
Formal Specification and Testing

of Model Transformations

Antonio Vallecillo1, Martin Gogolla2, Loli Burgueño1, Manuel Wimmer1,
and Lars Hamann2

1 GISUM/Atenea Research Group, Universidad de Málaga, Spain
2 Database Systems Group, University of Bremen, Germany

{av,loli,mw}@lcc.uma.es, {gogolla,lhamann}@informatik.uni-bremen.de

Abstract. In this paper we present some of the key issues involved
in model transformation specification and testing, discuss and classify
some of the existing approaches, and introduce the concept of Tract, a
generalization of model transformation contracts. We show how Tracts
can be used for model transformation specification and black-box testing,
and the kinds of analyses they allow. Some representative examples are
used to illustrate this approach.

1 Introduction

Model transformations are key elements of Model-driven Engineering (MDE).
They allow querying, synthesizing and transforming models into other models
or into code, and can also be composed in chains for building new and more
powerful model transformations.

As the size and complexity of model transformations grow, there is an increas-
ing need to count on mechanisms and tools for testing their correctness. This
is specially important in case of transformations with hundreds or thousands
of rules, which are becoming commonplace in most MDE applications, and for
which manual debugging is no longer possible. Being now critical elements in
the software development process, their correctness becomes essential for ensur-
ing that the produced software applications work as expected and are free from
errors and deficiencies. In particular, we do need to check whether the produced
models conform to the target metamodel, or whether some essential properties
are preserved by the transformation.

In general, correctness is not an absolute property. Correctness needs to be
checked against a contract, or specification, which determines the expected be-
haviour, the context whether such a behaviour needs to be guaranteed, as well
as some other properties of interest to any of the stakeholders of the system (in
this case, the users of a model transformation and their implementors). A speci-
fication normally states what should be done, but without determining how. An
additional benefit of some forms of specifications is that they can also be used
for testing that a given implementation of the system (which describes the how,
in a particular platform) conforms to that contract.

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 399–437, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

400 A. Vallecillo et al.

In general, the specification and testing of model transformations are not easy
tasks and present numerous challenges [1–4]. Besides, the kinds of tests depend
on the specification language and vice-versa. Thus, in the literature there are
two main approaches to model transformation specification and testing (see also
Section 3). In the first place we have the works that aim at fully validating the
behaviour of the transformation and its associated properties (confluence of the
rules, termination, etc.) using formal methods and their associated toolkits (see,
e.g., [5–11]). The potential limitations of these proposals lie in their inherent
computational complexity, which makes them inappropriate for fully specifying
and testing large and complex model transformations. An alternative approach
(proposed in, e.g., [12–15, 8]) consists using declarative notations for the spec-
ification, and then trying to certify that a transformation works for a selected
set of test input models, without trying to validate it for the full input space.
Although such a certification approach cannot fully prove correctness, it can
be very useful for identifying bugs in a very cost-effective manner and can deal
with industrial-size transformations without having to abstract away any of the
structural or behavioural properties of the transformations.

In this paper we show a proposal that follows this latter approach, making
use of some of the concepts, languages and tools that have proved to be very
useful in the case of model specification and validation [16]. In particular, we
generalize model transformation contracts [2, 17] for the specification of the
properties that need to be checked for a transformation, and then apply the
ASSL language [18] to generate input test models, which are then automatically
transformed into output models and checked against the set of contracts defined
for the transformation, using the USE tool [19].

In the following we will assume that readers are familiar with basic Software
Engineering techniques such as program specification (using, in particular, pre-
and postconditions [20]) and program testing (using, e.g., JUnit); with modeling
techniques using UML [21] and OCL [22]; and have basic knowledge of model
transformations [23].

This paper is organized as follows. After this introduction, Section 2 describes
the context of our work and Section 3 presents existing related works. Then,
Section 4 presents our proposal and Section 5 discusses the kinds of tests and
analysis that can be conducted and how to perform them. Tracts are illustrated
in Section 6 with several application examples. Finally, Section 7 draws the final
conclusions and outlines some future research lines.

2 Context

2.1 Models and Metamodels

In MDE, models are defined in the language of their metamodels. In this paper
we consider that metamodels are defined by a set of classes, binary associations
between them, and a set of integrity constraints.

Figure 1 shows our first running example as handled by the tool USE [19].
The aim of the example is to transform a Person source metamodel shown in

Formal Specification and Testing of Model Transformations 401

Fig. 1. USE Screenshot with the Families2Person example

the upper part of the class diagram into a Family target metamodel displayed
in the middle part. The source permits representing people and their relations
(marriage, parents, children) while the target focuses on families and their mem-
bers. (This example is just the opposite to the typical Families2Person model
transformation example [24, 25], that we shall also discuss later in Section 6.1.)

Some integrity constraints are expressed as multiplicity constraints in the
metamodels, such as the ones that state that a family always has to have one
mother and one father, or that a person (either female or male) can be married
to at most one person.

There are other constraints that require specialized notations because they
imply more complex expressions. In this paper we will use OCL [26] as the
language for stating constraints. In order to keep matters simple, we have decided
to include only one source metamodel constraint (SMM) and one target metamodel
constraint (TMM). On the Person side (source), we require that, if two parents
are present, they must have different gender (SMM parentsFM). On the Family

side (target), we require an analogous condition (TMM mumFemale dadMale).

context Person inv SMM_parentsFM :
parent−>s ize ()=2 implies

parent−>select (oclIsTypeOf (Female))−>s ize ()=1 and
parent−>select (oclIsTypeOf (Male))−>s ize ()=1

context Family inv TMM_mumFemale_dadMale :
mother . gender = #female and father . gender = #male

402 A. Vallecillo et al.

Many further constraints (like acyclicity of parenthood or exclusion of marriage
between parents and children or between siblings) could be stated for the two
models.

2.2 Model Transformations

In a nutshell, a model transformation is an algorithmic specification (either
declarative or operational) of the relationship between models, and more specifi-
cally of the mapping from one model to another. A model transformation involves
at least two models (the source and the target), which may conform to the same
or to different metamodels. The transformation specification is often given by
a set of model transformation rules, which describe how a model in the source
language can be transformed into a model in the target language.

One of the challenges of model transformation testing is the heterogeneity of
model transformation languages and techniques [4]. This problem is aggravated
by the possibility of having to test model transformations which are defined as a
composition of several model transformations chained together. In our proposal
we use a black-box approach, by which a model transformation is just a program
that we invoke. The main advantages of this approach are that we can deal
with any transformation language and that we will be able to test the model
transformation as-is, i.e., without having to transform it into any other language,
represent it using any formalism, or abstract away any of its features.

To illustrate one example of model transformation, we asked some students
to write the model transformation that, given a Family model, creates a Person

model described in the example above. The resulting code of the Persons2Family

transformation is shown below. It is written in ATL [27], a hybrid model trans-
formation language containing a mixture of declarative and imperative con-
structs which is widely used in industry and academia. There are of course other
model transformation languages, such as for instance QVT [28], RubyTL [29]
or JTL [30], that we could have also used. Nevertheless, in this paper we will
mainly focus on ATL for illustration purposes.

This transformation is defined in terms of four basic rules, each one responsible
for building the corresponding target model elements depending on the four kinds
of role a source person can play in a family: father, mother, son or daughter.
The attributes and references of every target element are calculated using the
information of the source elements. Target elements that represent families are
created with the last name of the father (in rule Father2Family).

module Persons2Families ;
create OUT : Families from IN : Persons ;

rule Father2Family {
from f : Persons ! Male (not f . child −> isEmpty ())
to fam : Families ! Family (

lastName <−f . name . substring (f . name . lastIndexOf (’� ’)+2,
f . name . size ())) ,

mb : Families ! Member (
firstName <− f . name . substring (1 , f . name . lastIndexOf (’� ’)) ,
age <− f . age , gender <− #male , famFather <− fam)

}

Formal Specification and Testing of Model Transformations 403

rule Mother2Family {
from m : Persons ! Female (not m . child −> isEmpty ())
to mb : Families ! Member (

firstName <− m . name . substring (1 , m . name . lastIndexOf (’� ’)) ,
age <− m . age , gender <− #female , famMother <− m . husband)

}
rule Son2Family{
from s : Persons ! Male (s . child −> isEmpty ())
to mb : Families ! Member (

firstName <− s . name . substring (1 , s . name . lastIndexOf (’� ’)) ,
age <− s . age , gender <− #male ,
famSon <−s . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}
rule Daughter2Family {
from d : Persons ! Female (d . child −> isEmpty ())
to mb : Families ! Member (

firstName <−d . name . substring (1 , d . name . lastIndexOf (’� ’)) ,
age <− d . age , gender <− #female ,
famDaughter <− d . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}

The question is whether this transformation is correct. For that we need to
determine first which is expected behaviour (i.e., its specification) and then test
whether the provided implementation conforms to such a specification.

3 Related Work

The need for systematic verification of model transformations has been docu-
mented by the research community by several publications outlining the chal-
lenges to be tackled [31–33, 4]. As a response, a plethora of approaches ranging
from lightweight certification to full verification have been proposed to reason
about different kinds of properties of model transformations [34]. Before specifi-
cation and testing approaches for model transformations are discussed in more
detail, the broader landscape of transformation properties is spanned first.

3.1 Categories of Model Transformation Properties

The right hand side of figure 2 (column model transformation (MT) implemen-
tation) aligns different kinds of properties for model transformations with the
well-known model transformation pattern [35]. The transformation pattern gives
an overview of the main concepts involved in model transformation. A model
transformation is represented by a transformation model (TM in the description
layer) has to conform to a model transformation language (described by a meta-
model, TMM in the language layer) and analogously, the execution of the model
transformation (TM Ex in the execution layer) has to conform to the description
layer for producing from a source model (SoM) a corresponding target model
(TaM).

