
1

Formal Security Proofs for a
 Signature Scheme with Partial Message Recovery

Daniel R. L. Brown and Don B. Johnson

June 14, 2000

Abstract
The Pintsov-Vanstone signature scheme with partial message

recovery (PVSSR) is a variant of the Schnorr and Nyberg-Rueppel signature
schemes. It produces very short signatures on messages with intrinsic
redundancy. At 80 bits of security, cryptographic overhead (message
expansion) ranges from 20 to 30 bytes, depending on the amount of intrinsic
redundancy in the message being signed. (In comparison, an ECDSA
signature with the same domain parameters would have an overhead of about
40 bytes.) This article gives a formal proof of the security of PVSSR, which
reduces the difficulty of existential forgery to the difficulty of the discrete
logarithm problem. The proof works in the random oracle model (which
assumes an ideal hash function) combined with an ideal cipher model.
Suggested instantiations for the ciphers in cryptographic applications are
symmetric encryption primitives, such as 3DES or AES. A second proof is
given, in which the random oracle model is replaced by the generic group
model. A third proof permits the cipher to be XOR, by working in both the
random oracle model and the generic group model.

1 Introduction

Several signature schemes with appendix, such as DSA, ECDSA, and
those based on RSA and Rabin-Williams, are considered to be both
computationally efficient and heuristically or provably secure against
existential forgery by adaptive chosen message adversaries. However,
when bandwidth is at a premium, a potential problem with signature
schemes with appendix is that the combined length of the message and
signature is too long. Signature schemes with total or partial message
recovery provide a solution to this problem by embedding all or part of the
message within the signature. (A secondary feature of using message
recovery is that all or part of the message is “hidden” because it cannot be
recovered without the public key of the singer.)

Signature schemes with message recovery specify that some
message representative is recovered from the signature. For verification to
be complete, the message representative must have the correct
redundancy. Roughly speaking, redundancy means that the message
representative belongs to a particular small subset of all possible bit
strings that can be recovered from candidate signature data. Signature

2

schemes with message recovery generally do not specify the form of the
redundancy. Typically, the form of redundancy depends on the
application.

One form of redundancy is padding. For example, the recovered
message representative could be required to have 80 bits of a specific
padding. To sign a message it is first padded with 80 bits and then the
signature is generated. However, the added bandwidth of such a full
padding method can negate the bandwidth advantage of using message
recovery. A more appropriate choice of redundancy for message recovery
is to use the intrinsic redundancy of messages that are signed.

In typical applications, messages that are signed belong to a
“meaningful” subset of messages. In other words, they have intrinsic
redundancy. Thus, message recovery is particularly advantageous for
applications that only use messages where the intrinsic redundancy can be
precisely and easily specified and verified. For example, in a digital
postage mark, certain postage information must always be present and
constitutes the necessary intrinsic redundancy. If the application-specific
intrinsic redundancy is insufficient for the required security level, then the
intrinsic redundancy may be combined with added redundancy in the form
of padding.

Some signature schemes with total or partial message recovery
have restrictions on the length of the message representative to be
recovered. For example, in the Nyberg-Rueppel scheme, the length is
fixed. This restriction has two disadvantages. First, for very short
messages, the fixed length message representative contains more
redundancy than necessary and thus wastes bandwidth. Second, messages
that are slightly too long may not fit within the space provided for the
message representative. It would be preferable to use a signature scheme
with message recovery without this restriction, because the scheme would
be then be usable with a wider class of applications.

The Pintsov-Vanstone Signature Scheme with Recovery (PVSSR)
is a signature scheme with partial message recover without restriction on
the message representative length. When used with elliptic curves, it
provides very short bandwidth. For example, at a security level of 80 bits,
the cryptographic overhead of an elliptic curve PVSSR signature is 160
bits plus the number of bits of padding redundancy. In comparison, an
ECDSA over the same elliptic curve domain parameters would have an
overhead of about 320 bits.

(Optionally, PVSSR’s flexibility allows the total amount of
redundancy (intrinsic plus padding) to be set quite low in order to save
bandwidth. This provides for very low bandwidth as a tradeoff for
security against forgery. Although this low redundancy mode
compromises the resilience against forgery, it does not seem to
compromise the private key of the signer. Therefore, for messages of low
importance, low redundancy PVSSR signatures could be useful for their
bandwidth efficiency, without compromising the private key of the signer.

3

This optional feature is an another advantage of PVSSR, but this article
will not directly pursue any further security analysis of PVSSR used in
this mode.)

