
NASA Contractor Re

/

/n i cn /

Formal Spe(

Verification of a

and

Digital Fli

sking

Model for

John Rushby

CONTRACT NAS1-18969

JULY 1991

ilTE.'rn.jP ion.:] _,or_-_.) i 7_'_ v {:SCL Q ,-R !!1!._:_

NASA Contractor Report 4384

Formal Specification and

Verification of a Fault-Masking

and Transient-Recovery Model for

Digital Flight-Control Systems

John Rushby

SRI International

Menlo Park, California

Prepared for

Langley Research Center

under Contract NAS1-18969

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical

Information Program

1991

Contents

2

3

4

Introduction 1

1.1 Digital Flight-Control Systems 2

1.2 Fault Tolerance for DFCS 3

1.3 Formal Models for DFCS 11

1.3.1 Overview of the Fault-Masking Model Employed 12

The

2.1

2.2

2.3

Fault-Masking Model 17

A Model for Fault-Free Process Control 17

The N-plex Model 21

Fault Tolerance and Transient-Recovery 24

Specification and Verification in EHDM 31

Reconciliation with the LaRC Model 37

4.1 Specific Voting Patterns 41

4.1.1 Continuous Voting 42

4.1.2 Cyclic Voting 43

4.1.3 Optima_ Voting 43

5 Discussion and Conclusions 47

References 53

A I2_TEX-printed Specification Listings 59

simple_machine 59

simple_machine_tcc 62

simple_machine_t cc_proofs 64

noetherian 65

n_tinduction 66

natinduction_tcc 67

simple_props 68

iii

PRE,CEn_'r, P,&_E BLANK NOT FILMED

iv Con ten ts

simple_props_tcc 70

sets 71

cardinality 72

orderedsets 74

repl_machine 75

repl_machine_tcc 77

repl_machine_t cc_proofs 78

supports 79

supports_tcc 82

supports_tcc_proofs 83

correctness 84

correctness_tcc 85

correctness_tcc_proofs 86

connect 87

sensor_step 91

sensor_step_tcc 93

nonvoted_step 94

nonvoted_step_tcc 96

voted_step 97

voted_step_tcc 101

voted_step_t cc_proofs 102

correctness_proof 103

outputs 104

B Cross-Reference Listing 106

C Results of Proof-Chain Analysis 116

Chapter 1

Introduction

This report is concerned with the development and the formal specification and ver-

ification of a fault-masking and transient-recovery model appropriate to the repli-

cated computers in digital flight-control systems (DFCS). The culmination of the

verification is a mechanically checked theorem which establishes, subject to certain

carefully stated assumptions, that faults among the component computers of the

DFCS will be masked--so that the commands sent to the actuators will be the

same as those that would be sent by a single computer that suffers no failures.

In order to make this report accessible to those unfamiliar with fault-tolerant

process-control systems, we begin this chapter with a brief exposition of DFCS,

and then present the rationale for the particular model that is the focus of our

formal investigation. (See [1] for a full treatment of digital avionics systems, [2] for

a treatment of general validation issues, and [3] for a description of current practice

in the verification and validation of software for DFCS.)

The second chapter presents the model formally, in the manner of a conventional

mathematical development. The proof of the fault-masking and transient-recovery

theorem is presented in the same way.

The third chapter outlines the fully formal specification of the model, and its

mechanically checked verification. These were undertaken using the EHDM formal

specification and verification system [4-8]; the Elt DM specification text and related

material are given in the Appendices.

The fourth chapter discusses the relationship between the model employed here

and the similar one developed by Di Vito, Butler, and Caldwell of NASA Langley

Research Center [9, 10]. The fifth and final chapter presents our conclusions and

recommendations for further work.

2 Chapter1. Introduction

1.1 Digital Flight-Control Systems

Increasingly, modern aircraft rely on Digital Flight-Control Systems--computer sys-

tems that interpret the pilot's control inputs and send appropriate commands to the

control surfaces and engines) Depending on the aircraft design, DFCS may manage

all, or merely some, of the control surfaces and may or may not have back-up sys-

tems comprising either analog computers or conventional mechanical and hydraulic

systems. The advantages claimed for DFCS include the following:

Safety: DFCS can prevent the pilot stalling the plane, or otherwise taking it be-

yond its control envelope. For example, the F16 provides yaw-rate limitation

to prevent the aircraft entering a certain flat spin mode that has "unaccept-

able recovery," and rudder fade-out to ensure that "pilots could not get in

trouble because of flying habits developed in other aircraft" [11]. Similarly,

the Airbus A320 DFCS provides "stall/windshear protection and protection

also against overspeed and overstress ... the A320's system automatically pre-

vents the aircraft leaving its safe-flight envelope at any point, whether pilot

error or incompetence, engine malfunction, or the elements have brought it

to that point" [12] (but see also [13]). Other contributions to safety may in-

clude reduction in pilot workload through increased automation and improved

handling.

Economy and performance: Elimination of heavy hydraulic and mechanical

control linkages reduces aircraft weight and thereby improves fuel-efficiency

and load-carrying capacity [14]. Optimum control of engine thrust and angle

of attack can also reduce fuel consumption significantly.

Efficiency and performance can sometimes be gained at the expense of han-

dling qualities. DFCS can restore neutral handling characteristics to such

aircraft. Maneuverability in unusual flight regimes (e.g., post-stall) may re-

quire complex transformations between command inputs and actuator outputs

that can only be achieved by computer control. For example, roll commands

in the X31 at high angles of attack are interpreted relative to the velocity

vector, not the longitudinal axis of the aircraft. Thus at 90 ° angle of attack,

a pure roll command translates to a pure yaw in the body axis [15]. In the

limit, high maneuverability, stealth, or other requirements for military aircraft

may best be achieved with an unstable airplane--which will require computer

control in order to fly at all.

1The popular term fly-by-wire (FBW) covers both DFCS and similar, earlier, systems that

employ analog computers. Fly-by-light is simply FBW in which fiber-optic cables replace the

copper wires used to route signals around the aircraft.

1.2. Fault Tolerance for DFCS 3

Damage control: The loss of a control surface or engine sometimes results in a

crash, not because the airplane is absolutely uncontrollable, but because its

pilot is unable to learn how to control it in the time available. For example,

it is very hard to control a twin-engined light plane if one of the engines fails,

and private pilots often crash in this circumstance. A DFCS can partially

compensate for the massive change in flying characteristics caused by failure

or damage and thereby assist the pilot to make a safe landing. Simulations

have been performed to investigate the efficacy of such systems for military

aircraft suffering battle damage [16].

The perceived advantages of DFCS are such that they are employed in almost

all modern high-performance western military aircraft. Modern western passenger

aircraft generally have full-authority digital engine controls (FADEC); digital au-

topilot, autolander, and flight management system; and digital control of secondary

surfaces and functions, such as air brakes, spoilers, yaw damping, and gust allevia-

tion. However, the Airbus A320 is the only passenger aircraft in service with a full

DFCS--that is, one controlling primary control surfaces in the pitch and roll axes. 2

Forthcoming passenger aircraft such as the Boeing 777 will also employ comprehen-

sive DFCS.

The greater the benefit provided by DFCS, the less plausible it becomes to

provide adequate back-up systems employing different technologies. For example,

the DFCS of an experimental version of the F16 fighter (the "Advanced Fighter

Technology Integration" or AFTI-F16) provides control in flight regimes beyond

the capability of the simpler analog back-up system. Extending the capability of

the back-up system to the full flight envelope of the DFCS would add considerably

to its complexity--and it is the very simplicity of that analog system that is its

chief source of credibility as a back-up system [17]. Similarly, direct manual control

of flight surfaces is unlikely to be available if elimination of heavy mechanical and

hydraulic systems was a primary reason for installing DFCS in the first place. Thus,

the Airbus A320 has mechanical links to only the rudder and the elevator trim-

tab [14, 18] and is given no certification credit for these back-up systems by the

FAA.

