
DOI: 10.1007/s00145-007-0211-0

J. Cryptology (2007) 20: 203–235

© 2007 International Association for
Cryptologic Research

Formal Proofs for the Security of Signcryption∗

Joonsang Baek
Institute for Infocomm Research,

21 Heng Mui Keng Terrace, Singapore 119613
jsbaek@i2r.a-star.edu.sg

Ron Steinfeld
Department of Computing, Macquarie University,

North Ryde, NSW 2109, Australia
rons@ics.mq.edu.au

Yuliang Zheng
Department of Software and Information Systems,

University of North Carolina at Charlotte,
Charlotte, NC 28223, U.S.A.

yzheng@uncc.edu

Communicated by Dan Boneh

Received 10 May 2002 and revised 22 December 2006
Online publication 22 March 2007

Abstract. Signcryption is an asymmetric cryptographic method that provides simul-
taneously both message confidentiality and unforgeability at a low computational and
communication overhead. In this paper we propose realistic security models for sign-
cryption, which give the attacker power to choose both messages/signcryptexts as well
as recipient/sender public keys when accessing the signcryption/unsigncryption ora-
cles of attacked entities. We then show that Zheng’s original signcryption scheme is
secure in our confidentiality model relative to the Gap Diffie–Hellman problem and is
secure in our unforgeability model relative to a Gap version of the discrete logarithm
problem. All these results are shown in the random oracle model.

Keywords. Signcryption, Flexible signcryption/unsigncryption oracle models, Gap
Diffie–Hellman problem, Gap discrete log problem.

∗ A part of this work was done while the first author was with the School of Network Computing,
Monash University (Australia)/the School of Information Technology and Computer Science, the Univer-
sity of Wollongong (Australia) and the second author was with the School of Network Computing, Monash
University.

203

204 J. Baek, R. Steinfeld, and Y. Zheng

1. Introduction

1.1. Motivation

Message confidentiality is one of the most important goals of cryptography, both in
the symmetric and asymmetric settings. Over the last decade, in the asymmetric set-
ting, a number of encryption schemes meeting strong confidentiality requirements, such
as security against adaptive chosen ciphertext attacks [19], [24], have emerged. Early
constructions of such schemes include Zheng and Seberry’s [36] public key encryption
schemes, which are efficient but were not proven to be secure against chosen ciphertext
attacks “in the reductionist way” (namely, in such a way that presents a reduction from at-
tacking cryptographic schemes to solving well-known computationally hard problems).
Shortly after Zheng and Seberry’s proposals, several other schemes [8], [14], [22] were
proposed, whose security against chosen ciphertext attacks can be analyzed in the re-
ductionist way under an additional heuristic assumption known as the random oracle
model [7]. The first practical scheme that does not depend on the random oracle model
was given by Cramer and Shoup [10] and received great attention from the cryptographic
community.

Along with message confidentiality, message authenticity is another important goal of
cryptography. In the asymmetric setting, this goal was realized by the advent of digital
signatures. The essential security requirement for digital signatures is the (existential)
unforgeability against adaptive chosen message attacks [16], where an attacker is al-
lowed to query a number of messages of his choice to the signing oracle. Note that
slight modifications of the classical ElGamal signature [12] and the Schnorr signature
[26] schemes were proved [23], [20] to be secure in this sense, that is, (existentially)
unforgeable against adaptive chosen message attack [16] (in the random oracle model).

A natural question one can now ask is how to integrate encryption and signature
schemes in an efficient way without sacrificing each scheme’s security, in other words,
how to provide efficiently communicating messages with confidentiality and authenticity
simultaneously as one cryptographic function. In 1997 Zheng [33] gave a positive answer
to the question: He proposed a cryptographic scheme called “signcryption” which inte-
grates the functionality of discrete log based public key encryption and digital signature
schemes in a very efficient way.

Although Zheng’s signcryption scheme has been the focus of a number of research
works, no reductionist-style security analysis of Zheng’s signcryption, as far as we know,
has ever been given. In this paper we propose precise and realistic security models for
generic signcryption schemes and provide rigorous proofs, based on these proposed
models, that Zheng’s original signcryption scheme meets strong security requirements
with respect to message confidentiality and unforgeability under known cryptographic
assumptions.

1.2. Related Work

Compared with the asymmetric setting, research on the integration of message confi-
dentiality and authenticity was relatively more active in the symmetric setting. A series
of research works appeared on using modes of block ciphers to give both message con-
fidentiality and integrity [17], [25]. Also, security issues related to the composition of

Formal Proofs for the Security of Signcryption 205

symmetric key encryption and message authentication code (MAC) were considered by
Bellare and Namprepre [6]. They concluded that only “Encrypt-then-MAC (EtM)” com-
position is generically secure against chosen ciphertext attack and existentially unforge-
able against chosen message attack. Krawczyk [18] also considered the same problem
when building a secure channel over insecure networks. Interestingly, his conclusion was
that the “MAC-then-Encrypt (MtE)” composition is also secure, under the assumption
that the encryption method is either a secure CBC mode or a stream cipher that XORs
the data with a random pad.

In the asymmetric setting, Tsiounis and Yung [32] proposed a variant of the ElGamal
encryption scheme where Schnorr’s signature is used to provide non-malleability. How-
ever, the security goal of their scheme is to provide confidentiality; consequently, the
strong origin authentication is not supported in their scheme. (Note that this scheme was
analyzed again by Schnorr and Jakobsson [27] under the generic model plus the random
oracle model. Note also that the security proof of Tsiounis and Yung’s scheme given in
[32] was later found to be flawed [29]: The Schnorr signature scheme that was used as
a “proof of knowledge” in their public key encryption scheme, makes it impossible to
simulate efficiently the responses to the chosen ciphertext attacker’s decryption queries.
We refer readers to [29] for more details.)

The first attempt to provide formal security analysis of signcryption schemes was
made by Steinfeld and Zheng [31], who proposed a signcryption scheme based on the
integer factorization problem and provided a formal security model and proof for the
unforgeability of the proposed scheme. However, a formal security model and proof for
the confidentiality of their scheme was not provided. (We note, however, that following
an earlier version of this work, the analysis of the factoring-based signcryption scheme
has been extended to cover both confidentiality and unforgeability in the strong sense that
is presented in the following sections [30]. Interestingly, although the result in [30] for
confidentiality is analogous to ours in its reliance on a variant of the Gap Diffie–Hellman
assumption in a subgroup ofZ∗N for N an RSA modulus, the unforgeability result in [30],
for a suitable choice of scheme parameters, does not rely on a “gap” assumption, but
only on the hardness of factoring an RSA modulus N , given a generator for the utilized
subgroup of Z∗N .)

Independently of our work, security models for signcryption similar to ours were
proposed by An et al. [1], who analyzed the security of generic compositions of black-
box signature and encryption schemes. Our unforgeability notion FSO-UF-CMA, which
is defined precisely in Section 3.3, corresponds to unforgeability in the “Multi-User
Insider” setting defined by An et al. in [1], whereas our confidentiality notion FSO/FUO-
IND-CCA2, which is defined precisely in Section 3.2, corresponds to confidentiality in
the weaker “Multi-User Outsider” setting of An et al. In Section 1.3.2 we discuss our
models and their relationship to those defined by An et al. in great detail.

1.3. Differences between Our Security Model and Other Models

1.3.1. Differences between Symmetric and Asymmetric Models

To address the significant difference between security implication of the compositions of
encryption and authentication in the symmetric setting and that in the asymmetric setting,
we consider confidentiality of the “Encrypt-then-MAC (EtM)” and “Encrypt-and-MAC

206 J. Baek, R. Steinfeld, and Y. Zheng

(EaM)” compositions in the symmetric setting, and the security of the directly corre-
sponding simple asymmetric versions “Encrypt-then-Sign (EtS)” and “Encrypt-and-Sign
(EaS)” (defined in the natural way, with the signer’s public key appended). We point out
that while the symmetric composition EtM is secure against chosen ciphertext attack
(indeed, EtM is generically secure as shown in [6]), the simple asymmetric version EtS
is completely insecure against adaptive chosen ciphertext attack, even if the underlying
encryption scheme is secure against adaptive chosen ciphertext attack. The reason is that
in the asymmetric version, a ciphertext in the composed scheme contains an additional
component (not present in the symmetric versions), namely, the sender’s signature pub-
lic key. The fact that this component is easily malleable implies the insecurity of the
asymmetric version EtS under adaptive chosen ciphertext attack.

As an example, assume that a sender Alice encrypts and signs her message m using the
EtS composition. That is, she encrypts the message m using a public key encryption algo-
rithm EpkB (·) and computes c = EpkB (m). Then she signs on c using her digital signature
algorithm SskA(·) to produce σ = SskA(c). Now the ciphertext C is (c, σ). However, an
adversary Marvin now generates his own public and private key pair (pkM , skM) and
signs on c obtained by eavesdropping the ciphertext C en route from Alice to Bob.
Namely, he can produce C ′ = (c,SskM (c)) where SskM (·) is Marvin’s digital signature
algorithm. Then he hands in his public key pkM (which may be contained in Marvin’s
digital certificate) to Bob. Now notice that C ′ which is different from C is completely
verified as a valid ciphertext using Marvin’s public key pkM and Bob decrypts it into m.
Hence Marvin succeeds in his chosen ciphertext attack on the EtS scheme even if the
underlying asymmetric encryption scheme is strong, say, secure against adaptive chosen
ciphertext attack. (For completeness, we remark that a secure generic EtS variant which
fixes the above problem of the simple EtS was given by An et al. [1].)

1.3.2. Discussion of Our Models in the Context of Other Asymmetric Models

The discussion in this section focuses on explaining the relationship between security
models for signcryption schemes defined by An et al. [1] and our security notions as
defined in Section 3. First we review the classification of security models for signcryption
schemes defined by An et al. [1].

Two-User versus Multi-User Setting. The first classification of security models for
signcryption schemes depends on the assumed application setting. In the “Two-User”
setting, it is assumed that there are only two users of the scheme: a single sender Alice
with key pair (skA, pkA) and a single receiver Bob with key pair (skB, pkB). Hence,
in this setting, the receiver’s public key for all messages signcrypted by Alice is fixed
to Bob’s public key pkB . Similarly, the sender’s public key for all signcryptexts un-
signcrypted by Bob is fixed to Alice’s public key pkA. In contrast, the “Multi-User”
setting assumes that there are many users of the scheme besides the attacked users Alice
and Bob. Thus, in this setting the receiver’s public key for messages signcrypted by
Alice can be any receiving user’s public key pkR (not necessarily Bob’s pkB). Simi-
larly, the sender’s public key for signcryptexts unsigncrypted by Bob can be any sending
user’s public key pkS (not necessarily Alice’s pkA). In particular, in this setting the
attacker is given the power to choose his own reciever/sender public keys when access-

Formal Proofs for the Security of Signcryption 207

ing Alice/Bob’s signcryption/unsigncryption oracles. This power does not exist in the
Two-User setting.

Insider versus Outsider Setting. The second classification of security models for sign-
cryption schemes depends on the identity of the attacker. In the “Outsider” setting, the
attacker is assumed to be a third party, distinct from both the attacked users Alice and
Bob. To break confidentiality in this setting, the goal of the attacker is to recover some
information on a message signcrypted by Alice to Bob, assuming the signcryptext has
not been unsigncrypted by Bob. To break unforgeability in this setting, the goal of the
attacker is to forge a signcryptext from Alice to Bob on a message which has not been
signcrypted by Alice. Note that in the outsider setting, since the attacker is a third party,
he only knows the public keys of Alice and Bob. In contrast, in the “Insider” setting,
the attacker is assumed to be a second party, meaning that the attacker is either Al-
ice (attacking Bob’s confidentiality) or Bob (attacking Alice’s unforgeability). To break
Bob’s confidentiality in this setting, Alice’s goal is to recover any partial information
on a message signcrypted to Bob with Alice’s public key as the sender’s public key,
assuming the signcryptext has not been unsigncrypted by Bob with Alice’s public key as
the sender’s public key (note that in this setting, the attacker Alice may know the sender’s
private key). To break Alice’s unforgeability in this setting, Bob’s goal is to forge a valid
signcryptext from Alice to Bob on a message which has never been signcrypted by Alice
to Bob (note that in this setting the attacker Bob may know the receiver’s private key).