The PVSSR is scheme is an adaptation of the Nyberg-Rueppel
signature scheme with message recovery. Since it a relatively new
scheme, thorough cryptanalysis has not yet established is security. To
establish the security of PVSSR, this article provides three separate proofs
of security for PVSSR. The first proves that in certain models PVSSR is
as secure as the elliptic curve discrete log problem (ECDLP). The second
proves in certain models that PVSSR is as secure as the degree of a special
form of collision-resistance and one-way-ness of a hash function. The
third proves in certain models, that PVSSR is as secure as a certain
relationship between a cipher and the selected choice of redundancy.

2 Signature Generation

Let W = sG, be the public key of a signer, where s is the private key of the
signer, and G is the generator of a subgroup of an elliptic curve group of
order r. Let S.’(.) be a cipher, a keyed (parameterized) family of one-to-
one transformations. Let H(.) be a hash function. To sign a message m,
the signer divides the message into two parts, l and n, according to
application dependent criteria. The message part n belongs to subset N, of
size 2a, of the set of binary strings of length b. Therefore the part n has
effectively redundancy of b-a bits. For example, such N could be all n that
are an address, or all n that are an English phrase, or all n that are an
executable fragment of some computer language. If necessary, the
message part n can be created by the signer using some message data and
padding it with a certain number of bits. (The verifier removes the
padding bits after recovering n.) The signer computes a signature (c, d) by
the following sequence of steps:

1. If n is not a member of N, stop and return “invalid”.
2. Randomly choose an integer u from the range [1,r – 1]
3. Compute V = uG
4. Derive a symmetric key V’ from the point V using a key

derivation function.
5. Compute c = SV’(n)
6. Compute h = H(c||l)
7. Compute d = sh + u mod r

The resulting signature (c, d) must be conveyed to the verifier. The
verifier also need l to recover n.

2.1 Signature Verification and Message Recovery

4

Let W be the public of the signer, authentically obtained by the verifier.
(Assume that the domain parameters for W, including G, r and the elliptic
curve group, are also authentically obtained by the verifier.) Assume that
the verifier authentically obtains means to test for membership in the
redundancy space N. Let (c, d) be a purported signature, and l a purported
“verification” portion of the message m, with the given signature. The
verifier verifies the signature and recovers m by the following sequence of
steps:

1. Compute h = H(c||l)
2. Compute V = dG – hW
3. Derive a symmetric key V’ from the point V using a key

derivation function.
4. Compute n = SV’

.-1(c)
5. If n is not a member of N, then stop and reject the signature
6. If n is a member of N, then accept the signature
7. Recover the message as m = l||n

If n includes padding that the signer has added, then the verifier will
remove the padding from n. The padding method should be unambiguous
and its quantity and form authentically pre-established between the signer
and verifier. The security of the scheme depends on 2a-b being a
negligibly small probability.

2.2 The importance of the redundancy variable, b –a

The number b – a is the number of bits of redundancy in the message n.
This is a scalable parameter of PVSSR, and is independent of the key
length of log2(r). For example, with key length of 160 bits, which is
recommended to prevent the private key from being found by solving
discrete logs, and redundancy parameter b – a = 10, then existential
forgery is possible with probability of about 2-10, or about 1 in 1000.
Users of PVSSR should determine the level of resistance desired against
existential forgery, based on the importance of messages being signed. Of
course, more redundancy requires larger values of b, and thus longer
signatures, so there is a trade-off to be decided.

In PVSSR, the choice of N is intentionally left open. For a high-
speed application, the test for n ∈ N should be automated. If the messages
being sent are such that the part n initially does not have the desired level
of redundancy, it is possible to expand n, by padding, or adding
redundancy by some other means. For example, it may be that there are
40 bits of natural redundancy and 40 bits of inserted redundancy, for a
total of b – a = 80, which makes forgery roughly as difficult as extracting
the private key. The source of the redundancy is not important, provided
that the signer and verifier use the same N. The first two proofs in this
paper are applicable for any fixed choice of N while the third has the

5

requirement that the cipher S be “independent” from N, in a sense defined
in section 7.1.

2.3 Flexible Recovered Message Length

The length of the recovered part n of the message is not tied to any other
parameters of the scheme. For example, the recovered portion could be
10, 20, or 100 bytes, with a 20-byte group, 20-byte hash, 8-byte block
cipher (such as 3DES). There are two main requirements that affect the
length of n. First, it must contain sufficient redundancy to prohibit
existential forgery. Second, if a weak one-time padding cipher such as
XOR is used, then the length of n should not exceed the length of the
ephemeral public key V (e.g. 20 bytes). (This is not a requirement that n
be at least 20 bytes or padded to 20 bytes.) For example, with the XOR
cipher the bit string V can be truncated or folded onto itself down to a key
bit string V’ of the length of n. However, if a mask generation function is
to derive a mask from V of length n, then the length of n is not directly
bounded by the length of V but rather by certain security properties of the
mask generation function. If an 8-byte block cipher, such as 3DES, is
used and n slightly exceeds a block length, say with length 17 bytes, there
are tricks that allow n to be encrypted and decrypted without substantial
increase in length.