1.2 Fault Tolerance for DFCS

It is clear that extreme reliability must be required of DFCS. A much-quoted figure

is a requirement for passenger aircraft that the probability of catastrophic failure

during a 10 hour flight should be less than 10 -9 per hour [19]. Such reliabilities

are beyond those that can be guaranteed for individual digital devices. Not only

2The Concorde, which received FAA certification in 1969, has analog FBW with mechanical

backup in all three primary axes.

4 Chapter 1. Introduction

must occasional latent manufacturing defects and the effects of aging be considered,

but also environmental hazards such as power-supply surges, lightning strikes, and

cosmic rays (which can cause single-event-upsets, or SEUs). These factors conspire

to yield an overall reliability well below that required. It follows that some form of

fault tolerance based on replication and redundancy is needed in order to achieve

an underlying "hardware platform" of the required reliability. There are many

configurations for redundant and replicated computer systems, and careful reliability

analysis is required to evaluate the reliability provided by a given configuration and

level of redundancy [20]. Such analyses show that suitably constructed N-modularly

redundant systems (which we will call N-plexes for brevity) can achieve the desired

reliability.

Within an N-plex, all calculations are performed by N identical computer sys-

tems and the results are submitted to some form of averaging or voting. Great care

must be taken to eliminate single-point failures, so the separate computer systems

(or "channels," as they are often called in fault-tolerant systems) will generally use

different power supplies and be otherwise electrically and physically isolated as far

as possible. Notice, however, that there is no protection against design faults: any

such faults in either the hardware or the software will be common to all members

of the N-plex and all will fail together. In this report, we do not address the is-

sue of design faults in the hardware, nor in the application software that it runs.

We are, however, very much concerned with the possibility of design faults in the

redundancy-management software that harnesses the failure-prone individual com-

ponents together as a fault-tolerant N-plex. There is evidence (see page 8) that

redundancy management is sufficiently complex and difficult that it can become the

primary source of unreliability in a DFCS.

The function performed by a DFCS is basically one of process control, as por-

trayed in Figure 1.1. The goal is to control the airplane in flight under command

of the pilot. Information about the state of the airplane, which is subject to exter-

nal disturbances, is obtained through sensors, and control is exercised by sending

commands to actuators. The basic structure of most process-control software is

very similar: the software performs a repetitive cycle of sampling sensors and con-

trol inputs, using control laws to calculate the required actuator response and then

sending appropriate commands to the actuators. The complete cycle is generally

broken into individual "frames," each attending to a particular dimension of con-

trol: for example, one frame may deal with pitch-control--sampling the appropriate

sensors, computing the necessary corrections, and sending commands to the eleva-

tors; another frame may deal with roll, still another with navigation, and so on.

Some variables may need more rapid control than others, so that a complete cycle

might contain four pitch-control frames, two roll frames, and only a single naviga-

tion frame. This general pattern of activity is described as a multi-rate periodic

schedule.

1.2. Fault Tolerance for DFCS 5

Disturbances

Airplane

Actuators Sensors

DFCS I

Pilot Commands

Figure 1.1: The DFCS Process-Control Loop

Each frame will perform several computational activities: sampling sensors, eval-

uating control laws, generating control outputs, performing self-tests, and so on.

"Tasks" are the primitive computational elements within this structure: they are

the individual units of activity that may be scheduled and executed. The schedul-

ing slots within a frame and to which individual tasks may be allocated are called

"subframes." Thus, for example, the subframes within a pitch-control frame may

be allocated to several sensor-sampling tasks, an averaging task to integrate the

readings of redundant sensors, a control law task, and an actuator-output task.

Many refinements are possible within this basic paradigm. For example, there

may be a fixed, static, schedule of frames, so that all cycles are identical; alterna-

tively, frames may be scheduled dynamically, depending on external circumstances.

Chapter I. Introduction

Similarly, frames may all execute for a common fixed duration, or may have different

durations; they may always execute to completion, or may be subject to preemption,

and so on. Whether task scheduling for critical real-time systems should be static or

dynamic is a controversial issue. Proponents of static schedules point to Richards'

anomalies [21,22], in which the early completion of one task can cause another to be

late, and other difficulties in dynamic scheduling as indications that the predictabil-

ity required for hard real-time systems is best achieved by static scheduling.

The major challenge in the design of a fault-tolerant N-plex for DFCS is one of

redundancy management. Instead of a single computer executing the DFCS soft-

ware, there will be several, which must coordinate and vote (or average) actuator

commands, 3 and tolerate faults among their own members. In addition to the repli-

cated computers, sensors and actuators will be replicated also. The management of

all this redundancy and replication adds considerable complexity to both the oper-

ating system (generally called an "executive" in process-control systems) and the

application tasks. Complexity is a source of design faults, and there is a distinct

possibility that such a large quantity of additional code may lessen, rather than

enhance, overall reliability. The goal of the research program, of which this work is

a component, is to develop principled, structured, and formally specified and ver-

ified approaches to the design and implementation of redundancy management in

DFCS [9].

A plausibly simple approach to redundancy management in an N-plex is the

"asynchronous" design, in which the channels run fairly independently of each other:

each computer samples sensors independently, evaluates the control laws indepen-

dently, and sends its actuator commands to an averaging or selection component

that chooses the value to send to the actuator concerned. The triplex-redundant

DFCS of the experimental AFTI-F16 was built this way, and its flight tests reveal

some of the shortcomings of the approach [17,23].

First, because the unsynchronized individual computers may sample sensors at

slightly different times, they can obtain readings that differ quite appreciably from

one another. The gain in the control laws can amplify these input differences to

provide even larger differences in the results submitted to the output selection al-

gorithm. During ground qualification of the AFTI-F16, it was found that these

differences sometimes resulted in a channel being declared failed when no real fail-

ure had occurred [24, p. 478]. 4 Accordingly, rather a wide spread of values must

be accepted by the threshold algorithms that determine whether sensor inputs and

actuator outputs are to be considered "good." For example, the output thresholds

3Voting or averaging is often performed directly by the actuators, through some form of "force-

summing." For example, different channels may energize separate coils of a single solenoid, or

multiple hydraulic pistons may be linked to a single shaft [11, Figure 3.2-2].

4Also, in the flight tests of the X31 the control system "went into a reversionary mode four times

in the first nine flights, usually due to disagreement between the two air data sources" [15].

1.2. Fault Tolerance for DFCS 7

of the AFTI-F16 were set at 15% plus the rate of change of the variable concerned;

also the gains in the control laws were reduced. This increases the latency for de-

tection of faulty sensors and channels, and also allows a failing sensor to drag the

value of any averaging functions quite a long way before it is excluded by the input

selection threshold; at that point, the average will change with a thump [23, Figure

20] that could have adverse effects on the handling of the aircraft.

The danger of wide sensor selection thresholds is dramatically illustrated by a

problem discovered in the X29A. This aircraft has three sources of air data: a nose

probe and two side probes. The selection algorithm used the data from the nose

probe provided it was within some threshold of the data from both side probes.

The threshold was large to accommodate position errors in certain flight modes.

It was subsequently discovered that if the nose probe failed to zero at low speed,

it would still be within the threshold of correct readings, causing the aircraft to

become unstable and "depart." This error was found in simulation, but 162 frights

had been at risk before it was detected [25].

