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Formal Proof—Getting
Started
Freek Wiedijk

A List of 100 Theorems
Today highly nontrivial mathematics is routinely
being encoded in the computer, ensuring a reliabil-
ity that is orders of a magnitude larger than if one
had just used human minds. Such an encoding is
called a formalization, and a program that checks
such a formalization for correctness is called a
proof assistant.

Suppose you have proved a theorem and you
want to make certain that there are no mistakes
in the proof. Maybe already a couple of times a
mistake has been found and you want to make
sure that that will not happen again. Maybe you
fear that your intuition is misleading you and want
to make sure that this is not the case. Or maybe
you just want to bring your proof into the most
pure and complete form possible. We will explain
in this article how to go about this.

Although formalization has become a routine
activity, it still is labor intensive. Using current
technology, a formalization will be roughly four
times the size of a corresponding informal LATEX
proof (this ratio is called the de Bruijn factor ),
and it will take almost a full week to formalize a
single page from an undergraduate mathematics
textbook.

The first step towards a formalization of a proof
consists of deciding which proof assistant to use.
For this it is useful to know which proof assistants
have been shown to be practical for formalization.
On the webpage [1] there is a list that keeps track of
the formalization status of a hundred well-known
theorems. The first few entries on that list appear
in Table 1.

Freek Wiedijk is lecturer in computer science at the Rad-
boud University Nijmegen, The Netherlands. His email
address is freek@cs.ru.nl.

On the webpage [1] only eight entries are listed for
the first theorem, but in [2] seventeen formaliza-
tions of the irrationality of

√
2 have been collected,

each with a short description of the proof assistant.
When we analyze this list of theorems to see

what systems occur most, it turns out that there are
five proof assistants that have been significantly
used for formalization of mathematics. These are:

proof assistant number of theorems formalized

HOL Light 69
Mizar 45
ProofPower 42
Isabelle 40
Coq 39

all together 80

Currently in all systems together 80 theorems from
this list have been formalized. We expect to get to
99 formalized theorems in the next few years, but
Fermat’s Last Theorem is the 33rd entry of the list
and therefore it will be some time until we get to
100.

If we do not look for quantity but for quality,
the most impressive formalizations up to now are:

Gödel’s First Incompleteness Theorem: by
Natarajan Shankar using the proof assis-
tant nqthm in 1986, by Russell O’Connor
using Coq in 2003, and by John Harrison
using HOL Light in 2005.

Jordan Curve Theorem: by Tom Hales us-
ing HOL Light in 2005, and by Artur
Korniłowicz using Mizar in 2005.

Prime Number Theorem: by Jeremy Avigad
using Isabelle in 2004 (an elementary proof
by Atle Selberg and Paul Erdös), and by
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theorem number of systems in which the theorem has been formalized

1. The Irrationality of
√

2 ≥ 17
2. Fundamental Theorem of Algebra 4
3. The Denumerability of the Rational Numbers 6
4. Pythagorean Theorem 6
5. Prime Number Theorem 2
6. Gödel’s Incompleteness Theorem 3
7. Law of Quadratic Reciprocity 4
8. The Impossibility of Trisecting the Angle and Doubling the Cube 1
9. The Area of a Circle 1

10. Euler’s Generalization of Fermat’s Little Theorem 4
11. The Infinitude of Primes 6
12. The Independence of the Parallel Postulate 0
13. Polyhedron Formula 1

… …

Table 1. The start of the list of 100 theorems [1].

John Harrison using HOL Light in 2008 (a
proof using the Riemann zeta function).

Four-Color Theorem: by Georges Gonthier
using Coq in 2004.

All but one of the systems used for these four
theorems are among the five systems that we listed.
This again shows that currently these are the most
interesting for formalization of mathematics.

