task and an idlying rest mindset. The proposed

statistical approach effectively exploits the recently increasing neurobiological evidence that

functional coupling between canonical brain networks is more context-sensitive than functional

coupling within a same network [15–17].

Two large datasets allowed for direct comparison of 36 diverse experimental tasks. A large

proportion of activity patterns evoked by experimental tasks is shown to reflect combinations

of stereotypical network patterns. Despite their diverging statistical assumptions (e.g., orthogo-

nality, sparsity, independence, and heteroscedasticity), all used decomposition methods

allowed for generative network models that can express neural activity maps as combinations

of spatiotemporal activity components. We thus computed neurobiologically interpretable

stratifications of large-scale network recruitment specific to cognitive tasks without relying on

assumptions from cognitive theory cf. [98]. We validated decomposition and reconstruction of

network ensembles in two large task fMRI datasets, each aimed at capturing human cognition

comprehensively. Statistically, being able to create synthetic, never observed activity maps for

each task is an important property of "generative models" [55]. Although the task-specific net-

work implications are not directly observable using fMRI techniques, we demonstrate that the

underlying organization can be numerically approximated in order to test explicit hypotheses.

Functional coupling between brain regions and coupling changes between task and rest has

been investigated in several previous studies (e.g., [3, 4, 6, 56, 57]). The novelty of the present

approach consists in direct modeling of task activity by combinations of canonical brain networks

and formal inference on changed neural activity of distinct networks. The involvement of major

brain network ensembles in a given psychological task can be explicitly quantified at once and
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used for model-based prediction in independent or future neuroimaging studies. The term "net-

work co-occurrence" thus refers to the signature of network involvements specific to a given

psychological task.

Up to now, the relationship between brain activity during task and rest has predominantly

been addressed by three neuroscientific tools [2]: i) targeted neuroimaging experiments, ii)

seed-based analysis of resting-state correlations, and iii) independent component analysis.

How much experimental neuroimaging studies can contribute to research on task-rest corre-

spondence is open to question. A paradox is introduced when attempting to measure uncon-

strainedmind-wandering by imposing this behavior on the participants as the task to follow

while lying in a brain imaging scanner cf. [58, 59, 60]. Additionally, each neuroimaging study

can tap on only a small subset of possible experimental tasks. This precludes synoptic assess-

ment of human cognition as a whole. Seed-based connectivity investigations, in turn, depend

on the assumption that the seed-region definition successfully captures an underlying biologi-

cal structure [61]. Seed correlation patterns also typically correspond to mixtures of overlap-

ping canonical networks and are significance-tested in voxel space, which is statistically

intractable and orthogonal to network interpretations [62, 108]. Moreover, ICA decomposes

neuroimaging activations into a set of maximally statistically independent topographical maps

in an exploratory, hypothesis-free fashion [46]. There is no obvious way to perform formal

statistical inference on the implication of the ensuing network maps during psychological experi-

ments [44, 47]. Although the number of such independent components is unknown [99–100],

conventionally only one or two choices are explored [6, 7]. In sum, previous neuroimaging stud-

ies on task-rest correspondence analyzed and interpreted results in the neurobiologically invalid

voxel space [108]. Additionally, the results were rarely assessed by inferential rejection of a null

hypothesis or supervised comparison against some ground truth. Therefore, network notions

have so far hardly been formally tested for generalization to the population-level.

It is an important limitation of the presented statistical framework that it ignores local

within-network processes. The over-simplified quantification of brain activity at the network-

level cannot account for relevant brain signal differences in circumscribed brain regions. Net-

work co-occurrence modeling is hence insensitive to activity variance due to less distributed

subnetwork effects underlying psychological tasks [101–102, 104, 107]. Findings that are likely

to be neglected by the presented methodological approach include, for instance, task differ-

ences in the fusiform gyrus and the amygdala. Neural activity changes in the fusiform gyrus

have repeatedly been shown to relate to information processing of human faces, especially sta-

ble facial characteristics like symmetry and scars [105]. The face-responsive fusiform gyrus

recruitment typically localizes to its middle portion and does not co-occur with a notorious set

of partner regions. Amygdala activity, in turn, responds reliably to environmental information

that carries emotional, social, or motivational value, generally stimuli of evolutionary salience

[106]. Similar to the fusiform gyrus, task response in the amgdala is not necessarily accompa-

nied by neural activity changes in other parts of the limbic system or other canonical network.

Therefore, facial and emotional processing subserved by local fine-grained activity changes in

the fusiform gyrus and amygdala is probably not optimally characterized by network co-occur-

rence modeling. However, matrix factorization methods, such as ICA, PCA, sparse PCA, and

FA, have been observed to decompose brain network patterns up to single-region nodes e.g.,

[6, 103]. Future research might therefore evaluate to what extent the identical statistical

approach scales to the quantification of task effects subserved by local specialized brain regions

after matrix factorization up to single-region patterns.

In the present study, the reconfiguration of large-scale networks was identified as a charac-

teristic property of fMRI activity during experimental tasks. Multivariate decomposition of

neural activity into 40 major networks allowed distinguishing 18 typical tasks in up to 90%
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(HCP dataset) and 93% (ARCHI dataset) of unseen activity maps. Selecting only the loading of

the single most distinctive of 40 total networks for each task, classification still scored at up to

83% (HCP dataset) and 72% (ARCHI dataset). In particular, ICA and sparse PCA appeared

most successful in searching the space of plausible network co-occurrence architectures.