Having this model transformation pattern as a framework for classifying model
transformation properties which have been discussed in literature, the first dis-
criminator for classifying them is the level on which they are introduced. In
particular, two kinds of properties may be distinguished: (i) general transforma-
tion properties defined on the language layer allow to make statements about

404 A. Vallecillo et al.

TMM

TM

TM Ex

Syn Sem

Properties

Syn Sem

Properties

SoM TaM

SoM Ex TaM Ex

Spec MM

Spec

Test Ex

*

*

describes >

< fulfils

< pass

*

MT Specification MT Implementation

Language

Description

Execution

1

1

2

2

3

4

3 4

QVT MModel

QVT Model

QVT Model Ex

ATL MModel

ATL Model

ATL Model Exec

Fig. 2. Specification and testing of model transformations at a glance

transformations themselves and (ii) specific transformation properties defined on
the description layer allow to make statements about pairs of source and tar-
get models of a transformation execution. Properties of the first kind abstract
from the specifics of a transformation problem and are therefore usable for every
transformation defined in a transformation language offering such properties.
Properties of the second kind are always specific to a transformation problem,
and thus, have to be defined for each transformation individually.

Orthogonal to the distinction between general and specific, is the distinction
if properties are related to syntax or semantics. Thus, properties may be par-
titioned into syntactic and semantic properties. While syntactic properties are
stated and checked based on the information provided by the next lower layer,
for specifying semantic properties two steps down the stack have to be made.
To be more concrete, for general transformation properties (defined on the lan-
guage layer), the syntactic properties are calculated based on the transformation
(defined on the description layer). However, the semantic properties have to be
verified by taking the knowledge of the execution of the transformation into ac-
count (available on the execution layer, defined by the transformation execution
engine). Analogously, for specific transformation properties, syntactical proper-
ties of the source and target model as well as their relationships are directly
calculated using the models. For semantic properties, again the execution of the
models has to be considered. This means, knowledge on the model execution

Formal Specification and Testing of Model Transformations 405

engines used for the source and target models is needed to reason about their
semantic properties.

General properties. General properties may be calculated based solely on the
knowledge of the transformation language. It has to be emphasized that these
properties are about the transformation, i.e., only statements about the trans-
formation itself can be made, but not about the source and target models of the
transformation.

An example for a basic general syntactic property is conformance of the trans-
formation to the transformation language. A transformation language may be
either generic or specific to a transformation problem, i.e., in the second case,
the metamodels of the source and target models are considered to form an im-
portant part of the transformation language. This allows to provide enhanced
syntactic checks compared to just using a generic transformation language. Ap-
proaches how to build specific transformation languages are presented in [36] for
graphical modeling languages and in [37] for textual ones.

Several general semantic properties have been proposed for model transfor-
mation languages such as confluence [6, 8], applicability [38], and termination
[39] of a set of graph transformation rules. Other group of works aim at fully
validating the behavior of the transformation using formal methods and their
associated toolkits. For example, in [11] model transformations defined in ATL
are translated to Maude for analyzing them using out-of-the-box verification
techniques.

Specific properties. In addition to general properties, there are properties that
are specific for a certain transformation. In particular, this means that it is not
enough to reason about the transformation itself: statements about the source
and target models are also needed. In particular, this is a must when one has to
reason about the correctness of the translation of the source model into a target
model. As models comprise syntax as well as semantics, both aspects have to be
considered.

Concerning syntactic properties, one may reason about if for each source el-
ement of a certain type a corresponding target element of a certain type is
produced by the transformation. Such concerns are naturally formulated as con-
tracts by using specification languages which allow to state the requirements
which have to be fulfilled by a transformation implementation. Contracts [20]
are a well-established technique in software engineering in general and in partic-
ular for verifying object-oriented programs by providing pre- and post-conditions
as well as invariants for operations. Inspired by this work, contracts have also
been applied for model transformations. In particular, as is explained in the next
subsection in more detail, contracts allow for several benefits such as they can
be used as oracle functions for testing model transformations by using a set of
test source models. Oracle functions give an approximation of the target models
which should be produced by the transformation.

For dealing with semantic properties which have to be fulfilled by the source
and target models, their execution have to be taken into account. Thus, the oper-
ational semantics of the source and target languages are needed as a prerequisite.

406 A. Vallecillo et al.

Reasoning about semantic properties of models ranges from reasoning about some
selected behavioral property such as liveness or deadlock freeness to a more com-
plete notion of behavioral equivalence, e.g., based on bi-similarity. For example,
if liveness is guaranteed by a source model, one may be interested in a transfor-
mation which generates from such models always target models guaranteing live-
ness as well. Furthermore, one may reason about bi-similarity of the source and
target model pairs, i.e., an observer should not be able to differentiate the state-
transition systems generated by the source and target models. For instance, [40]
describes such an approach where each execution of the transformation is verified
by checking whether the target model bi-simulates the sourcemodel. Another sim-
ilar approach is presented in [41] where a model checker is used to check dynamic
properties of the source and target models. It has to be noted that semantic prop-
erties are not limited to behavioral models, but may also be verified for structural
models. For example, in [42] an approach is presented for reasoning about seman-
tic differences between class diagrams by comparing all possible instantiations of
them.

This chapter is dedicated to the specification and testing of transformation
specific and syntax related properties of model transformations. Thus, in the
following subsection, approaches going in this direction are elaborated in more
detail. For a more in-depth discussion of approaches supporting the verification
of other kind of properties, we kindly refer the interested reader to [34].

3.2 Specification and Testing Approaches for Model
Transformations

The left hand side of figure 2 (column model transformation (MT) specification)
focusses on the specification of specific syntactic properties and their verification.
The relationships between the left hand side and the right hand side of figure 2
illustrates how transformation specifications are related to transformation imple-
mentations. As mentioned before, these properties are naturally defined in terms
of contracts which form the specification for a transformation implementation.
One of the advantages of contracts is that they allow defining what a piece of
software does but not how it is done. In the context of model transformations,
basic syntactic contracts are specified by the source and target metamodels since
source and target models must conform to them. However, further restrictions
on the source and target models as well as on their relationships are needed [14].
First, contracts can be used to precisely specify the constraints (going beyond
metamodel constraints) to be satisfied by source models such that the transfor-
mation is applicable, i.e., preconditions of the transformations. Second, they can
be used to express constraints on the target models, i.e., postconditions of the
transformation. Finally, they can be used to specify constraints that need to be
satisfied by any pair of source/target models of a correct transformation. Thus,
a specification language should allow to formulate these three kinds of contracts.

Model transformation contracts may be used for several scenarios [17]. (i) Con-
tracts are useful information for the transformation designer in the development
and maintenance phase. (ii) They can be used to check the compatibility of

Formal Specification and Testing of Model Transformations 407

transformations in a model transformation chain, e.g., the postconditions of a
preceding transformation have to be compatible with the preconditions of a
succeeding transformation. (iii) Contracts may be used as oracle functions to
approximate the expected output for a given source model.

Especially, this latter aspect has been the subject of several kinds of works
that apply contracts for model transformation testing using different notations
for defining the contracts. In the following, we elaborate on these approaches
which are divided into the two main categories. First, contracts may be defined
on the model level by either giving (i) complete examples of source and target
model pairs, or (ii) giving only model fragments which should be included in
the produced target models for given source models. Second, contracts may be
defined on the metamodel level either by using (iii) graph constraint languages
or (iv) textual constraint languages such as OCL.

Contracts at Model Level

Model Examples. A straight-forward approach is to define the expected target
model for a given source model which acts as a reference model for analyzing
the actual produced target model of a transformation as proposed in [43, 1,
44, 45]. Model comparison frameworks are employed for computing a difference
model between the expected and the actual target models. If there are differences
then there is considered to be an error either in the transformation or in the
source/target model pair. The advantage of this approach is its simplicity, e.g., as
specification language, the source and target metamodels are sufficient. However,
reasoning about the cause for the mismatch between the expected and actual
target model solely based on the difference model is challenging. Even more
aggravating, several elements in the difference model may be caused by the
same error, however, the transformation engineer has the burden to cluster the
differences by herself.

Fragments. A special form of verification by contract was presented in [46].
The authors propose to use model fragments (introduced in [47]) which are ex-
pected to be included in a target model which is produced from a specific source
model. For verifying these properties, the model fragments are matched on the
produced target model. Using fragments as contracts is different from using ex-
amples as contracts. Examples require an equivalence relationship between the
expected model and actual target model, while fragments require an inclusion
relationship between the expected fragments and the actual target model. As for
examples, the source and target metamodels are sufficient to define the specifi-
cations; but as before, this benefit comes with the price that the contracts are
described at the model level. Thus, they have to be defined for each particular
test source model again and again.

Contracts at Metamodel Level

Graph constraints. In [48], the authors propose to use the graph patterns sup-
ported by the VIATRA2 tool to specify contracts for model transformations at
the metamodel level. However, the patterns cannot define contracts crossing the

408 A. Vallecillo et al.

borders of one metamodel, being therefore usable to specify pre- and postcondi-
tions, but not the relations between the source and target models.

In [49] a declarative language for the specification of visual contracts is in-
troduced for defining pre- and post-conditions as well as invariants for model
transformations. For evaluating the contracts on test models, the specifications
are translated to QVT Relations which are executed in check-only mode. In
particular, QVT Relations are executed before the transformation under test is
executed to check the preconditions on the source models and afterwards to check
relationships between the source and target models as well as postconditions on
the target models.

Textual constraints. The first approach using contracts for model transforma-
tions was proposed by Cariou et al. [50, 17]. The authors suggest implementing
transformations with OCL. In this way, the source metamodel classes are pro-
vided with operations, which may comprise preconditions, postconditions, and
invariants. Although OCL natively supports design-by-contract, OCL is not in-
tended to specify transformations and relationships between models. Thus, the
authors propose an extension for OCL that allows defining mappings between
input and output model elements.

The work in [2] also proposes OCL for defining transformation contracts. Their
ideas are also close to [17], but in their paper they just provide a general view of
what they think that could be done with model transformation contracts, but
without delving into the details about how to achieve it. A similar approach for
defining contracts with OCL has been proposed in [14]. Kuester et al. [8] also
proposes to use OCL for the definition of transformation constraints.

In [51, 45], the Epsilon Unit Testing Language for testing model management
operations is presented. The language permits defining, as already mentioned,
expected target models, but in addition, test operations where post-conditions
for the target models can be specified. Giner and Pelechano [52] propose a test-
driven development approach for model transformations. Test cases comprising
an input model together with output fragments and OCL assertions are defined
before the actual transformation implementation is developed.