An even more serious shortcoming of asynchronous systems arises when the

control laws contain decision points. Here, sensor noise and sampling skew may

cause independent channels to take different paths at the decision points and to

produce widely divergent outputs. This occurred on Flight 44 of the AFTI-F16

flight tests [23, p. 44]. Each channel declared the others failed; the analog back-

up was not selected because the simultaneous failure of two channels had not been

anticipated and the aircraft was flown home on a single digital channel. Notice that

all protective redundancy had been lost, and the aircraft was flown home in a mode

for which it had not been designed--yet no hardware failure had occurred.

Another illustration is provided by a 3-second "departure" on Flight 36 of the

AFTI-F16 flight tests, during which sideslip exceeded 20 °, normal acceleration ex-

ceeded first -4g, then +7g, angle of attack went to -10 °, then +20 °, the aircraft

rolled 360 °, the vertical tail exceeded design load, all control surfaces were oper-

ating at rate limits, and failure indications were received from the hydraulics and

canard actuators. The problem was traced to an error in the control laws, but sub-

sequent analysis showed that the side air data probe was blanked by the canard at

the high angle of attack and sideslip achieved during the excursion; the wide input

threshold passed the incorrect value through and different channels took different

paths through the control laws. Analysis showed this would have caused complete

failure of the DFCS and reversion to analog backup for several areas of the flight

envelope [23, pp. 41-42].

Several other difficulties and failure indications on the AFTI-F16 were traced to

the same source: asynchronous operation allowing different channels to take different

paths at certain selection points. The repair was to introduce voting at some of these

"software switches." In one particular case, repeated channel failure indications in

flight were traced to a roll-axis "software switch." It was decided to vote the switch

8 Chapter 1. Introduction

(which, of course, required ad hoc synchronization) and extensive simulation and

testing were performed on the changes necessary to achieve this. On the next flight,

the problem was found still to be there. Analysis showed that although the switch

value was voted, it was the unvoted value that was used [23, p. 38].

The AFTI-F16 flight tests revealed numerous other problems of a similar nature.

Summarizing, Mackall [23, pp. 40-41] writes:

"The criticality and number of anomalies discovered in flight and

ground tests owing to design oversights are more significant than those

anomalies caused by actual hardware failures or software errors.

"... qualification of such a complex system as this, to some given level

of reliability, is difficult ...[because] the number of test conditions be-

comes so large that conventional testing methods would require a decade

for completion. The fault-tolerant design can also affect overall sys-

tem reliability by being made too complex and by adding characteristics

which are random in nature, creating an untestable design.

"As the operational requirements of avionics systems increase, com-

plexity increases. Reducing complexity appears to be more of an art

than a science and requires an experience base not yet available. If the

complexity is required, a method to make system designs more under-

standable, more visible, is needed.

"The asynchronous design of the [AFTI-F16] DFCS introduced a ran-

dom, unpredictable characteristic into the system. The system became

untestable in that testing for each of the possible time relationships be-

tween the computers was impossible. This random time relationship

was a major contributor to the flight test anoma_es. Adversely affecting

testability and having only postulated benefits, 5 asynchronous operation

of the DFCS demonstrated the need to avoid random, unpredictable, and

uncompensated design characteristics."

It is difficulties such as these that have caused those performing research in

fault-tolerant systems for DFCS to prefer synchronized channels and exact-match

voting [26-28]. Of course, the synchronization must itself be fault-tolerant and

no such algorithms were known until about 1982. 6 A number of provably correct

Byzantine fault-tolerant clock synchronization algorithms are now available [32-37],

SThe decision to use an asynchronous design for the AFTI-F16 DFCS was because "the contrac-

tor [Bendix under subcontract to General Dynamics] believed synchronization would introduce a

single-point faSlure caused by electromagnetic interference (EMI) and lightning effects" [23, p. 7]--

which may well have been correct given the technology of the early 1980s.

aPrior to the investigations of the SIFT project [29], the subtlety and delicacy of voting and

synchronization protocols were not properly understood and most were seriously flawed: all were

vulnerable to Byzantine faults (which constitute a fault class that had not been recognized before),

and many were incapable of tolerating less severe faults. For example, the failure of the first attempt

1.2. Fault Tolerance for DFCS 9

and some have been formally verified [38]. An algorithm due to Infis and Moore [39]

is attractively simple, and tolerates a very wide class of faults that is, however, short

of the fully Byzantine. Probabilistic algorithms due to Cristian [40] can achieve very

close synchronization, but also fall short of Byzantine fault tolerance.

For exact-match voting, each channel must operate on the same data. Thus the

computers cannot simply use their own private sensor readings, but must exchange

sampled values with each other in a Byzantine fault-tolerant manner. By this means,

every (working) computer begins each frame with the same set of sensor readings

as the others. 7 Each computer will then run the same sensor selection and averag-

ing algorithms, s and the same control laws, and should therefore generate identical

actuator commands. Exact-match majority voting of the actuator commands then

suffices to mask faults among the redundant channels. Notice that this arrange-

ment allows sensor failures to be distinguished from failures among the redundant

computers: sensor failure is detected or masked by the diagnostic, averaging, and

selection algorithms run by each computer, whereas failure of a computer is masked

(and optionally detected) by the exact-match majority voting of their outputs. In

contrast, systems based on unsynchronized, independent channels cannot distin-

guish accurately between the failure of a sensor and that of a computer, and may

mistake the consequences of clock drift for either.

Majority voting of actuator commands is sufficient to tolerate up to _ faults.

However, the underlying Byzantine fault-tolerant clock synchronization and inter-

active consistency algorithms can tolerate only N3----Afaults: thus a 4-plex is required

for single-fault tolerance, and a 7-plex for two-fault tolerance. Notice, however, that

the 7-plex can withstand two simultaneous faults; if the fault arrival rate is such

that a faulty channel can be identified and configured out of the system before the

next fault arrives, then a 7-plex can withstand 4 faults, and two-fault tolerance can

be achieved by a 5-plex. Fault detection and reconfiguration are complex functions,

however, and given our desire to reason formally about fault-tolerance properties,

we follow [9] and consider only the nonreconfigurable case in this work. (Reconfig-

uration was considered in the verification of SIFT [53].)

Not all faults are equal: some are "hard" faults that permanently disable the

afflicted channel; others are "soft" or "transient" faults from which recovery is pos-

to launch the Space Shuttle was due to a synchronization problem [30], and the heavy radiation

environment at Jupiter caused loss of synchronization on the Voyager spacecraft [31].

7A given sensor may be sampled independently by several computers; all of these independent

samples must be distributed to all other computers in a Byzantine fault-tolerant manner. As

with clock synchronization, several Byzantine agreement (or interactive consistency) algorithms are

known [41], and some have been formally verified down to the hardware implementation level [42,43].

Sin addition to detecting faults, the processing of sensor data must deal with noise, bias, drift,

hysteresis, and other sensor-specific issues. The problems of sensor averaging, selection, and (espe-

cially) fault diagnosis have been considered, more or less independently, by several disciplines--for

example, control theory [44-49], artificial intelligence [50,51], and computer science [52].

10 Chapter I. Introduction

sible. Examples of transient faults include SEUs (where a single bit of memory is

flipped by a cosmic ray), which can be recovered by simply restoring the affected bit

to its correct value. Experience indicates that transient faults are orders of magni-

tude more common than hard faults--for example, Voyager spacecraft suffered 42

SEUs in the intense radiation surrounding Jupiter, but no hard faults [54]. It follows

that overall reliability will be much greater---or, equivalently, much less redundancy

will be required for a given level of reliability--if some attempt is made to recover

channels that suffer transient faults.

There is no firm line between transient and hard faults considered in the abstract;

what might be merely a transient fault to one system may be a hard fault to another

that lacks the necessary recovery mechanisms. Fault-tolerant system architectures

are designed and evaluated against explicitly stated fault models. For transient

faults, we employ a fault model in which we distinguish two subclasses of faults.