Neurobiological pertinence was suggested by overall best task classification scores, highest par-

simony in model parameters, and model-derived recovery of most realistic task activity maps.

This suggests that the underlying statistical assumptions of these models reverse-engineer criti-

cal properties of brain network constellation. In this way, present results would favor large-

scale patterns to parsimoniously distribute in space (reflected by sparse PCA models) and vary

independently (reflected by ICA models), whereas orthogonality (reflected by PCA) and differ-

ent variances (reflected by factor analysis) seem less important. Notably, attempting the recon-

struction of statistically coherent source signals operates with a network definition that is not

strictly neurobiological in nature [63]. Nevertheless, a large proportion of task activity can be

explained by a combination of the brain’s main functional networks. This study might be the

first to carefully quantify the often held view that contrast approaches of experimental fMRI

studies do not necessarily elicit idiosyncratic activity patterns, but mainly a recombination of

the same underlying networks cf. [44, 64, 65–67]. This is true in the sense that rest network dic-

tionaries have been shown to reflect sufficiently rich directions of variation to encode and recon-

struct whole-brain task images with minimal information loss. It follows that a single major

brain network may not be task-specific (e.g., the "language network", the "empathy network")

but the entire activity pattern of the various brain networks may be a distinctive correlate

underlying each cognitive process. Indeed, an interplay of limited entities generates an infinity

of different observations in numerous natural systems [68], formalized in General System The-

ory [69]. This contention lends itself to diverse set of neuroscientific questions that currrent

lack a pertinent methodological access.

Finally, we have demonstrated the usefulness of constructing and comparing network co-

occurrence models to test specific hypotheses about network architecture in fMRI data. We tested

between what one can summarize as “dichotomy” and “manifold” hypotheses on the neuroarchi-

tectural difference between task behaviors and the idling brain [70]. While the dichotomic view

revolves around functional antagonism between so-called “task-positive” and “task-negative”

neural networks, the “manifold” view advocates a fluctuating equilibrium of functionally distinct

large-scale networks that is perturbed at task onset. In the present work, we formally tested

dichotomy against manifold hypotheses by learning independent network co-occurrence archi-

tectures based on non-identical task and rest data. Across four diverging decomposition meth-

ods, recovery performance from task-derived network dictionaries was in no instance

significantly better than rest-derived network dictionaries. This indicator of equal network reper-

toires across task and rest brain dynamics favors the manifold perspective on task-rest correspon-

dence. Consistent with Smith and colleagues [6], explicit network co-occurrence models

challenge the frequently embraced separation into “extrinsic” and “intrinsic” brain systems [71].

Our approach further reconciles the previous contention that activation patterns in certain brain

areas may be richer during task than at rest [4]. The same set of canonical networks might give

rise to task-evoked network compositions that are however seldomly observed at rest. In sum,

the conducted network co-occurrence experiment suggests that task-constrained onset of cogni-

tive processes modulates an identical repertoire of large-scale brain networks.

Conclusion

Only recently, systems neuroscience has transitioned the interpretational focus from regional

segregation to network integration [18, 28, 37, 72]. Many neuroimaging studies then performed
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ICA without relation to human cognitive processes or conducted resting-state correlations

yielding unknown mixtures of constituant brain networks. The present study may be the first

to quantify the composition of large-scale network recruitments during defined psychological

tasks and to thus qualify a meaningful mechanism underlying cognitive neuroscience experi-

ments. Task-specific network compositions might thus intimately relate to psychological

notions of mental operations, although fine-grained local effects are ignored. This organiza-

tional principle of the human brain might extend to other species given existence of large-scale

networks in monkeys [73] and rats [74]. Moreover, clinical research has corroborated default-

mode network dysfunction in various psychiatric and neurological disorders [75, 76]. As a

tempting alternative hypothesis for future research, not disturbance in the default-mode net-

work itself but its relation to other canonical networks might be specific to brain disorders.

Ultimately, the present investigation exposes network co-occurrence architecture as an impor-

tant neural mechanism that complements regional brain responses in maintaining human

cognition.

Materials and Methods

Data

Dataset: HCP task data. The first of two task batteries was drawn from the Human Con-

nectome Project (HCP; www.humanconnectomeproject.org). HCP is an international long-

term project dedicated to network exploration [77]. 500 HCP participants (2 removed for qual-

ity reasons) were without psychiatric or neurological history. Informed consent was obtained

from all participants by the Washington University in St. Louis institutional review board. The

ethics approval for using the HCP data was obtained from the local ethics committee of the

Heinrich-Heine University Düsseldorf, Germany. Network discovery is facilitated by probing

experimental task paradigms that are known to tap on well-characterized neural networks.