Here are the proof styles that one finds in these
systems:

proof assistant proof style of the system

HOL Light procedural
Mizar declarative
ProofPower procedural
Isabelle both possible
Coq procedural

A declarative system is one in which one writes
a proof in the normal way, although in a highly
stylized language and with very small steps. For
this reason a declarative formalization resembles
program source code more than ordinary mathe-
matics. In a procedural system one does not write
proofs at all. Instead one holds a dialogue with the
computer. In that dialogue the computer presents
the user with proof obligations or goals, and the
user then executes tactics, which reduce a goal to
zero or more new, and hopefully simpler, subgoals.
Proof in a procedural system is an interactive game.

In this paper we will show HOL Light as the
example of a procedural system, and Mizar as the
example of a declarative system.

The main advantage of HOL Light is its elegant
architecture, which makes it a very powerful and
reliable system. A proof of the correctness of the
394 line HOL Light “logical core” even has been
formalized. On the other hand HOL has the disad-
vantage that it sometimes cannot express abstract
mathematics—mostly when it involves algebraic
structures—in an attractive way. It can essentially

express all abstract mathematics though. Another
disadvantage of HOL is that the proof parts of
the HOL scripts are unreadable. They can only be
understood by executing them on the computer.

Mizar on the other hand allows one to write
abstract mathematics very elegantly, and its scripts
are almost readable like ordinary mathematics.
Also Mizar has by far the largest library of already
formalized mathematics (currently it is over 2
million lines). However, Mizar has the disadvantage
that it is not possible for a user to automate
recurring proof patterns, and the proof automation
provided by the system itself is rather basic. Also,
in Mizar it is difficult to express the formulas of
calculus in a recognizable style. It is not possible
to “bind” variables, which causes expressions for
constructions like sums, limits, derivatives, and
integrals to look unnatural.

The Example: Quadratic Reciprocity
In this article we will look at two formalizations of
a specific theorem. For this we will take the Law of
Quadratic Reciprocity, the seventh theorem from
the list of a hundred theorems. This theorem has
thus far been formalized in four systems: by David
Russinoff using nqthm in 1990, by Jeremy Avigad
using Isabelle in 2004, by John Harrison using HOL
Light in 2006, and by Li Yan, Xiquan Liang, and
Junjie Zhao using Mizar in 2007.

When I was a student, my algebra professor
Hendrik Lenstra always used to say that the Law of
Quadratic Reciprocity is the first nontrivial theorem
that a student encounters in the mathematics cur-
riculum. Before this theorem, most proofs can be
found without too much trouble by expanding the
definitions and thinking hard. In contrast the Law
of Quadratic Reciprocity is the first theorem that
is totally unexpected. It was already conjectured
by Euler and Legendre, but was proved only by the
“Prince of Mathematicians”, Gauss, who called it
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the Golden Theorem and during his lifetime gave
eight different proofs of it.

The Law of Quadratic Reciprocity relates whether
an odd prime p is a square modulo an odd prime
q, to whether q is a square modulo p. The theorem
says that these are equivalent unless both p and q
are 3 modulo 4, in which case they have opposite
truth values. There also are two supplements to
the Law of Quadratic Reciprocity, which say that
−1 is a square modulo an odd prime p if and only
if p ≡ 1 (mod 4), and that 2 is a square modulo an
odd prime p if and only if p ≡ ±1 (mod 8).

The Law of Quadratic Reciprocity is usually
phrased using the Legendre symbol. A number a
is called a quadratic residue modulo p if there
exists an x such that x2 ≡ a (modp). The Legendre

symbol
(
a
p

)
for a coprime to p then is defined by

(
a
p

)
=
{

1 if a is a quadratic residue modulo p
−1 otherwise.

Using the Legendre symbol, the Law of Quadratic
Reciprocity can be written as:(

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2

The right hand side will be −1 if and only if both p
and q are 3 (mod 4).