Finally, formal notations to specify and test model transformations may be
employed. For instance, Anastasakis et al [10] convert the model transformation
under test into Alloy to perform the analysis if given assertions that have to
hold for a transformation. If no target model is found by Alloy for a given source
model, means that the transformation does not fulfill the assertions. Similarly,
ATL transformations are translated into Maude in [11] for defining their formal
semantics and for conducting different kinds of formal analyses.

4 Tracts for Model Transformations

4.1 Model Transformation Contracts

One of the problems of the previous specification approaches of Model Transfor-
mations lies on its complexity. The specifications of a model transformation can

Formal Specification and Testing of Model Transformations 409

Fig. 3. Concepts in a Tract

become monstrously large as far as the transformation is not trivial (even far
more complex than the transformation itself). The reasons are, among others,
the lack of modularity, having to deal with too many details at the same time,
and the excessive size. Because the specifications try to capture all the model
transformation behaviour in one huge set of constraints, they become hard to
write, debug and maintain. In addition, tests become quite cumbersome, very
complex, and computationally prohibitive to prove.

In order to deal with these problems, tracts were introduced in [53] as a
specification and black-box testing mechanism for model transformations. They
provide modular pieces of specification, each one focusing on a particular sce-
nario or context of use. Thus every model transformation can be specified by
means of a set of tracts, each one covering a particular use case—which is de-
fined in terms of particular input and output models and how they should be
related by the transformation. In this way, tracts allow to partition the full in-
put space of the transformation into smaller, more focused behavioural units,
and to define specific tests for them. Basically, what we do with the tracts is
to identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. Another characteristic of our proposal is that we not require
complete proofs, just to check that the transformation works for the tract test
suites, hence providing a light-weight form of verification.

In a nutshell, a tract defines a set of constraints on the source and target
metamodels, a set of source-target constraints, and a tract test suite, i.e., a col-
lection of source models satisfying the source constraints. The constraints serve
as “contracts” (in the sense of contract-based design [20]) for the transformation
in some particular scenarios, and are expressed by means of OCL invariants. The
provide the specification of the transformation. Figure 3 gives an overview on
the used concepts and their connection.

Additionally, every tract provides a test suite that allows to operationalize
the conformance tests. We do not provide the full behavioral specification of a
model transformation, but just a set of tracts that defines how the transformation
should behave in certain particular scenarios (or use cases) which are the ones
of interest to the user. We do not care how the transformation works in the
rest of the cases. In this respect, this approach is a form of Duck typing: “If it

410 A. Vallecillo et al.

Fig. 4. Building Blocks of a Tract

looks like a duck, swims like a duck, and quacks like a duck, then it probably
is a duck” [54]. Tracts are composed by conjunction, similarly to the modular
specification of an operation using several pre- and post-conditions, each one
defining a specific situation or use case of the operation.

In figure 4 we have displayed the central ingredients of our approach for trans-
formation testing: a source and target metamodel, the transformation T under
test, and a transformation contract, for short tract, which consists of a tract test
suite and a set of tract constraints. The test suite and its transformation result
are shown with dashed lines and the different tract constraints with thick lines.
Five different kinds of constraints are present: the source and target class dia-
grams are restricted by source and target metamodels constraints, and the tract
imposes source, target, and source-target tract constraints. Such constraints are
expressed by means of OCL invariants. The context of these invariants is a class
representing a transformation tract, a so-called tract class. An example of a tract
class called mfdsTract is shown in figure 1.

Assume a source model m being an element of the test suite and satisfying
the metamodel source and the tract source constraints is given. Then, the tract
essentially requires that the result T (m) of applying transformation T satisfies
the target metamodel and the target tract constraints and the pair (m,T (m))
satisfies the source-target tract constraints. The source-target tract constraints
are crucial insofar that they can establish a correspondence between a source
element and a target element in a declarative way by means of a formula. In
technical terms, a source tract constraint is basically an OCL expression with
free variables over source elements, a target tract constraint has free variables
over target elements, and a source-target tract constraint possesses free variables
over source and target elements.

In figure 4, the rectangles indicate possible overlap (resp. disjointness) of
source and target models. Basically, the tract—consisting of the test suite and
the three kinds of constraints—checks for the correctness of the transformation
in the sense that correct source models from the test suite are transformed to
correct target models, i.e., our approach checks that in figure 4 the grey source
section is transformed into the grey target section. In general, there will be more

Formal Specification and Testing of Model Transformations 411

than one tract for a single transformation because particular source models are
constructed in the test suite which then induce particular tract constraints.

Although this approach to testing does not guarantee full correctness, it pro-
vides very interesting benefits. In particular, it can be useful for identifying bugs
in a cost-effective manner. Moreover, it allows dealing with industrial-size trans-
formations without having to transform them into any other formalism or to
abstract away any of its features. Tracts also provide a modular approach to
specification and testing, allowing to focus on particular scenarios of use, and
to define precise specifications for them. These are important advantages over
other approaches that prove full correctness but at a higher computational cost.

To test a transformation T against a tract t, the input test suite models can be
automatically generated using languages like ASSL [18], and then transformed
into their corresponding target models. These models can also be automatically
checked with the USE tool [19] against the constraints defined for the transforma-
tion. The checking process can be automated, allowing the model transformation
tester to process a large number of models in a mechanical way.

Let us go back to our example in figure 1. The lower part of the class diagram
pictures the tract metamodel represented by the class mfdsTract where mfds
is a shortcut for mother-father-daughter-son expressing that our tract and our
testing (for demonstration purposes) concentrates on conventional families with
exactly one person in the respective role. The operations in class mfdsTract are
helper operations for formulating the tract constraints which are shown as invari-
ants on the left in the project browser. The five different kinds of constraints are
reflected by different prefixes for invariant names: SMM for source metamodel con-
straints, TMM for target metamodel constraints, SRC for source tract constraints,
TRG for target tract constraints, and SRC TRG for source-target tract constraints.

Note that concepts like father or mother are not explicitly present in the
Person metamodel (through attributes or association ends). Besides, please be
warned: both metamodels and their transformation seem simple, but intricate
complications live under the surface. Roughly speaking, the transformation must
(a) split one source attribute into two target attributes in different target classes;
(b) merge two source associations into one target class and four target associ-
ations; (c) map a source generalization hierarchy into a target attribute. The
following listing details the five OCL invariants that constitute the mfdsTract.

inv SRC_fullName_EQ_firstSepLast :
Person . allInstances−>forAll (p |

p . fullName=firstName (p) . concat (sep ()) . concat (lastName (p)))
inv SRC_allPersonInMfds :

l e t allFs=Female . allInstances in let allMs=Male . allInstances in
Person . allInstances−>forAll (p |

Bag{allFs−>exists (d | allMs−>exists (f , s | mfdsPerson (p , f , d , s))) ,
allFs−>exists (m , d | allMs−>exists (s | mfdsPerson (m , p , d , s))) ,
allFs−>exists (m | allMs−>exists (f , s | mfdsPerson (m , f , p , s))) ,
allFs−>exists (m , d | allMs−>exists (f | mfdsPerson (m , f , d , p)))} =

Bag{true , false , false , false })
inv TRG_oneDaughterOneSon :

Family . allInstances−>forAll (fam |
fam . daughter−>s ize ()=1 and fam . son−>s ize () =1)

inv SRC_TRG_mfdsPerson_2_mfdsFamily :
Female . allInstances−>forAll (m , d | Male . allInstances−>forAll (f , s |

mfdsPerson (m , f , d , s) implies

412 A. Vallecillo et al.

Family . allInstances−>exists (fam | mfdsFamily (fam , m , f , d , s))))
inv SRC_TRG_forPersonOneMember :

Female . allInstances−>forAll (p | Member . allInstances−>one (m |
p . fullName=fullName (m) and p . age=m . age and m . gender = #female and
(p . child−>notEmpty() implies (l e t fam=m . famMother in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famDaughter . isDefined ()) and
(p . husband . isDefined () implies m . famMother . isDefined ()))) and

Male . allInstances−>forAll (p | Member . allInstances−>one (m |
p . fullName=fullName (m) and p . age=m . age and m . gender = #male and
(p . child−>notEmpty() implies (l e t fam=m . famFather in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famSon . isDefined ()) and
(p . wife . isDefined () implies m . famFather . isDefined ())))

There are two source, one target, and two source-target tract constraints. The
source constraint SRC fullName EQ firstSepLast guarantees that one can decom-
pose the fullName into a firstName, a separator, and a lastName. The source
constraint SRC allPersonInMfds requires that every Person appears exactly once
in a mfdsPerson pattern. mfdsPerson patterns are described by the boolean op-
eration mfdsPerson which characterizes an isolated mother-father-daughter-son
pattern having no further links to other persons.

The constraint SRC allPersonInMfds is universally quantified on Person ob-
jects. Each Person must appear either as a mother or as a father or as a daughter
or as a son. This exclusive-or requirement is formulated as a comparison between
bags of Boolean values. From the four possible cases, exactly one case must be
true. Technically this is realized by requiring that the bag of truth values, which
arises from the evaluation of the respective sub-formulas, contains exactly once
the Boolean value true and three times the Boolean value false.

mfdsTract : : mfdsPerson (m : Person , f : Person , d : Person , s : Person) : Boolean=
Set{m , f , d , s}−>excluding (n u l l)−>s ize ()=4 and
m . oclIsTypeOf (Female) and f . oclIsTypeOf (Male) and
m . oclAsType (Female) . husband=f and
d . oclIsTypeOf (Female) and s . oclIsTypeOf (Male) and
m . child=Set{d , s} and f . child=Set{d , s} and
d . parent=Set{m , f} and s . parent=Set{m , f}

mfdsTract : :
mfdsFamily (fam : Family , m : Person , f : Person , d : Person , s : Person) : Boolean=
fam . lastName=lastName (m) and fam . lastName=lastName (f) and
fam . lastName=lastName (d) and fam . lastName=lastName (s) and
fam . mother . firstName=firstName (m) and
fam . father . firstName=firstName (f) and
fam . daughter . firstName=Bag{ firstName (d)} and
fam . son . firstName=Bag{ firstName (s)}

Both source constraints reduce the range of source models to be tested. The
target tract constraint TRG oneDaughterOneSon basically focusses the target on
models in which the multiplicity “*” on the daughter and son roles are changed
to the multiplicity 1. The first central source-target constraint SRC TRG mfds-

Person 2 mfdsFamily demands that a mfdsPerson pattern must be found in
transformed form as a mfds Family pattern in the resulting target model. The sec-
ond central source-target constraint SRC TRG forPersonOneMember requires that a
Person must be transformed into exactly one Member having comparable attribute
values and roles as the originating Person. Both source-target tract constraints
are central insofar that they establish a correspondence between a Person

Formal Specification and Testing of Model Transformations 413

(from the source) and a Family Member (from the target) in a declarative way
by means of a formula.