This was achieved by selecting tasks that feature known suitability and reliability across partici-

pants [50]. The HCP tasks (Table 1) were chosen by the external advisory board, consortium

members, and HCP team from the National Institut of Mental Health. Over two image acquisi-

tion sessions, mostly block-design, but also event-related, paradigms were administered on 1)

working memory/cognitive control processing, 2) incentive processing, 3) visual and somato-

sensory-motor processing, 4) semantic and phonological language processing, 5) social cogni-

tion, 6) relational processing, and 7) emotional processing. All data were acquired on the same

Siemens Skyra 3T scanner at Washington University. Whole-brain EPI acquisitions were

acquired with a 32 channel head coil (TR = 720ms, TE = 33.1ms, flip angle = 52,

BW = 2290Hz/Px, in-plane FOV = 28 × 18cm, 72 slices, 2.0mm isotropic voxels). One task was

run with right-to-left and one with left-to-right phase encoding. We profited from the HCP

minimally preprocessed pipeline [78]. This includes gradient unwarping, motion correction,

fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI to struc-

tural scan, non-linear (FNIRT) registration into Montreal Neurological Institute (MNI) space,

and grand-mean intensity normalization. The preprocessed maps were spatially smoothed by a

Gaussian kernel of 4mm (FWHM). A general linear model (GLM) was implemented by FILM

from the FSL suite with model regressors from convolution with a canonical hemodynamic

response function and from temporal derivatives. It is important to note that HCP tasks were

conceived to modulate activation in a maximum of different brain regions and neural systems.

Indeed, excellent brain coverage was indicated by the summing the maps of whether or not a

voxel showed a z-value bigger than 1.96 per task across participants [50]. Note that we statisti-

cally analyzed the GLM-derived participant-level z-score maps in MNI space.
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Dataset: ARCHI task data. The second task battery was drawn from the ARCHI dataset

[51]. Importantly, it was conceived and acquired with the same goal for neural networks shared

by a maximum of participants as the HCP task dataset. The diverse experimental tasks

(Table 2) capture the cerebral basis of auditory and visual perception, motor action, reading,

language comprehension and mental calculation. The ethics approval was obtained from the

regional ethical committee (Hôpital de Bicêtre, France). 81 right-handed healthy participants

(35 males and 46 females, 24 +/- 4.1 years, three not included in present analyses due to incom-

plete data) without psychiatric or neurological history participated in four fMRI sessions

acquired under different experimental paradigms. The functional maps were warped into the

MNI space and resampled at 3mm resolution. Task maps were computed using a GLM based

on the specified task timing information, canonical hemodynamic response function, high-

pass filtering, and auto-regressive noise model. The tasks included 1) a general paradigm that

probes basic functions, such as pressing a button with the left or right hand, viewing horizontal

and vertical checkerboards, reading and listening to short sentences, and mental computations

(subtractions), 2) a social paradigm that includes covertly making some inferences on short

stories that involve false beliefs or not, viewing objects moving with or without a putative inten-

tion, listening to speech and non-speech sounds, 3) a spatial mapping paradigm that includes

perfoming ocular saccades, grasping, and orientation judgements on objects (the two different

tasks were actually made on the same visual stimuli in order to characterize grasping-specific

activity), as well as judging whether a hand photograph corresponds to the left or right hand or

was displaying the front or back, 4) an emotional paradigm that include facial judgments of

Table 1. HCP task descriptions.

Cognitive Task Stimulus material Instruction to participants

1 Reward Card game Guess the number of mystery card for gain/loss of money

2 Punish Card game Guess the number of mystery card for gain/loss of money

3 Shapes Shape pictures Decide which of two shapes matches another shape
geometry-wise

4 Faces Face pictures Decide which of two faces matches another face emotion-
wise

5 Random Videos with objects Decide whether the objects act randomly or intentionally

6 Theory of mind Videos with objects Decide whether the objects act randomly or intentionally

7 Mathematics Spoken numbers Complete addition and subtraction problems

8 Language Auditory stories Choose answer about the topic of the story

9 Tongue movement Visual cues Move tongue

10 Food movement Visual cues Squeezing of the left or right toe

11 Hand movement Visual cues Tapping of the left or right finger

12 Matching Pictures Decide whether two objects match in shape or texture

13 Relations Pictures Decide whether object pairs differ both along either shape
or texture

14 View Bodies Pictures Passive watching

15 View Faces Pictures Passive watching

16 View Places Pictures Passive watching

17 View Tools Pictures Passive watching

18 Two-Back Memory
Task

Pictures Indicate whether current stimulus is the same as two
items earlier

Further details can be obtained from the original task dataset descriptions [50].

doi:10.1371/journal.pcbi.1004994.t001
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gender, trustworthiness, and expression based on face photographs or photographs reduced to

the eyes. While the first experimental paradigm is fast event-related design, the two others are

made of small blocks of 5 to 7 seconds for each condition. The duration of the acquisitions was

1) 307s, 2) 489s, 3) 516s, and 4) 436s. Visual stimuli were displayed in four 250-ms epochs, sep-

arated by 100ms intervals (i.e., 1.3s in total). Auditory stimuli were drawn from a recorded

male voice (i.e., a total of 1.6s for motor instructions, 1.2–1.7s for sentences, and 1.2–1.3s for

subtraction). The auditory or visual stimuli were shown to the participants for passive viewing

or button response in event-related paradigms. Post-scan questions verified that the experi-

mental tasks were understood and followed correctly. Based on these data, the following func-

tional contrasts were computed and used in the following inference: 1) basic paradigm, left

versus right hand button pressure, horizontal versus vertical checkerboard, auditory versus

visual instructions, computation versus simple reading, motor tasks versus language, and math

tasks, 2) social paradigm: speech versus non-speech sounds, false belief versus mechanistic

inference after visual or auditory presentation, interacting versus non-interacting figures in the

movie clip, 3) spatial mapping: grasping versus orientation judgement, left/right hand versus

hand side, effect of ocular saccades, 4) emotional paradigm: gender judgement versus no task

on face image and expression, truthworthiness versus gender judgement and baseline. Whole-

brain EPI data were acquired with the same Siemens Trio with a 32 channel head coil

(TR = 2400ms, TE = 30ms, flip angle = 60, in-plane FOV = 19.2 × 19.2cm, 40 slices, 3.0mm iso-

tropic voxels). A posterior-anterior phase encoding scheme was used for all images. Standard

preprocessing was performed with Nipype (Gorgolewski et al., 2011), including slice timing,

motion correction, alignment, and spatial normalization. Activation maps were spatially

smoothed by a Gaussian kernel of 5mm (FWHM). Note that we statistically analyzed the

GLM-derived participant-level z-score maps in MNI space, analogous to the HCP task data.