There are many proofs of the Law of Quadratic
Reciprocity [3]. The formalizations shown here
both formalize elementary counting proofs that go
back to Gauss’ third proof. We will not give details
of these proofs here, but will just outline the main
steps, following [4]. First by using that only half of
the residues modulo p can be a square, one proves
Euler’s criterion:(

a
p

)
≡ a 1

2 (p−1) (modp)

Using this criterion, by calculating the product of
a, 2a, …, 1

2(p− 1)a in two different ways, one then
proves Gauss’ lemma, which says that(

a
p

)
= (−1)l ,

in which l is the number of 1 ≤ j ≤ 1
2(p − 1)

for which there is an − 1
2p < a′ < 0 such that

aj ≡ a′ (modp). Finally one uses Gauss’ lemma
to derive the Law of Quadratic Reciprocity by
counting lattice points in the four regions of the
following figure:

1
2q1

2
0

1
2p

1
2

px− qy ≤ −1
2 q

−1 2
q <

px
− qy

<
0

−1 2
p <

qy
− px

<
0

qy − px ≤ −1
2 p

HOL Light
Suppose that we select HOL Light as our proof
assistant. The second step will be to download and
install the system. This does not take long. First
download the ocaml compiler from [5] and install
it. Next download the tar.gz file with the current
version of the HOL Light sources from [6] and
unpack it. Then follow the installation instructions
in the README file. If you use Linux or Mac OS X, all
you will need to do is type “make”. Under Windows,
installation is a bit more involved: you will have to
copy the “pa_j_….ml” file that corresponds to your
version of ocaml as given by “ocamlc -version” to
a file called “pa_j.ml”, and then compile that copy
using one of the two “ocamlc -c” commands that
are in the Makefile.

When you have installed the system, start
the ocaml interpreter by typing “ocaml”, and
then enter the command “#use "hol.ml";;” This
checks and loads the basic library of HOL Light,
which takes a few minutes. After that you can
load HOL files by typing for example “loadt
"100/reciprocity.ml";;”.

The third step will be to write a formalization
of the proof. For this you will have to learn the
HOL proof language. To do this it is best to study
two documents: the HOL Light manual [7] and the
HOL Light tutorial [8].

Instead of taking this third step and describing
how one writes a formalization, here we will just
look at a formalization that already exists. It can
be found in the file “100/reciprocity.ml” (see
Figure 1) and formalizes the proof from [4]. This
file can also be found on the Web by itself as [9]. It
consists of 753 lines of HOL Light code and proves
41 lemmas on top of the already existing HOL Light
mathematical libraries. The statement of the final
lemma is:

!p q. prime p /\ prime q /\
ODD p /\ ODD q /\ ˜(p = q)
==> legendre(p,q) * legendre(q,p) =

--(&1) pow ((p - 1) DIV 2 * (q - 1) DIV 2)
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    FIRST_ASSUM(MP_TAC o MATCH_MP GAUSS_LEMMA_4) THEN
    REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[CONG_REFL]) THEN
    REWRITE_TAC[MULT_CLAUSES] THEN MESON_TAC[CONG_SYM]]);;

(* ------------------------------------------------------------------------- *)
(* A more symmetrical version.                                               *)
(* ------------------------------------------------------------------------- *)