4.2 Generating Test Input Models

The generation of source models for testing purposes is done by means of the
language ASSL (A Snapshot Sequence Language) [18]. ASSL was developed to
generate object diagrams for a given class diagram in a flexible way. Positive and
negative test cases can be built, i.e., object diagrams satisfying all constraints or
violating at least one constraint. ASSL is basically an imperative programming
language with features for randomly choosing attribute values or association
ends. Furthermore ASSL supports backtracking for finding object diagrams with
particular properties.

For the example, we concentrate on the generation of (possibly) isolated mfds
patterns representing families with exactly one mother, father, daughter, and
son in the respective role. The procedure genMfdsPerson shown below is param-
eterized by the number of mfds patterns to be generated. It creates four Person

objects for the respective roles, assigns attribute values to the objects, links the
generated objects in order to build a family, and finally links two generated mfds
patterns by either two parenthood links or one parenthood link or no parenthood
link at all. The decision is taken in a random way. For example, for a call to
genMfdsPerson(2) a generated model could look like one of the three possibili-
ties shown in figure 5. Marriage links are always displayed horizontally, whereas
parenthood links are shown vertically or diagonally.

procedure genMfdsPerson (numMFDS : Integer) -- number of mfds patterns
var lastNames : Sequence(String) , m : Person . . . -- further variables

begin
-- -- variable initialization
lastNames := [Sequence{’ Kennedy ’ . . . ’ Obama ’ }] ; -- more
firstFemales := [Sequence{’ Jacqueline ’ . . . ’ Michelle ’ }] ; -- constants
firstMales := [Sequence{’John ’ . . . ’ Barrack ’ }] ; -- instead
ages := [Sequence{30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78}] ; -- of ...
mums := [Sequence { }] ; dads := [Sequence { }] ;

-- -- creation of objects
for i : Integer in [Sequence { 1 . . numMFDS }] begin

m :=Create (Female) ; f :=Create(Male) ; -- mother father
d :=Create (Female) ; s :=Create(Male) ; -- daughter son
mums := [mums−>append (m)] ; dads := [dads−>append (f)] ;

-- assignment of attributes
lastN :=Any ([lastNames]) ; firstN :=Any ([firstFemales]) ;
[m] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [m] . age :=Any([ages]) ;
firstN :=Any ([firstMales]) ;
[f] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [f] . age :=Any([ages]) ;
. . . -- analogous handling of daughter d and son s

-- creation of mfds links
Insert (Marriage , [m] , [f]) ;
Insert (Parenthood , [m] , [d]) ; Insert (Parenthood , [f] , [d]) ;
Insert (Parenthood , [m] , [s]) ; Insert (Parenthood , [f] , [s]) ;
-- -------- random generation of additional links between mfds patterns
-- ----------------------------- such links lead to negative test cases

flagA :=Any([Sequence{0 , 1 , 2 , 3}]) ; -- 0 none , 1 mother , 2 father , 3 both
i f [i>1 and flagA >0] then begin

i f [flagA=1 or flagA=3] then begin

414 A. Vallecillo et al.

flagB :=Any ([Sequence{0 , 1}]) ; -- 1 give daughter , 0 give son
i f [flagB=1] then begin

Insert (Parenthood , [mums−>at (i−1)] , [mums−>at (i)]) ; end
else begin

Insert (Parenthood , [mums−>at (i−1)] , [dads−>at (i)]) ; end ;
end ; . . .

end ; end ;

Fig. 5. Three Possibilities for Linking Two mfds Patterns

5 Analysis

Counting on mechanisms for specifying tract invariants on the source and target
metamodels, and on the relationship that should be established between them, has
proved to be beneficial when combined with the testing process defined above.

Transformation Code Errors: In the first place, we can look for errors due
to either bugs in the transformation code that lead to misbehaviours, or
to hidden assumptions made by the developers due to some vagueness in
the (verbal) specification of the transformation. These errors are normally
detected by observing how valid input models (i.e., belonging to the grey area
in the left hand side of figure 1) are transformed into target models that break
either the target metamodel constraints or the source-target constraints.
This is the normal kind of errors pursued by most MT testing approaches.

Transformation Tract Errors: The second kind of errors can be due to the
tract specifications themselves. Writing the OCL invariants that comprise
a given tract can be as complex as writing the transformation code itself
(sometimes even more). This is similar to what happens with the specifi-
cation of the contract for a program: there are cases in which the detailed
description of the expected behaviour of a program can be as complex as
the program itself. However, counting on a high-level specification of what
the transformation should do at the tract level (independently of how it ac-
tually implements it) becomes beneficial because both descriptions provide

Formal Specification and Testing of Model Transformations 415

Fig. 6. Generated Negative Test Case with Linked mfds Patterns

two complementary views (specifications) of the behaviour of the transfor-
mation. In addition, during the checking process the tract specifications and
the code help testing each other. In this sense, we believe in an incremen-
tal and iterative approach to model transformation testing, where tracts are
progressively specified and the transformation checked against them. The
errors found during the testing process are carefully analyzed and either the
tract or the transformation refined accordingly.

Issues due to Source-Target Semantic Mismatch: This process also helps
revealing a third kind of issues, probably the most difficult problems to cope
with. They are due neither to the transformation code nor the tract invari-
ant specifications, but to the semantic gap between the source and target
metamodels. We already mentioned that the metamodels used to illustrate
our proposal look simple but hide some subtle complications. For exam-
ple, one of the tracts we tried to specify was for input source models that
represented three-generation families, i.e., mfds patterns linked together by
parenthood relations (see figure 6 representing a generated negative test case
failing to fulfill SRC allPersonInMfds; without the links (’Elizabeth Reagan’,

’Ronald Reagan’), (’Alta Reagan’, ’John Carter’), and (’Ronald Reagan’,

’John Carter’) we would obtain a valid mfds source model). This revealed
the fact that valid source models do not admit in general persons with grand-
children. More precisely, after careful examination of the problem we discov-
ered that such patterns are valid inputs for the transformation only if the
last name of all persons in the family is the same. This is because the trans-
formed model will consist of three families, where one of the members should
end up, for example, playing the role of a daughter in one family and the role
of mother in the other. Since all members of a family should share the same

416 A. Vallecillo et al.

Fig. 7. Semantic Differences between Source and Target Example Metamodels

last name, and due to the fact that a person should belong to two families,
the last names of the two families should coincide.

Examples of these problems can also happen because of more restric-
tive constraints in the target metamodel. For instance a family in the target
metamodel should have both a father and a mother, and they should share
the same last name. This significantly restricts the set of source models that
can be transformed by any transformation because it does not allow unmar-
ried couples to be transformed, nor families with a single father or mother.
Married couples whose members have maintained their last names cannot be
transformed, either. Another problem happens with persons with only a sin-
gle name (i.e., neither a first nor last name, but a name only), because they
cannot be transformed. These are good examples of semantic mismatches
between the two metamodels that we try to relate through the transforma-
tion. How to deal with (and solve) this latter kind of problems is out of the
scope of this paper, here we are concerned only with the detection of such
problems. A visual representation of some semantic differences between the
example metamodels is shown in figure 7.

Being able to select particular patterns of source models (the ones defined for
a tract test suite) offers a fine-grained mechanism for specifying the behaviour
of the transformation, and allows the MT tester to concentrate on specific be-
haviours. In this way we are able to partition the full input space of the transfor-
mation into smaller, more focused behavioural units, and to define specific tests
for them. By selecting particular patterns we can traverse the full input space,
checking specific spots. This is how we discovered that the size of the grey area
in figure 1 was much smaller than we initially thought, as mentioned above.

It is also worth pointing out that tracts open the possibility of testing the
transformation with invalid inputs, to check its behaviour. For example, we de-
fined a tract where people could have two male parents, being able to check

Formal Specification and Testing of Model Transformations 417

whether the transformation produced output models that violated the target
metamodel constraints or not, or just hanged. In this way we can easily define
both positive and negative tests for the transformation.

5.1 Model Transformation Typing Using Tracts

Tracts can also be used for “typing” model transformations. Let us explain how
(sub-)typing works for tracts.

As mentioned at the beginning, what we basically do with the tracts is to
identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. We do not care how the transformation works in the rest of
the cases. This is why we consider this approach to typing is a form of “Duck”
typing.

In Fig. 8 we see that TractG transforms metamodel SourceG into metamodel
TargetG. ‘G’ and ‘S’ stand for ‘general’ (resp. ‘special’). SourceS is a specialization
of SourceG in the the sense that it extends SourceG by adding new elements
(classes, attributes, associations) and possibly more restricting constraints.

Analogously this is the

Fig. 8. Tract subtyping

case for TargetS. TractS is a
specialization of TractG and
inherits from TractG its con-
necting associations. Constra-
ints must guarantee that the
tract TractS connects SourceS

and TargetS elements. Both, TractG and TractS are established with a test suite
generating a set of SourceG models (resp. a set of SourceS models).

In order to illustrate our typing approach, Fig. 9 shows an example for tract
subtyping, using a different case study. The first source metamodel is the plain
Entity-Relationship (ER) model with entities, relationships and attributes only.
An ER model is identified by an object of class ErSchema. The second source
metamodel is a specialization of the Entity-Relationship model which adds car-
dinality constraints for the relationship ends. Objects of class ErSchemaC are
associated with ER models which additionally possess cardinality constraints.

The first target metamodel is the relational data model allowing primary
keys to be specified for relational schemas. Objects of class RelDBSchema identify
relational database schemas with primary keys. The second target metamodel
describes relational database schemas with primary keys and additional foreign
keys. The upper part of the diagram shows the principal structure with respective
source and target as well as general and special elements. The lower part shows
the details. Please note that the four source and target metamodels have a
common part, namely the class Attribute.