Table 2. ARCHI task descriptions.

Cognitive Task Stimulus material Instruction to participants

1 Face discrimination Visual face pictures Covert response to gender

2 Face discrimination Visual face pictures Covert response to trustworthiness

3 False belief Auditory Covert answer to "Why?"

4 False belief Moving triangles Passive viewing

5 Object grasping Pictures of everyday objects Move hand as if to use that object

6 Object orientation Pictures of everyday objects Use fingers to indicate whether object is inclined to the right or left

7 Rotation hand Photos of hands at different angles Covert response whether hand back or palm is shown

8 Rotation side Photos of hands at different angles Covert response whether left or right hand is shown

9 Motor-cognitive Abstract cues Motor action according to cue

10 Hand movement Auditory sentence Press the left button 3 times

11 Hand movement Auditory sentence Press the right button 3 times

12 Saccades Crosshair suddenly shifts from center to screen periphery Keep eyes on crosshair without head movement

13 Speech Auditory sentences Passive listening

14 Reading Written stories Passive appraisal

15 Story comprehension Auditory short stories Covert answer to questions

16 Computation Auditory sentences Subtract numbers and keep result in mind

17 Auditory Series of sounds Passive listening

18 Video Flipping abstract objects Passive viewing

Further details can be obtained from the original task dataset descriptions [51].

doi:10.1371/journal.pcbi.1004994.t002
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Dataset: Rest data. These two task datasets were complemented by HCP resting-state

acquisitions of brain activity in the absence of experimental paradigms. In line with the goal of

the present study, acquisition of these data was specifically aimed at the study of task-rest cor-

respondence [77]. The rest maps were acquired in two imaging sessions. Each participant con-

tributed four time-series (2 sessions each for left-to-right and right-to-left phase encoding)

with 1,200 maps of multiband, gradient-echo planar imaging acquired during a period of

15min (TR = 720 ms, TE = 33.1 ms, flip angle = 52, FOV = 280 × 180mm, and 2.0mm isotropic

voxels). Besides run duration, the task acquisitions were identical to the resting-state fMRI

acquisitions for maximal compatibility between task and rest data. The unusually low TR

allowed for effective increase in the signal-to-noise ratio and removal of physiological con-

founds. During map acquisition, participants fixated on a bright crosshair on dark background.

We drew on “minimally preprocessed” rest data from 25 randomly selected healthy partici-

pants. Every participant who contributed scans to the present rest dataset was included with

one left-right and one right-left phase encoding session. Importantly, PCA was applied to each

set of 1,200 rest maps for denoising and dimensionality reduction into 20 main modes of varia-

tion [79]. That is, the 40 reduced rest maps for each of 25 randomly selected participants con-

stituted the present rest dataset of 1000 concatenated, noise-cleaned rest activity maps.

In sum, the HCP task data incorporated 8650 first-level activity maps from 18 diverse para-

digms administered to 498 participants, while the ARCHI task data incorporated 1404 first-

level activity maps from 18 diverse paradigms administered to 78 participants. The rest data, in

turn, incorporated 1000 activity maps drawn from different scanning sessions in 25 partici-

pants. The maps from all three datasets were downsampled to a common 53 × 63 × 46 space of

3mm isotropic voxels. The resampled activity maps were masked by a gray-matter probability

of at least 10% according to tissue maps from the Intertional Consortium of Brain Mapping

(ICBM). Each of the task and rest maps was hence represented by 61,472 voxels with z-values

in gray matter.

Workflow

Data folding and model selection were performed in the following fashion. In the first step, one

half of the task datasets (i.e., HCP and ARCHI) and the entire rest dataset were used for unsu-

pervised (i.e., label-independent) discovery of latent structure by matrix decomposition and

clustering methods. The components of variation identified in the data allowed for feature

engineering from biological structures. In the second step, we applied supervised (i.e., label-

dependent) classification algorithms to the other half of the activity maps to predict cognitive

tasks. The winning models for classifying 18 cognitive tasks were compared by cross-valida-

tion. This inferential statistical framework is the gold standard to obtain an unbiased estimate

of how well a trained classifier generalizes beyond the data samples at hand [80, 81]. The previ-

ously unseen half of the task data (i.e., 4325 maps from HCP and 702 maps from ARCHI] were

split into as many data folds as participants (i.e., 498 for HCP and 78 for ARCHI]. In each fold,

all task maps of a given participant were left out as the test set for assessment of out-of-sample

performance, while the task maps from the remaining participants served as the training set for

model estimation. This leave-one-participant-out cross-validation scheme ensured model fit-

ting of task effects, rather than interindividual differences. In the third and last step, the aver-

aged winning models were back-projected into realistic task activity maps as face validity for

the reduced representation of task activity patterns.