Our Confidentiality Notion. The strongest confidentiality notion for signcryption
schemes is obtained by requiring confidentiality in the “Multi-User Insider” setting.
It is easy to verify that Zheng’s signcryption scheme is completely insecure in this set-
ting because the Diffie–Hellman key gxA xB (which is easily recoverable by the sender
Alice) defined by Alice and Bob’s public keys gxA and gxB suffices to unsigncrypt any
signcryptext from Alice to Bob. However, we make the following observations. First, we
emphasize, as also acknowledged in [1], that this model is under normal circumstances
not of significant importance because it effectively assumes that the sender Alice is try-
ing to unsigncrypt a signcryptext which was sent by herself. Thus this model appears
only useful in providing “forward security” under special circumstances in which an
attacker who breaks into Alice’s system obtains her secret key in order to unsigncrypt
a message previously signcrypted by Alice to Bob. Second, as pointed out by Zheng in
the full version of the original paper [34], this insecurity can be considered a positive
feature, called “Past Message Recovery”, since it allows Alice to store signcryptexts and
unsigncrypt them in the future when desired.

In view of the above discussion, we believe that for most applications it suffices for a
signcryption scheme to achieve confidentiality in the “Multi-User Outsider” setting. Our
independently defined confidentiality notion “FSO/FUO-IND-CCA2” for this setting
matches the corresponding definition by An et al. [1].

1.3.2.1. Our Unforgeability Notion. The strongest unforgeability notion for signcryp-
tion schemes corresponds to unforgeability in the “Multi-User Insider” setting. Our
independently defined unforgeability notion “FSO-UF-CMA” for this setting matches
the corresponding definition by An et al. [1].

208 J. Baek, R. Steinfeld, and Y. Zheng

Like the model proposed by An et al. [1], our model also does not explicitly include
support for non-repudiation, that is, the ability of a receiver of a valid signcryptext
to convince a third party that a given sender has sent this signcryptext. However, as
also pointed out in [1], unforgeability in the sense of FSO-UF-CMA guarantees that
the receiver cannot forge any valid signcryptext by the sender, so non-repudiation can
always be achieved using a protocol run between the receiver and the third party, which
convinces the third party of the validity of a signcryptext with respect to a given message
and sender and receiver public keys. A generic solution which does not compromise the
receiver’s secret key to the third party, is to use a zero-knowledge proof of signcryptext
validity. Specific protocols for Zheng’s scheme are presented by Zheng in [34].

On the Power of Attackers in the Multi-User Setting. The extra power given to the at-
tacker in the Multi-User setting is the ability to access “flexible” signcryption/
unsigncryption oracles which allow the attacker to specify a receiver/sender’s public
key in addition to a message/signcryptext. In a practical application, such an attack
might be mounted by the attacker Marvin by requesting a new public key certificate
from the Certificate Authority (CA) each time he wants to query Alice’s signcryption
oracle with a new public key of his choice. A scheme meeting our security notion must
be secure even if Marvin can get as many public key certificates issued as he wishes
for arbitrary public keys of his choice. In some applications it may be possible to place
significant constraints on the public keys that Marvin can use, for example through addi-
tional checks by the CA that users “know” the secret key associated to their public key.
However, we believe that for the sake of wide applicability one should be conservative
and avoid such assumptions if possible.

Security of signcryption in the Two-User setting does not imply security in the
Multi-User setting. Furthermore, there is no known efficient (in particular, not using
encryption/signature primitives) generic conversion of a “Two-User secure” scheme
into a “Multi-User secure” scheme. The “semi-generic” efficient conversion given by
An et al. [1] only works for the schemes they considered, which are built from sepa-
rate signature and encryption primitives (the incorrect claim in the conference paper [1]
that the conversion is generic was subsequently corrected in an updated version of the
paper [2]).

To get a feeling for the issues involved, consider the following example (which can be
used as a counterexample to prove that the semi-generic conversion in [1] and [2] is not
generic). Given a signcryption scheme secure in the Two-User setting, we construct a new
signcryption scheme which is identical except that the signcryption algorithm appends
in the signcryptext one bit of the sender’s secret key, where the secret bit position is
determined as a function of the receiver’s public key. In the Two-User setting a forging
attacker can only query the sender’s signcryption oracle with one receiver public key
fixed for the whole attack and hence in this setting the forger can only get a single bit
of the secret key. Consequently, the new scheme is still unforgeable in the Two-User
setting. On the other hand, in the Multi-User setting the attacker can quickly get all the
bits of the sender’s secret key by querying the signcryption oracle with many different
receiver public keys, so the scheme is easily forgeable in the Multi-User setting (and it
remains forgeable in the Multi-User setting, for the same reason, even after applying the

Formal Proofs for the Security of Signcryption 209

semi-generic conversion in [1] and [2]). This example is not entirely artificial—indeed,
it is because of an interaction between the receiver’s public key and the sender’s secret
key in Zheng’s signcryption scheme that we need in this paper, for instance, the “Gap
Discrete Log” assumption to prove unforgeability in the Multi-User setting, whereas
just the weaker “Discrete Log” assumption suffices for unforgeability in the Two-User
setting [3].

Other Assumptions. We point out two implicit assumptions we have made in the cur-
rent work. The first is that our Multi-User models apply to “static” attackers because
the attacked public keys are fixed at the beginning of the attack game. The second is
that our scheme assumes the standard practice that each user generates two independent
private/public key-pairs for sending and receiving, respectively. However, we remark
that our security proofs for Zheng’s scheme under the Gap Diffie–Hellman (GDH) as-
sumption can be extended to the “key-reuse” setting where a single key-pair is used for
both signcryption and unsigncryption (this involves simulating the additional oracles
present in this setting in the same way as the oracle simulations performed in the current
proofs).

1.4. Our Main Results

The most attractive feature of Zheng’s signcryption scheme is its efficiency. Namely,
the dominant computational cost in both signcryption and unsigncryption algorithms
is approximately only a single exponentiation in the underlying subgroup. This high
efficiency is achieved by sharing the exponentiation for both the encryption and signature
“portions” of the computation, and is therefore at least twice as efficient as a generic
composition (using one of the generic compositions presented in [1]) of discrete log
based signature and encryption schemes, each of which would presumably perform (at
least) one separate exponentiation.

Our results demonstrate that despite its high efficiency, Zheng’s scheme still achieves
strong security notions in the Multi-User setting with respect to known cryptographic
assumptions and the random-oracle model for the underlying hash functions. In particu-
lar, our main results can be summarized as follows. First, we prove, in the random-oracle
model, that Zheng’s scheme achieves confidentiality in the Multi-User Outsider setting
(or equivalently “FSO/FUO-IND-CCA2”, which is formally defined in the next section)
under the GDH assumption [21] in a prime-order subgroup of Z∗p, where p is prime, and
the assumption that the underlying one-time symmetric encryption scheme is secure. Sec-
ond, we prove, in the random oracle model, that Zheng’s scheme achieves unforgeability
in the Multi-User Insider setting (or equivalently “FSO-UF-CMA”, which is formally
defined in the next section) assuming the Gap Discrete Log (GDL) assumption in the
underlying subgroup, which is implied by, but is possibly a weaker assumption than, the
GDH assumption in the same subgroup.

We note that Zheng’s scheme relies for its security on specific number-theoretic com-
putational complexity assumptions, and on the random oracle model. These assumptions
may be avoided, at the cost of efficiency, by using a generic encryption/signature com-
position scheme and applying the results in [1].

210 J. Baek, R. Steinfeld, and Y. Zheng

2. Preliminaries

We use the notation A(·, ·) to denote an algorithm, with input arguments separated by
commas (our underlying computational model is a Turing Machine). If algorithm A
makes calls to oracles, we list the oracles separated from the algorithm inputs by the
symbol “|”. For a probabilistic algorithm A(·), we use A(x; r) to denote the output of A
on input x with a randomness input r . If we do not specify r explicitly we do so with the
understanding that r is chosen statistically independent of all other variables. We denote
by {A(x)} the set of outputs of A on input x as we sweep the randomness input for A
through all possible strings.

We denote by 〈g〉 a subgroup generated by a group element g.
We denote | · | as the number of bits in the binary representation of an input.

Given a set SPsk we denote by sk
R←SPsk the assignment of a uniformly and indepen-

dently distributed random element from the set SPsk to the variable sk.
Let Z∗n = {x ∈ Zn | gcd(x, n) = 1}. (Note that if q is prime, Z∗q = Zq\{0}.)
For integers g and p, we let Ordp(g) denote the order of g in the multiplicative

group Z∗p.
We say a probability function f : N→ R[0,1] is negligible in k if, for all c > 0, there ex-

ists k0 ∈ N such that f (k) ≤ 1/kc whenever k ≥ k0. Here,R[0,1] = {x ∈ R | 0 ≤ x ≤ 1}.

3. Our Security Notions for Signcryption Schemes

3.1. Description of Generic Signcryption Scheme

First we formally define a “signcryption” scheme in a general way as follows.

Definition 1 (Generic Signcryption Scheme). A signcryption scheme SCR = (GC,
GKA,GKB,SC,USC) consists of the following algorithms:

1. A probabilistic common parameter/oracle generation algorithm GC that takes a
security parameter k as input, and returns a sequence of common parameters cp
containing the security parameter k and other system-wide parameters such as the
description of computational groups and hash functions.

2. A probabilistic sender key-pair generation algorithm GKA that takes a common
parameter sequence cp as input and returns a sender’s secret/public key-pair
(skA, pkA).

3. A probabilistic receiver key-pair generation algorithm GKB that takes a common
parameter sequence cp as input and returns a receiver’s secret/public key-pair
(skB, pkB).

4. A probabilistic signcryption algorithm SC that takes a common parameter sequence
cp, a sender’s secret key skA, a receiver’s public key pkB , and a message m ∈ SPm

(SPm is the message space) as input, and returns a signcryptext C .
5. An unsigncryption algorithm USC that takes a common parameter sequence cp, a

receiver’s secret key skB , a sender’s public key pkA, and a signcryptext C as input,
and returns either a message m or a “Rej (reject)” symbol.

Formal Proofs for the Security of Signcryption 211

3.2. Confidentiality Notion for Signcryption Schemes in the FSO/FUO Model

Following the discussions in Section 1.3, we provide an attack model for confidentiality
of the generic signcryption scheme SCR, which we call the “Flexible Signcryption
Oracle/Flexible Unsigncryption Oracle (FSO/FUO)” model. In this model the adversary
Marvin’s goal is to break the confidentiality of messages between the sender Alice and
the receiver Bob. Marvin is given Alice’s public key pk∗A and Bob’s public key pk∗B ,
and has access to a “flexible” signcryption oracle, as well as a “flexible” unsigncryption
oracle: on receiving (pkR,m) where pkR denotes a receiver’s public key generated by
Marvin at will (Marvin may choose the receiver’s public key as Bob’s public key pk∗B ,
say, pkR = pk∗B .) and m denotes a plaintext, the flexible signcryption oracle returns a
signcryptext after performing signcryption under Alice’s private key sk∗A. We denote the
flexible signcryption oracle by SC(cp, sk∗A, ·, ·)where no specified receiver’s public key
is presented as the input argument. On the other hand, the flexible unsigncryption oracle,
on receiving (pkS,C) where pkS denotes a sender’s public key generated by Marvin at
will (similarly to the flexible signcryption oracle, Marvin may choose the sender’s public
key as Alice’s public key pk∗A, say, pkS = pk∗A) and C denotes a signcryptext, returns a
plaintext or a “Rej” (Reject) symbol after performing unsigncryption under Bob’s private
key sk∗B . Note that the unsigncryption oracle is denoted by USC(cp, sk∗B, ·, ·), where no
specified sender’s public key is presented as the input argument.

In other words, the flexible signcryption and unsigncryption oracles are not constrained
to be executed only under pk∗B and pk∗A, respectively—Bob and Alice’s public key can
be replaced by the public keys generated by Marvin. Accordingly, the FSO/FUO model
gives Marvin the full chosen-plaintext/ciphertext power with the ability to choose the
sender and receiver’s public keys, the message as well as the signcryptext.

Using the notion of indistinguishability of encryption [5], [15], we formalize the
confidentiality of signcryption against the above-described (adaptive) chosen ciphertext
attack under the FSO/FUO model. We say a signcryption scheme is secure in the sense
of indistinguishability (abbreviated by “IND”), there is no polynomial-time adversary
that can learn any information about the plaintext from the signcryptext except for its
length. Following the style of [5], we call this confidentiality notion of signcryption
“FSO/FUO-IND-CCA2.” Below, we formally define FSO/FUO-IND-CCA2.