It would also be possible to have disjoint source and target models by introduc-
ing classes ErAttribute and ErDataType for the ER model as well as RelAttribute
and RelDataType for the relational model. The association class ForeignKey be-
longs exclusively to the relational database metamodel with foreign keys. This

418 A. Vallecillo et al.

Fig. 9. An example of tract subtyping

could be made explicit by establishing a component relationship, a black dia-
mond, from class RelDBSchemaFK to ForeignKey. The central class Tract specifies
the transformation contract and has access, through associations, to both the
source and target metamodel. Tract subtyping is expressed through the fact that
class TractC2FK is a subtype of class Tract.

The scenario Town-liesIn-Country depicted in Fig. 10 shows informally what
will be represented further down as a formal instantiation of the metamodels.
Three transformations are shown. The first one ER 2 Rel transforms a plain ER
schema (without cardinalities) into a relational database schema with primary
keys only. The second one ERC 2 Rel goes from an ER schema with cardinalities
into a relational database schema with only primary keys. The third transforma-
tion ERC 2 RelFK takes the ER schema with cardinalities and yields a relational
database schema with primary keys and foreign keys. Please note that the three
relational database schemas can be distinguished by their use of primary keys
and foreign keys.

The informal scenario Town-liesIn-Country is formally presented in Fig. 11
with object diagrams instantiating the metamodel class diagrams. The most
interesting parts which handle the primary and foreign keys are pictured in a
white-on-black style. Please pay attention to the typing of the source, target, and
tract objects which are different in each of the three cases and which formally
reflect the chosen names of the transformations (trafo GG, trafo SG, trafo SS).

Formal Specification and Testing of Model Transformations 419

Fig. 10. Town-liesIn-Country scenario

Fig. 11. Town-liesIn-Country object diagram

As shown in Fig. 12, in the ER and relational database metamodel example
we see three different transformations: trafo GG, trafo SS, and trafo SG. trafo GG

and trafo SS are the transformations directly obtained from the respective tracts.
Another transformation is trafo SG, which takes SourceS models, builds TargetG

420 A. Vallecillo et al.

Fig. 12. Relationship between Example Transformations

models and checks them against the TargetG constraints. As shown in the right
lower part, the example transformations trafo SS and trafo SG are subtypes of
trafo GG.

5.2 Working with Tract Types

The fact of considering tracts as types for model transformations, and the fact
that tracts provide automated testing mechanisms, will allow us to perform
several kinds of checks over model transformations.

Correctness of a MT Implementation. The first thing we can do is to check
whether a given transformation behaves as expected, i.e., its implementa-
tion is correct w.r.t. a specification. In our approach, this is just checking
that a given transformation conforms to a type. For example, a developer
can come up with an ATL [27] model transformation that implements the
Families2Person specification, and we need to test whether such MT is cor-
rect. This was the original intention of Tracts [53].

Safe Substitutability of Model Transformations. Now, given another
model transformation T ′, how to decide whether T ′ can safely substitute
T (T ′ <: T)? In our approach, it is a matter of testing that T ′ satisfies all
T tracts, which can be checked in an automated way. We will not get 100%
assurance that T ′ <: T for all possible models, but we will be able to know
that at least it will work in all scenarios that we have identified as relevant
for us with the tracts.

Incrementality of Transformation Development. The ERC 2 RelFK exam-
ple uses an incremental methodology for transformation development. Source
and target metamodels are extended by subtyping through small increments
which are accompanied by corresponding tracts including test suites. The
tract test suites can give direct feedback on the correctness of the increment.

Declarative vs Imperative Tracts. Tracts may have a descriptive nature
when only the relationship between source and target elements is charac-
terized. Tracts may also be described in an operational way when the tract
includes operations that map source elements to target elements. Opera-
tional tracts may be understood as implementations of descriptive ones and

Formal Specification and Testing of Model Transformations 421

their correctness can be checked against the descriptive tract by employing
the descriptive test suite for the operational tract.

Pros and Cons. In general, we have found that typing model transformations
using tracts provides interesting advantages, such as modularity, usability, and
cost-effectiveness, but at the cost of sacrificing completeness and full verification.
Furthermore, having a high-level specification of what the transformation should
do at the tract level (independently of how it actually implements it) becomes
beneficial because both descriptions provide two complementary views (spec-
ifications) of the behaviour of the transformation. Then, during the checking
process the tract specifications and the code help testing each other.

5.3 Tool Support

The approach we have presented in this paper allows modellers to check the
behaviour of a transformation by specifying a set of tracts that should be fulfilled.
For each of these tracts we generate the tract test suite mentioned in the previous
section, i.e. the sample input models for the tract, and then we check that the
corresponding output models (i.e., the ones produced by the transformation)
fulfil the tract invariants.

As a proof-of-concept of our proposal we have built a prototype that allows
testing a transformation in an automated way, chaining three tools. In the first
place, the tract classes and their associated invariants are specified using USE.
The ASSL program that generates the tract test suite is also specified within
the USE environment, and then executed within it. The second tool is a script
that takes the input models generated by the ASSL procedure (which are in the
textual format that both ASSL and USE understand, .cmd), converts them into
the Ecore format so that they can be manipulated by ATL, invokes the ATL
transformation under test, and converts the resulting target model into the USE
.cmd format again (using an ATL query). Finally, the correctness of these output
models is checked against the OCL invariants specified in the transformation
tract using USE.

6 Further Application Examples

This sections presents two further case studies, showing their specification using
tracts.

6.1 Families2Person

This section presents a set of tracts for the Families2Person model transforma-
tion, one of the simplest examples of model transformations used in the literature
to explain model transformation concepts and mechanisms—it is even mentioned
in the ATL documentation as some kind of ATL “hello world” example [24, 25].
Despite its apparent simplicity, the formalization of this example using tracts

422 A. Vallecillo et al.

+firstName : String

Member
+familiyName : String

Family

Families

+fullName : String

Person

Persons

FemaleMale

Fatherhood

+father

1

+familyFather

0..1

Motherhood

+mother

1

+familyMother

0..1

Sonhood

+son

0..*

+familySon

0..1

Daughterhood

+daughter

0..*

+familyDaughter

0..1

Fig. 13. Families and Persons Metamodels

has allowed us to reveal several critical problems of this transformation, which
ends up being by no means simple.

This transformation takes models conforming to the Families metamodel and
transforms them into models that conform to the Persons metamodel. Figure 13
shows these input and output metamodels. The first one describes families, which
are composed of members: a father, a mother, several sons and several daugh-
ters. Each family member has a first name. In the Persons metamodel, a person
has a full name (first name and surname), and is either a male or a female.
This example follows the original specification by Freddy Allilaire and Frédéric
Jouault in 2007, described in [25]. Cardinality constraints, as well as black di-
amonds, impose some restrictions on the relationships: for example, a family
should have exactly one father and one mother. Other significant constraints are
also implicitly imposed by black diamonds, as we shall later see.

The ATL transformation that implements the conversion is shown in figure 14,
also taken from [25]. It has two helpers, one to decide whether a member is female
or not, and other to compute the full name of members. The transformation
comprises two rules, for producing male and female persons.

Tracts for the Families2Person Transformation. The Families2Persons

transformation has been extensively used in many tutorials and papers to show
a simple ATL model transformation. We therefore assume it is perfectly correct.
Our aim in this section is to specify it using tracts. As mentioned earlier, tracts
allow a modular specification of a model transformation whereby each tract
concentrates on a set of input models (intensionally defined by the source tract
constraints), the corresponding set of output models (intensionally defined by
the target tract constraints), and the relationships between them as (should
be) realized by the transformation (intensionally defined by the source-target
tract constraints). In addition, every tract defines a tract test suite which is a
collection of sample input models that are used to test the actual behaviour of
the transformation.

Formal Specification and Testing of Model Transformations 423

module Families2Persons ;
create OUT : Persons from IN : Families ;

helper context Families ! Member def : isFemale () : Boolean =
if not self . familyMother . oclIsUndefined () then true
else

if not self . familyDaughter . oclIsUndefined () then true
else false
endif

endif ;

helper context Families ! Member def : familyName : S t r i ng =
if not self . familyFather . oclIsUndefined () then

self . familyFather . lastName
else

if not self . familyMother . oclIsUndefined () then
self . familyMother . lastName

else
if not self . familySon . oclIsUndefined () then

self . familySon . lastName
else

self . familyDaughter . lastName
endif

endif
endif ;

rule Member2Male {
from

s : Families ! Member (not s . isFemale ())
to

t : Persons ! Male (fullName <− s . firstName + ’� ’ + s . familyName)
}
rule Member2Female {

from
s : Families ! Member (s . isFemale ())

to
t : Persons ! Female (fullName <− s . firstName + ’� ’ + s . familyName)

}

Fig. 14. ATL transformation Families2Persons (from [24])

Every tract is formally specified in terms of a class, that serves as context for
all the OCL invariants that describe the different tract constraints.

Members Only Tract. The first tract (specified by class MembersOnlyTract)
focuses on the simplest elements that can be used as input of the transformation:
just members. According to the Families metamodel, a valid model may contain
members associated to no family. An example of such model is shown in figure 15.

The tract source constraint that specifies such models is defined by OCL
invariant SCR MembersOnly:

context MembersOnlyTract
inv SCR_MembersOnly :

Member . allInstances−>forAll (m |
m . familyFather−>s ize () + m . familyMother−>s ize () +
m . familySon−>s ize () + m . familyDaugther−>s ize () = 0)

We need to decide what the transformation should do when these models are
used as input models. In the first place, there is no restriction on the kind of
persons that can be produced. So no tract target constraint is needed. Regarding

424 A. Vallecillo et al.

MembersOnly

firstName = "Carmen"

m3 : Member

firstName = "Brigita"

m1 : Member

firstName = "Antonio"

m4 : Member

firstName = "Martin"

m2 : Member

Fig. 15. A source test model for the MembersOnly tract

the source-target constraints, in this case there is no family to get the last name
from, and there is no indication about the sex of the members. We can then
decide that their full names will coincide with their first names, and that they
all will be female. This is expressed by the following constraint:

context MembersOnlyTract
inv SRC_TRG_MembersOnly :

Member . allInstances−>forAll (m |
Female . allInstances−>one (p | p . fullName=m . firstName))

and Member . allInstances−>s ize () = Person . allInstances−>s ize ()

Now it comes to checking what the transformation does, and (with horror) we
find that the transformation does not work. In fact, it aborts execution with the
following error message:

An internal error occurred during : ” Launching Families2Persons ” .
java . lang . ClassCastException :

org . eclipse . m2m . atl . engine . emfvm . lib . OclUndefined cannot be cast to
org . eclipse . m2m . atl . engine . emfvm . lib . HasFields

After investigating, it is due to the fact that the familyName attribute of vari-
able s in the transformation rule is not defined. And what is worse, even if the
transformation did not abort its execution, we realized that it would convert
all members into male persons. And then, it would add a blank space to their
names. So the exemplar transformation have not even passed our most simple
test... What is wrong with all this?