let GAUSS_LEMMA_SYM = prove
 (‘!p q r s. prime p /\ prime q /\ coprime(p,q) /\
             2 * r + 1 = p /\ 2 * s + 1 = q
             ==> (q is_quadratic_residue (mod p) <=>
                  EVEN(CARD {x,y | x IN 1..r /\ y IN 1..s /\
                                   q * x < p * y /\ p * y <= q * x + r}))‘,
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [‘q:num‘; ‘p:num‘; ‘r:num‘] GAUSS_LEMMA) THEN
  ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN AP_TERM_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   ‘CARD {x,y | x IN 1..r /\ y IN 1..s /\
                y = (q * x) DIV p + 1 /\ r < (q * x) MOD p}‘ THEN
  CONJ_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_SUBCROSS_DETERMINATE THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; ARITH_RULE ‘1 <= x + 1‘] THEN
    X_GEN_TAC ‘x:num‘ THEN STRIP_TAC THEN
    SUBGOAL_THEN ‘p * (q * x) DIV p + r < q * r‘ MP_TAC THENL
     [MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC ‘q * x‘ THEN
      ASM_REWRITE_TAC[LE_MULT_LCANCEL] THEN
      GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
      ASM_MESON_TAC[PRIME_IMP_NZ; LT_ADD_LCANCEL; DIVISION];
      MAP_EVERY EXPAND_TAC ["p"; "q"] THEN DISCH_THEN(MP_TAC o MATCH_MP
       (ARITH_RULE ‘(2 * r + 1) * d + r < (2 * s + 1) * r
                    ==> (2 * r) * d < (2 * r) * s‘)) THEN
      SIMP_TAC[LT_MULT_LCANCEL; ARITH_RULE ‘x < y ==> x + 1 <= y‘]];
    AP_TERM_TAC THEN
    REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN
    MAP_EVERY X_GEN_TAC [‘x:num‘; ‘y:num‘] THEN
    AP_TERM_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_TAC THENL
     [MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME ‘prime p‘)) THEN
      DISCH_THEN(MP_TAC o SPEC ‘q * x‘ o MATCH_MP DIVISION) THEN
      FIRST_ASSUM(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) THEN
      UNDISCH_TAC ‘2 * r + 1 = p‘ THEN ARITH_TAC;
      MATCH_MP_TAC(TAUT ‘a /\ (a ==> b) ==> a /\ b‘) THEN CONJ_TAC THENL
       [ALL_TAC;
        DISCH_THEN SUBST_ALL_TAC THEN
        MATCH_MP_TAC(ARITH_RULE
         ‘!p d. 2 * r + 1 = p /\ p * (d + 1) <= (d * p + m) + r ==> r < m‘) THEN
        MAP_EVERY EXISTS_TAC [‘p:num‘; ‘(q * x) DIV p‘] THEN
        ASM_MESON_TAC[DIVISION; PRIME_IMP_NZ]] THEN
      MATCH_MP_TAC(ARITH_RULE ‘~(x <= y) /\ ~(y + 2 <= x) ==> x = y + 1‘) THEN
      REPEAT STRIP_TAC THENL
       [SUBGOAL_THEN ‘y * p <= ((q * x) DIV p) * p‘ MP_TAC THENL
         [ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC];
        SUBGOAL_THEN ‘((q * x) DIV p + 2) * p <= y * p‘ MP_TAC THENL
         [ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC]] THEN
      MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME ‘prime p‘)) THEN
      DISCH_THEN(MP_TAC o SPEC ‘q * x‘ o MATCH_MP DIVISION) THEN
      ASM_ARITH_TAC]]);;

let GAUSS_LEMMA_SYM’ = prove
 (‘!p q r s. prime p /\ prime q /\ coprime(p,q) /\
             2 * r + 1 = p /\ 2 * s + 1 = q
             ==> (p is_quadratic_residue (mod q) <=>
                  EVEN(CARD {x,y | x IN 1..r /\ y IN 1..s /\
                                   p * y < q * x /\ q * x <= p * y + s}))‘,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [‘q:num‘; ‘p:num‘; ‘s:num‘; ‘r:num‘] GAUSS_LEMMA_SYM) THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [CARD_SUBCROSS_SWAP] THEN
  AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; FORALL_PAIR_THM] THEN
  REWRITE_TAC[IN_ELIM_PAIR_THM; CONJ_ACI]);;

(* ------------------------------------------------------------------------- *)
(* The main result.                                                          *)
(* ------------------------------------------------------------------------- *)

let RECIPROCITY_SET_LEMMA = prove
 (‘!a b c d r s.
        a UNION b UNION c UNION d = (1..r) CROSS (1..s) /\
        PAIRWISE DISJOINT [a;b;c;d] /\ CARD b = CARD c
        ==> ((EVEN(CARD a) <=> EVEN(CARD d)) <=> ~(ODD r /\ ODD s))‘,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN ‘CARD(a:num#num->bool) + CARD(b:num#num->bool) +
                CARD(c:num#num->bool) + CARD(d:num#num->bool) = r * s‘
   (fun th -> MP_TAC(AP_TERM ‘EVEN‘ th) THEN
              ASM_REWRITE_TAC[EVEN_ADD; GSYM NOT_EVEN; EVEN_MULT] THEN

Figure 1. Fragment of the HOL Light
formalization of the Law of Quadratic
Reciprocity.