Definition 2 (FSO/FUO-IND-CCA2). Let SCR = (GC,GKA,GKB,SC,USC) be a
generic signcryption scheme. Let ACCA be an attack algorithm (attacker) against the
indistinguishability of the scheme SCR. Consider the following attack game:

SCRINDGame(k,ACCA,SCR)
cp← GC(k)

(sk∗A, pk∗A)
R←GKA(cp)

(sk∗B, pk∗B)
R←GKB(cp)

(m0,m1)← ACCA(k, cp, find, pk∗A, pk∗B | SC(cp, sk∗A, ·, ·),USC(cp, sk∗B, ·, ·))
β

R←{0, 1}; C∗ ← SC(cp, sk∗A, pk∗B,mβ)

β ′ ← ACCA(k, cp, guess, pk∗A, pk∗B,C∗ | SC(cp, sk∗A, ·, ·),USC(cp, sk∗B, ·, ·))
If β ′ = β and (pk∗A,C∗) was never queried to USC(cp, sk∗B, ·, ·))
Return 1 Else Return 0

212 J. Baek, R. Steinfeld, and Y. Zheng

Note that two messages m0 and m1 output by the attacker satisfy |m0| = |m1|. Note also
that ACCA is allowed to query (pkS,C∗) to the unsigncryption oracle USC(cp, sk∗B, ·, ·)
where unsigncryption is performed under the public key pkS which is arbitrarily chosen
by ACCA and is different from pk∗A.

We quantify ACCA’s success by the probability

SuccFSO/FUO-IND-CCA2

ACCA,SCR
(k)

def= 2Pr[SCRINDGame(k,ACCA,SCR) = 1]− 1.

We also quantify the insecurity of scheme SCR in the sense of FSO/FUO-IND-
CCA2 against arbitrary attackers with resource parameters R P = (t, qSC, qUSC) by the
advantage

InSecFSO/FUO-IND-CCA2
SCR (t, qSC, qUSC)

def= max
ACCA∈ASR P

{SuccFSO/FUO-IND-CCA2

ACCA,SCR
(k)}.

The attacker set ASR P contains all attackers with resource parameters R P , meaning run-
ning time+ program size at most t , and at most qSC and qUSC queries to the signcryption
and unsigncryption oracles, respectively.

We say SCR is FSO/FUO-IND-CCA2 secure if InSecFSO/FUO-IND-CCA2
SCR (t, qSC, qUSC)

is a negligible function in k for any polynomials t , qSC, and qUSC in k.

3.3. Unforgeability Notion for Signcryption Schemes in the FSO Model

We now present our unforgeability notion which we call “FSO-UF-CMA”, meaning
unforgeability of signcryption against adaptive chosen message attack with respect to
the FSO model. Recall that this notion corresponds to An et al.’s Multi-User Insider
model.

The model is as follows. The forger Marvin’s goal is to forge a valid signcryptext
from Alice to some other user. Marvin is given Alice’s (random) public key pk∗A. In
addition, Marvin is given access to Alice’s flexible signcryption oracle (FSO), namely
SC(cp, sk∗A, ·, ·). Marvin can choose any receiver public key pkR and message m and
query the flexible signcryption oracle to get a signcryptext by Alice on message m to
the specified receiver’s public key pkR . At the end of the attack, Marvin is considered
successful in his forgery if he produces a forgery signcryptext C∗ and a forgery receiver
public key pk∗R such that: (1) C∗ is a valid signcryptext from Alice to the receiver
who holds a public key pk∗R (this means that USC(cp, sk∗R, pk∗A,C∗) does not reject,
where sk∗R is the private key corresponding to the forgery recipient public key pk∗R),
and (2) Marvin did not query (pk∗R,m∗) to Alice’s flexible signcryption oracle, where
m∗ = USC(cp, sk∗R, pk∗A,C∗) is the forgery message.

We remark that, because it applies to the Multi-User setting, our new unforgeability
model is stronger than those which appeared in our earlier works [31], [3] in two ways.
First, earlier models allowed Marvin only chosen message access to Alice’s signcryption
oracle with a fixed receiver public key, whereas we allow Marvin full flexibility in
choosing the receiver public key pkM . Second, in earlier models Marvin’s goal was to
forge a signcryptext from Alice to a specified receiver (who possesses a fixed receiver
public key). However, in our new model, we allow Marvin full flexibility in choosing a
receiver whose receiver public key is denoted by pk∗R . Note that our new forgery goal

Formal Proofs for the Security of Signcryption 213

is very weak: we do not even require Marvin to demonstrate “knowledge” of the secret
key sk∗R corresponding to pk∗R , and we allow either (i) conventional forgeries, where
the message m∗ is “new” (as in previous models) or (ii) “Recipient Transfer” forgery,
where the forgery message m∗ was previously queried to Alice’s signcryption oracle
but it was never signcrypted under the recipient key pk∗R . We remark that a “Recipient
Transfer” forgery was called a “Double Spending” attack in [34], due to its implication
in e-commerce payment applications.

Finally, one may wonder why we do not give the attacker access to the sender’s unsign-
cryption oracle. The reason is that we assume the well-established practice that users
generate independent key-pairs for sending and receiving. In this setting it is clear that
the sender’s unsigncryption oracle cannot help a forger because the forger can simulate
such an oracle by himself.

We now give the precise definition of our new unforgeability notion FSO-UF-CMA.

Definition 3 (FSO-UF-CMA). Let SCR = (GC,GKA,GKB,SC,USC) be a sign-
cryption scheme. Let AUF be an attack algorithm (attacker) against the unforgeability of
the scheme SCR. Consider the following attack game:

SCRUFGame(k,SCR,AUF)

cp←GC(k)
(sk∗A, pk∗A)←GKA(cp)
(C∗, pk∗R)←AUF(k, cp, pk∗A | SC(cp, sk∗A, ·, ·))
Find some sk∗R such that (sk∗R, pk∗R) ∈ {GKB(k, cp)}
If such sk∗R does not exist, Return 0
m∗←USC(cp, sk∗R, pk∗A,C∗)
If m∗ �= Rej and (pk∗R,m∗) has not been queried by AUF to SC(cp, sk∗A, ·, ·)
Return 1

Else Return 0

We quantify AUF’s success in breaking the FSO-UF-CMA security notion of scheme
SCR by the probability

SuccFSO-UF-CMA
AUF,SCR (k)

def= Pr[SCRUFGame(k,SCR,AUF) = 1].

We quantify the insecurity of scheme SCR in the sense of FSO-UF-CMA against
arbitrary attackers with resource parameters R P = (t, qSC) by the advantage

InSecFSO-UF-CMA
SCR (t, qSC)

def= max
AUF∈ASR P

SuccFSO-UF-CMA
AUF,SCR (k).

The attacker set ASR P contains all attackers with resource parameters R P , meaning
running time + program size at most t and at most qSC queries to the signcryption
oracle.

We say SCR is FSO-UF-CMA secure if InSecFSO-UF-CMA
SCR (t, qSC) is a negligible func-

tion in k for any polynomials t and qSC in k.

214 J. Baek, R. Steinfeld, and Y. Zheng

4. Zheng’s Original Signcryption Scheme

In this section we give a full description of Zheng’s original signcryption scheme [33].

4.1. One-Time Symmetric Key Encryption Scheme

As a preliminary, we review the definition of the “one-time symmetric key encryption”
[11] which serves as a building block for Zheng’s original signcryption scheme. In fact,
one-time symmetric key encryption schemes are usually used to build hybrid public
key encryption schemes as discussed in [11]. The one-time symmetric key encryption
scheme defined here plays the same role as the one used in hybrid public key encryption
schemes: the symmetric key is used only once to encrypt a single message.

Definition 4 (One-Time Symmetric Key Encryption). A one-time symmetric key en-
cryption scheme SKE consists of the following algorithms:

1. A deterministic encryption algorithm E that takes a security parameter k, a sym-
metric key τ ∈ SPτ , and a message m ∈ SPm as input, and returns a ciphertext
c ∈ SPc. (Note that SPm , SPτ , and SPc denote, respectively, the message, key, and
ciphertext spaces whose size varies as the security parameter k).

2. A deterministic decryption algorithm D that takes a security parameter k, a sym-
metric key τ ∈ SPτ , and a ciphertext c ∈ SPc as input, and returns a message
m ∈ SPm . The function defined by D is one-to-one on SPc and onto SPm .

Note that we do not need the security against chosen plaintext attacks [4] for the one-
time symmetric key encryption scheme to prove the confidentiality of Zheng’s scheme.
An appropriate security notion for the one-time symmetric key encryption scheme is
given in Section 5.2. On the other hand, we do need in our security proof of security that
this scheme is bijective, meaning in particular the decryption function is one-to-one on
the ciphertext space SPc (and hence encryption is also deterministic).

We remark that the one-time pad is a computationally efficient and unconditionally
secure bijective one-time symmetric encryption scheme suitable for our application.
The key size can be reduced by generating it from a short key using a pseudoran-
dom generator, resulting in a computationally secure one-time symmetric encryption
scheme.

4.2. Description of Zheng’s Original Signcryption Scheme

Zheng’s signcryption scheme described in this section is based on the shorthand digital
signature scheme (SDSS1) [33] which is a variant of ElGamal based signature schemes.
Another signcryption scheme SDSS2 can be described and analyzed in a very similar
manner presented in this paper so that we only consider the SDSS1-type signcryption
scheme.

To simplify the security analysis, we have slightly modified SDSS1. In particular, in
our modified scheme the “Diffie–Hellman Key” K is directly provided as input to the
hash function H without first being hashed by the other hash function G.

Formal Proofs for the Security of Signcryption 215

Definition 5 (Zheng’s Original Signcryption Scheme). Each subalgorithm of Zheng’s
original signcryption scheme ZSCR works as follows:

Zheng’s Original Signcryption ZSCR

Common parameter/oracle generation GC(k)
Choose at random primes p and q such that
|p| = k, q > 2lq (k), and q | (p − 1)
(lq : N→N is a function determining the length of q)
Choose a random g ∈ Z∗p such that Ordp(g) = q
Choose a hash function G: {0, 1}∗→{0, 1}lG(k)
(lG: N→N is a function determining the length of the output of G)
Choose a hash function H: {0, 1}∗→Zq

Choose a bijective one-time symmetric key encryption
scheme SKE = (E,D)
with message/key/ciphertext spaces SPm/{0, 1}lG/SPc

cp← (k, p, q, g,G,H,SKE)
Return cp

Sender key-pair generation GKA(cp)

xA
R←Z∗q ; yA ← gxA

skA←(xA, yA); pkA←yA

Return (skA, pkA)

Receiver key-pair generation GKB(cp)

xB
R←Z∗q ; yB ← gxB

skB←(x, y); pkB←yB

Return (skB, pkB)

Signcryption SC(cp, skA, pkB,m)
Parse skA as (xA, yA); Parse pkB as yB

If yB /∈ 〈g〉\{1} Return Rej

x
R←Z∗q ; K ← yx

B ; τ ← G(K)
c← Eτ (m); r ← H(m, yA, yB, K);
If r + xA = 0 Return Rej
Else s ← x/(r + xA)

C ← (c, r, s)
Return C

Unsigncryption USC(cp, skB, pkA,C)
Parse skB as (xB, yB); Parse pkA as yA

If yA /∈ 〈g〉\{1} Return Rej
Parse C as (c, r, s)
If r /∈ Zq or s /∈ Z∗q or c /∈ SPc

Return Rej
Else
ω← (yAgr)s ; K ← ωxB ; τ ← G(K)
m ← Dτ (c)
If H(m, yA, yB, K) = r Return m
Else Return Rej

216 J. Baek, R. Steinfeld, and Y. Zheng

Note that the hash functions G: {0, 1}∗→{0, 1}lG (k) and H: {0, 1}∗→Zq are modelled
as the random oracles [7] in the security analysis. Note also that the key length of the
symmetric encryption is actually lG(k).

5. Security Analysis of Zheng’s Signcryption Scheme

In this section we prove the confidentiality and unforgeability of Zheng’s signcryption
by providing reductions from known cryptographic assumptions. Although we provide
a concrete analysis of our reductions, our main goal is to demonstrate the security of
signcryption against polynomial-time attackers. Hence we did not attempt to optimize
the insecurity bounds for our reductions.

First we recall the definition of the Gap Diffie–Hellman problem given in [21] and
define a Gap Discrete Log problem.

5.1. Computational Primitives

5.1.1. Gap Diffie–Hellman (GDH)

At PKC 2001, Okamoto and Pointcheval [21] proposed a new computational problem
called a “Gap problem” in which an attacker tries to solve an inverting problem with the
help of an oracle that solves a related decisional problem. Namely, the Gap problem is
the dual of inverting and decisional problems.

For our proof of confidentiality of Zheng’s original signcryption in the security model
proposed in this paper, we will need the “Gap Diffie–Hellman (GDH)” problem [21] in
which the attacker is given, in addition to the group element ga and gb for random a, b ∈
Z
∗
q , access to a Decisional Diffie–Hellman (DDH) oracle ODDH that given (ḡ, ḡu, ḡv, z) ∈
〈g〉× 〈g〉× 〈g〉× 〈g〉 checks whether z = ḡuv or not (it is possible that ḡ = g, ḡu = ga ,
and ḡv = gb), and tries to find the Diffie–Hellman key K = gab corresponding to the
given pair (ga, gb). The GDH assumption says that the GDH problem is computationally
intractable. A precise definition follows.