In the first place, our decisions above may seem arbitrary. Why should they
all become female persons and not male? In fact, it may be not fair to make
any decision at all, it really does not make any sense to have no families in the
Families model, only members. So the best option in this case is to rule out the
possibility of having members with no associated families in any valid Families

model. This is expressed by OCL constraint NoIsolatedMembers that provides an
invariant for class Member in the Families metamodel:

context Member
inv NoIsolatedMembers :

Member . allInstances−>forAll (m |
m . familyFather−>s ize () + m . familyMother−>s ize () +
m . familySon−>s ize () + m . familyDaugther−>s ize () > 0)

From this moment on, we will suppose that this constraint forms an integral
part of the Families metamodel.

No Children Tract. The second tract (specified by class NoChildrenTract)
focuses on simple families composed of two members: a father and a mother.

Formal Specification and Testing of Model Transformations 425

familiyName = "Vallecillo"

f2 : Family

familiyName = "Gogolla"

f1 : Family

NoChildren

firstName = "Carmen"

m3 : Member

firstName = "Antonio"

m4 : Member

firstName = "Brigita"

m1 : Member

firstName = "Martin"

m2 : Member

fullName = "Martin Gogolla"

p2 : Male

fullName = "Brigita Gogolla"

p1 : Female

fullName = "Carmen Vallecillo"

p3 : Female

fullName = "Antonio Vallecillo"

p4 : Male

T(NoChildren)

 : Motherhood

 : Fatherhood

 : Motherhood

 : Fatherhood

Fig. 16. Test model for the NoChildren tract and its corresponding transformed model

An example of such model is shown on the left hand side of figure 16. The
tract source constraint that specifies such models is defined by OCL invariant
SCR NoChildren:

context NoChildrenTract
inv SCR_NoChildren :

Family . allInstances−>forAll (f | f . son−>s ize ()+f . daughter−>s ize () = 0)

We need to decide what the transformation should do when these models are
used as input models. In the first place, there is no restriction on the kind of
persons that can be produced. So no tract target constraint is needed.

Regarding the source-target constraints, in this case we need to check that for
every member there is one person that is either male or female depending on
the role he or she plays in the family, and whose full name corresponds to the
first name of the member and the family name of the family. This is expressed
by the following constraint:

context NoChildrenTract inv SRC_TRG_NoChildren :
Member . allInstances−>forAll (m |
m . familyMother−>s ize ()=1 implies Female . allInstances−>exists (p |
p . fullName=m . firstName . concat (’� ’) . concat (m . familyMother . familyName)))

and
Member . allInstances−>forAll (m |
m . familyFather−>s ize ()=1 implies Male . allInstances−>exists (p |
p . fullName=m . firstName . concat (’� ’) . concat (m . familyFather . familyName)))

and
Member . allInstances−>s ize () = Person . allInstances−>s ize ()

The test suite for this tract is defined by the following ASSL procedure, which
generates sample input models that conform to the Families metamodel to be
transformed by the transformation.

426 A. Vallecillo et al.

procedure mkSourceNoChildren (numFamily : Integer , numMember : Integer ,
numMother : Integer , numFather : Integer)

var theFamilies : Sequence(Family) , theMember : Sequence(Member) ,
f : Family , m : Member ;

begin
theFamilies := CreateN (Family , [numFamily]) ;
theMember := CreateN (Member , [numMember]) ;
for i : Integer in [Sequence { 1 . . numFamily }] begin

[theFamilies−>at (i)] . familyName :=Any ([Sequence{’ Red ’ , ’ Green ’ ,
’ Blue ’ , ’ Black ’ , ’ White ’ , ’ Brown ’ , ’Amber ’ , ’ Yellow ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMember }] begin

[theMember−>at (i)] . firstName :=Any ([Sequence{
’ Ada ’ , ’ Bel ’ , ’Cam ’ , ’ Day ’ , ’ Eva ’ , ’Flo ’ , ’ Gen ’ , ’ Hao ’ , ’ Ina ’ , ’Jen ’ ,
’ Ali ’ , ’ Bob ’ , ’Cyd ’ , ’ Dan ’ , ’ Eli ’ , ’Fox ’ , ’ Gil ’ , ’ Hal ’ , ’ Ike ’ , ’Jan ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMother }] begin

f :=Try ([theFamilies−>select (f | f . noMother ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Motherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numFather }] begin

f :=Try ([theFamilies−>select (f | f . noFather ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Fatherhood , [f] , [m]) ;

end ; end ;

The following Ecore model shows an example of the models constructed in this
way (also shown in figure 16), ready to serve as input to the model transformation
under study:

<?xml version=" 1.0" encoding=" ISO -8859 -1 "?>
<xmi:XMI xmi : v e r s i on=" 2.0" xmlns:xmi=" http: // www. omg . org/ XMI"

xmlns=" Families ">
<Family lastName=" Gogolla">

<mother f i rstName=" Brigita"/>
<f a t h e r f i rstName=" Martin"/>

</Family>
<Family lastName=" Vallecillo ">

<mother f i rstName=" Carmen"/>
<f a t h e r f i rstName=" Antonio"/>

</Family>
</xmi:XMI>

MFDS Tract. This tract (specified by class MFDS) focuses on families composed
of exactly four members: one father, one mother, one son and one daughter. An
example of such model is shown in figure 17. The tract constraint that specifies
such models is defined by the next OCL invariants:

context MFDS inv SRC_OneDaughterOneSon :
Family . allInstances−>forAll (f | f . daughter−>s ize=1 and f . son−>s ize () =1)

context MFDS inv SRC_TRG_MotherDaughter2Female :
Family . allInstances−>forAll (fam | Female . allInstances−>exists (m |

fam . mother . firstName . concat (’� ’) . concat (fam . familyName)=m . fullName))
and
Family . allInstances−>forAll (fam | Female . allInstances−>exists (d |

fam . daughter−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)
=d . fullName))

context MFDS inv SRC_TRG_FatherSon2Male :
Family . allInstances−>forAll (fam | Male . allInstances−>exists (f |

fam . father . firstName . concat (’� ’) . concat (fam . familyName)
=f . fullName))

and

Formal Specification and Testing of Model Transformations 427

Family . allInstances−>forAll (fam | Male . allInstances−>exists (s |
fam . son−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)=

s . fullName))

context MFDS inv SRC_TRG_Female2MotherDaughter :
Female . allInstances−>forAll (f | Family . allInstances−>exists (fam |

fam . mother . firstName . concat (’� ’) . concat (fam . familyName)=f . fullName
or
fam . daughter−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)

=f . fullName))

context MFDS inv SRC_TRG_Male2FatherSon :
Male . allInstances−>forAll (m | Family . allInstances−>exists (fam |

fam . father . firstName . concat (’� ’) . concat (fam . familyName)=m . fullName
or
fam . son−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)

=m . fullName))

context MFDS inv SRC_TRG_MemberSize_EQ_PersonSize :
Member . allInstances−>s ize=Person . allInstances−>s ize

mfds

familiyName = "Brown"

f2 : Family

familiyName = "Smith"

f1 : Family

firstName = "Connie"

m1 : Member

firstName = "John"

m2 : Member

firstName = "Lucy"

m3 : Member

firstName = "James"

m4 : Member

firstName = "Maria"

m6 : Member

firstName = "Anthony"

m7 : Member

firstName = "Mathias"

m8 : Member

firstName = "James"

m5 : Member

 : Motherhood

 : Fatherhood

 : Daughterhood

 : Sonhood

 : Motherhood

 : Fatherhood

 : Sonhood

 : Daughterhood

Fig. 17. A test model for the MFDS tract

428 A. Vallecillo et al.

And the ASSL code is:

procedure mkSourceMFDS (numFamily : Integer , numMember : Integer , numMother :
Integer , numFather : Integer , numDaughter : Integer , numSon : Integer)
var theFamilies : Sequence(Family) , theMember : Sequence(Member) ,

f : Family , m : Member ;
begin

theFamilies := CreateN (Family , [numFamily]) ;
theMember := CreateN (Member , [numMember]) ;
for i : Integer in [Sequence { 1 . . numFamily }] begin

[theFamilies−>at (i)] . familyName :=Any ([Sequence{’ Red ’ , ’ Green ’ ,
’ Blue ’ , ’ Black ’ , ’ White ’ , ’ Brown ’ , ’Amber ’ , ’ Yellow ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMember }] begin

[theMember−>at (i)] . firstName :=Any([Sequence{
’Ada ’ , ’ Bel ’ , ’ Cam ’ , ’ Day ’ , ’Eva ’ , ’ Flo ’ , ’ Gen ’ , ’ Hao ’ , ’Ina ’ , ’ Jen ’ ,
’Ali ’ , ’ Bob ’ , ’ Cyd ’ , ’ Dan ’ , ’Eli ’ , ’ Fox ’ , ’ Gil ’ , ’ Hal ’ , ’Ike ’ , ’ Jan ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMother }] begin

f :=Try ([theFamilies−>select (f | f . noMother ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Motherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numFather }] begin

f :=Try ([theFamilies−>select (f | f . noFather ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Fatherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numDaughter }] begin

f :=Try ([Family . allInstances−>sortedBy (f | f . daughter−>s ize ()+
f . son−>s ize)−>asSequence ()]) ;

m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Daughterhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numSon }] begin

f :=Try ([Family . allInstances−>sortedBy (f | f . daughter−>s ize+
f . son−>s ize ())−>asSequence ()]) ;

m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Sonhood , [f] , [m]) ;

end ; end ;

Note that this code subsumes the previous one used in the NoChildren tract,
which can be expressed as mkSourceMFDS(x, y, z, 0, 0).