This is the Law of Quadratic Reciprocity in HOL
syntax. In this expression the exclamation mark
is ASCII syntax for the universal quantifier, the
combination of slash and backslash is supposed to
resemble the ∧ sign and represents conjunction,
the tilde is logical negation, and the ampersand
operator maps the natural numbers into the
real numbers. The functions pow and DIV repre-
sent exponentiation and division, and the term

legendre(p,q) represents the Legendre symbol
(
p
q

)
.

This last function is defined in the formalization
by the HOL syntax:

let legendre = new_definition
‘(legendre:num#num->int)(a,p) =

if ˜(coprime(a,p)) then &0
else if a is_quadratic_residue (mod p)

then &1 else --(&1)‘;;

In this the expression num#num->int corresponds
to functions of typeN×N→ Z. That is, num and int

are the natural numbers and the integers, the hash
symbol represents the Cartesian product, and the
combination of a minus and a greater than sign is
supposed to look like an arrow.

A formalization, in any proof assistant, mainly
consists of a long chain of lemmas, where each
lemma consists of a label, a statement, and a proof.
In between these lemmas there occasionally are a
few definitions. In reciprocity.ml there are three:
a definition of the notion of quadratic residue, a
definition of the Legendre symbol, and a definition
of the notion of iterated product.

The formalization of the Law of Quadratic Reci-
procity is too large to explain in full here. Therefore
we will now zoom in on one of its smallest lemmas,
the third lemma in the file (see Figure 2 below).

let CONG_MINUS1_SQUARE = prove
(‘2 <= p ==> ((p - 1) * (p - 1) == 1) (mod p)‘,
SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[cong; nat_mod;
ARITH_RULE ‘(2 + x) - 1 = x + 1‘] THEN

MAP_EVERY EXISTS_TAC [‘0‘; ‘d:num‘] THEN
ARITH_TAC);;

Figure 2. Small lemma from the HOL Light
formalization of the Law of Quadratic
Reciprocity.

This ASCII text consists of the three parts men-
tioned above: the first line gives the label under
which the result will be referred to later, the second
line states the statement of the lemma, and the
last three lines encode the proof.

In this proof, there are references to four earlier
lemmas from the HOL Light library:

LE_EXISTS !m n. m <= n <=>
(?d. n = m + d)

LEFT_IMP_EXISTS_THM !P Q. (?x. P x) ==> Q <=>
(!x. P x ==> Q)

cong !rel x y. (x == y) rel <=>
rel x y

nat_mod !x y n. mod n x y <=>
(?q1 q2. x + n * q1 =

y + n * q2)

The proof of this lemma encodes a dialog with the
system. We can execute the proof all at once (this
happens when we load the file as a whole), but
we can also process the proof step by step, in an
interactive fashion. This is the way in which an
HOL Light proof is developed. To do this, we enter
the following command (where the # character is
the prompt of the system):

# g ‘2 <= p ==> ((p - 1) * (p - 1) == 1) (mod p)‘;;
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The g command asks the system to set the “goal” to
the statement between the backquotes. The system
then replies with:

Warning: Free variables in goal: p
val it : goalstack = 1 subgoal (1 total)

‘2 <= p ==> ((p - 1) * (p - 1) == 1) (mod p)‘

indicating that it understood us and that this
statement now is the current goal. Next we execute
the first “tactic” (a command to the system to
reduce the goal) by using the e command:

# e (SIMP TAC[LE EXISTS; LEFT IMP EXISTS THM]);;

Note that this corresponds to the initial part of
the third line of the lemma in the way that it is
written in the file. The tactic SIMP_TAC uses the
theorems given in its argument to simplify the
goal. It transforms the goal to:

‘!d. p = 2 + d ==> (((2 + d) - 1) * ((2 + d)
- 1) == 1) (mod (2 + d))‘

As already noted, the “!” symbol is the universal
quantifier, which means that the statement that
now is the goal is universally quantified over all
natural numbers d. The existential quantifier, which
will occur below, is written as “?”.