State data faults are those in which the processor is working correctly (i.e., is

synchronized and executing the right task), but its local state data are cor-

rupted. If its state data were replaced with correct values, it would recover.

In our formal model, the predicate OK(i)(c) will indicate whether processor i

has state data faults that can affect its computation of task c.

Control faults are those in which the processor is not working correctly (i.e., some-

thing other than, or additional to, a state data fault has occurred). In our

formal model, the predicate .T'(i)(j) will indicate whether processor i suffers a

control fault during the computation of the j'th task.

In our model, we think of control faults as happening spontaneously, and state data

faults as the consequences of control faults. Faults such as SEUs, in which a single

bit of state data is spontaneously corrupted, can be considered as instantaneous

control faults: we imagine that the processor computes the wrong value but then

immediately recovers, leaving a state data fault behind. Note that a state data

fault may precipitate a further control fault. For example, a word of memory may

become set to zero (a state data fault); then a subsequent divide operation using

that word might generate a divide-by-zero trap, which could halt the processor (a

control fault).

State data faults can be recovered by periodically replacing the state data main-

tained by each processor with a majority-voted version. It is not necessary to vote

and replace all the state data, since many of them are refreshed by sampling sensors

(i.e., some of the state data are "stored" in the airframe itself [18]): only the data

that are carried forward from one frame or cycle to the next (e.g., time-integrated

data such as velocity and position) need to be voted. Even so, the quantity of state

data maintained by a modern DFCS is considerable, and performance would be se-

riously degraded if all of it were voted at every opportunity. Accordingly, exposure

1.3. Formal Models for DFCS 11

is traded for performance and rather sparse voting patterns are preferred. Clearly

the less frequently a particular item of state data is voted, the longer will be the

duration of the consequences of a fault that corrupts that item. Overall reliability

will be determined by the fault arrival rate, the voting pattern, and the dataflow

dependencies among control tasks and state data items.

In this report, our goal is to develop, and formally specify, a model that describes

the operation of an N-plex with transient-recovery based on an arbitrary sparse

voting pattern. We will formally verify a theorem concerning the conditions under

which such a system masks faults successfully. A concrete instance of the theorem

(for a specific data dependency graph and voting pattern) might be that the system

is "safe" provided that at most two processors suffer control faults in any sequence

of five successive frames. Maxkov or other methods of reliability analysis must be

used to determine the overall reliability of the system, given assumptions about the

arrival and repair rates of control faults [9].

A fault-tolerant system should take active measures to recover from transient

control faults, in addition to the voting strategy for overcoming state data faults.

The Mars system [55,27] is a good example of a system that provides sucl/recovery.

In our model, however, we do not consider the internal details of mechanisms that

achieve recovery from control faults, we model only their external behavior; the

purpose of our model is to derive properties of the majority voting strategy for

masking faults of all kinds and recovering from state data transient faults.

1.3 Formal Models for DFCS

In this section we sketch the larger context of the work described here, and then give

an overview of the model for fault-masking and transient-recovery that we employ.

This work was performed in the context of a research program led by NASA Lan-

gley Research Center that aims to develop a fault-tolerant architecture for DFCS

using formal methods to provide a rigorous basis for documenting and analyzing de-

sign decisions. Ultimately, we hope to provide mechanically-checked formal specifi-

cations and verifications for the key components of a "Reliable Computing Platform"

for DFCS, going all the way from high-level requirements down to implementation

details. Clearly, this is a major undertaking, so initially we are concentrating on

some of the better-understood requirements and levels in the hierarchy.

As we described in the previous section, synchronized channels and Byzantine

fault-tolerant distribution of sensor values are now fairly well-understood require-

ments. Accordingly, the first mechanically-checked specifications and verifications

undertaken in this program were those performed for Byzantine fault-tolerant clock

synchronization algorithms [38, 56] and for a Byzantine agreement algorithm [42]

and circuit [43]. The work described here is a step towards the next higher layer

12 Chapter 1. Introduction

in the modeling hierarchy: the layer that uses exact-match voting to provide fault-

tolerance and transient-recovery.

Accurate modeling of that layer must account for the fact that the separate

channels are not perfectly synchronized (the clock-synchronization algorithms keep

the separate channels synchronized only within some small skew _ of each other),

and that the communication and coordination of voting data takes a certain amount

of time. The work presented here ignores those details in order to concentrate on

the relationship between voting patterns, fault masking, and transient recovery.

Thus, we make the simplifying assumptions that the separate channels are perfectly

synchronized, and that the communication and voting of data constitute a single

atomic action. 9

Our current work, following on from that described here, aims to eliminate these

simplifying assumptions. In other current work, we are developing and formally

verifying a hardware-assisted implementation of one of the clock-synchronization

algorithms. Future work may consider the mechanisms by which failed channels

can be recovered, or the system reconfigured. The next section gives an informal

overview of the model that is the focus of the present analysis.

1.3.1 Overview of the Fault-Masking Model Employed

In companion work at NASA Langley Research Center, Di Vito, Butler and Cald-

well [9] have developed a formal model for DFCS and derived its fault-masking and

transient-recovery properties. Their model and development is formal and rigorous

in the manner of conventional mathematical discourse. The purpose of our investiga-

tion is to construct a completely formal, machine-checked specification for a similar

model, and to submit the derived properties to mechanical proof-checking. The two

investigations are complementary: the first is intended to model the structure of a

realistic platform for DFCS, while the second is intended to explore the problems

of subjecting formal specifications and verifications in this domain to mechanically

checked analysis.

Our model for fault masking and transient-recovery was developed in parallel

with that of [9] and differs from it in several details, though not in overall principle.

In this section, we briefly sketch the model of Di Vito, Butler, and Caldwell, and

explain how and why ours differs. The relationship is described in more detail in

Chapter 4.

Di Vito, Butler, and CaldweU model a reliable computing platform for DFCS

with the following characteristics:

* The system workload is a multi-rate periodic schedule.

9Verification of the Oral Messages Byzantine agreement algorithm [42,43] makes the same sim-

phfying assumptions.

1.3. FormM Models for DFCS 13

The schedule is static (i.e., the sequence of frames is identical from one cycle

to another, and the subsequence of tasks within a given frame is the same in

every activation of that frame).

All frames have equal duration; however, different frames may have different

numbers of tasks, and different tasks may have different duration. Unused

time at the end of a frame is called "slack" time; it can be used to run self-

tests. Some slack time at both the beginning and the end of each frame is

essential when discrete-update clock synchronization is used, since otherwise

tasks could be skipped (if the clock jumps forward) or repeated (if it jumps

back) [34].

The output of a task may be used as input to a later task up to one cycle

later. Data that need to be carried further forward must be relayed through

intermediate tasks.

Sensors are sampled and actuators commanded at most once per frame. An

underlying Byzantine fault-tolerant distribution of sensor samples is assumed,

so that each (working) channel receives identical sensor input.

The fault model distinguishes processors that are working correctly throughout

a frame from those that are not. In our terminology, correctly working proces-

sors, or more briefly, working processors, are those without control faults. A

fault-status predicate indicates whether a given processor is working or not in

the current frame. Faults can be either permanent (i.e., hard) or transient--

the latter is modeled by a processor whose fault-status is not working in one

frame and working in a later one. The model does not consider the mechanisms

by which such recovery might be achieved, l°

Various voting patterns are considered. In continuous voting, all state data

are voted every frame; in cyclic voting, only the outputs of tasks in the current

frame are voted in that frame; minimal voting uses the dataflow dependencies

among tasks to derive conditions that vote the minimum data each frame.