2.4 Elliptic curves and certificates

We recommend using elliptic curve arithmetic because of the resulting
smaller public key sizes than equivalent-strength ordinary integer discrete
log based modular arithmetic. For example, for the ordinary discrete log
case, the public key should be 1024 bits to give about 80 bits of security.
Although, the public key size does not necessarily affect the size of the
signature (c, d), signatures are often sent together with a certificate
containing the public key of the signer. If certificates are needed, it is
likely in that case that the need for a short signature implies the need for a
short certificate. The more than 1024 bits of an integer public key would
eliminate the bandwidth efficiency gained from message recovery.
Therefore, elliptic curve groups are perhaps best suited for message
recovery.

(Incidentally, as noted in [PV99], using implicit certificates instead
of ordinary certificates saves even more bandwidth. In implicit
certificates, a single point in the group, 163 bits defining a compressed
elliptic curve point, replaces a public key and a digital signature (totaling
to at least 480 bits if an ECDSA signature is used). This means that both
the signature and the certificate are able to fit in a limited space.)

6

3 Concrete Examples
3.1 Digital postage marks at 23 bytes of overhead

Digital postage marks need to convey postal data ranging from 20 to 50
bytes. Some parts of the postal data, including date, postage value and
postal code of originating location are sent in the clear portion of the
message l, for practical reasons. Other parts of the postal data, such as
serial number of postage accounting device, message identification
number, value of ascending register in the accounting unit, or e-mail
address of the sender, are sent within recovery portion n. At minimum,
this might include 13 bytes of data. The natural redundancy within these
13 bytes could be 7 bytes. To get 10 bytes of redundancy, 3 bytes of
redundancy could be inserted by padding with 3 bytes. Then, n would
have 16 bytes.

We recommend using a 20-byte elliptic curve (160 bits or 163
bits), SHA-1 as a good 20-byte hash function, and 3DES. Since c would
have the same length of 16 bytes as n it does not introduce anything
further overhead. The integer d would have 20 bytes. The total overhead
is 20 bytes for d and 3 bytes of added redundancy, for a total of 23 bytes
of overhead at 2-80 level of security.

3.2 Signing extremely short messages at 24 bytes of overhead

Consider signing a short 1-byte message, such as yes/no, buy/hold/sell,
etc. To prevent replay attacks, such short messages often need to be sent
together with a 3-byte sequence number. For the purposes of increasing
forgery resistance 4 bytes of padding redundancy could be added. This
results in an 8-byte message portion n. (Let l have 0 bytes.) With DES,
SHA-1 and 20-byte EC, the signature (c, d) has 28 bytes, 24 of which
constitute the cryptographic overhead over the message and sequence
number. The sequence number of each message has a required value, so it
is redundant. Therefore, there are 7 bytes of redundancy in n, which
gives 2-56 level of security against existential forgery. (Total break
resistance is still at the 2-80 level.)

3.3 Signing and recovering longer messages at 20 bytes of overhead

If the message to be recovered is 20 bytes or longer, it is reasonable to
expect that certain formatting requirements or meaningfulness of the
message will result in at least 10 bytes of natural redundancy. This
obviates the need to insert added redundancy. Therefore the only
overhead is the 20 bytes of d.

(In the worst case, when the message to be recovered has zero
redundancy, 10 bytes of redundancy could be added and 20 bytes for the
integer d, for a total of 30 bytes. Ad hoc methods could be used to shave
off a few bytes from the 30, but we do not recommend such methods,

7

because it is questionable whether they have better or worse effect on
security than simply adding less than 10 bytes of redundancy.)

4 Security Models
4.1 Overview of security features

The security of PVSSR depends on the security of four of its components:

1. The security of the elliptic curve group (in particular, the
difficulty in the discrete logarithm problem)

2. The security of the hash function
3. The security of the cipher
4. The security of the set N (in particular, the smallness of 2a-b)

Furthermore, the security of PVSSR depends on the independence of these
four components. For example, the hash function should not be defined in
terms of the elliptic curve group, and the set N should not be contained in
the set of all n such that SV’(n) = c for some fixed c.

For the sake of efficiency, some implementations may employ
truncation or padding as key derivation, rather than a more secure hash-
based key derivation function. The proofs in this article are valid for any
key derivation function provided that it operates in conjunction with the
cipher in a secure manner.