Two Generation Families Tract. Another interesting situation that we may
think of happens with two-generation families, where a son or a daughter plays
the role of father or mother in another. Figure 18 shows an example of this kind
of input models, which represent a common case in real-world families.

The issue with this kind of families is that they are not valid models according
to the Families metamodel, the problem being that the relationship between a
family and its members is a composition (black diamond). This means that a
member can belong to at most one family, i.e., a member can only play a role in
at most one family.

Here, the problem is due to the source metamodel, which is too restrictive
and does not allow this kind of families. A possible solution would be to change
the source metamodel, relaxing it, but this is outside our hands. We wanted to
respect the source and target metamodels, as well as the transformation itself,
as much as possible. At most we could add some constraints if the transforma-
tion is ill-defined, to avoid problematic source models (as we have done with

Formal Specification and Testing of Model Transformations 429

TwoLevels

familiyName = "Simpson"

f3 : Family

familiyName = "Brown"

f2 : Family

familiyName = "Smith"

f1 : Family

firstName = "Anthony"

m7 : Member

firstName = "Mathias"

m8 : Member

firstName = "Connie"

m1 : Member

firstName = "James"

m4 : Member

firstName = "James"

m5 : Member

firstName = "Maria"

m6 : Member

firstName = "John"

m2 : Member

firstName = "Lucy"

m3 : Member

 : Motherhood

 : Daughterhood

 : Motherhood

 : Daughterhood

 : Fatherhood

 : Sonhood

 : Fatherhood

 : Sonhood

 : Fatherhood

 : Motherhood

Fig. 18. A two-generations model

MonoParental

familiyName = "Smith"

f1 : Family

firstName = "John"

m1 : Member : Motherhood

 : Fatherhood

Fig. 19. A test model for the Monoparental tract

the first tract). But relaxing the original constraints may not be appropriate.
Besides, making this kind of changes to any of the metamodels can produce un-
desirable effects, because the developers of the example may have made use of
these constraints.

Monoparental Tract. Although a composition relation forbids an element to
play two roles in two different containers, it is not so clear whether a contained
element can play two different roles in the same container or not. An example in

430 A. Vallecillo et al.

our domain would be a mono-parental family, with a person fulfilling the roles
of father and mother (see figure 19).

Although UML allows this model to be drawn, and it is valid according to
the UML metamodel, it is invalid both in Ecore and in USE. They do not allow
the same object to play two contained roles even within the same container.

And even if this model was valid, the expected result of the transformation is
not clear. The problem here is determining the sex of the person because now it
cannot be inferred.

To avoid this case we suggest to add an additional constraint to the Family

metamodel, which makes this restriction clear, and not implicit (and therefore
valid in some technical spaces, and invalid in others):

context Member inv BlackDiamonds :
familyMother−>s ize () + familyFather−>s ize () +
familyDaughter−>s ize () + familySon−>s ize () <= 1

Note how this invariant, together with the NoIsolatedMembers invariant, forces
the number of roles that a member can have in a family to be exactly 1.

OtherTracts. So far tracts have allowed us to identify interesting sample models
for the transformation, some ofwhich revealedproblematic sourcemodels and erro-
neous behaviours. Others, such as the MFDS or NoChildren tracts, determined valid
use cases for which the transformation should work as well as the specification of
such behaviour. Other tracts for the transformation may include:

– OnlyGirls where families only have daughters, no sons.
– OnlyBoys where families only have sons, no daughthers.
– NoFather3Kids where families have a mother but no father, and 3 children.
– NoMother3Kids where families have a father but no mother, and 3 children.
– NoFatherNoKids where families have a mother but no father, and no children.
– NoMotherNoKids where families have a father but no mother, and no children.
– OrphanSons where families have only sons (no father, mother or daughthers).
– OrphanDaughthers where families have only daughters (no father, mother or

sons).

The specification of these tracts are left as exercise to the reader.

Summary. Here we have illustrated the Tract concept with the example of the
Families2Person transformation. It has allowed us to discover that even such a
simple example is by no means trivial. In particular, the specification of this
transformation using Tracts has uncovered one case where the transformation
fails (MembersOnly), and has also allowed us to explore the input and output
spaces of the transformation, discovering that its scope is much more reduced
that we intuitively thought: only individual families are allowed, with no shared
members. This rules out, for instance, most common cases of two-generation fam-
ilies (grandparent-parent-children) or families whose children marry members of
other families. We have also discovered that the implicit restrictions imposed
by some modeling constructs, such as black diamonds, are treated differently in
several modeling tools. In these cases, the explicit expression of these constraints
may be helpful.

Formal Specification and Testing of Model Transformations 431

+name : String

StateMachine

+name : String

State

SimpleStateMachine

+event : String

Transition

SimpleLookUpTable

+sm : String
+fromState : String
+toState : String

Change

LookUpTable

+name : String

Event
+transition 0..*

+outgoing

0..*1

+src

+incoming

0..*1

+tgt
+state 0..*

1

+change

0..*+event

1

+event 0..*

Fig. 20. Source and Target Metamodels of transformation SM2T

6.2 StateMachineTo LookUp Tables

As a second example, let us consider a model transformation SM2T between simple
state machines and a lookup table that lists the events and their associated
transitions [55]. The source and target metamodels of this transformation are
shown in figure 20. In this case, we want only one lookup table to be built,
whose entries are all the events of all the state machines in the source model. In
addition to the (multiplicity) constraints shown in these class diagrams, we need
to add uniqueness on names of the state machines, and uniqueness of names of
states within the same state machine:
context StateMachine inv uniqueNames :

s e l f . state−>isUnique (name) and
StateMachine . allInstances−>isUnique (name)

To specify the SM2T transformation we can define the following six tracts, whose
test suite models are illustrated in figure 21 (literals SM1...SM6 represent the names
of the state machines):

– 1S0T: state machines with single states and no transitions.
– 2S1T: state machines with two states and one transition between them. In

this case the entries of the resulting lookup table will have the form {x �→
(SM2, A, B)}.

– 2S2T: state machines with two states and two transition between them. In
this case the entries of the resulting lookup table will be of the form {x �→
(SM3, A, B), y �→ (SM3, B, A)}.

– 1S1T: state machines with single states and one transition. In this case the
entries of the resulting lookup table will have the form {x �→ (SM4, A, A)}.

– 3S3T: state machines with three states and three transitions, forming a cycle.
In this case the entries of the resulting lookup table will be of the form
{x �→ (SM5, A, B), y �→ (SM5, B, C), z �→ (SM5, C, A)}.

– 3S9T: state machines with three states and 9 transitions (see figure 21).
In this case the entries of the resulting lookup table will have the form
{x0 �→ (SM6, A, A), x1 �→ (SM6, A, B), x2 �→ (SM6, B, A), y0 �→ (SM6, B, B), y1 �→
(SM6, B, C), y2 �→ (SM6, C, B), z0 �→ (SM6, C, C), z1 �→ (SM6, C, A), z2 �→ (SM6, A, C)}.

Let us show here one of this tracts, 2S1T, for illustration purposes. The rest follow
similar patters. In the first place, the tract source constraint that specifies the
source models is defined by OCL invariant SCR 2S1T:

432 A. Vallecillo et al.

B

y0

B

B

A

C

z0

A A

x0

AA B

A

x

C

SM3

1S0T

1S1T

SM6

2S1T

2S2T

SM2

3S3T

SM5

3S9T

SM4

SM1

y

x

x

x
x2

x1

z1 y1y
z

z2 y2

Fig. 21. Test suites samples for the 6 tracts defined for model transformation SM2T

context 2S1T−Tract
inv SCR_2S1T :

StateMachine . allInstances−>forAll (sm |
(sm . state−>s ize () = 2) and (sm . transition−>s ize () = 1)
(sm . transition . src <> sm . transition . tgt)

We need to decide what the transformation should do when these models are
used as input models. There is no restriction on the kinds of entries that can be
produced in the lookup table, but we need to state that only one lookup table
is produced. This is expressed by the following OCL constraint:

context 2S1T−Tract
inv TRG_2S1T : LookUpTable . allInstances−>s ize () = 1

Regarding the source-target constraints, given that every state machine has only
one transition, there should be one change in the lookup table for every state
machine, and the attributes should match with the events and states related
by the corresponding transition in the state machine. This is expressed by the
following source-target constraint:

context 2S1T−Tract
inv SRC_TRG_2S1T :

StateMachine . allInstances−>s ize () = LookUpTable . change−>s ize () and
LookUpTable . change−>forAll (c |

StateMachine . allInstances−>one (sm | (sm . name = c . sm) and
(sm . transition . src−>col lect (name) = c . fromState . asSet ()) and
(sm . transition . tgt−>col lect (name) = c . toState . asSet ()) and
(sm . transition . event = c . event . name))

Finally, the test suite for this tract is defined by an ASSL procedure that gen-
erates the input models.

procedure mk2S1T (numSM : Integer)
var theStateMachines : Sequence(StateMachine) ,

theStates : Sequence(State) ,
theTransitions : Sequence(Transition) ;

begin
theStateMachines := CreateN (StateMachine , [numSM]) ;
theStates := CreateN (State , [2 ∗ numSM]) ;
theTransitions := CreateN (Transition , [numSM]) ;
for i : Integer in [Sequence { 1 . . numSM }] begin

[theStateMachines−>at (i)] . name := [’SM ’ . concat (i . toString ())] ;
[theTransitions−>at (i)] . event := [’E ’ . concat (i . toString ())] ;
[theStates−>at (2∗i−1)] . name := [’ST ’ . concat ((2∗ i−1) . toString ())] ;
[theStates−>at (2∗i)] . name := [’ST ’ . concat ((2∗ i) . toString ())] ;

Formal Specification and Testing of Model Transformations 433

Insert (States , [theStateMachines−>at (i)] , [theStates−>at (2∗i−1)]) ;
Insert (States , [theStateMachines−>at (i)] , [theStates−>at (2∗ i)]) ;

Insert (Transition , [theStateMachines−>at (i)] , [theTransitions−>at (i)]) ;
Insert (Cause , [theTransitions−>at (i)] , [theStates−>at (2∗i−1)]) ;

Insert (Effect , [theTransitions−>at (i)] , [theStates−>at (2∗ i)]) ;
end ;

end ;

In the example above, the type of the SM2T transformation is given by the six
tracts defined for it: SM2T |= 1S0T ∧ 2S1T ∧ 2S2T ∧ 1S1T ∧ 3S3T ∧ 3S9T. Of course,
other tracts could have been defined for this transformation if the user requires
to include further contexts of use.