We now display the rest of the interactive ses-
sion without further explanations between the
commands. This is a dialogue between the human
user executing tactics and the computer presenting
the resulting proof obligations (“goals”). In square
brackets are the assumptions that may be used
when proving the goal.

# e (REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘p = 2 + d‘]

‘(((2 + d) - 1) * ((2 + d) - 1) == 1) (mod (2
+ d))‘

# e (REWRITE_TAC[cong; nat_mod;
ARITH_RULE ‘(2 + x) - 1 = x + 1‘]);;

val it : goalstack = 1 subgoal (1 total)

0 [‘p = 2 + d‘]

‘?q1 q2. (d + 1) * (d + 1) + (2 + d) * q1 = 1
+ (2 + d) * q2‘

# e (MAP_EVERY EXISTS_TAC [‘0‘; ‘d:num‘]);;
val it : goalstack = 1 subgoal (1 total)

0 [‘p = 2 + d‘]

‘(d + 1) * (d + 1) + (2 + d) * 0 = 1 + (2 + d
) * d‘

# e ARITH_TAC;;
val it : goalstack = No subgoals

At this point the proof is finished, as there are no
unproved subgoals left.

To effectively use HOL Light you will need to
learn the dozens of tactics available in the system.
This example uses the following tactics:

SIMP_TAC Simplify the goal by theorems
REPEAT Apply a tactic repeatedly

until it fails
STRIP_TAC Break down the goal
REWRITE_TAC Rewrite conclusion of goal with

equational theorems
ARITH_RULE Linear arithmetic prover over N
MAP_EVERY Map tactic over a list of arguments
EXISTS_TAC Provide a witness to an

existential statement
ARITH_TAC Tactic to solve linear arithmetic

over N
A final note about this example. The lemma talks
about natural numbers, which means that for p = 0
the difference p−1 is defined to be 0. This is called
“truncated” subtraction. This complicates the proof,
and also explains the need for the condition 2 <=
p in the statement of the lemma. If the lemma
had been stated using integers, it would have been
provable without human input by the automated
prover INTEGER_RULE:

# INTEGER_RULE ‘!p:int.
((p - &1) * (p - &1) == &1) (mod p)‘;;

1 basis elements and 0 critical pairs
val it : thm = |- !p. ((p - &1) * (p - &1) ==
&1) (mod p)

In that case no explicit proof script would have
been necessary.

Mizar
If instead of HOL Light we choose Mizar as our
proof assistant, again the second step consists of
downloading and installing the system. Download
the system from the Mizar website [10], unpack
the tar or exe file, and follow the instructions
in the README. Mizar is distributed as compiled
binaries, which means that we do not need to
install anything else first.

The third step then again is to write a formaliza-
tion of the proof. The best way to learn the Mizar
language is to work through the Mizar tutorial [11].

The Law of Quadratic Reciprocity is formalized
in the file “mml/int_5.miz” (part of this file is
shown in Figure 2; it also is on the Web by itself
as [12]). This file again primarily consists of a long
chain of lemmas. It consists of 4701 lines proving
51 lemmas. It also has 3 definitions: a definition
of integer polynomials, a definition of quadratic
residues, and a definition of the Legendre symbol.

To have Mizar check this file for correctness,
copy the file “mml/int_5.miz” inside a fresh di-
rectory called “text”, and outside this directory
type
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  end;
  for n be Element of NAT holds P[n] from NAT_1:sch 1(A1,A4);
  hence thesis;
end;

reserve X for finite set,
  F for FinSequence of bool X;

definition
  let X, F;
  redefine func Card F -> Cardinal-yielding FinSequence of NAT;
  coherence
  proof
    rng Card F c= NAT
    proof
      let y be set;
      assume y in rng Card F;
      then consider x being set such that
A1:   x in dom Card F & y = (Card F).x by FUNCT_1:def 5;
A2:   x in dom F by A1,CARD_3:def 2;
      then F.x in rng F by FUNCT_1:12;
      then reconsider Fx = F.x as finite set;
      y = card Fx by A1,A2,CARD_3:def 2;
      hence thesis;
    end;
    hence thesis by FINSEQ_1:def 4;
  end;
end;