Ideally, a security proof of PVSSR would reduce its security to the
security and independence of the individual components. We do not know
of such a reduction. The reduction proofs given in this article work with
certain models, where some heuristic properties of two components are
assumed. The common principle in these heuristics is that a component is
“maximally random”, fully random up to being constrained by the
definition of component’s class (group, hash or cipher). Implementing
such maximally random components is not practical. Nevertheless such
proofs do provide some assurance of security for practical
implementations, if the known attacks against the implemented
component, whether it be the group, the hash or the cipher, are only as
good as attacks against a maximally random object in the class. More
details of each of the three models are given in the next subsections. We
re-iterate that the three reductive proofs of this article each work in a
combination of two out of the three models.

4.2 The random oracle model

In the random oracle model or ideal hash function assumption, the hash
functions invoked by a cryptographic scheme are replaced by a random
oracle, that is, an algorithm with random output subject to the constraint of
behaving like a function. That is, the random oracle’s outputs are chosen

8

randomly from its range of outputs, unless the input is a previous input, in
which case the previous output to the input is given again.

The random oracle model enables security proofs to be given for
certain efficient cryptographic schemes. Such proofs are typically
reductions from successful attacks on the scheme to solutions of difficult,
mathematical problems, such as the discrete logarithm problem, which are
conjectured to be intractable.

The random oracle paradigm asserts that “secure hash functions”,
such as SHA-1, can securely replace random oracles in cryptographic
schemes that are secure in the random oracle model. In any event, a
successful attack on a scheme, secure in the random oracle model, must
exploit the specific hash function used to instantiate (replace) the random
oracle. No such attacks are known when using existing cryptographic
hash functions, such as SHA-1.

4.3 The generic group model

In the generic group model, a (prime order) group used in a cryptographic
scheme, is assumed to be a generic group. In a generic group,
representations of the elements of the group are selected randomly by
some algorithm, subject only to meeting the conditions of being
isomorphic to the prime-order group in question. The principle is similar
to the random oracle model, where the randomness is subject only to being
consistent as a function. In the generic group, randomness is subject only
to being consistent as a specific (prime order) group. To better model
actual cryptographic groups that are implemented, we assume that in a
generic group each element of the group has a unique representation.
Furthermore, we assume that is possible to submit new arbitrary
representations as input to the generic group operations.

If a scheme is secure in the generic group model, then a successful
attack against the scheme must exploit the specific choice of group (i.e.
process the group by means other than by invoking its operations as an
oracle). In a generic group, the discrete logarithm problem is known to be
exponentially hard [S98]. Prime order subgroups of general elliptic curve
groups (with secure parameters) are good examples of groups for which
all known attacks against the discrete log problem are not much better than
attacks in the generic group. (And the improvement, a speedup factor of
the square root of 2, arises only because negatives of points are more
easily computed in an elliptic curve group than sums, which distinguishes
them from generic groups.)

Certain elliptic curve groups have been standardized by NIST (see
[N99]. Hopefully the discrete logarithm problem for these groups will
remain about as difficult as the discrete logarithm problem for generic
groups of similar order.

9

4.4 The ideal cipher model

A new model, the ideal cipher model is proposed in this section. A cipher
is a parameterized (keyed) family of bijective transformations. A cipher is
an ideal cipher if it is maximally random in the sense that its values are
produced by an algorithm in a way as random as possible, subject to being
a consistent cipher. The oracle that evaluates the cipher may be asked to
evaluate the cipher in either direction, forward or backward. In other
words, inverses may be computed, provided that the consistency and
randomness of the functions are maintained.

Proposed substitutes for ideal ciphers are deterministic symmetric
encryption primitives, such as 3DEs or AES. Such primitives are keyed
families of ciphers, but have different design criteria than that of being
similar to ideal ciphers. Nevertheless, some effort towards
unpredictability was designed into 3DES and AES, and therefore we
propose to offer these cryptographic primitives as reasonable replacements
for ideal ciphers for schemes proved to be secure in the ideal cipher
model.

When a key derivation function is considered, the combined action
key derivation and ciphering should be considered to be ideal. In other
words, for each point V in the group, the particular cipher with the key V’
derived from V should be as random as possible.

5 Reduction of Security to the Discrete Log Problem
5.1 The forking lemma

This section briefly describes Pointcheval and Stern’s forking lemma
[PS96]. Consider a signature scheme, which invokes one evaluation of a
hash function in the verification operation. For the following purposes,
call this hash function evaluation the critical hash. Let F be an adversary
to the signature scheme, which is an algorithm with input consisting of
only the signer’s public key that produces signatures in the random oracle
model with non-negligible probability. Adversary F is also able to query
an honest signer for signatures of a sequence of messages adaptively
chosen by F.