Definition 6 (GDH Assumption). Let GC(k) be the common parameter generation al-
gorithm that outputs (g, p, q), where p and q are primes such that |p| = k, q | (p− 1),
and q > 2lq (k) where lq : N→N denotes a function determining the length of q; g ∈ Z∗p
satisfies Ordp(g) = q . Let AGDH be an attacker. Define the following game:

GDHGame(k,AGDH)

(g, p, q)←GC(k)

a
R←Z∗q ; b

R←Z∗q
K ← AGDH((g, p, q), ga, gb | ODDH(·, ·, ·, ·))
If K = gab then Return 1 Else Return 0

Here, ODDH(·, ·, ·, ·) is a DDH oracle, which, on input (ḡ, ḡu, ḡv, z), outputs 1 if z = ḡuv

and 0 otherwise.

Formal Proofs for the Security of Signcryption 217

We quantify AGDH’s success in solving the GDH problem by the probability

SuccGDH
AGDH,Z∗p

(k)
def= Pr[GDHGame(k,AGDH) = 1].

Also we quantify the insecurity of the GDH problem against arbitrary attackers with
resource parameters R P = (t, qODDH) by the probability

InSecGDH
Z
∗
p
(t, qODDH)

def= max
AGDH∈ASR P

SuccGDH
AGDH,Z∗p

(k).

The attacker set ASR P contains all attackers with resource parameters R P , meaning
running time + program size at most t , and at most qODDH queries to oracle ODDH.

We say the GDH assumption holds if InSecGDH
Z
∗
p
(t, qODDH) is a negligible function in

k for any polynomials t and qODDH in k.

5.1.2. Gap Discrete Log (GDL)

For our proof of unforgeability of Zheng’s original signcryption scheme, we will need
the following “Gap Discrete Log (GDL)” problem. The GDL problem is the discrete log
analogue of the GDH problem defined above. The GDL problem is possibly easier than
the classical discrete log problem because here the attacker is given, in addition to the
group element ga whose discrete log a with respect to a given base g is desired, access to
a restricted DDH oracle OrDDH that given (g, ga, ḡv, z) ∈ 〈g〉 × 〈g〉 × 〈g〉 × 〈g〉 checks
whether z = (ḡv)a or not. Notice that compared with the DDH oracle ODDH used in
the GDH problem, the first two inputs g and ga are fixed in the restricted DDH oracle
OrDDH. The GDL assumption says that the GDL problem is computationally intractable.
A precise definition now follows.

Definition 7 (GDL Assumption). Let GC(k) be the common parameter generation al-
gorithm that outputs (g, p, q), where p and q are primes such that |p| = k, q | (p− 1),
and q > 2lq (k) where lq : N→N denotes a function determining the length of q; g ∈ Z∗p
satisfies Ordp(g) = q . Let AGDL be an attacker. Define the game

GDLGame(k,AGDL)

(g, p, q)←GC(k)

a
R←Z∗q

a′←AGDL((g, p, q), ga | OrDDH(g, ga, ·, ·))
If a′ = a then Return 1 Else Return 0

Here, OrDDH(g, ga, ·, ·) is a restricted DDH oracle, which, on input (g, ga, ḡv, z), outputs
1 if z = (ḡv)a and 0 otherwise.

We quantify AGDL’s success in solving the GDL problem by the probability

SuccGDL
AGDL,Z∗p

(k)
def= Pr[GDLGame(k,AGDL) = 1].

218 J. Baek, R. Steinfeld, and Y. Zheng

We quantify the insecurity of GDL against arbitrary attackers with resource parameters
R P = (t, qOrDDH) by the probability

InSecGDL
Z
∗
p
(t, qOrDDH)

def= max
AGDL∈ASR P

SuccGDL
AGDL,Z∗p

(k).

The attacker set ASR P contains all attackers with resource parameters R P , meaning
running time + program size at most t , and at most qOrDDH queries to oracle OrDDH.

We say the GDL assumption holds if InSecGDL
Z
∗
p
(t, qOrDDH) is a negligible function in

k for any polynomials in t and qOrDDH in k.

We remark that in the GDH problem, the attacker’s goal is weaker, namely to find
the Diffie–Hellman key K = gab (to given base g) corresponding to the given pair
(ga, gb). Since the discrete log of ga allows the attacker to compute the Diffie–Hellman
key K = gab easily, it follows that if the attacker can solve the GDL problem, then
he can also solve the GDH problem. This means that the GDH assumption implies the
GDL assumption. However, the converse may not hold, and the GDL assumption may
actually be a weaker assumption than the GDH assumption.

5.2. Security Notion for One-Time Symmetric Encryption

We now define a security notion for the one-time symmetric key encryption schemeSKE
presented in Section 4.1. As mentioned earlier, we do not need the security against chosen
plaintext attacks for SKE . We merely need the security against a passive attack called
“passive indistinguishability of symmetric key encryption (PI-SKE)” [11]. A formal
definition follows.

Definition 8 (PI-SKE for One-Time Symmetric Key Encryption). Let SKE = (E,D)
be a bijective one-time symmetric key encryption scheme. Let API be an attacker that
defeats the security of SKE in the sense of PI-SKE. Let k ∈ N be a security parameter.
A specification for the attack game is as follows:

SKECFGame(k,API,SKE)
τ

R←SPτ
(m0,m1)← API(k, find)

β
R←{0, 1}; c← Eτ (mβ)

β ′ ← API(k, guess,m0,m1, c)
If β ′ = β Return 1 Else Return 0

We quantify API’s success by the probability

SuccPI-SKE
API,SKE(k)

def= 2Pr[SKECFGame(k,API,SYM) = 1]− 1.

We quantify the insecurity of scheme SKE in the sense of PI-SKE against arbitrary
attackers with resource parameters R P = t by the advantage

InSecPI-SKE
SKE (t)

def= max
API∈ASR P

{SuccPI−SKE
API,SKE

(k)}.

Formal Proofs for the Security of Signcryption 219

The attacker set ASR P contains all attackers with resource parameters R P , meaning
running time + program size at most t .

We say SKE is PI-SKE secure if InSecPI−SKE
SKE (t) is a negligible function in k for any

polynomial in t in k.

5.3. Confidentiality of Zheng’s Signcryption Scheme

For the confidentiality proof of Zheng’s original signcryption scheme ZSCR, we adopt
the proof methodology recently appearing in the literature. (Readers are referred to the
surveys on this technique such as [28] or [9].) We start with the real attack game where
the attacker ACCA tries to defeat the security of the ZSCR scheme in the sense of
FSO/FUO-IND-CCA defined in Section 3.2. We then modify this game by changing
its rules and obtain a new game. Note here that the rules of each game are to describe
how variables in the view of ACCA are computed. We repeat the modification until we
obtain games related to the ability of the attackers API and AGDH to defeat the security
of the one-time symmetric key encryption scheme SKE and to solve the GDH problem,
respectively. When a new game is derived from a previous one, a difference of the views
of the attacker in each game might occur. This difference is measured by the technique
presented in the following lemma.

Lemma 1. Let A1, A2, B1 and B2 be events defined over some probability space. If
Pr[A1 ∧ ¬B1] = Pr[A2 ∧ ¬B2], Pr[B1] ≤ ε and Pr[B2] ≤ ε then we have |Pr[A1] −
Pr[A2]| ≤ ε.

The proof is a straightforward calculation and can be found in [28] and [9]. We now
state and prove the following theorem.

Theorem 1. If the GDH assumption holds and the bijective one-time symmetric key
encryption scheme SKE is PI-SKE secure then Zheng’s original signcryption scheme
ZSCR is secure in the FSO/FUO-IND-CCA2 sense. Concretely, the following bound
holds:

InSecFSO/FUO-IND-CCA2
ZSCR (t, qSC, qUSC, qG, qH)

≤ 2InSecGDH
Z
∗
p
(t ′, qODDH)+ InSecPI-SKE

SKE (t
′′)

+ qSC

(
qG + qH + qSC + qUSC + 2

2lq (k)−1

)
+ qH + 2qUSC

2lq (k)−1
,

where t ′ = t + O((qG)
2+ 1)+ O((qH)

2+ 1)+ O(k3qSC)+ O((k3+ qG+ qH)qUSC)+
t ′′(qSC + qUSC) and qODDH = (qSC + qUSC)(qG + qH).

Proof. Our aim is to keep modifying the real attack game SCRINDGame presented
in Definition 2 until we get to the stage where we obtain SKECFGame in Definition 8
and GDHGame in Definition 6.

We use “ACCA” to refer to the FSO/FUO-IND-CCA2 attacker and use “AGDH” to refer
to the attacker for the GDH problem. Given (k, p, q, g, ga, gb) for random a, b ∈ Z∗q ,

220 J. Baek, R. Steinfeld, and Y. Zheng

AGDH’s goal is to compute the Diffie–Hellman key gab with the help of the DDH oracle
OODH(·, ·, ·, ·).

We start with the following game.

• Game G0. This game is the same as the real attack game SCRINDGame in Defini-
tion 2.

First we run the common parameter/oracle generation algorithm GC of ZSCR on
input a security parameter k and obtain a common parameter cp = (p, q, g,G,H,SKE),
where p and q are primes such that |p| = k, q > 2lq (k), and q | (p− 1); g is an element
in Z∗p such that Ordp(g) = q; G: {0, 1}∗→{0, 1}lG (k) and H: {0, 1}∗→Zq are hash
functions modelled as the random oracles [7]; SKE is the bijective one-time symmetric
key encryption scheme that consists of the encryption function E and the decryption
function D. We then run the sender/receiver key generation algorithms GKA and GKB

respectively on input cp and k, and obtain Alice (sender) and Bob (receiver)’s fixed
private/public key pairs. Here, Alice’s private key consists of (x∗A, y∗A) where y∗A = gx∗A ,
and her public key is y∗A itself. Similarly, Bob’s private key consists of (x∗B, y∗B) where
y∗B = gx∗B , and y∗B itself is his public key.

We give the public key-pair (y∗A, y∗B) to ACCA. Once ACCA submits a pair of plaintexts
(m0,m1) where |m0| = |m1| at the find stage, we pick β ∈ {0, 1} uniformly at random
and create a target signcryptext C∗ = (c∗, r∗, s∗) as follows:

c∗ = Eτ ∗(mβ), r∗ = H(mβ, y∗A, y∗B, K ∗), s∗ = x∗/(r∗ + x∗A),

where

K ∗ = y∗B
x∗
, τ ∗ = G(K ∗)

for x∗ picked uniformly at random from Z
∗
q . On input C∗, ACCA outputs β ′ ∈ {0, 1} at

the guess stage. We denote by S0 the event β ′ = β and use a similar notation Si for all
games Gi .

Since this game is the same as the real attack game, we have

Pr[S0] = 1
2 + 1

2 SuccFSO/FUO-IND-CCA2

ACCA,ZSCR
(k).

• Game G1. In this game we modify the target signcrytext C∗ presented in the previous
game. The modification obeys the following rules:

R1-1 First we choose τ+ ∈ {0, 1}lG (k), r+ ∈ Zq , and s+ ∈ Z∗q uniformly at random.
We then compute c+ = Eτ+(mβ) for random β ∈ {0, 1} and replace c∗, r∗, s∗,
and G(K ∗) in the target signcryptext C∗ by c+, r+, s+, and τ+, respectively. A
new target signcryptext is now (c+, r+, s+) and is denoted by C∗+.

R1-2 Whenever the random oracle G is queried at K ∗ = (y∗B)s
+(r++x∗A) (as defined by

r+ and s+), we respond with τ+.
R1-3 Whenever the random oracle H is queried at (mβ, y∗A, y∗B, K ∗), where K ∗ =

(y∗B)
s+(r++x∗A), we respond with r+.

R1-4 We assume that the signcryption and unsigncryption oracles are perfect. That
is, on receiving ACCA’s signcryption query (yR,m) or unsigncryption query

Formal Proofs for the Security of Signcryption 221

(yS,C) �= (y∗A,C∗), where yS and yR respectively denote the sender and re-
ceiver’s public keys arbitrarily selected by ACCA, and m and C denote a message
and a signcryptext, respectively, we signcrypt (yR,m) using the private key x∗A
or unsigncrypt (yS,m) using the private key x∗B in the same way as we do in the
real attack game.