1. Unsupervised analysis layer. The first step uncovered hidden structure in large quanti-

ties of neural activity maps. To this end, each dataset (i.e., first half of task datasets and entirety

of rest dataset] was decomposed into the 40 modes of variation. A large set of 40 “network"
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archetypes should ensure more parsimonious representation of the unknown target function,

despite increased problem difficulty due to higher variance. Latent large-scale networks were

computed by maximizing the intra-network homogeneity in neural activity and maximizing

the between-network heterogeneity. We selected four different decomposition methods that

are in frequent general use.

Decomposition into brain networks. Four different network decomposition techniques were

applied to the neural activity maps in order to test whether the neuroscientific findings general-

ize across diverging methodological choices. First, independent component analysis (ICA] was

used to unmix the multivariate BOLD signals in the activity maps into separate spatial compo-

nents by minimizing their mutual information [82]. This iterative algorithm for blind source

separation was realized by a parallel FastICA implementation (200 maximum iterations, per-

iteration tolerance of 0.0001, initialized by a random mixing matrix, whitening). In neuroimag-

ing research, ICA is frequently employed to separate out stable, statistically independent spatial

patterns with identical time courses for the nodes of each extracted network [46]. Second, prin-

cipal component analysis (PCA) was used to capture the main directions of variation in the

activity maps [83]. This non-parametric, rotation-invariant method assumes orthogonal com-

ponents to remove second-order dependencies (i.e., covariance) between the voxels by a change

of basis [48]. An implementation of incremental PCA [84] performed batch-by-batch decom-

position for low-rank approximation with efficient memory usage (batch size = 100 activity

maps, whitening). Third, sparse PCA was used to separate the activity maps into network com-

ponents with few regions [85], which scales well to large datasets. This decomposition method

reformulates a PCA-like modeling goal as a regression-type optimization problem constrained

by l1-penalty terms. An implementation without orthogonality assumptions yielded spatially

less distributed components to explain the variation in the data (1000 maximum iterations,

per-iteration tolerance of 1 � 10–8, sparsity alpha = 1, ridge-shrinkage at 0.01, Lasso solution

computed with coordinate descent) [86]. Fourth, factor analysis (FA) generalizes (probabilistic)

PCA by a heteroscedastic noise model [55]. Similar to PCA, FA performs a rotation-invariant

low-rank approximation by identifying the latent space of variation (1000 maximum iterations,

per-iteration tolerance of 0.01, 3 iterations in power method, randomized singular vector

decomposition).

Note that all four decomposition methods implicitly assume large variance to be indicative

of impor- tant structure. They reflect different ways to model sets of partially-overlapping

major brain networks without access to any task information. All decompositions are soft in

that each voxel with its BOLD signals can be part of the support in more than one network

component. For most (ICA, PCA, FA) but not all (sparse PCA) decompositions, the ensuing

components are linear combinations of all the original voxel signals.

Clustering into brain regions. The decompositions into spatially overlapping network com-

ponents were evaluated against clustering of the same data into non-overlapping regional com-

ponents. That is, the similarity between voxels in neural activity changes across maps was

indicative of coherent regional compartments, rather than distributed spatiotemporal net-

works. On the one hand, Ward clustering is a bottom-up hierarchical clustering approach [87].

A spatial constraint ensured that only neighboring voxels were incorporated into regional com-

ponents of similar variation in BOLD signals [88]. On the other hand, K-means is a popular

top-down clustering approach [89]. It divided the voxels into a preselected number of k

regional components of variation without a spatial constraint [90].

Note that the clustering methods thus yielded a regional scaffold of functional brain archi-

tecture with emphasis on functional specialization by segregation into disjoint region units.

Yet, the decomposition methods yielded a spatially distributed scaffold with emphasis on func-

tional integration by separation into overlapping network units. Please note however that
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clustering methods impose stricter constraints on the estimation of relevant structure, includ-

ing the flat partition of the voxel space and the compulsory assignment of each voxel to one

cluster [45, 88, 91]. The rationale was that four network co-occurrence models and two region

co-occurrence models embodied quantitative proxies of functional integration versus func-

tional specialization concepts of the human brain (cf. introduction section).

2. Supervised analysis layer. The extracted hidden components were subsequently used to

reduce each task activity map to a much smaller number of component loadings. 61,472 voxels

from gray-matter voxels of each map were thus condensed into 40 component loadings that

quantify task-related network co-occurrence or region co-occurrence involvements. For net-

work co-occurrence models, the presence of large-scale networks in every task map was deter-

mined by ridge regression based on a component design matrix (regularization alpha

parameter = 0.001, using Cholesky solver). 40 component loadings were thus computed by

projection of each task map onto the 40 network components. Note that the proposed

approach is thus related to dual regression analysis [92]. For region co-occurrence models, 40

component loadings were computed by the cluster-wise mean of the BOLD signal. Task-related

brain activity was thus summarized by brain regions of homogeneous activity changes across

tasks. In both these approaches, the feature space for supervised classification had the form:

#samples (i.e., 4325 HCP task maps or 702 ARCHI task maps) × #features [40 component

loadings). Linear support vector machines (SVM) were used to approximate the unknown tar-

get function that perfectly classifies the 18 cognitive tasks. This discriminative maximum-mar-

gin classifier was chosen for its simplicity and very good out-of-sample performance [93, 94].

We preprocessed the feature space by normalization and mean-centering of each individual

voxel due to sensitivity of this procedure to scaling effects [52].