The forking lemma asserts that it is possible to use the algorithm F
to obtain, with non-negligible probability, two signatures σ and σ’ related
in the following manner. The arguments to the hash function involved in
the verification operation for each of σ and σ’ are identical. The outputs
of the hash function on these identical inputs are unequal with non-
negligible probability. The method by which F can be used to obtain such
a pair of signatures is as follows. Run the algorithm F twice. In each run,
F will query the random oracle for a sequence of evaluation of hash
functions. Supply identical random answers to F in each run, except for
one answer, the tth answer, where t is chosen at random before both runs of
F. Note that before the tth random oracle query, the two runs of F are

10

identical. Therefore, the inputs to the tth hash evaluation are identical in
both runs of F. But, on the other hand, there is a non-negligible
probability that the hash evaluated in the verification operation on the
output of F, that is, the critical hash, is the same as the tth random oracle
query, because of two reasons. First, if F had never queried the random
oracle for the critical hash, then there is negligible probability that the
signature will verify. Second, F can only query the random oracle a
polynomial number of times, so, since t is chosen random, and one the
random oracle queries of F is the critical hash, there is a non-negligible
probability that it will be the tth random oracle query.

(The forking lemma may appear less convincing than proofs such
those in [BR96], because the forking lemma seems to require two different
hash functions. In implementations, signature schemes invoke one fixed
hash function. However, the forking lemma requires a random oracle
forger, which is successful over many different hash functions. Thus, it is
rigorous to consider two hash functions (both with outputs generated at
random). The reductions in [BR96] also require a random oracle. In this
respect, the reductions in [BR96] should not be regarded as more realistic.
However, the theoretical “tightness” of the reductions is a separate issue.)

5.2 Security Proof in the Combined Random Oracle and Ideal
Cipher Model

Theorem 1 In the combined random oracle and ideal cipher model,
PVSSR, is asymptotically secure against existentially forgery (for
messages where n belongs to N) from an adaptively chosen message
attack, if the discrete logarithm problem is intractable and 2a-b is
negligible.

Proof (Sketch). Suppose F is an adversary that achieves forgery. With
non-negligible probability, we can assume that F queries both H and S. In
particular, F queries for the value of H(c||l) and either SV(n) or the inverse
SV

-1(c). Based on the order of the queries, and whether the inverse was
queried, there are four cases to consider.

H(c||l) first, then SV’(n). Since SV’
-1(c) = n, we have SV’(n) = c.

But the value of SV’(n) is chosen at random, so there is negligible
probability that it equals the value c (which was seen in the hash query).

1. H(c||l) first, then SV’
-1(c). In this case, n= SV’

-1(c) must be
chosen randomly, so the probability that n belongs to N is
2a-b, which is negligible.

2. SV’
-1(c) first, then H(c||l). Use Pointcheval and Stern’s

forking lemma technique. At random, choose an index t,
and run F twice, but change the tth random value of H as
queried by F. Since the total number of queries is
polynomial, there is a non-negligible chance that the tth

11

query of H by F is the critical query of H by F for the value
of H(c||l), in both runs of F. If h and h’ are the random
values returned by H in the critical queries, and (c,d) and
(c’,d’) are the resulting signatures, then dG – hW = V = d’G
– h’W, because the value of V was produced by F in the first
query. Since sG = W and (h-h’)W = (d-d’)G it follows that
s = (h – h’)-1(d-d’) mod r.

3. SV’(n) first, then H(c||l). Use the above argument again.
Note that V is still fixed, because it is determined by F
before the critical query H(c||l).

Thus, if F succeeds non-negligibly often, one of the latter two cases must
apply. The forking lemma permits a second, similar run of F, such that
the value of the discrete log s of the elliptic curve point W is found.

It remains to show how to answer the queries that F makes for
signatures of messages. With knowledge of s, the signature generation
algorithm can be applied, but knowledge of s is what is sought. The idea
is that the ability of F to forge signatures can be used to find s. Since H
and S need only be random, proceed by choosing the signature (c,d)
randomly, and then answer subsequent queries of F for values of H and S
in a manner consistent with this random signature. Generate (c,d) as
follows:

1. Choose h, randomly from the range of H.
2. Choose d, randomly from the integers in the range [1,r-1]
3. Compute V = dG – hW
4. Compute c = SV’(n)
5. Answer the query of F for the signature of m=l||n with (c,d)

In order to be consistent, if F subsequently queries for the hash H(c||l), the
response must be h. Since h was chosen randomly, this complies with H
being a random oracle. o

In the above proof, the forking lemma technique hinges on H being a
random oracle. The ideal cipher model, the fact that S is “maximally”
random is exploited in a less complicated fashion.