7 Conclusion

In this paper we have presented the issues involved in model transformation
specification and testing, and introduced the concept of Tract, a generaliza-
tion of model transformation contracts. We have showed how it can be used
for model transformation specification and black-box testing. A tract defines a
set of constraints on the source and target metamodels, a set of source-target
constraints, and a tract test suite, i.e., a collection of source models satisfying
the source constraints. To test a transformation T we automatically generate
the input test suite models using the ASSL language, and then transform them
into their corresponding target models. These models are checked with the USE
tool against the constraints defined for the transformation. The checking process
can be automated, allowing the model transformation tester to process a large
number of models in a mechanical way. Although this approach to testing does
not guarantee full correctness, it provides very interesting advantages over other
approaches, as we have discussed above.

There are other issues that we have not covered in this paper, such as the gen-
eration of source models (test suites) to optimize metamodel coverage or trans-
formation code coverage (in case of white-box testing). In this respect, there are
several lines of work that we plan to address next. In particular, we would like to
study how to improve our proposal by incorporating some of the existing works on
the effective generation of input test cases. We expect this to help us enhance the
definition of our tract test suites. Larger case studies will be carried out in order
to stress the applicability of our approach and to obtain more extensive feedback.
We would also like to conduct some empirical studies on the effects of the use
of tracts in the lifecycle of model transformations. Concerning the tracts, we also
plan to investigate some of their properties, such as their composability, subsump-
tion, refinement or coverage. Finally, we plan to improve the current tool support
for tracts, incorporating the creation and maintenance of libraries of tracts, and
the concurrent execution of the tests using sets of distributed machines.

Acknowledgements. The authors would like to thank the volume editors,
Marco Bernardo, Vittorio Cortellessa and Alfonso Pierantonio for their invitation
to present our ideas on model transformation specification and testing, and to
Mirco Kuhlmann, Fernando López and Javier Troya for their help and support

434 A. Vallecillo et al.

during the preparation of the paper. This work is supported by Research Projects
TIN2008-03107 and TIN2011-23795 and by the Austrian Science Fund (FWF)
under grant J 3159-N23.

References

1. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation
testing and version control in model driven software development. In: Control in
Model Driven Software Development. OOPSLA/GPCE: Best Practices for Model-
Driven Software Development, pp. 219–236. Springer (2004)

2. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Traon, Y.L.: Model transformation testing challenges. In: Proc. of
IMDD-MDT 2006 (2006)

3. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2008. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

4. Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y.L., Mottu, J.M.: Barriers
to systematic model transformation testing. Communications of the ACM 53(6),
139–143 (2010)

5. Baresi, L., Ehrig, K., Heckel, R.: Verification of Model Transformations: A Case
Study with BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006.
LNCS, vol. 4661, pp. 183–199. Springer, Heidelberg (2007)

6. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termi-
nation Criteria for Model Transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, pp. 49–63. Springer, Heidelberg (2005)

7. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Software and Systems Modeling 8, 479–500 (2009)

8. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling 5(3), 233–259 (2006)

9. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

10. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
Alloy. In: Proc. of MODEVVA (2007),
http://www.cs.bham.ac.uk/~bxb/Papres/Modevva07.pdf

11. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. Journal of Object
Technology 10(5), 1–29 (2011)

12. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: Proc. of ISSRE
2006, pp. 85–94 (2006)

13. Solberg, A., Reddy, R., Simmonds, D., France, R., Ghosh, S.: Developing dis-
tributed services using an aspect-oriented model driven framework. International
Journal of Cooperative Information Systems 15(4), 535–564 (2006)

14. Mottu, J.-M., Baudry, B., Le Traon, Y.: Reusable MDA Components: A Testing-
for-Trust Approach. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 589–603. Springer, Heidelberg (2006)

15. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Qualifying input test data for
model transformations. Software and Systems Modeling 8(2), 185–203 (2009)

http://www.cs.bham.ac.uk/~bxb/Papres/Modevva07.pdf

Formal Specification and Testing of Model Transformations 435

16. Gogolla, M., Hamann, L., Kuhlmann, M.: Proving and Visualizing OCL Invariant
Independence by Automatically Generated Test Cases. In: Fraser, G., Gargantini,
A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 38–54. Springer, Heidelberg (2010)

17. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: Proc. of the OCL and Model Driven Engineer-
ing Workshop (2004)

18. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Software and Systems Modeling 4(4), 386–398
(2005)

19. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

20. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)

21. Andova, S., van den Brand, M.G.J., Engelen, L.J.P., Verhoeff, T.: MDE Basics
with a DSL Focus. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM
2012. LNCS, vol. 7320, pp. 21–57. Springer, Heidelberg (2012)

22. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive Guide. In:
Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320,
pp. 58–90. Springer, Heidelberg (2012)

23. Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Transformations. In: Bernardo,
M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 91–136.
Springer, Heidelberg (2012)

24. Eclipse: ATL Tutorials – A simple ATL transformation (2007),
http://wiki.eclipse.org/ATL/

Tutorials Create a simple ATL transformation

25. Eclipse: Basic ATL examples (2007),
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/

26. Object Management Group: Object Constraint Language (OCL) Specification.
Version 2.2. OMG Document formal/2010-02-01 (2010)

27. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

28. OMG: MOF QVT Final Adopted Specification. Object Management Group. OMG
doc. ptc/05-11-01 (2005)

29. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical, Extensible
Transformation Language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006),
http://rubytl.rubyforge.org/

30. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A Bidirectional and
Change Propagating Transformation Language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011), http://jtl.di.univaq.it/

31. Baudry, B., Dinh-Trong, T., Mottu, J., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of MDD and Model Driven Testing (2006)

32. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Proc. of ISCE 2007, pp. 37–54 (2007)

33. Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in Model-Driven Soft-
ware Engineering. In: Chaudron, M.R.V. (ed.) MoDELS 2008. LNCS, vol. 5421,
pp. 35–47. Springer, Heidelberg (2009)

http://wiki.eclipse.org/ATL/Tutorials_Create_a_simple_ATL_transformation
http://wiki.eclipse.org/ATL/Tutorials_Create_a_simple_ATL_transformation
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/
http://rubytl.rubyforge.org/
http://jtl.di.univaq.it/

436 A. Vallecillo et al.

34. Amrani, M., Lúcio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H.,
Traon, Y.L., Cordy, J.R.: A tridimensional approach for studying the formal veri-
fication of model transformations. In: Proc. of the 1st International Workshop on
Verification and Validation of Model Transformations, VOLT 2012 (2012)

35. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

36. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Systematic trans-
formation development. ECEASST 21 (2009)

37. Weisemoeller, I., Rumpe, B.: A domain specific transformation language. In: Mod-
els and Evolution Workshop @ MoDELS 2011 (2011)

38. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: An Invariant-Based Method for the
Analysis of Declarative Model-to-Model Transformations. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
37–52. Springer, Heidelberg (2008)

39. Varró, D., Varró–Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
260–274. Springer, Heidelberg (2006)

40. Narayanan, A., Karsai, G.: Towards verifying model transformations. Electr. Notes
Theor. Comput. Sci. 211, 191–200 (2008)

41. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Software and System Modeling 3(2), 85–113 (2004)

42. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic Differencing for Class Dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011)

43. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model
composition and model transformation testing. In: GaMMa 2006, pp. 13–20. ACM
(2006)

44. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. Model-
Driven Software Development, 219–236 (2005)

45. Garćıa-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F., Medina-Bulo, I.:
EUnit: A Unit Testing Framework for Model Management Tasks. In: Whittle, J.,
Clark, T., Kühne, T. (eds.) MoDELS 2011. LNCS, vol. 6981, pp. 395–409. Springer,
Heidelberg (2011)

46. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle issue.
In: ICSTW 2008, pp. 105–112. IEEE (2008)

47. Ramos, R., Barais, O., Jézéquel, J.-M.: Matching Model-Snippets. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp.
121–135. Springer, Heidelberg (2007)

48. Balogh, A., Bergmann, G., Csertán, G., Gönczy, L., Horváth, Á., Majzik, I., Patar-
icza, A., Polgár, B., Ráth, I., Varró, D., Varró, G.: Workflow-Driven Tool Integra-
tion Using Model Transformations. In: Engels, G., Lewerentz, C., Schäfer, W.,
Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 224–248.
Springer, Heidelberg (2010)

49. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. (accepted for publication) (2012)

50. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification
of model transformations. ECEASST 24 (2009)

51. Kolovos, D., Paige, R., Rose, L., Polack, F.: Unit testing model management op-
erations. In: ICSTW 2008, pp. 97–104. IEEE (2008)

Formal Specification and Testing of Model Transformations 437

52. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In:
Schürr, A., Selic, B. (eds.) MoDELS 2009. LNCS, vol. 5795, pp. 748–752. Springer,
Heidelberg (2009)

53. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS,
vol. 6698, pp. 221–235. Springer, Heidelberg (2011)

54. Heim, M.: Exploring Indiana Highways: Trip Trivia. Exploring America’s Highway.
Travel Organization Network (2007),
http://en.wikipedia.org/wiki/Duck_test

55. Steel, J., Jézéquel, J.M.: On model typing. Software and Systems Modeling 6(4),
401–413 (2007)

http://en.wikipedia.org/wiki/Duck_test

	Formal Specification and Testing of Model Transformations
	Introduction
	Context
	Models and Metamodels
	Model Transformations

	Related Work
	Categories of Model Transformation Properties
	Specification and Testing Approaches for Model Transformations

	Tracts for Model Transformations
	Model Transformation Contracts
	Generating Test Input Models

	Analysis
	Model Transformation Typing Using Tracts
	Working with Tract Types
	Tool Support

	Further Application Examples
	Families2Person
	StateMachineTo LookUp Tables

	Conclusion
	References