A distinguished state data item, the frame-counter is always voted at every

frame.

All processors run identical workloads. The benchmark with respect to which

fault-masking and transient-recovery results are proved is a single processor

running the same workload that suffers no faults.

1°Among the likely mechanisms are watchdog timers that trap to automatic re-initialization code,

and similar reinitialization of the losers in a majority vote. In addition, the schedule table and the

object code for the system executive and application tasks may be held in ROM, where all faults

may be assumed hard, but also extremely rare.

14 Chapter 1. Introduction

Our model is very similar in spirit and motivation to that just described; it differs

in being considerably more abstract. The reason for this is that we want our results

to be as widely applicable as possible. Mechanically checked formal specification and

verification are very time consuming to perform and mechanically checked proofs

tend to be rather fragile. By this we mean that redoing a mechanically checked

proof to accommodate changes to the statement of a theorem, or modifications to

supporting lemmas, may require a quantity of effort and insight comparable to that

required to construct the proof in the first place. Thus it is often not cost-effective to

prove properties about a variant model by adjusting proofs from the original model.

A generally more productive approach is to employ abstraction and hierarchy: one

attempts to extract the essence of the problem and to prove the most general results

possible for an abstract formulation of the problem. More concrete models can then

be constructed as instantiations or elaborations of the abstract model, and properties

concerning the elaborations can be proved using the abstract theorem as a lemma.

In the present case, we obviously wish to derive results that are sufficiently gen-

eral that they can apply to all three of the voting schedules considered by Di Vito,

Butler, and Caldwell. We would also like them to be applicable to systems that

make rather different basic assumptions--for example, systems in which sensors are

sampled and actuators commanded more then once per frame, or in which not all

cycles have identical frame schedules (so that dynamic scheduling can be accommo-

dated). We wish to state and prove general results along the lines of "provided the

voting strategy satisfies certain properties, and providing certain fault assumptions

are met, then an N-plex correctly masks faults and recovers from transients."

A little thought reveals that the essence of this problem concerns the interaction

between voting strategies, task schedules, and data dependencies. To see this, con-

sider a particular actuator command. We want the majority value for this command

to equal the "correct" value (i.e., that which would be produced by a single fault-free

processor). Clearly, this will be so if a majority of processors are working correctly

at the time they execute the task concerned and if they receive the correct input

values. Input values either come from sensors (and our requirement here is that

all working processors receive the same values), or they are the outputs of previous

tasks, _vhich may or may not have been voted. In the case of voted outputs, we

recurse on the conditions that establish the correctness of voted outputs; in the case

of nonvoted outputs, the requirement is that the majority were working correctly

when that task was executed, and that their inputs were, in turn, correct at that

point. Obviously a development along these lines must make very careful statements

about its assumptions, and there are many tricky details to be taken care of, but

it is equally obvious that the notions of cycles and frames are not essential to the

argument: it is the order in which tasks are executed, the dataflow dependencies

among them, and the placement of majority votes that determine the correctness of

the overall scheme.

1.3. Formal Models for DFCS 15

Thus, frames and cycles are not explicitly represented in our model: we represent

the system workload by the dataflow dependency graph among task activations, 11

and a record of the order in which tasks are activated. We allow voting to be

specified for the outputs of any task activation, and we model processor failure at

the task activation level (i.e., a given processor is either working or not working

during a given task activation). It should be clear that a periodic, frame-based

interpretation can be achieved by simply imposing additional structure on the task

activation dataflow dependency graph and on the task execution schedule. (For

example, by requiring them to have a periodic structure, allowing only one voted

task per frame, treating failure during any task activation as a failure for the whole

frame, and so on.) In this way, results proven for our abstract model provide a basis

for deriving results for more concrete models relatively easily.

In addition to cycles and frames, we have abstracted away another aspect of

the model of Di Vito, Butler, and Caldwell: the frame-counter. Some may consider

our use of abstraction to have been overly aggressive in this regard. Our original

motivation was as follows. For a given processor to compute the correct outputs

for a certain task activation, it must be working correctly during that task, and

it must get the correct inputs. Whether it gets the correct inputs is a function of

when data were voted, and of how long the processor has been working correctly.

Here, "working correctly" means correctly executing the right programs at the right

time, but on possibly corrupted data--i.e., it is the absence of control faults. We

do not model the mechanisms by which a processor that has been not working (i.e.,

has suffered a transient control fault) gets back into the working state (i.e., recovers

from the control fault). Part of this process may involve purging internal corruption

(e.g., a stuck-at carry-flag) by means of a system reset, or a power cycle. Another

part may involve reloading external state data (such as the identity of the current

point in the task schedule--i.e., the frame counter). Surely, reloading this datum is

simply part of the internal process of recovery from a control fault, and is therefore

part of an activity that we have explicitly chosen not to model.

A counter-argument to this position would observe that the only reliable source

for such external data is the majority-voted consensus of the other processors. Thus,

this part of the process for recovery from control faults depends on the voting

strategy and on the mechanism for recovery from state data faults--the very core

of what we have chosen to model. We are partly persuaded by this argument, but

note that the data concerned differ from other state data treated within the model

in that they are not produced and consumed by application tasks but by the system

11A task properly refers to a particular program, viewed as a static entity (e.g., as a sequence

of bytes, or as a function from inputs to outputs), a task activation refers to an instance of that

program in execution. There is only one instance of each task, but it gives rise to many activations.

Sometimes, when the context makes the intended interpretation clear, we use the shorter term task

to mean task activation.

16 Chapter 1. Introduction

executive itself. On the other hand, we are not attracted to a special-case treatment

of the frame counter--if other system state data needed to be recovered in a similar

way, another special-case adjustment to the model might be needed.

Our current preference thus remains the exclusion of the frame counter from our

basic system model. However, the frame counter (and other state data used by the

executive rather than by the application tasks) can be introduced quite simply and

naturally when the model is instantiated: simply introduce a voted task (interpreted

as the vote of the frame counter and other system state data) at the beginning of each

frame 12 and introduce a data dependency of all other tasks within the frame on the

output of that particular task. This last is an artifact of the model (in that no real

dataflow need occur), but serves to establish the (control) dependency of subsequent

tasks upon the correctness of the value for the frame counter obtained by (the task

corresponding to) the vote on its value. The task that votes the frame counter is

understood to be a standard task performed by all (synchronized) processors at

frame-start time, independently of whether they (already) know what frame it is

they should be executing.

Although the modeling is indirect, this approach allows the properties of sys-

tems with a voted frame counter to be derived correctly, while preserving the

abstractness--and hence the wider applicability--of our model. Unlike special-case

treatment for the frame counter, our approach easily accommodates more or less

frequent voting of this value, and the introduction of additional state data that are

required for the correct execution of the executive itself.

In Chapter 2, we present the details of our fault-masking model in the form of

a traditional mathematical development.

12In [9], all voting occurs at the end of each frame; thus, in this case, the identity of the current

frame is recovered by the vote at the end of the previous frame. Clearly, our approach can be

adjusted to accommodate this alternative arrangement.

Chapter 2

The Fault-Masking Model

Our goal is to prove that, subject to certain conditions, an N-plex provides transient-

recovery and fault masking for a certain class of faults. Our first requirement, there-

fore, is a benchmark model for correct, fault-free behavior, against which the efficacy

of transient-recovery and fault masking in the N-plex may be judged. We take as

our benchmark a model for the behavior of a fault-free process-control system. Our

model for an N-plex will then compose N fault-prone versions of the basic model,

together with some voting and recovery mechanisms, and our theorem will estab-

lish that the voted results of the N-plex equal those of the fault-free system (under

suitable conditions). We begin by describing our model for fault-free process control.