6 Reduction of Security to the Strength of the Hash
Function

6.1 Strong Hash Property

Now leave the random oracle model, and consider actual specific,
arbitrary, deterministic hash function. Some of these may have a security
property that we define below. This is analogous to a specific group
having the property the discrete log problem is hard.

12

Definition 1 (Strong Hash) Let H be a hash function. H is a strong hash
function if there does not exist a probabilistic polynomial time algorithm A
which first finds a value h or l0 and then finds, on random input c, some l
such that H(c || l) = h or H(c || l) = H(c || l0), with non-negligible
probability.

We call the problem of finding such l the target value problem and target
collision problem. If the value c is regarded as a key for a family of hash
functions H(c,.), then collision part of the above hash strength is called
target collision resistant (TCR) by Bellare and Rogaway [BR97], and is
equivalent to Naor and Young’s universal one-way security, and has also
been called 2nd-preimage-resistance and weakly collision-resistance. The
other part of the above hash strength, we call target value resistance
(TVR) to correspond to [BR] terminology TCR, but it has also been called
one-way-ness, and pre-image-resistance. In other words, “strong = TCR
+ TVR”. We propose that SHA-1 is a good candidate for a strong hash
function.

6.2 Observable combination argument

In a generic group of order r, where r is a prime, the observable
combination argument, adapted from Shoup [S98], is the following. Let A
be any algorithm which starts with representations of two points, G and W,
and subsequently in its operation, submits queries to the generic group.
Assume that A makes only a number of queries that is polynomial in log r.
If V is any representation, seen either as the input or output by the group
oracle, then either

• V is an observable integer combination of G and W, say V =
xG+yW, in the following sense: V is either G or W, or was the
output of the generic group algorithm in response to a query by A
for group operation on two previous observable representations.

or

• V could be the representation of almost any point in the group. In
other words, over the random space of choices made by the generic
group algorithm, V=uG, where u is nearly uniformly distributed
from the integers in the range [1, r – 1], and is nearly independent
of s, where W = sG.

If A chooses a new representation V (neither G,W or any past outputs) to
input to the generic group algorithm, then neither V, nor the output given
by the oracle is “observable”.

Shoup [S98] essentially demonstrated that there is no such
algorithm A as above that can find s such that W=sG, in time less than
O(r1/2). We use this fact in the proof below.

13

6.3 Security Proof in the Combined Ideal Cipher and Generic
Group Model

Theorem 2 In the combined generic group and ideal cipher model,
PVSSR is asymptotically secure against existentially forgery (for
messages where n belongs to N) from an adaptively chosen message
attack, if the hash function H is strong and 2a-b is negligible.

Proof (Sketch). Suppose F is an adversary that produces forged signature
(c,d) with corresponding verification message portion l. With non-
negligible probability, we can assume that F queries both the generic
group and S, because otherwise there is negligible probability that the
signature will be accepted by the verification operation. In particular, the
representation V=dG – H(c||l)W must appear as the input or the output of
a query to the generic group algorithm and either the query SV’(n) or query
of for the inverse SV’

-1(c) must be made. The order and the nature of the
queries, leads to the following cases:

1. Suppose that SV’(n) or SV’
-1(c) was queried before V

appeared as the representation of a point in the context of
the generic group algorithm. Then, there is negligible
chance that V first appears as an output of the generic group,
so V must be an input to the generic group algorithm. Thus
V is not observable. By the observable combination
argument, V = uG, where u is almost uniformly distributed.
But F finds c,d,l such that uG = dG – H(c||l)W, which fixes
u at a particular (albeit unknown) value u=s+H(c||l)s, which
is not independent of s. This is a contradiction.

2. Suppose that V was queried by F to the generic group
algorithm as an input, before the query SV’(n) or SV’

-1(c).
Then again, V is not observable, so the above argument
applies. If V is not observable, as a result of being the
output to query with a new representation input, then again
V is not observable, and the above contradiction results.

3. Suppose that V appeared as the observable output of a query
by F to the generic group algorithm, prior to the F’s query
SV’(n) or SV’

-1(c). Suppose the latter query was SV’
-1(c). The

response n, which is chosen randomly, has a negligible
probability of falling into N, which is a contradiction.

4. Suppose that V appeared as the observable output of a query
by F to the generic group algorithm, prior to the F’s query
SV’(n) or SV’

-1(c). Suppose the latter query was SV’(n). Since
V is observable, V = gG+hW for some integers g and h.
Choose the response c=SV’(n) randomly, as required. Then
F finds d,l such that V = dG - H(c||l)W.