Since we have replaced one set of random variables by another set of random variables
which is different, yet has the same distribution, the attacker ACCA’s view has the same
distribution in both Game G0 and Game G1 except for the event that (mβ, y∗A, y∗B, K ∗)
is queried to H at the find stage because we only know mβ at the end of the find stage.
However, the error probability is small and is at most (qH + qSC + qUSC)/2lq (k) because
K ∗ is independent of the attacker’s view in the find stage.

Accordingly, we have

|Pr[S1]− Pr[S0]| ≤ qH + qSC + qUSC

2lq (k)
.

• Game G2. In this game we retain rules R1-1 and R1-4, renaming them “R2-1” and
“R2-4”, respectively. However, we drop rules R1-2 and R1-3 meaning that τ+ and s+

are used only in producing the target signcryptext C∗+ while, in other cases, when the
signcryption or unsigncryption oracle queries to the random oracles G and H, or ACCA

directly queries to them, answers from G or H are taken. We refer to these rules regarding
the random oracles G and H as “R2-2” and “R2-3”, respectively.

Since we have dropped rule R1-2, τ+ is not used anywhere in Game G2 except in
computing c∗. Hence, ifβ ′ = β then ACCA has broken the PI-SKE security of the bijective
one-time symmetric encryption scheme. Hence, we have

Pr[S2] = 1
2 + 1

2 SuccPI-SKE
API,SKE(k).

Now let AskKey2 denote an event that, in Game G2, G is queried at K ∗ by ACCA (rather
than by the signcryption or unsigncryption oracles) or H is queried at (m, y′, y′′, K ∗)
for some (m, y′, y′′) by ACCA (again, rather than by the signcryption or unsigncryption
oracles). We use an identical notation AskKeyi for all the remaining games.

Notice that Game G1 and Game G2 may differ if G is queried at K ∗, where K ∗ =
(y∗B)

s+(r++x∗A), or H is queried at (mβ, y∗A, y∗B, K ∗). Therefore, besides AskKey2, we need
to consider the following events defined in Game G2 (we define them to be disjoint by
terminating the game as soon as one of them occurs):

– SCBad2: G is queried at K ∗ or H is queried at (m, y′, y′′, K ∗) by the signcryption
oracle.

– USCBad2: For some unsigncryption query (yS, c, r, s), the unsigncryption oracle
queries G at K ∗ and the unsigncryption oracle accepts (yS, c, r, s) (i.e. does not
reject).

Let B2 = AskKey2 ∨SCBad2 ∨USCBad2. We claim that if ¬B2 occurs, the view of
ACCA is identical in Games G1 and G2, so Pr[S1 ∧¬B2] = Pr[S2 ∧¬B2]. To show this,
note first that if ¬B2 occurs then K ∗ does not appear in G and H queries of ACCA and
the signcryption oracle, so these queries are answered identically in Games G1 and G2.

222 J. Baek, R. Steinfeld, and Y. Zheng

We now show by induction that if ¬B2 occurs then unsigncryption queries of ACCA are
also answered identically in Games G1 and G2.

In the following analysis we assume that in both games the random oracle H is imple-
mented in the following standard way: at the start of the game qH+qSC+qUSC uniformly
random values hH[1], . . . , hH[qH],hSC[1], . . . , hSC[qSC], hUSC[1], . . . , hUSC[qUSC] in
{0, 1}lq (k) are chosen. These values are identical in Games G1 and G2. The value hH[i] is
used to answer ACCA’s i th H-query if it is “new” (otherwise the value is answered con-
sistently with previous queries), and, similarly, hSC[i] and hUSC[i] are used to answer
“new” queries of the signcryption and unsigncryption oracles to H during the processing
of ACCA’s i th signcryption and unsigncryption queries, respectively. The only exception
is that in Game G1, the (mβ, y∗A, y∗B, K ∗) queries during the guess stage are answered
with r+.

Consider an outcome of event¬B2 in which the view of ACCA is identical in Games G1

and G2 up to the i th unsigncryption oracle query (yS, c, r, s) of ACCA. We show that
this query is answered identically by the unsigncryption oracle in both Game G1 and
Game G2. Let K = (gr yS)

sx∗B denote the key queried to G (in both Game G1 and
Game G2) by the unsigncryption oracle. If K �= K ∗ then the unsigncryption oracle
proceeds identically in Games G1 and G2, so we assume that K = K ∗. Also, we assume
that r ∈ Zq , s ∈ Z∗q , c ∈ SPc, and yS ∈ 〈g〉 since otherwise the query is rejected in both
Game G1 and Game G2.

– In Game G2 the unsigncryption oracle obtains τ = G(K ∗) and queries H at
(Dτ (c), yS, y∗B, K ∗), obtaining response hUSC[j] where j ≤ i is the index of
the earliest unsigncryption query where the unsigncryption oracle queried H at
(Dτ (c), yS, y∗B, K ∗). Thanks to the one-to-one property of the decryption func-
tion D, j is the index of the first unsigncryption query (yS, j , cj , rj , sj) satisfying
(yS, j , cj) = (yS, c) and (grj yS)

sj x∗B = K ∗. By definition of ¬B2 we know that the
unsigncryption oracle rejects the query (yS, c, r, s), i.e. we have hUSC[j] �= r .

– In Game G1 the unsigncryption oracle queries K ∗ to G and obtains response τ+. It
then queries H at (Dτ+(c), yS, y∗B, K ∗). We consider two possible cases:
∗ Case 1: (c, yS) = (c+, y∗A) in the guess stage. Because Dτ+(c+) = mβ , in

this case the unsigncryption oracle queries H at (mβ, y∗A, y∗B, K ∗) and obtains
response r+. We claim that r �= r+ so the unsigncryption oracle rejects the
query (yS, c, r, s): if the query (yS, c, r, s) was accepted then it would have
to be equal to the challenge (y∗A, c+, r+, s+), which is disallowed from being
queried in the guess stage. To show this, suppose towards a contradiction that
r = r+. Then using K = K ∗ we have (y∗B)

s(r++x∗A) = (y∗B)s
+(r++x∗A). Since y∗B

has order q we have s(r+ + x∗A) = s+(r+ + x∗A) and using r+ + x∗A �= 0 we
get s = s+, a contradiction. Hence, the unsigncryption oracle rejects in this
case.
∗ Case 2: (c, yS) = (c+, y∗A) in the find stage OR (c, yS) �= (c+, y∗A). In this

case the unsigncryption oracle queries H at (Dτ+(c), yS, y∗B, K ∗). Note that
thanks to the one-to-one property of the decryption function D, we have from
(c, yS) �= (c+, y∗A) that (Dτ+(c), yS) �= (mβ, y∗A) in the guess stage. Hence,
the unsigncryption oracle obtains response hUSC[
] from the H oracle, where

 ≤ i is the index of the earliest unsigncryption query where the unsigncryp-

Formal Proofs for the Security of Signcryption 223

tion oracle queried H at (Dτ+(c), yS, y∗B, K ∗). Thanks to the one-to-one property
of the decryption function D,
 is the index of the first unsigncryption query
(yS,
, c
, r
, s
) satisfying (yS,
, c
) = (yS, c) and (gr
 yS)

s
x∗B = K ∗. However,
by the induction hypothesis the
th unsigncryption query is identical in Games G1

and G2 for all
 ≤ i . Hence, we must have
 = j , where j ≤ i is the index of
the first unsigncryption query (yS, j , cj , rj , sj) satisfying (yS, j , cj) = (yS, c) and
(grj yS)

sj x∗B = K ∗ in Game G2 (see analysis of Game G2 above). So in Game G1,
the unsigncryption oracle obtains the same response hUSC[j] �= r to its H query
as in Game G2 and rejects.

Therefore, the unsigncryption oracle responds identically in Games G1 and G2

when ¬B2 occurs, as claimed.

However, event SCBad2 has a negligible probability. Namely due to the uniform dis-
tribution of K computed by the signcryption in 〈g〉\{1}, the probability that K hits K ∗

is less than 1/2lq (k) per each signcryption query. Consequently we have Pr[SCBad2] ≤
qSC/2lq (k).

Also, event USCBad2 has a negligible probability. Namely, let USCBad2[i] denote
the event in G2 that i is the index of the earliest unsigncryption query (yS, c, r, s)
such that the unsigncryption oracle queries G at K ∗ and the unsigncryption oracle ac-
cepts (yS, c, r, s). Note that for any outcome in USCBad2[i], the unsigncryption oracle
queries H at (Dτ (c), yS, y∗B, K ∗) and receives response hUSC[j], where j is the in-
dex of the earliest unsigncryption query where the unsigncryption oracle queried H at
(Dτ (c), yS, y∗B, K ∗) (we know that (Dτ (c), yS, y∗B, K ∗) was not queried to H by ACCA

or the signcryption oracle since otherwise AskKey2 or SCBad occur). Fixing the values
of all random variables in Game G2 except hUSC[j] and varying the value of hUSC[j]
we see that for all values of hUSC[j] different from r , either the view of ACCA remains
unchanged up to the i th unsigncryption query so that the unsigncryption oracle rejects,
or the view of ACCA is unchanged until ACCA’s
th unsigncryption query for some
 < i
is accepted, so event USCBad2[
] occurs for some
 < i . So, thanks to the uniformly
random choice of hUSC[j] in {0, 1}lq , it follows that Pr[USCBad2[i]] ≤ 1/2lq (k) for
i = 1, . . . , qUSC and hence at most qUSC/2lq (k) over all unsigncryption queries.

Thus, finally we get

|Pr[S2]− Pr[S1]| ≤ Pr[AskKey2]+ qSC + qUSC

2lq (k)
.

• Game G3. In this game we modify rule R2-4 and obtain a new rule R3-4. However,
we retain rules R2-1, R2-2, and R2-3 in Game G2, renaming them “R3-1”, “R3-2”, and
“R3-3”, respectively.

R3-4 In this rule we replace the random oracles G and H by the random oracle sim-
ulators GSim and HSim. Note that two types of “query-answer” lists GList1
and GList2 are maintained for the simulation of the random oracle G. GList1
consists of simple “input–output” entries for G of the form (K , τ). GList2
(whose new entries are added by either the signcryption oracle simulator or the
unsigncryption oracle simulator) consists of the special input–output entries
for G which are of the form yR‖ω‖(?, τ). This implicitly represents the input–
output relation τ = G(ωlogg yR), although the input ωlogg yR is not explicitly

224 J. Baek, R. Steinfeld, and Y. Zheng

stored and hence is denoted by “?”. Similarly to GSim, the simulator HSim also
maintains two input–output lists HList1 and HList2. HList1 consists of simple
input–output entries for H, which are of the form (µ, r). HList2 (whose new
entries are added by either the signcryption or unsigncryption oracle simulators
in later games) consists of the special input–output entries for H which are of the
form yR‖ω‖((m, yS, yR, ?), r) and implicitly represents the input–output rela-
tion H(m, yS, yR, K) = r , where K = ωlogg yR is not explicitly stored and hence
is denoted by “?”. Complete specifications for GSim and HSim are as follows:

Random Oracle Simulators GSim and HSim

GSim(K) HSim(m, yS, yR, K)
If O(g, ω, yR, K) = 1 If O(g, ω, yR, K) = 1 and
for some yR‖ω‖(?, τ) ∈ GList2 yR‖ω‖(m, yS, yR, ?), r) ∈ HList2
Return τ Return r

Else if (K , τ) exists in GList1 Else if ((m, yS, yR, K), r)
Return τ exists in HList1 Return r

Else τ
R←{0, 1}lG (k) Else r

R←Zq Return r
Return τ Add ((m, yS, yR, K), r) to HList1

Add (K , τ) to GList1

We note that GList2 and HList2 are actually empty throughout this game because we still
have the original signcryption and unsigncryption oracles, so no entries are ever added
to them—GList1 and HList1 are used in this game.

Finally, notice that the above simulation for the random oracles G and H are perfect.
Hence, we have

Pr[AskKey3] = Pr[AskKey2].

• Game G4. We retain all the rules R3-1, R3-2 and R3-3, renaming them “R4-1”,
“R4-2”, and “R4-3”, respectively. However, we further modify R3-4 and obtain a new
rule:

R4-4 In this rule we replace the signcryption oracle by the signcryption oracle sim-
ulator SCSim. On the other hand, we assume that the unsigncryption oracle is
perfect.

Signcryption Oracle Simulator SCSim
SC Sim(y∗A, (yR,m))
If yR /∈ 〈g〉\{1} Return Rej

τ
R←{0, 1}lG (k); r

R←Zq ; c← Eτ (m); s
R←Z∗q

If gr y∗A = 1 Return Rej
ω← (y∗Agr)s

Add yR‖ω‖(?, τ) to GList2
Add yR‖ω‖((m, y∗A, yR, ?), r) to HList2
C ← (c, r, s)
Return C

Formal Proofs for the Security of Signcryption 225

Let K = (y∗Agr)sx∗B denote the query of signcryption oracle to G in Game G4. Note that
if neither (K , τ) nor ((m, y∗A, yR, K), r) exists in GList1 and HList1, respectively, the
simulated signcryptext in Game G4 is distributed the same as the signcryptext in Game
G3 and a simulation error occurs otherwise.