In particular, linear-SVM classification was performed with regularization by l1- and

l2-penalty terms. Both shrinkage methods were used to search for parsimonious, more inter-

pretable models [80]. First, l1-regularized SVM analyses (used in most analyses) conducted i)

feature selection (i.e., select only relevant components) and ii) model estimation (i.e., deter-

mine what combination of components best disentangles the cognitive tasks) in an identical

process. This approach introduced a maximum of zero-ed SVM weights for automatic determi-

nation of optimal model complexity. Note that prior dimensionality reduction (i.e., decomposi-

tion or clustering) yielded a set of new features that should exhibit much less multi-collinearity

than those of the initial voxel space (i.e., task and rest activity maps). From a neurobiological

perspective, this approach acknowledged the assumption that smaller groups of, but not all,

network components should be characteristic for the observed activity pattern of the various

tasks. We performed hyperparameter tuning by a grid-search of the SVM hyperparameter “C”

(7 steps between 10–3 and 103 on a logarithmic scale) and averaged the fold-wise model

parameters (i.e., bagging; 80). The amount of sparsity (induced by l1-constrained SVMs) was

thus adapted to best predicting cognitive tasks. The collapsed SVM classification models thus

represented the average hypothesis from that dataset with reduced variance but essentially

unchanged bias. Second, the l2-regularized SVM analyses (only used by analyses described in

next passage) were used for the tendency to shrink the model parameters i) towards zero and

ii) towards each other. In so doing, we shrunk all directions of variation. Comparing to l1-regu-

larized, no implicit feature selection is performed as the ensuing parameters are typically small

but non-zero. That is, both l1 and l2 penalization perform variable shrinkage, yet l2-con-

strained SVM does not attempt to improve sparsity and domain interpretability by introducing

zero coefficients.

In one subanalysis, ANOVA was used for explicit univariate component selection of the k

most important (i.e., 1, 5, 10, and 20) component loadings for each given task comparing to

other tasks. That is, fitting the multivariate classifier was preceded by a univariate feature-
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selection procedure on the training data in each cross-validation fold. In particular, the feature

space (i.e., 40 component involvements) was reduced to the k component loadings most rele-

vant for each task. As we had already selected variables in this feature space, it was fed to

l2-penalized, rather than l1-penalized, SVM to delineate their task-specific contribution. From

a neurobiological perspective, this approach acknowledged the assumption that the balanced

contribution of few large-scale networks should be sufficient to disentangle cognitive tasks.

Note that all other reported results were based on the full set of 40 network or region loadings

without ANOVA-based subselection.

3. Validation layer. We finally evaluated whether the obtained explicit models capture

genuine properties of fMRI task activity. Complementing sparsity and predictive performance,

this provides a face-validity criterion to disambiguate whether task-immanent aspects of neural

activity or arbitrary discriminative aspects (e.g., structured noise, participant/scanner-related

idiosyncracies) explain the models’ success. To this end, artificial maps were generated from

the explicit network co-occurrence or region co-occurrence models of each task. The 40 fea-

tures describing large-scale network or region implications in a given task were transformed

back into the original gray-matter voxel space with 61,472 voxels. In network decomposition,

the product was computed between the SVM weights and the support of each component. In

region clustering, the mean activity of each region was projected into each voxel of that region.

Importantly, back-projection from an abstract, highly reduced space to the original task activity

space should succeed as a function of the construct validity of each model. For each of 18 tasks,

Pearson’s correlation between the model-derived activity map and the mean across first-level

activity maps quantified the recovery performance. Consequently, the recovery performance

indexed the neurobiological validity of quantitative network co-occurrence and region co-

occurrence models.

Software implementation

Python was selected as scientific computing engine. Capitalizing on its open-source ecosystem

helps enhance replicability, reusability, and provenance tracking. Nipy [95] performed basic

analyses of functional neuroimaging data (http://nipy.org/). Scikit-learn [96] provided efficient,

unit-tested implementations of state-of-the-art statistical learning algorithms (http://scikit-

learn.org). This general-purpose machine-learning library [97] was interfaced with the neuro-

imaging-specific nilearn library for high-dimensional neuroimaging datasets (http://github.

com/nilearn/nilearn). 3D visualization of brain maps was performed using PySurfer (http://

pysurfer.github.io/). All analysis scripts of the present study are readily accessible to the reader

online (http://github.com/banilo/taskrest2016).

Supporting Information

S1 Fig. Sparse PCA network decomposition of HCP task maps and network-task assign-

ment. 40 network components underlying 18 HCP tasks (left) have been discovered by sparse

PCA (Comp1-40). The ensuing network loadings from the second half of the HCP task data

were submitted to classification of the psychological tasks based on the implication of brain

networks (l2-penalized support vector machines, multi-class, one-versus-rest). l2-contrained

support vector machines were employed to choose the most discriminatory network variables

by a classical univariate test in a discrete fashion rather than by soft variable selection based on

l1 penalization (cf. methods section). This diagnostic analysis (right) revealed the most distinc-

tive k = 1, 5, 10, and 20 network features (red cubes) for each experimental condition of the

task battery (cf. Fig 3). The thus discretely selected network features per task were then fed into

supervised multi-task classification as a feature space of activity-map-wise continuous activity
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values. The color intensity of the k cubes quantifies how often the corresponding brain network

was selected as important for a task across cross-validation folds. This diagnostic test per-

formed inference on a) the single most discriminative network for each task at k = 1, b) the net-

work variables that get added step-by-step to the feature space of network implications with

increasing k, and c) what network variables are unspecific (i.e., not selected) for a given task at

k = 20. See Table 1 of the manuscript body for descriptions of task 1 to 18.