theorem Th48:
  for f be FinSequence of bool X st len f = n &
  (for d,e st d in dom f & e in dom f & d<>e holds f.d misses f.e) holds
  Card union rng f = Sum Card f
proof
  defpred P[Nat] means for f be FinSequence of bool X st
  len f = $1 & (for d,e st d in dom f & e in dom f & d<>e
  holds f.d misses f.e) holds Card union rng f = Sum Card f;
A1: P[0]
  proof
    let f be FinSequence of bool X;
    assume len f = 0 & (for d,e st d in dom f & e in dom f & d<>e
    holds f.d misses f.e);
    then f = {};
    hence thesis by CARD_1:47,CARD_3:9,RVSUM_1:102,ZFMISC_1:2;
  end;
A2: for n be Element of NAT st P[n] holds P[n+1]
  proof
    let n be Element of NAT;
    assume
A3: P[n];
    P[n+1]
    proof
      let f be FinSequence of bool X;
      assume
A4:   len f = n+1 &
      (for d,e st d in dom f & e in dom f & d<>e holds f.d misses f.e);
      then
A5:   f <> {};
      then consider f1 be FinSequence of bool X,Y be Element of bool X
      such that
A6:   f = f1^<*Y*> by HILBERT2:4;
A7:   n+1 = len f1 +1 by A4,A6,FINSEQ_2:19;
      for d,e st d in dom f1 & e in dom f1 & d<>e holds f1.d misses f1.e
      proof
        let d,e;
        assume
A8:     d in dom f1 & e in dom f1 & d<>e;
        then
A9:     f.d = f1.d & f.e = f1.e by A6,FINSEQ_1:def 7;
        d in dom f & e in dom f by A6,A8,FINSEQ_2:18;
        hence thesis by A4,A8,A9;
      end;
      then
A10:  Card union rng f1 = Sum Card f1 by A3,A7;
      Union f1 is finite;
      then reconsider F1 = union(rng f1) as finite set;
      F1 misses Y
      proof
        assume F1 meets Y;
        then consider x be set such that
A11:    x in F1 /\ Y by XBOOLE_0:4;
        x in F1 by A11,XBOOLE_0:def 3;
        then consider Z be set such that
A12:    x in Z & Z in rng f1 by TARSKI:def 4;
        consider k be Nat such that
A13:    k in dom f1 & f1.k = Z by A12,FINSEQ_2:11;

Figure 3. Fragment of the Mizar formalization
of the Law of Quadratic Reciprocity.

mizf text/int_5.miz

This will print something like:

Processing: text/int_5.miz

Parser [4701] 0:02
Analyzer [4700] 0:13
Checker [4700] 1:14
Time of mizaring: 1:29

which means that the file was checked without
errors. Try modifying int_5.miz and see whether
the checker will notice that the file now no longer
is correct.

The Law of Quadratic Reciprocity is the 49th
lemma from the file. It reads:

p>2 & q>2 & p<>q
implies Lege(p,q)*Lege(q,p)=

(-1)|ˆ(((p-’1) div 2)*((q-’1) div 2))

The proof of this statement takes 1268 lines of
Mizar code! Here is a smaller example of a Mizar

proof. This is the 11th lemma from the file. See
Figure 4 below.

theorem Th11:
i gcd m = 1 & i is_quadratic_residue_mod m &
i,j are_congruent_mod m

implies j is_quadratic_residue_mod m
proof
assume

A1: i gcd m = 1 &
i is_quadratic_residue_mod m &
i,j are_congruent_mod m;

then consider x being Integer such that
A2: (xˆ2 - i) mod m = 0 by Def2;

m divides (i - j) by A1,INT_2:19;
then

A3: (i - j) mod m = 0 by Lm1;
(xˆ2 - j) mod m

= ((xˆ2 - i) + (i - j)) mod m
.= (((xˆ2 - i) mod m) + ((i - j) mod m))

mod m by INT_3:14
.= 0 by A2,A3,INT_3:13;

hence thesis by Def2;
end;

Figure 4. Small lemma from the Mizar
formalization of the Law of Quadratic
Reciprocity.