However, in Game G3, thanks to the uniform distribution of K in 〈g〉\{1}, and since
GList1 and HList1 contain all the queries to G and H both by the attacker, and the sign-
cryption and unsigncryption oracles, we have Pr[(K , τ)∈GList1∨((m, y∗A, yR, K), r)∈
HList1] ≤ (qG + qH + qSC + qUSC)/2lq (k).

Since there are up to qSC signcryption queries, the total probability of outcomes leading
to signcryption oracle simulation error is upper-bounded by

qSC

(
qG + qH + qSC + qUSC

2lq (k)

)
.

Summing up all decryption queries, we have

|Pr[AskKey4]− Pr[AskKey3]| ≤ qSC

(
qG + qH + qSC + qUSC

2lq (k)

)
.

• Game G5. We retain rules R4-1, R4-2, and R4-3, renaming them “R5-1”, “R5-2”,
and “R5-3”, respectively. However, we modify R4-4 and obtain the following new rule:

R5-4 We replace the unsigncryption oracle by an unsigncryption oracle simulator
USCSim which can unsigncrypt a submitted unsigncryption query (yS,C)
where C = (c, r, s), without knowing the private key. Notice that the un-
signcryption oracle simulator makes use of AGDH’s DDH oracle ODDH(·, ·, ·, ·)
to check whether a given tuple is a Diffie–Hellman one.

Unsigncryption Oracle Simulator USCSim
USC Sim(y∗B, yS,C)
If yS /∈ 〈g〉\{1} Return Rej
Parse C as (c, r, s)
If r /∈ Zq or s /∈ Z∗q or c /∈ SPc Return Rej
ω← (ySgr)s

If there exists (K , τ) ∈ GList1 such that ODDH(g, ω, y∗B, K) = 1 or
there exists yR‖ω′‖(?, τ) ∈ GList2 such that ODDH(ω, ω′, yR, y∗B) = 1

m←Dτ (c)

Else τ
R←{0, 1}lG (k); Add y∗B‖ω‖(?, τ) to Glist2

m←Dτ (c)
If there exists ((m, yS, y∗B, K), h) ∈ HList1 such that ODDH(g, ω, y∗B, K) = 1 or
there exists yR‖ω′‖((m, yS, yR, ?), h) ∈ HList2 such that ODDH(ω, ω′, yR, y∗B) = 1
If h = r Return m Else Return Rej

Else h
R←Zq

Add (y∗B‖w‖(m, yS, y∗B, ?), h) to HList2
If h = r Return m Else Return Rej

Observe that the full contents of GList1 ∨ GList2 and HList1 ∨ HList2 are updated
identically in Games G4 and G5, where full means that before comparing the lists in the

226 J. Baek, R. Steinfeld, and Y. Zheng

two games, we convert the implicit GList2 and HList2 entries into the explicit entries
that they represent (with the appropriate K values). This is because the only difference
is that in Game G5 the unsigncryption oracle adds implicit entries to GList2 and HList2,
while in Game G4 they are added explicitly to GList1 and HList1. Thanks to the DDH
oracle used by GSim, HSim, and USCSim, the oracles respond in a way which depends
only on the full contents of GList and HList, and hence the view of ACCA is identical in
Games G4 and G5 so

Pr[AskKey5] = Pr[AskKey4].

Since Game G2, AskKeyi for i = 2, 3, 4, 5 has implied that when AskKeyi occurs the
GDH problem can be solved. More precisely, the event AskKeyi for i ≥ 2 means that
K ∗ = (y∗B)s

+(r++x∗A) = (y∗B)s
+x∗A(y∗B)

s+r+ has been queried to G or H and hence one can
compute gab = (y∗B)x

∗
A = (K ∗/(y∗B)s

+r+)1/s
+
. Furthermore, at this stage, one can check

which one of the queries to the random oracles G and H is a Diffie–Hellman key of gab

using AGDH’s DDH oracle ODDH(·, ·, ·, ·). Consequently we have

Pr[AskKey5] ≤ SuccGDH
Z
∗
p,AGDH(k).

Putting all the bounds we have obtained in each game together, we obtain
1
2 SuccFSO/FUO-IND-CCA2

ACCA,ZSCR
(k) = |Pr[S0]− 1

2 |

≤ qH + qSC + qUSC

2lq (k)
+ 1

2 SuccPI-SKE
API,SKE(l)+

qSC + qUSC

2lq (k)

+ qSC

(
qG + qH + qSC + qUSC

2lq (k)

)
+ Pr[AskKey5]

≤ 1
2 SuccPI-SKE

API,SKE(l)+ qSC

(
qG + qH + qSC + qUSC + 2

2lq (k)

)

+ qH + 2qUSC

2lq (k)
+ SuccGDH

Z
∗
p,AGDH(k).

The advantage bound claim of the theorem follows upon taking maximums over all
adversaries with the appropriate resource parameters. The running time counts can be
readily checked.

5.4. Unforgeability of Zheng’s Signcryption Scheme

In this section we prove that the GDL assumption is sufficient for the signcryption scheme
ZSCR to achieve the strong unforgeability in the sense of FSO-UF-CMA in the random
oracle model.

Theorem 2. If the GDL assumption holds then Zheng’s original signcryption scheme
ZSCR is unforgeable in the FSO-UF-CMA sense. Concretely, the following bound
holds:

InSecFSO-UF-CMA
ZSCR (t, qSC, qG, qH)

≤ 2
√

qH·InSecGDL(t
′, qOrDDH)+ qSC(qG + qH + qSC)+ qH + 1

2lq (k)−1
,

Formal Proofs for the Security of Signcryption 227

where t ′ = 2t + O(q2
G+ 1)+ O(q2

H+ 1)+ O((t ′′ + k3)qSC) and qOrDDH = 2qSC(qG+
qH) + 2qH. Here t ′′ denotes the running time of the one-time symmetric key encryption
scheme.

Proof. We show how to use any efficient FSO-UF-CMA attacker AUF to construct an
efficient attacker AGDL against the GDL problem, thus contradicting the GDL assumption.
We do this in two stages. In stage 1 we use AUF to construct an efficient algorithm AGDL′

for a variant of the GDL problem that we define below and call GDL′. Then in Stage 2
we show how to transform any efficient algorithm for GDL′ into an efficient algorithm
for GDL.

Stage 1. In this stage our aim is to keep modifying the real attack game SCRUFGame
presented in Definition 3 until we get to the stage where we obtain a game which
constitutes an algorithm for the GDL′ problem, which is defined as follows:

Problem GDL′. Given (g, p, q, ga), where (g, p, q) = GC(k) and a
R←Z∗q , up to qR

queries (y[i], K [i]) ∈ 〈g〉\{1} × 〈g〉 to a random beacon R which returns uniformly
random independent integers r [i] ∈ Zq (for i = 1, . . . , qR), and up to qOrDDH queries to
a restricted DDH oracle OrDDH(g, ga, ·, ·), compute s∗ ∈ Z∗q and i∗ ∈ {1, . . . , qR} such
that K [i∗] = y[i∗]s∗(r [i∗]+a).

We stress that the random beacon R above differs from a random oracle because R
always returns independent random integers, even for repeated queries.

We start with the following game.

• Game G0. This game is the same as the real attack game SCRUFGame in
Definition 3.

First we run the common parameter/oracle generation algorithm GC of ZSCR on
input a security parameter k and obtain a common parameter cp = (p, q, g,G,H,SKE),
where p and q are primes such that q | (p − 1), g is an element in Z∗p such that
Ordp(g) = q , G: {0, 1}∗→{0, 1}lG (k) and H: {0, 1}∗→Zq are hash functions modelled
as the random oracles [7], and SKE is the one-time symmetric key encryption scheme
that consists of the encryption function E and the decryption function D. We then run the
sender key generation algorithm GKA on input (k, cp) to obtain Alice (sender)’s fixed
private/public key pair. Here, Alice’s private key consists of (x∗A, y∗A) where y∗A = gx∗A ,
and her public key is y∗A itself.

We then run AUF on input the public key y∗A. We answer AUF’s queries using the real
SC, G and H oracles. Eventually, AUF returns a forgery (C∗, y∗R), where C∗ = (c∗, r∗, s∗)
is the forged signcryptext and y∗R is the forgery recipient’s public key. We then apply
the unsigncryption algorithm to compute K ∗ = (y∗R)(r

∗+x∗A)s
∗
, τ ∗ = G(K ∗), and m∗ =

Dτ (c∗) and perform the following verification checks:

1. Check whether y∗R is in 〈g〉\{1}.
2. (c∗, r∗, s∗) ∈ SPc × Zq × Z∗q .
3. H(m∗, y∗A, y∗R, K ∗) = r∗.
4. (y∗R,m∗) was not queried by AUF to SC oracle.

228 J. Baek, R. Steinfeld, and Y. Zheng

We denote by S0 the event that AUF succeeds in the sense of FSO-UF-CMA so all
verification checks above are passed, and use a similar notation Si for all games Gi .

Since this game is the same as the real attack game, we have

Pr[S0] = SuccFSO-UF-CMA
AUF,ZSCR (k).

• Game G1: In this game we modify one of the verification checks for AUF’s output
forgery. The modification obeys the following rules (note that rules R1-2, R1-3, and
R1-4 are also satisfied in Game G0):

R1-1 Instead of the verification check 3, we check that H′(m∗, y∗A, y∗R, K ∗) = r∗,
where H′ is a new random oracle independent of H.

R1-2 We use the random oracle G to answer all queries to G in the game.
R1-3 We use the random oracle H to answer all queries to H in the game.
R1-4 We use the signcryption algorithm SC to answer all signcryption queries in the

game.

Since the new random oracle H’ is never queried during the game until the verifi-
cation query (m∗, y∗A, y∗R, K ∗) is made to it at the end of the game, we know that
H′(m∗, y∗A, y∗R, K ∗) is uniformly random in Zq and independent of r∗. Hence we have

Pr[S1] ≤ 1

2lq (k)
.

Note that in Game G0 we also have that H(m∗, y∗A, y∗R, K ∗) is uniformly random in Zq

and independent of r∗, unless H was queried at (m∗, y∗A, y∗R, K ∗) by either AUF or SC.
However, if event S0 occurred then H could not have been queried at (m∗, y∗A, y∗R, K ∗) by
SC because this would imply that AUF queried (m∗, y∗R) to SC, contradicting verification
check 4. So let AskH0 denote the event in Game G0 that AUF queried (m∗, y∗A, y∗R, K ∗)
to H and (y∗R,m∗)was not queried by AUF to the SC oracle. We use an identical notation
AskHi for all the remaining games. We therefore have

|Pr[S1]− Pr[S0]| ≤ Pr[AskH0] = Pr[AskH1].

• Game G2. In this game we modify rules R1-2 and R1-3 to obtain new rules R2-2
and R2-3. However, we retain rules R1-1 and R1-4, renaming them R2-1 and R2-4,
respectively.

R2-2 We use a random oracle simulator GSim to answer all queries to G in the game.
R2-3 We use a random oracle simulator HSim to answer all queries to H in the game.

Note that two types of “query–answer” lists GList1 and GList2 are used by Gsim for the
simulation of the random oracle G. These lists are initialized as empty and updated as
the game runs. Note that list GList2 is never updated in this game but will be updated
by the signcryption oracle simulator in Game G3. The list GList1 consists of simple
“input–output” entries for G of the form (K , τ). The list GList2 consists of the spe-
cial input–output entries for G which are of the form yR‖r‖s‖(?, τ). This implicitly

represents the input–output relation τ = G(y
(r+x∗A)s
R), although the input y

(r+x∗A)s
R is not

Formal Proofs for the Security of Signcryption 229

explicitly stored and hence is denoted by “?”. Similarly to GSim, the simulator HSim
also uses two input–output lists, HList1 and HList2 (once again, list HList2 is never
updated in this game but will be in Game G3). HList1 consists of simple input–output
entries for H, which are of the form (µ, r). HList2 consists of the special input–output
entries for H which are of the form yR‖r‖s‖((m, yS, yR, ?), r) and implicitly represents

the input–output relation H(m, yS, yR, K) = r , where K = y
(r+x∗A)s
R is not explic-

itly stored and hence is denoted by “?”. Note that HSim also uses a random beacon
R to compute independent and uniformly random values r = R(yR, K) in Zq (the
beacon R differs from a random oracle because it always returns independent random
strings, even for repeated queries). Complete specifications for GSim and HSim are as
follows:

Random Oracle Simulators GSim and HSim

GSim(K) Hsim(m, yS, yR, K)
If OrDDH(g, y∗A, ys

R, K/yrs
R) = 1 If OrDDH(g, y∗A, ys

R, K/yrs
R) = 1

for some yR‖r‖s‖(?, τ) ∈ GList2 for some yR‖r‖s‖((m, y∗A, yR, ?), r) ∈
HList2

Return τ Return r
Else if (K , τ) exists in GList1 Else if ((m, yS, yR, K), r)
Return τ exists in HList1 Return r

Else τ
R←{0, 1}lG (k) Else r = R(yR, K) Return r

Return τ Add ((m, yS, yR, K), r) to HList1
Add (K , τ) to GList1

Note that the above simulation for the random oracles G and H is perfect. Hence, we
have

Pr[AskH2] = Pr[AskH1].