(PNG)

S2 Fig. ICA network decomposition of HCP task maps and network-task assignment. 40

network components underlying 18 HCP tasks (left) have been discovered by ICA (Comp1-

40). The ensuing network loadings from the second half of the HCP task data were submitted

to classification of the psychological tasks based on the implication of brain networks

(l2-penalized support vector machines, multi-class, one-versus-rest). l2-contrained support

vector machines were employed to choose the most discriminatory network variables by a clas-

sical univariate test in a discrete fashion rather than by soft variable selection based on l1 penal-

ization (cf. methods section). This diagnostic analysis (right) revealed the most distinctive

k = 1, 5, 10, and 20 network features (red cubes) for each experimental condition of the task

battery (cf. Fig 3). The thus discretely selected network features per task were then fed into

supervised multi-task classification as a feature space of activity-map-wise continuous activity

values. The color intensity of the k cubes quantifies how often the corresponding brain network

was selected as important for a task across cross-validation folds. This diagnostic test per-

formed inference on a) the single most discriminative network for each task at k = 1, b) the net-

work variables that get added step-by-step to the feature space of network implications with

increasing k, and c) what network variables are unspecific (i.e., not selected) for a given task at

k = 20. See Table 1 of the manuscript body for descriptions of task 1 to 18.

(PNG)

S3 Fig. ICA network decomposition of ARCHI task maps and network-task assignment. 40

network components underlying 18 ARCHI tasks (left) have been discovered by ICA (Comp1-

40). The ensuing network loadings from the second half of the ARCHI task data were submit-

ted to classification of the psychological tasks based on the implication of brain networks

(l2-penalized support vector machines, multi-class, one-versus-rest). l2-contrained support

vector machines were employed to choose the most discriminatory network variables by a clas-

sical univariate test in a discrete fashion rather than by soft variable selection based on l1 penal-

ization (cf. methods section). This diagnostic analysis (right) revealed the most distinctive

k = 1, 5, 10, and 20 network features (red cubes) for each experimental condition of the task

battery (cf. Fig 3). The thus discretely selected network features per task were then fed into

supervised multi-task classification as a feature space of activity-map-wise continuous activity

values. The color intensity of the k cubes quantifies how often the corresponding brain network

was selected as important for a task across cross-validation folds. This diagnostic test per-

formed inference on a) the single most discriminative network for each task at k = 1, b) the net-

work variables that get added step-by-step to the feature space of network implications with

increasing k, and c) what network variables are unspecific (i.e., not selected) for a given task at

k = 20. See Table 2 of the manuscript body for descriptions of task 1 to 18.

(PNG)

S4 Fig. Sparse PCA network decomposition of rest maps. Sparse PCA decomposition was

used to derive the 40 most important modes of variation (Comp1-40) in the rest data (cf. meth-

ods section). These parsimonious spatial patterns are depicted in coronal, sagittal, and axial

slices rendered on the Colin MNI template. Combinations of this dictionary of overlapping
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major brain networks were used to explain task-evoked neural activity patterns.

(PNG)

S5 Fig. ICA network decomposition of rest maps. ICA decomposition was used to derive the

40 most important modes of variation (Comp1-40) in the rest data (cf. methods section).

These independent spatial patterns are depicted in coronal, sagittal, and axial slices rendered

on the Colin MNI template. Combinations of this dictionary of overlapping major brain net-

works were used to explain task-evoked neural activity patterns.

(PNG)

S6 Fig. Reconstruction of HCP tasks from different network co-occurrence models. Left-

most column: Average whole-brain activity from 18 experimental tasks of the HCP dataset.

The voxel-wise mean was computed across the first-level contrast activity maps from 498 par-

ticipants. Right columns: Four different network models were derived from the task activity

during the 18 HCP tasks. First, four different network decompositions (i.e., ICA, sparse PCA,

PCA, and factor analysis) were applied to the first half of the HCP task data. Second, the ensu-

ing sets of 40 brain networks served as a basis for feature engineering to automatically learn

distinguishing the 18 tasks in the second data half based on network loadings alone. Third, the

quantitative models of task-specific network loadings allowed generating a synthetic whole-

brain activity map for each experimental task. The correlation values r quantify the voxel-wise

similarity between the reconstructed activity map and the average activity map for each task

and network decomposition method. This measure of recovery performance indicates the

information loss incurred when first expressing activity maps as 40 network loading values and

then translating these values back into whole-brain space. The similarity between real HCP

task maps (leftmost column) and synthetic model-derived task maps (right columns) indicates

that 40 network loadings can well describe task-evoked neural activity patterns in the HCP task

battery.

(JPG)

S7 Fig. Reconstruction of ARCHI tasks from different network co-occurrence models. Left-

most column: Average whole-brain activity from 18 experimental tasks of the ARCHI dataset.