2.1 A Model for Fault-Free Process Control

A process-control system manages some physical device by sending control signals

to actuators. The values of the control signals are determined by calculations based

on the values of sensors that monitor the device and on a record (maintained by

the process-control system) of the state of the system. The process-control system

is internally composed of computational tasks that are activated periodically in

order to sample sensors, perform the necessary calculations, and send values to the

actuators. Some tasks may also perform internal housekeeping functions. Because

task activations may depend on the results of other task activations, there is a

dataflow dependency among task activations that the execution schedule must take

into account. The "slots" in the execution schedule are called cells1; a process-

control system requires a specification of which tasks are assigned to which cells, the

dataflow relationships among cells, and the order in which cells are to be executed.

These ideas are formalized in the following definitions.

1In a frame-based system they are often called subJrames.

17

18 Chapter 2. The Fault-Masking Model

We assume

* A set C of cells, and

• A relation G _CC × (l_l x C) (where lq denotes the natural numbers),

and we define

def
• M = {1,2,...,ICI}.

Ceils correspond to the activations (or executions) of tasks (to be formally de-

fined later) or the sampling of sensors; the relation G records the data[tow dependen-

cies among task activations associated with cells: the interpretation of (i, (n, j)) E G

is that the output of the task activation (or sensor sample) associated with cell i

supplies the input for the n'th argument of the task activation associated with cell

j. A simplified relation

• -_ de.=f{(i,j)]3n : (i, (n,j)) E G)

captures just the basic dataflow dependencies among cells, without concern for which

input of cell j it is that receives its data from i. We will ensure by conditions given

later that G is a directed acyclic graph--so that there are no circularities in the

dependencies among cells.

Note that the set C of cells comprises all the task activations performed during

a single run of the system (which may extend for the entire lifetime of the system).

It is therefore potentially unbounded (though finite) in size. For many (statically

scheduled) process-control systems, the set C and its associated data dependency

graph G will have a repetitive structure induced by the "unrolling" of a periodic, or

cyclic, pattern of activity.

Cells with indegree zero in G axe called sensor cells; those with outdegree zero

are called actuator cells. The set of sensor cells is denoted Cs; that of actuators is

denoted CA. Nonsensor cells (including actuator cells) have a computational task

associated with them and are called active-task cells. The set C \ Cs of active-task

cells is denoted CT.

Each task activation (or sensor sample) generates a value that is either com-

municated to an actuator or stored so that it will be avail£ble as input to later

task activations. The system state records these Stored output values. Formally, we

define

• A set D of domain values, and

• A set of states S C_C _ D.

The data values computed, stored, and manipulated by the system are assumed

to be drawn from the uninterpreted domain D. The system state is represented by a

2.1. A Model for Fault-Free Process Control 19

function from cells to this domain: if a E 8 is the instantaneous state of the system,

and e is a cell, then a(c) denotes the output value stored for that ceil. It may seem

that a system satisfying this description must have a huge amount of storage in order

to record the values of all task activations for all time. This is not so. Anticipating

definitions that are given below, we observe that tasks are executed in a sequential

order that respects the dependency ordering represented in the graph G, and run

to completion. There is no need to record a value for a cell that has not yet been

executed, nor for one whose immediate successors in the relation G have already

completed. Although this result is intuitively obvious, its formal verification is an

interesting exercise (see page 47).

Formalizing the notion of sequential execution, we introduce

• A bijection sched: M ---, C, with

• Inverse when: C ---, M.

The interpretation here is that the i'th task execution (or sensor sample) is the

one associated with cell sched(i); conversely, the activity at cell c is the when(c)'th

to be executed. We require that the order of execution respect the dataflow depen-

dencies recorded in G:

(i,j) E G D when(i) < when(j).

Notice that this requires that G is acyclic.

Active-task cells have some computational task associated with them, so we

require

• A set T C_8 -_ D of task-functions, and

• A function task: CT "-'* T.

When an active-task cell c executes, the function task(c) is applied to the current

state, say a, yielding the result task(c)(a). This is then stored in the system state

as the value of cell c to yield a new state r. That is,

r = a with [c := task(c)(a)]

where with [...] denotes function modification (as in EItDM).: The only compo-

nents of the system state that may influence the result are those of the immediate

:The notation f with [z := a], where x is a value in the domain of f and a a value in the range,
denotes a function with the same signature as f defined by

f with [x := a](y) = if z = y then a else f(x).

20 Chapter 2. The Fault-Masking Model

predecessors of cell c in the dataflow dependency graph _.3 Formally, we state this

as a requirement that the result be functionally dependent on just those values:

(v(a, e) e a(a) = T(a)) > task(c)(a) = task(c)(T).

Sensor cells store their results in the system state just like active-task cells.

However, they take no input from the system state; instead, they sample properties

of the external environment (including control inputs). These properties vary with

time, so it might seem that sensors should be modeled as functions of real-time. In

fact, this is unnecessary and inappropriate, since our model is not concerned with

real-time properties such as absolute execution rates, but with those of sequencing

and voting. We want to prove that if an N-plex gets the same sensor samples as

an ideal fault-free system, then it will deliver the same actuator commands (despite

the occurrence of faults). Thus, we need only model the sensor samples actually

obtained, which can be done by modeling sensor samples as functions of position in

the execution schedule (i.e., we use the number of cells executed as our notion of

"time"). Thus we introduce

• A set S C M _ D of sensor-functions, and

• A function sensor: Cs --* S.

When a sensor cell c executes, the sensor-function s = sensor(c) samples the

environment (at time when(c)) to yield the value s(when(c)). This is then stored

in the system-state as the value of cell c.

Formally, the execution of cells is modeled by the function

• step: S × C ---*S

where

step(a, c) def= a with [c := if c E Cs then sensor(c)(when(c)) else task(c)(a)]

is the new state that results from executing the task of cell c in state a at time

when(c).

We are interested in the state after the system has executed some number m of

cells according to its schedule. This is modeled by the function

• run:M--*S

3Operationally, the function task(c) is applied to the tuple of values

(_(c,),_(c2) ,_(c.))

where (c,, (i, c)) • G and n = indegree(c).

2.2. The N-plex Model 21

where

run(O) c S,

run(m + 1)

A variant is the function

• runto: C -* S

where

de=f step(run(m),sched(m + 1)).

ru.to(c) de2ru.(when(e))

is the state of the system when execution of its schedule has reached cell c. Observe

that run(0), the initial state, is chosen arbitrarily.

2.2 The N-plex Model

In this section, we admit the possibility that machines may fail and we introduce

replication and voting to overcome that fallibility.

We assume a replicated system comprising r _> 3 component systems of the type

described in the previous section and we define

def
• R = {1,2,...,r).

In the following, we will often refer to the component systems as "machines."

Component machines may fail and revive independently; at any time a machine

is either "failed" or "working." This is specified by a function

• .T: R _ (M ---*{T, F})

where .T(i)(m)is T just in case component machine i is failed at time m. 4 Intuitively,

a component machine i is failed at time m if it suffers a control fault at any point

during execution of the task scheduled at time m. We know nothing at all about the

behavior of failed component machines. Working (i.e., non-failed) machines correctly

compute the function associated with the task scheduled at time m. However, the

result computed may be incorrect if an earlier failure has caused the input data to

be bad. A machine that is working correctly, but on bad data, has state data faults

that will eventually be overcome through majority voting of state data.

States of the replicated machine are drawn from the set

4A function with range {T, F} can be interpreted as the characteristic predicate of a set (this

is how sets are defined in ErtDM). Thus .T'(i) can be interpreted as the set of times when the i'th

machine is failed during execution of the cell scheduled at that time.