• Game G3. We retain rules R2-1, R2-2 and R2-3, renaming them “R3-1”, “R3-2”,
and “R3-3”, respectively. However, we modify rule R2-4 and obtain a new rule:

R3-4 We use a signcryption oracle simulator SCSim to answer all signcryption queries
in the game.

The specification for signcryption oracle SCSim follows:

Signcryption Oracle Simulator SCSim

SC Sim(y∗A, (yR,m))
If yR /∈ 〈g〉\{1} Return Rej

τ
R←{0, 1}lG (k); r

R←Zq ; c← Eτ (m); s
R←Z∗q

If gr y∗A = 1 Return Rej
Add yR‖r‖s‖(?, τ) to GList2
Add yR‖r‖s‖((m, y∗A, yR, ?), r) to HList2
C ← (c, r, s)
Return C

230 J. Baek, R. Steinfeld, and Y. Zheng

In Game G2 define the event B2 that for some signcryption query we have (K , τ) ∈
GList1 or ((m, y∗A, yR, K), r) ∈ HList1. Note that, in Game G2, if B2 does not occur then
(τ, r, s) are independent and uniformly distributed in {0, 1}lG × Zq × Z∗q , exactly as in
Game G3. Hence, Pr[AskH3] and Pr[AskH2] can differ by at most Pr[B2]. However, for
each signcryption query in Game G2, thanks to the uniform distribution of K in 〈g〉\{1},
we have Pr[(K , τ) ∈ GList1∨((m, y∗A, yR, K), r) ∈ HList1] ≤ (qG + qH + qSC)/2lq (k).
Finally, since there are up to qSC signcryption queries we add up these bounds to obtain

Pr[B2] ≤ qSC

(
qG + qH + qSC

2lq (k)

)

and, therefore,

|Pr[AskH3]− Pr[AskH2]| ≤ qSC

(
qG + qH + qSC

2lq (k)

)
.

Now we observe that Game G3 constitutes an algorithm AGDL′ for breaking the GDL′

problem with success probability Pr[AskH3]. Namely, AGDL′ is given input (g, p, q, y∗A =
gx∗A) and runs AUF on this input using the rules of Game G3. AGDL′ uses its random beacon
R (qH queries) and restricted DDH oracle OrDDH in running GSim and HSim simulators.
If AskH3 occurs then we know that AUF returns (y∗R, c∗, r∗, s∗) such that HSim was
queried at (m∗, y∗A, y∗R, K ∗) (with K ∗ = (y∗R)(r

∗+x∗A)s
∗
) by AUF and hence (since (y∗R,m∗)

was not queried to SC) R was queried with (y∗R, K ∗) by HSim, returning the answer r∗.
At the end of the game, AGDL′ checks which query to R was equal to (y∗R, K ∗) (using at
most qU F

H additional queries to the DDH oracle OrDDH), and outputs s∗ and the index i∗

of the matching R query as the solution to the GDL′ problem instance.
This completes the “Stage 1” reduction. The algorithm AGDL′ has run time tGDL′ =

t+O(q2
G+1)+O(q2

H+1)+O((tSKE+ k3)qSC), makes qGDL′

OrDDH = qSC(qG+qH)+qH

DDH queries and qGDL′
R = qH R queries, and has success probability

SuccGDL′

Z
∗
p,AGDL′ (k) ≥ Pr[AskH3] ≥ SuccFSO-UF-CMA

AUF,ZSCR (k)−
qSC(qG + qH + qSC)+ 1

2lq (k)
.

Stage 2. We use the “forking technique” [13], [26], [23] to perform the “Stage 2”
reduction between GDL′ and GDL. In the analysis of this stage we will use the following
two lemmas.

Lemma 2 (Splitting Lemma [23]). Let a and b denote independent random variables
over finite sets A and B, respectively, with probability distribution functions PA(·) and
PB(·), respectively. Let S ⊆ A × B be a set with Pr[(a, b) ∈ S] ≥ ε. For each a ∈ A,
let S(a) ⊆ B denote the set of b ∈ B such that (a, b) ∈ S. Then there exists a “good”
subset G of S such that

Pr
(a,b)∈A×B

[(a, b) ∈ G] ≥ ε/2

and, for all (a′, b′) ∈ G,

Pr
b∈B

[b ∈ S(a′)] ≥ ε/2.

Formal Proofs for the Security of Signcryption 231

Proof. Let us define the good set G to be the set of all (a′, b′) ∈ S such that Pr[b ∈
S(a′)] ≥ ε/2. Then it is enough to show that Pr[(a, b) ∈ G] ≥ ε/2.

Suppose, towards a contradiction, that Pr[(a, b) ∈ G] < ε/2. Then Pr[(a, b) ∈ S] =
Pr[(a, b) ∈ G] + Pr[(a, b) ∈ (S ∧ ¬G)] < ε/2 + Pr[(a, b) ∈ (S ∧ ¬G)]. However,
(a, b) ∈ (S ∧ ¬G) means that a ∈ WA, where WA ⊆ A is the set of a′ ∈ A such that
Pr[b ∈ S(a′)] < ε/2. So Pr[(a, b) ∈ (S ∧ ¬G)] = ∑

a′∈WA

∑
b′∈S(a) PA(a′)PB(b′) =∑

a′∈WA
PA(a′)·Pr[b ∈ S(a′)] < ε/2 since Pr[b ∈ S(a′)] < ε/2 for all a′ ∈ WA.

It follows that Pr[(a, b) ∈ S] < ε/2 + ε/2 = ε, a contradiction. This shows that
Pr[(a, b) ∈ G] ≥ ε/2, which completes the proof.

We will also use the following inequality.

Lemma 3. Let p = ∑q
j=1 pj for some q real numbers p1, . . . , pq and let δ > 0 be

given. If p ≥ q·δ then the following inequality holds:

q∑
j=1

pj ·(pj − δ) ≥ (1/q)·(p − q·δ)2.

Proof. We have
∑q

j=1 pj ·(pj − δ) =
∑q

j=1 p2
j − p·δ. Using the Cauchy–Schwartz

inequality we have
∑q

j=1 ≥ (1/q)·(∑q
j=1 pj)

2 = (1/q)·p2, so
∑q

j=1 pj ·(pj − δ) ≥
(1/q)(p2−q·δ·p). However, from the assumption that p ≥ q·δ, we have (q·δ)p ≥ (q·δ)2
and hence p2 − q·δ·p ≥ p2 − 2(q·δ)p+ (q·δ)2 = (p− q·δ)2, which gives the claimed
inequality.

Now we present the “Stage 2” reduction as the following lemma:

Lemma 4 (Stage 2). Any algorithm AGDL′ for problem GDL′ with run-time tGDL′ , qGDL′

OrDDH

DDH queries and qGDL′
R R queries, and success probability SuccGDL′

Z
∗
p,AGDL′ (k) ≥ 2qGDL′

R /2lq

can be converted into an algorithm AGDL for problem GDL with run-time tGDL =
2tGDL′ + O(l2

q) which makes qGDL
OrDDH = 2qGDL′

OrDDH DDH queries, and has success proba-
bility

SuccGDL
Z
∗
p,AGDL(k) ≥ (1/qGDL′

R)·
(

SuccGDL′

Z
∗
p,AGDL′ (k)/2− qGDL′

R /2lq

)2
.

Proof. On input (g, p, q, ga), our GDL algorithm AGDL works as follows.
Setup. AGDL first sets up two random vectors −→r = (r [1], . . . , r [qGDL′

R]) and
−→̂
r =

(̂r [1], . . . , r̂ [qGDL′
R])with r [i]’s and r̂ [i]’s chosen uniformly and independently at random

from Zq (these vectors will be used to answer AGDL′ ’s R queries).
First Run. AGDL runs AGDL′ on input (g, p, q, ga;ω), where ω denotes the random

coins input of AGDL′ , and answers AGDL′ ’s oracle queries as follows:

(1) R-Query simulator. When AGDL′ makes its i th R query (y[i], K [i]), AGDL re-
sponds with r [i].

(2) OrDDH-Query simulator. AGDL simply forwards AGDL′ ’s query to OrDDH(g, ga, ·, ·)
and sends the response back.

232 J. Baek, R. Steinfeld, and Y. Zheng

First Run Output. At the end of first run, AGDL′ outputs (s∗, i∗). Note that if this run is
successful then K [i∗] = y[i∗](r [i∗]+a)s∗ .

Second Run. AGDL now runs AGDL′ again on the same input (g, p, q, ga;ω) as used in
first run, but answers its oracle queries differently as follows:

(1) R-Query simulator. When AGDL′ makes its i th R query (ŷ[i], K̂ [i]), AGDL re-
sponds with r [i] if i < i∗ and with r̂ [i] if i ≥ i∗.

(2) OrDDH-Query simulator. As in first run.

Second Run Output. At the end of the second run, AGDL′ outputs (̂s∗, î∗). Note that if this
run is successful then K̂ [i∗] = ŷ [̂i∗](̂r [̂i∗]+a)̂s∗ .

AGDL’s output. If î∗ = i∗ and r̂ [i∗] �= r [i∗] then AGDL returns â = (s∗r [i∗]− ŝ ∗̂r [i∗])/
(̂s∗ − s∗) ∈ Zq . Otherwise, AGDL fails.

This completes the description of AGDL. The running-time of AGDL is twice the run-
time of AGDL′ plus the time O(k2) to compute â at the end. The number of OrDDH queries
made by AGDL is up to twice the number of queries made by AGDL′ . This establishes the
claimed resources of AGDL.

We now lower bound the success probability of AGDL. For i ∈ {1, . . . , qGDL′
R }, we call a

run of AGDL′ i-successful if AGDL succeeds and i∗ = i . Note that in the above algorithm,
if both first and second runs of AGDL′ are i-successful for some i and r [i] �= r̂ [i],
then we have i∗ = î∗ = i , K [i∗] = y[i∗](r [i∗]+a)s∗ and K [i∗] = y[i∗](̂r [i∗]+a)̂s∗ (note
that the first i th R queries are the same in both runs because the view of AGDL′ is
the same up to i th query response). Since y[i∗] ∈ 〈g〉\1 has order q this implies that
(̂s∗ − s∗)a+ ŝ ∗̂r [i∗]− s∗r [i∗] = 0 and hence (noting that r̂ [i∗] �= r [i∗] implies ŝ∗ �= s∗)
AGDL’s output â = (s∗r [i∗]− ŝ ∗̂r [i∗])/(̂s∗ − s∗) is equal to a, so AGDL succeeds.