14

a) If (g,-h) ≠ (d,H(c||l)), then solve for s=(h+H(c||l))-

1(d-g) mod r, which contradicts Shoup’s result that
that s cannot be found in polytime. (That is, the
discrete log problem is exponentially difficult in the
generic group model.)

b) If (g,h) = (d,H(c||l)), and V is not an ephemeral key
of a signing query, then F has first found h, and then
found, for random c, an l such that H(c||l) = h, which
contradicts the assumption that H is strong, because
H is TVR-broken.

c) If (g,h) = (d,H(c||l)), and V is the an ephemeral key
of a signing query of message l0||n0, then F has first
found l0, and then found, for given random c, an l
such that H(c||l) = H(c||l0), which contradicts the
assumption that H is strong, because H is TCR-
broken.

In all the above cases, there is only a negligible chance of success for F, so
no F with non-negligible chance of success exists, under the given models
and assumptions.

It remains to show how the queries of F for signatures can be
answered. With knowledge of s, the signature generation algorithm can be
applied, but knowledge of s is what is sought. The idea is that the ability
of F to forge signatures can be used to find s. Since the group and S need
only be random, proceed by choosing the signature (c,d) randomly as
below, and then answer subsequent queries of F for values of H and S in a
manner consistent with this random signature. Generate (c,d) as follows:

1. Choose c, randomly from the range of S
2. Compute h = H(c||l).
3. Choose d, randomly from the integers in the range [1,r-1]
4. Compute V = dG – hW
5. Answer the query of F for the signature of m=l||n, with (c,d)

In order to be consistent, if F subsequently queries for the cipher from key
V, n, the response must be c, and vice versa. Since c was chosen
randomly, this complies with S being an ideal cipher. o

7 Reduction of Security to the Cipher Strength
7.1 Uniform decipherment property

The third proof works in the combined generic group and random oracle
model, in order to reduce the security of PVSSR to the strength of the
cipher. Thus, rather than work in an ideal hypothetical model where the
cipher S is chosen from a random space, assume that the specific

15

implemented cipher S (together with the key derivation function) has the
following very plausible property with respect to the set N of redundant
message portions.

Definition 2 (Uniform Decipherment) Let S be a cipher (including a key
derivation function). Let N be a subset of size ≤ 2a of binary strings of
length b. Then cipher S is uniform with respect to N if for each fixed value
of c, the probability over random V that SV’

-1(c)∈ N is O(2a-b). If it is
infeasible to find c such that SV

-1(c)∈N with chance significantly greater
than 2a-b, then S has weak uniform decipherment with respect to N.

In other words, S is uniform with respect to N, if there does not exist a
ciphertext which deciphers to plaintext in N with much higher probability
than expected over the random space of keys V. If S = 3DES and N is
ASCII encoding of English text, this type of uniformity is plausible.
Indeed, for S = XOR, uniformity is true if b ≤ the key-length of V. (If the
key-space of S is smaller than 2b then, for each c, the set Nc = {n | n =
SV

-1(c) for V in the key-space of S} is such that S is not uniform with
respect to Nc because the probability in Definition 2 is 1, which is not
O(2a-b).)

Therefore, unlike the previous two proofs, the following security
proof is applicable for S = XOR, provided the key-lengths are appropriate.
Use of XOR provides greater time-efficiency, so the following security
proof is a desirable assurance for those implementations needing the speed
of XOR.

(If a cipher S is assumed to be pseudorandom, as is suggested for
3DES in [BR97], then S has weak uniform decipherment for all N for
which membership can be efficiently determined. Suppose otherwise: that
S is pseudorandom, but S does not have weak uniform decipherment with
respect to N. Then some c can be found such that S and a truly random
cipher R can be distinguished as follows. Let f=SV or else f be some
random permutation (generated by R), where the choice is unknown to the
distinguisher. If f--1(c)∈N, the distinguisher guesses that f=SV

 and
otherwise guesses that f was generated by the truly random cipher. The
distinguisher has a good chance of being correct, because if f was chosen
randomly, then f--1(c)∈N with probability 2a-b, which is much smaller than
the probability that SV

-1(c)∈N.)

7.2 Security Proof in the Combined Random Oracle and Generic
Group Model

Theorem 3 In the combined random oracle and generic group model,
PVSSR, is asymptotically secure against existentially forgery (for
messages where n belongs to N) from an adaptively chosen message
attack, if the cipher S has (weak) uniform decipherment with respect to N
and 2a-b is negligible.