22 Chapter 2. The Fault-Masking Model

Thus, if p E 7_ is a replicated state, then p(i) is the state of the i'th component

machine, and p(i)(c) is the value of cell c in that machine.

The components of a replicated machine behave much like a single machine,

except that components may fail, and so they periodically vote their results. Thus

we assume a set

• Cv of voted ceUs

and require

CA C_ Cv C_ CT

(that is, all actuator cells are voted, but no sensor cells are). s

Each execution step in the replicated machine takes place in two stages. In the

first stage, each working component machine performs a single (ordinary) step. This

is specified by the function

• sstep:TixC_T¢

where

-_._(i)(when(c)) D sstep(p, c)(i) = step(p(i), c).

This definition states that a working component machine updates its own state in

exactly the same way the unreplicated system model would, given the same state.

Two important consequences of this definition may not be obvious:

• If cell c is a sensor cell, then the value of step(p(i), c) is

p(i) with [c := sensor(c)(when(c))]

(this comes from the definition of step). Note that the expression in the

with clause is independent of the machine i; thus, as noted above, our model

requires that all working machines get exactly the same sensor samples.

If machine i is failed when execution of cell c should be performed, we

know nothing whatsoever about the subsequent state of that machine, i.e.,

sstep(p, c)(i). We do not assume merely that the value stored for cell c could

be incorrect; we allow the whole state (of that machine) to be damaged or

destroyed.

When a voted cell is executed, the working component machines each calculate

the majority vote of the full set of all their individual results. This is specified by

the function

_Sensor cells are not voted because we assume an underlying Byzantine fanlt-tolerant distribution

mechanism which ensures that all working machines get the same sensor samples. This assumption

is captured in the definition of the function sstep.

2.2. The N-plex Model 23

• vote: 7"dx C --*

where

-_Jr(i)(when(c)) D vote(p, c)(i) = p(i) with [c := maj_{p(j)(e)lj E R}],

maj is the "majority" function, and _{p(j)(c)l j E R} denotes the bag (multiset) of

values recorded for cell c by all the component machines. 6

As with the sstep function, we know absolutely nothing about the state of a failed

component machine after a vote in which it should have participated. Another inter-

esting element of this definition is that all working machines are specified to perform

a majority vote on the same bag of values: this suggests they must not only read

each other's values correctly, but they should agree on the values attributed to faulty

components. These are precisely the requirements that "Byzantine agreement" (also

known as "interactive consistency") algorithms are required to satisfy. It may seem,

therefore, that any realization of this model should employ a Byzantine agreement

algorithm to distribute the values to be voted among all of the component machines.

This is unnecessary, however, since it is a majority vote that is being computed, and

our results will establish that the good values comprise a majority. Thus, the values

ascribed to failed processors are irrelevant, and the working processors do not, in

fact, need to agree on those values. We do not prove this result here; we regard it

as a proof obligation on the implementation.

The overall behavior of the replicated machine is specified by the function

• rstep:Tl x C --* Tt

which is simply the appropriate combination of the two steps above:

. , def f vote(sstep(p, c), c) if c E Cv

rstep[p,c) = _ sstep(p,e) otherwise.

Functions rrun and rrunto are defined analogously to the single machine case: 7

• rrun:M_T¢,

_Note that maj is a partial function: it is undefined if an absolute majority of components do

not agree on a value. Our results will always take care to establish conditions in which it is defined.

A fast and very clever algorithm for calculating the majority function was discovered by Boyer and

Moore during the SIFT project [57].

tReaders unfamiliar with higher-order logic may find the, so-called "Curried," functions that

we employ somewhat strange. Rather than the Curried application rrun(m)(i)(c), they might

prefer the application of a function with multiple arguments: rrun(m, i, c). The advantage of our

approach is that the separate components of the application have individual mezadng and can be

manipulated individually: rrun(rn) is the state of the replicated machine after m steps, rrun(rn)(i)

is the state of the i'th component machine at that point, and rrnn{m)(i)(c) is the value stored for

cell c in that state.

24 Chapter 2. The Fault-Masking Model

is given by

rrun(O)

rrun(m + 1)

ae =

def_ rstep(rrun(m), sched(m + 1))

and

* rrunto: C --_ Tt

by

rrunto(c) ae_.=frrun(when(c)).

Notice that our model assumes that computation and voting are atomic, and that

the components of the replicated machine are completely synchronous. These are

idealizations of reality and we intend to explore more realistic assumptions in later

work. They are adequate, however, for the purpose of the current investigation,

where we are primarily concerned to develop the conditions under which majority

voting successfully masks transient failures.

2.3 Fault Tolerance and Transient-Recovery

Our goal in this section is to show that, under certain conditions concerning the

failure "pattern" 5r, the replicated machine produces the same actuator behavior as

the single machine, despite failures among the components of the replicated machine.

Our requirements are that the majority-voted value for each actuator should be the

correct value--that is, the value produced by a single fault-free system. In our

model, actuator cells are voted, so that any nonfaulty component machine will set

its own value for an actuator cell to that of the majority. Thus, the correctness

statement can be rephrased as the requirement that the value computed for an

actuator cell by any nonfaulty component machine should be the correct value.

We can state the condition that a component machine i have the correct value

for cell c in terms of a predicate:

• good-value: R x C _ {T, F}

where

good-value(i, c) ¢le_=_frrunto(c)(i)(c) = runto(c)(c).

We then seek a predicate

• safe: C _ {T, F}

2.3, Fault Toleranceand Transient-Recovery 25

such that

Vc cA,i e R: (afe(c)A 9ood-value(i,c).

Intuitively, safe(c) will capture the conditions under which the replicated machine

has enough working components, and those components have been working for long

enough since their last failure, that good values form a majority and faults will be

masked successfully.

If only actuator cells were voted, it would be trivial to derive the required result:

safe(c) would be the condition that a majority of components have been working

continuously since the very first cell through the computation and vote of cell c. That

this condition is sufficient follows from the fact that working component machines

given the same inputs produce the same results as each other; failed machines can

produce anything (including nothing). Thus, the continuously working machines

will agree among themselves at every voting stage and, since they are hypothesized

to be in the majority, leave their states unchanged. Since actuator cells are voted,

any machine that is working during the vote of an actuator cell will acquire the

correct value from this continuously-correct majority.

To see that this condition is necessary, suppose that there has not been a ma-

jority of components working continuously since the beginning. Then a majority of

machines have failed at some time or other prior to the execution of cell c. When

they failed, they may have destroyed their system state. Since we are now assuming

no votes other than at actuators (and actuators do not provide input to other cells),

this corruption may persist even after a failed machine starts working again. Thus a

failed machine cannot be guaranteed ever to recover fully. Since these machines are

hypothesized to form a majority by the time cell c is executed, they could outvote

the good machines at that point.

Without intermediate voting of state values, a component machine that suffers a

transient failure may never fully recover, since there is no way for it to repair its state

data. Intermediate voting can allow this repair to take place, so that the conditions

in the predicate safe become less Draconian. There are many possible strategies for

intermediate voting: we can vote at every cell or only at certain cells, and we can

vote the entire state, or just some portions of it, or just the value computed at that

cell. Voting more data or voting more often than required can be very expensive,

using up resources that could be put to better use. Early DFCS maintained very

little state data and it was feasible to vote the entire state every frame. Modern

systems maintain much more information and it is necessary to be more sparing

in the frequency of voting, and in the quantity of data voted. Obviously there

is a trade-off here: voting less frequently, or less data at each vote, may increase

the time taken to recover from transients, and thereby reduce the reliability of the

system. Clearly, overall reliability depends upon the relationship between the voting

strategy, the fault arrival rate, and the dataflow dependencies in the system. We

26 Chapter 2. The F_ult-Ma_king Model

need to encode this relationship as the condition in the predicate safe. Intuitively,

the condition must ensure that, for every cell, a majority of machines have been

working for long enough since their last failure that they have acquired correct

values (from sensor samples or votes) for data values that ultimately contribute to

the value of cell c, and have computed all intermediate values correctly. Stating this

condition formally requires some additional definitions.