So it remains to lower bound the probability of the event S∗ that both runs of AGDL′

are i-successful for some i ∈ {1, . . . , qGDL′
R } and r̂ [i] �= r [i]. To do this, we split S∗ into

qGDL′
R disjoint subevents S∗i according the value of i and bound each one. For each i , let Ai

denote the outcome space for the random variable ai = (g, p, q, ga, ω, r [1], . . . , r [i −
1]) consisting of the view of AGDL′ up to the i th R-query, and let Bi denote the outcome
space for the independent random variable bi = (r [i], . . . , r [qGDL′

R]) consisting of the
view of AGDL′ after the i th R-query (including the response r [i] to the i th query). Note
that the event Si that a run of AGDL′ is i-successful is a subset of Ai × Bi with probability

pi
def= Pr[(ai , bi) ∈ Si]. Applying the Splitting Lemma 2, we know that there exists a

subevent Gi of Si such that Pr[(ai , bi) ∈ Gi] ≥ pi/2, and for each (a, b) ∈ Gi, the
probability that (a, b̂) ∈ Si over a random choice of b̂ in Bi is also at least pi/2. Hence,
the probability that the outcome (a, b) of the first run of AGDL′ in our algorithm is in Gi

is at least pi/2, and then for each of those outcomes, the probability over the random
choice of b̂ = (̂r [i], . . . , r̂ [qGDL′

R]) that the second run outcome (a, b̂) is in Si is at least
pi/2. Since r̂ [i] is uniformly chosen in Zq , the chance that it collides with r [i] is less
than 1/2lq (k), so with probability at least pi/2− 1/2lq (k) over b̂ we know that (a, b̂) ∈ Si

and also r̂ [i] �= r [i]. Summarizing, we have that the probability that (1) (a, b) ∈ Gi and
(2) (a, b̂) ∈ Si and (3) r̂ [i] �= r [i] all occur is at least pi/2(pi/2− 1/2lq (k)). This latter
event implies that both runs are i-successful and r̂ [i] �= r [i], i.e. that event S∗i occurs.
Hence,

Pr[S∗i] ≥ pi/2(pi/2− 1/2lq (k)) for all i ∈ {1, . . . , qGDL′
R },

Formal Proofs for the Security of Signcryption 233

and since pi is the probability that a run of AGDL′ is i-successful, we know that
∑qo

i=1 pi =
SuccGDL′

Z
∗
p,AGDL′ (k). Assuming that SuccGDL′

Z
∗
p,AGDL′ (k) ≥ 2qR/2lq (k), we apply Lemma 3 to

get the desired lower bound on AGDL’s success probability:

Pr[S∗] =
qGDL′
R∑
i=1

Pr[S∗i] ≥ (1/qGDL′
R)·(SuccGDL′

Z
∗
p,AGDL′ (k)/2− qGDL′

R /2lq (k))2.

To complete the proof of the theorem, we compose the reductions from “Stage 1” and
“Stage 2” and convert AUF into the desired algorithm AGDL with the resources claimed
in the theorem statement and success probability satisfying the bound

SuccFSO-UF-CMA
AUF,ZSCR (k) ≤ 2

√
qH·SuccGDL

Z
∗
p,AGDL(k)+

qSC(qG + qH + qSC)+ qH + 1

2lq (k)−1
.

The claimed insecurity bound of the theorem now follows by taking a maximum over
all adversaries with the appropriate resource parameters.

We remark here that the above result is optimal in the sense that the GDL assumption is
also necessary for the schemeZSCR to achieve FSO-UF-CMA. If an efficient algorithm
for the GDL problem is available, it can be used to compute efficiently the sender’s secret
key from his public key, by using the sender’s flexible signcryption oracle to simulate
the answers to the GDL algorithm’s DDH queries. We refer the reader to [30] for the
details of this attack.

6. Concluding Remarks

We have proved the confidentiality of Zheng’s original signcryption scheme with respect
to a strong and well-defined security notion that we introduced and called “FSO/FUO-
IND-CCA2”. Although this notion bears some similarities to the well-known “IND-
CCA2” notion defined for standard public-key encryption schemes, it is stronger than
the direct adaptation of “IND-CCA2” to the setting of signcryption, since we allow
an attacker to query both the signcryption oracle and the unsigncryption oracle in a
flexible way. We have also introduced a strong unforgeability notion called “FSO-UF-
CMA” which allows a forger to query the signcryption oracle in a flexible way. We have
successfully proved the unforgeability of Zheng’s original signcryption with respect to
this notion.

We emphasize here that our security models for signcryption are applicable not only
to Zheng’s original scheme but also to other various signcryption schemes: As men-
tioned earlier in this paper, Zheng’s SDSS2-type signcryption scheme described in [33]
and [34] can be proven to be secure relative to the same computational assumptions
for the SDSS1-type signcryption scheme using the same proof techniques presented in
this paper. Another immediate consequence of the results of this work is the provable
confidentiality and unforgeability of the elliptic curve variants of Zheng’s original sign-
cryption scheme described in [35]. The only difference is that we need to rely on elliptic
curve equivalent GDH and GDL assumptions in proving the security of the elliptic curve

234 J. Baek, R. Steinfeld, and Y. Zheng

variants. It should also be noted that all these schemes require the use of two separate
hash oracles, one in generating τ which acts as an encryption key for a message m and
the other in obtaining r which participates in the generation of a signature.

Acknowledgements

The authors thank anonymous referees of PKC 2002 and Journal of Cryptology for
their fruitful comments. The first two authors also thank Dr. Jan Newmarch at Monash
University for his support on their research.

References

[1] J. An, Y. Dodis and T. Rabin: On the Security of Joint Signature and Encryption, Advances in Cryptology—
Proceedings of EUROCRYPT 2002, Vol. 2332 of LNCS, Springer-Verlag, Berlin, 2002, pages 83–107.

[2] J. An, Y. Dodis and T. Rabin: On the Security of Joint Signature and Encryption, Report 2002/046,
Cryptology ePrint Archive, 2002.

[3] J. Baek, R. Steinfeld and Y. Zheng: Formal Proofs for the Security of Signcryption, Proceedings of Public
Key Cryptography 2002 (PKC 2002), Vol. 2274 of LNCS, Springer-Verlag, Berlin, 2002, pages 80–98.

[4] M. Bellare, A. Desai, E. Jokipii and P. Rogaway: A Concrete Security Treament of Symmetric Encryption,
Proceedings of FOCS ’97, IEEE Computer Society Press, Los Alamitos, CA, 1997, pages 394–403.

[5] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway: Relations Among Notions of Security for Public-
Key Encryption Schemes, Advances in Cryptology—Proceedings of CRYPTO ’98, Vol. 1462 of LNCS,
Springer-Verlag, Berlin, 1998, pages 26–45.

[6] M. Bellare and C. Namprepre: Authenticated Encryption: Relations Among Notions and Analysis of the
Generic Composition Paradigm, Advances in Cryptology—Proceedings of ASIACRYPT 2000, Vol. 1976
of LNCS, Springer-Verlag, Berlin, 2000, pages 531–545.

[7] M. Bellare and P. Rogaway: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols,
Proceedings of the First ACM Conference on Computer and Communications Security, 1993, pages 62–
73.

[8] M. Bellare and P. Rogaway: Optimal Asymmetric Encryption, Advances in Cryptology—Proceedings of
Eurocrypt ’94, Vol. 950 of LNCS, Springer-Verlag, Berlin, 1994, pages 92–111.

[9] M. Bellare and P. Rogaway: The Game-Playing Technique, Report 2004/331, International Association
for Cryptographic Research (IACR) ePrint Archive, 2004.

[10] R. Cramer and V. Shoup: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen
Ciphertext Attack, Advances in Cryptology—Proceedings of CRYPTO ’98, Vol. 1462 of LNCS, Springer-
Verlag, Berlin, 1998, pages 13–25.

[11] R. Cramer and V. Shoup: Design and Analysis of Practical Public-Key Encryption Schemes Secure
against Adaptive Chosen Ciphertext Attack, Report 2001/108, International Association for Crypto-
graphic Research (IACR) ePrint Archive, 2001.

[12] T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE
Transactions on Information Theory, Vol. 31, 1985, pages 469–472.

[13] A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions of Identification and Signature
Problems, Proceedings of CRYPTO ’86, Vol. 263 of LNCS, Springer-Verlag, Berlin, 1987, pages 186–
194.

[14] E. Fujisaki and T. Okamoto: How to Enhance the Security of Public-Key Encryption at Minimum Cost,
Proceedings of Public Key Cryptography ’99 (PKC ’99), Vol. 1666 of LNCS, Springer-Verlag, Berlin,
1999, pages 53–68.

[15] S. Goldwasser and S. Micali: Probabilistic Encryption, Journal of Computer and System Sciences, Vol. 28,
1984, pages 270–299.

[16] S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme Secure against Adaptive Chosen-
Message Attacks, SIAM Journal on Computing, Vol. 17, No. 2, 1988, pages 281–308.

Formal Proofs for the Security of Signcryption 235

[17] C. Jutla: Encryption Modes with Almost Free Message Integrity, Advances in Cryptology—Proceedings
of EUROCRYPT 2001, Vol. 2045 of LNCS, Springer-Verlag, Berlin, 2001, pages 529–544.

[18] H. Krawczyk: The Order of Encryption and Authentication for Protecting Communications (Or: How
Secure Is SSL?), Advances in Cryptology—Proceedings of CRYPTO 2001, Vol. 2139 of LNCS, Springer-
Verlag, Berlin, 2001, pages 310–331.

[19] M. Naor and M. Yung: Public-Key Cryptosystems Secure against Chosen Ciphertext Attacks, Proceedings
of the 22nd ACM Sysmposium on Theory of Computing, 1990, pages 427–437.

[20] K. Ohta and T. Okamoto: On Concrete Security Treatment of Signatures Derived from Identification,
Advances in Cryptology—Proceedings of CRYPTO ’98, Vol. 1462 of LNCS, Springer-Verlag, Berlin,
1998, pages 354–369.

[21] T. Okamoto and D. Pointcheval: The Gap-Problems: A New Class of Problems for the Security of
Cryptographic Schemes, Proceedings of Public Key Cryptography 2001 (PKC 2001), Vol. 1992 of LNCS,
Springer-Verlag, Berlin, 2001, pages 104–118.

[22] D. Pointcheval: Chosen-Ciphertext Security for Any One-Way Cryptosystem, Proceedings of Public Key
Cryptography 2000 (PKC 2000), Vol. 1751 of LNCS, Springer-Verlag, Berlin, 2000, pages 129–146.

[23] D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind Signatures, Journal of
Cryptology, Vol. 13, No. 3, Springer-Verlag, Berlin, 2000, pages 361–396.

[24] C. Rackoff and D. Simon: Non-Interacitve Zero-Knowledge Proof of Knowledge and Chosen Ciphertext
Attack, Advances in Cryptology—Proceedings of CRYPTO ’91, Vol. 576 of LNCS, Springer-Verlag,
Berlin, 1992, pages 433–444.

[25] P. Rogaway, M. Bellare, J. Black and T. Krovetz: OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption, Proceedings of the 8th ACM Conference on Computer and Communications
Security, 2001, pages 196–205.

[26] C. P. Schnorr: Efficient Identification and Signatures for Smart Cards, Advances in Cryptology—
Proceedings of CRYPTO ’89, Vol. 435 of LNCS, Springer-Verlag, Berlin, 1990, pages 235–251.

[27] C. P. Schnorr and M. Jakobsson: Security of Signed ElGamal Encryption, Advances in Cryptology—
Proceedings of ASIACRYPT 2000, Vol. 1976 of LNCS, Springer-Verlag, Berlin, 2000, pages 73–89.

[28] V. Shoup: Sequences of Games: A Tool for Taming Complexity in Security Proofs, Report 2004/332,
International Association for Cryptographic Research (IACR) ePrint Archive, 2004.

[29] V. Shoup and R. Gennaro: Securing Threshold Cryptosystems against Chosen Ciphertext Attack, Ad-
vances in Cryptology—Proceedings of EUROCRYPT ’98, Vol. 1403 of LNCS, Springer-Verlag, Berlin,
1998, pages 1–16.

[30] R. Steinfeld: Analysis and Design of Public-Key Cryptographic Schemes, Ph.D. Thesis, Monash Uni-
versity, January 2003.

[31] R. Steinfeld and Y. Zheng: A Signcryption Scheme Based on Integer Factorization, Proceedings of
Information Security Workshop 2000 (ISW 2000), Vol. 1975 of LNCS, Springer-Verlag, Berlin, 2000,
pages 308–322.

[32] Y. Tsiounis and M. Yung: On the Security of ElGamal-Based Encryption, Proceedings of Public Key
Cryptography ’98 (PKC ’98), Vol. 1431 of LNCS, Springer-Verlag, Berlin, 1998, pages 117–134.

[33] Y. Zheng: Digital Signcryption or How to Achieve Cost (Signature & Encryption)� Cost (Signature)+
Cost (Encryption), Advances in Cryptology—Proceedings CRYPTO ’97, Vol. 1294 of LNCS, Springer-
Verlag, Berlin, 1997, pages 165–179.

[34] Y. Zheng: Digital Signcryption or How to Achieve Cost (Signature & Encryption)� Cost (Signature)
+ Cost (Encryption), full version, available at http://www.sis.uncc.edu/∼yzheng/papers/.

[35] Y. Zheng and H. Imai: Efficient Signcryption Schemes on Elliptic Curves, Proceedings of the IFIP 14th
International Information Security Conference (IFIP/SEC ’98), Chapman and Hall, New York, 1998,
pages 75–84.

[36] Y. Zheng and J. Seberry: Immunizing Public Key Cryptosystems against Chosen Ciphertext Attacks,
IEEE Journal on Selected Areas in Communications, Vol. 11, No. 5, 1993, pages 715–724 (Special Issue
on Secure Communications).