The lemmas from the Mizar library to which this
proof refers are:

INT_2:19 a,b are_congruent_mod c iff
c divides (a-b)

INT_3:13 (a mod n) mod n = a mod n
INT_3:14 (a + b) mod n =

((a mod n) + (b mod n)) mod n
Lm1 (x divides y implies y mod x = 0) &

(x<>0 & y mod x = 0 implies
x divides y)

Def2 a is_quadratic_residue_mod m iff
ex x st (xˆ2 - a) mod m = 0

If you think that the condition “i gcd m = 1” is
not used in this proof, you can try removing it,
both from the statement and from the “assume”
step, and see what happens when you check the
file again.

The Future of Formal Mathematics
In mathematics there have been three main revolu-
tions:

• The introduction of proof by the Greeks
in the fourth century BC, culminating in
Euclid’s Elements.

• The introduction of rigor in mathematics
in the nineteenth century. During this time
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the nonrigorous calculus was made rigor-
ous by Cauchy and others. This time also
saw the development of mathematical logic
by Frege and the development of set theory
by Cantor.

• The introduction of formal mathematics
in the late twentieth and early twenty-first
centuries.

Most mathematicians are not aware that this third
revolution already has happened, and many proba-
bly will disagree that this revolution even is needed.
However, in a few centuries mathematicians will
look back at our time as the time of this revolu-
tion. In that future most mathematicians will not
consider mathematics to be definitive unless it has
been fully formalized.

Although the revolution of formal mathematics
already has happened and formalization of mathe-
matics has become a routine activity, it is not yet
ready for widespread use by all mathematicians.
For this it will have to be improved in two ways:

• First of all, formalization is not close enough
to existing mathematical practice yet to be
attractive to most mathematicians. For
instance, both HOL Light and Mizar define

1
0
= 0

because they do not have the possibility
to have functions be undefined for some
values of the arguments. This is just a triv-
ial example, but in many other places the
statements of formalized mathematics are
not close to their counterpart in everyday
mathematics. Here there exists room for
significant progress.

However, it is not important to have
proof assistants be able to process existing
mathematical texts. Writing text in a styl-
ized formal language is easy. The fact that
proof assistants are not able to understand
natural language will not be a barrier to
having formalization be adopted by the
working mathematician.

• The second improvement that will be need-
ed is on the side of automation. With this I
do not mean that the computer should take
steps that a mathematician would need to
think about. Formalization of mathematics
is about checking, and not about discovery.

However, currently steps in a proof that
even a high school student can easily take
without much thought often take many
minutes to formalize. This lack of automa-
tion of “high school mathematics” is the
most important reason why formalization
currently still is a subject for a small group
of computer scientists, instead of it having
been discovered by all mathematicians.

Still, there are no fundamental problems that block
these improvements from happening. It is just a
matter of good engineering. In a few decades it
will no longer take one week to formalize a page
from an undergraduate textbook. Then that time
will have dropped to a few hours. Also then the
formalization will be quite close to what one finds
in such a textbook.

When this happens we will see a quantum leap,
and suddenly all mathematicians will start using
formalization for their proofs. When the part of
refereeing a mathematical article that consists of
checking its correctness takes more time than
formalizing the contents of the paper would take,
referees will insist on getting a formalized version
before they want to look at a paper.

However, having mathematics become utterly
reliable might not be the primary reason that even-
tually formal mathematics will be used by most
mathematicians. Formalization of mathematics can
be a very rewarding activity in its own right. It
combines the pleasure of computer programming
(craftsmanship, and the computer doing things
for you), with that of mathematics (pure mind,
and absolute certainty.) People who do not like
programming or who do not like mathematics
probably will not like formalization. However, for
people who like both, formalization is the best
thing there is.
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