The voxel-wise mean was computed across the first-level contrast activity maps from 78 partic-

ipants. Right columns: Four different network models were derived from the task activity dur-

ing the 18 ARCHI tasks. First, four different network decompositions (i.e., ICA, sparse PCA,

PCA, and factor analysis) were applied to the first half of the HCP task data. Second, the ensu-

ing sets of 40 brain networks served as a basis for feature engineering to automatically learn

distinguishing the 18 tasks in the second data half based on network loadings alone. Third, the

quantitative models of task-specific network loadings allowed generating a synthetic whole-

brain activity map for each experimental task. The correlation values r quantify the voxel-wise

similarity between the reconstructed activity map and the average activity map for each task

and network decomposition method. This measure of recovery performance indicates the

information loss incurred when first expressing activity maps as 40 network loading values and

then translating these values back into whole-brain space. The similarity between real HCP

task maps (leftmost column) and synthetic model-derived task maps (right columns) indicates

that 40 network loadings can well describe task-evoked neural activity patterns in the ARCHI

battery.

(JPG)

S8 Fig. Region clustering of task activity. 40 clusters of homogeneous neural activity patterns

across tasks and across participants. Spatially constrained ward and spatially unconstrained k-

means clustering were applied to the first half of the task maps from the HCP and ARCHI
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dataset. Each cluster is depicted in a unique, arbitrary color. This grey-matter atlas of non-over-

lapping brain regions was used to explain task-evoked neural activity patterns.

(PNG)

S9 Fig. Reconstruction of HCP tasks from different region co-occurrence models. Leftmost

column: Average whole-brain activity from 18 experimental tasks of the HCP dataset. The

voxel-wise mean was computed across the first-level contrast activity maps from 498 partici-

pants. Right columns: Two different region models were derived to explain the task activity

during the 18 HCP tasks. First, two different clustering algorithms (i.e., ward and k-means clus-

tering) were applied to the entirety of the HCP task data. Second, the ensuing sets of 40 coher-

ent activation clusters served as a basis for feature engineering to automatically learn to

distinguish the 18 tasks based on cluster loadings alone. Third, the quantitative models of task-

specific cluster loadings allowed generating a synthetic whole-brain activity map for each

experimental task. The correlation values r quantify the voxel-wise similarity between the

reconstructed activity map and the average activity map for each task and region clustering

method. This measure of recovery performance indicates the information loss incurred when

first expressing activity maps as 40 region summary values and then translating these values

back into whole-brain space. The frequently low similarity between real HCP task maps (left-

most column) and synthetic model-derived task maps (right columns) indicates that 40 cluster

loadings might not well describe task-evoked neural activity patterns in the HCP battery.

(JPG)

S10 Fig. Reconstruction of ARCHI tasks from different region co-occurrence models. Left-

most column: Average whole-brain activity from 18 experimental tasks of the ARCHI dataset.

The voxel-wise mean was computed across the first-level contrast activity maps from 78 partic-

ipants. Right columns: Two different region models were derived to explain the task activity

during the 18 ARCHI tasks. First, two different clustering algorithms (i.e., ward and k-means

clustering) were applied to the entirety of the ARCHI task data. Second, the ensuing sets of 40

coherent activation clusters served as a basis for feature engineering to automatically learn dis-

tinguishing the 18 tasks based on cluster loadings alone. Third, the quantitative models of task-

specific cluster loadings allowed generating a synthetic whole-brain activity map for each

experimental task. The correlation values r quantify the voxel-wise similarity between the

reconstructed activity map and the average activity map for each task and region clustering

method. This measure of recovery performance indicates the information loss incurred when

first expressing activity maps as 40 region summary values and then translating these values

back into whole-brain space. The frequently low similarity between real ARCHI task maps

(leftmost column) and synthetic model-derived task maps (right columns) indicates that 40

cluster loadings might not well describe task-evoked neural activity patterns in the ARCHI bat-

tery.

(JPG)

S11 Fig. Recovery performance of task activity patterns across decomposition and cluster-

ings. Four different network co-occurrence models (upper and middle row) were computed

based on decomposition based on sparse PCA, ICA, PCA, and factor analysis (FA). They cap-

ture functional brain architecture with emphasis on functional integration as opposed to

regional specialization. Two different region co-occurrence models (lower row) were computed

based on ward clustering (regions always spatially connected) and k-means clustering (no spa-

tial constraint). They capture functional brain architecture with emphasis on regional speciali-

zation. The recovery performance of all 18 tasks (radial columns) is measured by the Pearson

correlation r between the model-derived task activity maps and the average first-level task
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map. As a first conclusion, modeling task-specific neural activity appears to be more successful

based on functional network units than on functional region units. Additionally, network and

region dictionaries were derived from i) identical task-data as positive test (dark blue), ii) non-

identical task-data (medium blue), iii) resting-state data (light blue), and iv) Gaussian noise as

negative test (red). As a second conclusion, network dictionaries derived from non-identical

task maps and rest maps are similarly successful in recovering whole-brain activity during

divering experimental tasks. This was confirmed by univariate t-tests between the task-wise

correlation values r (cf. results section).

(PNG)

S12 Fig. Recovery performance of task activity patterns across tasks. Parallel coordinate

plots that depict the recovery performance by one line for each of the 18 tasks in both datasets.

The network dictionaries were derived from i) identical task-data (dark blue, AT = ARCHI

task data, HT = HCP task data), ii) non-identical task-data (medium blue), iii) resting-state

data (light blue, HR = HCP rest data), and iv) Gaussian noise (red, DN = data noise), analogous

to S11 Fig. An important conclusion is that network dictionaries derived from non-identical

task maps and rest maps are similarly successful in recovering whole-brain activity during

divering experimental tasks. This was confirmed by univariate t-tests between the task-wise

correlation values r (cf. results section).

(PNG)
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