16

Proof (Sketch). Suppose F is an adversary that produces forged signature
(c,d) with corresponding verification message portion l. With non-
negligible probability, we can assume that F queries both the generic
group and the random oracle (hash function) because otherwise there is
negligible probability that the signature will be accepted by the
verification operation. In particular, the representation V=dG – H(c||l)W
must appear as the input or the output of a query to the generic group
algorithm, and the hash query for the value H(c||l) must be made. The
order and the nature of the queries, leads to the following cases:

1. Suppose that V was not an observable integer combination
of G and W. That is, V is an input or an output to query by
F to the generic group algorithm, in which of the inputs
supplied by F, was distinct from previous representations of
points processed by the generic group algorithm. Note that
V = uG for some u, and V = dG – H(c||l)W, according to the
verification operation. This means that u = d + H(c||l)s,
which contradicts the observable combination argument that
u is almost uniformly distributed and independent of s

2. Suppose that V is an observable integer combination, where
it can be observed that V = gG-hW, at the time V is first
processed by the generic group algorithm. Suppose that
(g,h) ≠ (d,H(c||l)). Then s = (h-H(c||l))-1(d-g) mod r, which
contradicts the fact that the discrete log cannot be solved in
the generic group in polynomial time.

3. Suppose that V is an observable integer combination, where
it can be observed that V = gG-hW, at the time V is first
processed by the generic group algorithm. Suppose that
(g,h) = (d,H(c||l)). Suppose that the hash query H(c||l)
occurs after the first observation of V. Then, there is
negligible probability that h = H(c||l).

4. Suppose that V is an observable integer combination, where
it can be observed that V = gG-hW, at the time V is first
processed by the generic group algorithm. Suppose that
(g,h) = (d,H(c||l)). Suppose that the hash query H(c||l)
occurs before the first observation of V. Then, the
representation V is chosen randomly by the generic group
algorithm, but is such that SV’

-1(c)∈ N, with non-negligible
property. Thus, F has found a value of c that demonstrates
that S is not uniform with respect to N, which is a
contradiction.

In all above cases, there is only a negligible chance of success for F, so no
F with non-negligible chance of success exists, under the given models
and assumptions.

17

It remains to show how the queries of F for signatures can be
answered. With knowledge of s, the signature generation algorithm can be
applied, but knowledge of s is what is sought. The idea is that the ability
of F to forge signatures can be used to find s. Since H and S need only be
random, proceed by choosing the signature (c,d) randomly, and then
answer subsequent queries of F for values of H and group operations in a
manner consistent with this random signature. Generate (c,d) as follows:

1. Choose h, randomly from the range of H.
2. Choose d, randomly from the integers in the range [1,r-1]
3. Compute V = dG – hW
4. Compute c = SV’(n)
5. Answer the query of F for the signature of m=l||n with (c,d)

In order to be consistent, if F subsequently queries for the hash
H(c||l), the response must be h. Since h was chosen randomly, this
complies with H being a random oracle. o

8 Necessary Security Requirements

Each of the three security assumptions is necessary for any
implementation of PVSSR. If any of the cipher, the group or the hash is
known to fail to meet its security assumption, then forgery of the
implementation PVSSR is immediate from this security flaw. Thus the
weak uniform decipherment property, difficulty of the discrete logarithm
problem and a strong hash function (especially a TCR hash function) are
each necessary for a secure instantiation of PVSSR. A security flaw in
one of the three components is sufficient for an attack against PVSSR,
even if other two components are perfectly “secure”. Because the attacks
identified above are based on the same assumptions that security proofs
are based, it can be concluded that the assumptions in the security proofs
cannot be weakened (although the heuristic models could be weakened).
The three proofs of this article find necessary and sufficient conditions for
the security of PVSSR, at least heuristically and qualitatively. Further
work could improve on these proofs by using less heuristic models and
quantitative analysis in the reductions.

References

[BR96] M. Bellare and P. Rogaway, The Exact Security of Digital
Signatures - How to Sign with RSA and Rabin, Eurocrypt
1996.

18

[BR97] M. Bellare, P. Rogaway, Collision-Resistant Hashing:
Towards Making UOWHFs Practical, Advances in
Cryptology – CRYPTO 97, Spring-Verlag, 1997.

[BDJR97] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A
Concrete Security Treatment of Symmetric Encryption:
Analysis of the DES Modes of Operation, Proceedings of
the 38th Symposium on Foundations of Computer Science,
IEEE, 1997.

[N99] National Institute of Standards and Technology,
www.nist.gov/encryption, 1999.

[PS96] D. Pointcheval and J. Stern, Security Proofs for Signature
Schemes, Eurocrypt, 1996.

[PV99] L. A. Pintsov and S. A. Vanstone, Postal Revenue
Collection in the Digital Age, Proceedings of the Fourth
Annual Conference on Financial Cryptography 2000, (to
appear).

[S98] V. Shoup, Lower Bounds for Discrete Logarithms and
Related Problems, 1998.