We define

• foundation: C ---*7_(C), where 7_ denotes powerset,

recursively as follows:

{c)
foundation(c) dej {c} U U foundation(b)

(b,c)eG

if c E (Cs U Cv)

otherwise

and

• support:C _ 79(C)

by

a,r [{c}u U /oundation(b) if c e Cv
support(c)

= I (b,c)eUfoundation(c) otherwise.

The foundation of a cell c consists of all those cells that directly or indirectly con-

tribute input data to c by a path that does not pass through any (other) voted cells.

Note that a voted or sensor cell is its own foundation.

Figure 2.1 gives a graphical representation of these concepts. In the figure, circles

indicate cells, double circles indicate voted cells and the arrows indicate dataflow

dependencies (the arrow from cell D to cell A represents the arc (A, D) E G; the

direction of the arrowhead indicates the dependency relation, rather than the flow

of data). The left to right position of cells on the page suggests the order in which

they are executed. In this case, the foundation for cell J is just {J} (since J is

a voted cell), that for A is {A} (since A is a sensor cell), and that for cell D is

{A,C,D}.

The support for a nonvoted cell is simply the foundation for that cell; the support

for a voted cell is the union of the foundations of all the cells that directly provide

input to that cell. The intuition here is that if a machine computes correct values

for all the cells in support(c), and if the machine keeps working, then the value

eventually computed for cell c will be correct. In Figure 2.1, the supports for A and

D equal their foundations, whereas the support for the voted cell J is {A, C, D, J}.

A machine that is working throughout the support of cell J will compute the correct

value for that cell: since it is working at sensor cell A, it will acquire the correct

2.3. Fault Tolerance and Transient-Recovery 27

Figure 2.1: Example Dataflow Dependency Graph

sample value from that sensor; since it is working at voted cell C, it will acquire the

correct value for that cell during its majority vote, even if it had been failed earlier

and had not computed the right value itself s; since it has the correct input values

for cell D and is working at that cell, it will compute the correct output value; and

since it has (from D) the correct input value for cell J, and is working at J, it will

compute the correct value for J.

We need just a few more definitions. The function

• committed-to: C _ M

is defined by

committed-to(c) d¢=frain {when(a)la e support(c) }.

In the example of Figure 2.1, committed-to(J) = when(A). Once a machine reaches

committed-to(c) in its schedule, it must keep working until when(c) if it is to compute

the correct value for cell c. Conversely, if it does keep working throughout this

period, it will compute the correct value for cell c even if its own state data are

corrupt at the beginning of the period. This is because all the data required to

compute cell c are derived either from sensor samples, or from voted values, that are

acquired at or later than committed-to(c). Thus, provided enough other machines

aWe are assuming here that enough machines were working correctly at c that correct values

form the majority. We cannot give a characterization of the necessary condition yet, since we are

in the process of developing the concepts that make its statement possible.

28 Chapter 2. The Fault-Masking Model

are working, this machine wilt acquire good values during the votes and sensor-

samples and its own bad state data will not contribute to the result.

The function OK captures the condition under which a particular component

machine has been working for "long enough" since its last fault that any bad state

data values have been replaced by good values through votes and sensor samples--so

that it is able to compute a good result for the current cell. Thus,

• OK:R --. (C -* {T,F})

is defined by

OK(i)(c) def (Vm: committed-to(c) < m <_ when(c) D _.T(i)(m)).

In other words, OK(i)(c) is the condition which ensures that component machine i

has no state data faults that can affect the value computed for cell c.

For the replicated machine to be safe, a majority of its components must be OK

for every cell. We therefore introduce the function

• MOK: C -_ {T, F}

(for Majority OK) defined as follows

MOK(c) def 30 C_R, IOI > r/2 : i E 0 D OK(i)(c).

We then define the predicate safe as follows

safe(c) dej (Va: when(a) <_ when(c) D MOK(a)).

That is, the replicated machine is safe at cell c if, the condition MOK holds at c

itself and at all cells evaluated earlier than e.

Now we can state and prove our main theorem. This "Consensus Theorem" is

similar to lemmas of that name in [9].

Theorem 1 (Consensus Theorem) If safe(c), then

Yj e R: OK(j)(c) D good-value(j, c).

Proof: The proof is by strong induction on when(c). The basis is the case

when(c) = 1, in which case c must be a sensor cell, and so

rrunto(c)(j)(c) = sensor(c)(1) = runto(c)(c)

as required.

For the inductive step, suppose the theorem true for all cells a such that

when(a) < when(c) and let j be a component machine such that OK(j)(c). If

2.3. Fault Tolerance and Transient-Recovery 29

c E Cs, the argument is the same as for the basis case, and so we consider c E CT

and consider a such that (a, e) E G. Since the result of e is a function of its inputs,

the result will follow if we can demonstrate

good-value(j, a).

There are two cases to consider.

Case 1: a E Cv. It may not be that OK(j)(a) and so we cannot appeal to the

inductive hypothesis directly, but we do know that MOK(a) and hence that

a majority of machines exemplified by k (possibly not including j) satisfy

Og(k)(a). By the inductive hypothesis, good-value(k,a) for these machines.

Now, we hypothesized og(j)(c) and hence _(j)(a). It follows that during

the voting stage of the execution of cell a, machine j will acquire the majority

value for that cell, i.e., good-value(j, a), as required.

Case 2: a _. Cv. A component machine i is OK for cell c if it is working throughout

the period from committed-to(c) to when(c). Observe that the support of a

nonvoted cell a is a subset of any cell c to which it provides input. It follows

that committed-to(a) can be no earlier than committed-to(c). We must also

have when(a) < when(c). Thus og(i)(c) D OK(i)(a) and the result then

follows directly from the inductive hypothesis.

[]

The result we seek follows from the Consensus Theorem:

Corollary 1 For c E CA, if safe(e) then

Vi E R: -_Y(i)(when(c)) D good-value(i, c).

Proof: The statement of the corollary implies MOK(c), so there must exist j E R

such that og(j)(c). The Consensus Theorem then supplies

Vj E R : OK(j)(c) D good-value(j, c)

which, on expanding the definition of good-value, gives

rrunto(c)(j)(c) = runto(c)(c).

Now c E CA, so c is a voted cell, and the definition of the voting function ensures,

Vi,j E R: (_Y(i)(when(c))A-_Y(j)(when(c))) D rrunto(c)(i)(c) = rrunto(c)(j)(c),

3O Chapter 2. The Fault-Masking Model

since all working machines acquire the majority value as the result of voted cells. By

definition, OK(j)(e) D -_:F(j)(when(c)). Hence, for any i E R such that -,U(i)(c),

rrunto(c)(i)(c) = rrunto(c)(j)(c)= runto(c)(c)

and we conclude good-value(i, c) as required. []

In words, the corollary states that each working component of the replicated

machine computes the correct value for an actuator if a majority of machines is

working throughout the period from committed-to(c) to when(c) for each cell c in

the schedule up to and including the actuator concerned.

In Chapter 3, we consider the formal specification of this model in EttDM, and

the mechanically-checked verification of the results derived above.

Chapter 3

Specification and Verification

in EHDM

In this chapter we give an overview of the formal specification and verification in

Eli DM of the model presented in Chapter 2. It is not our purpose to provide a general

introduction to EHDM here; readers unfamiliar with the EHDM language and system

are referred to yon ttenke and Rushby [7]. Our purpose is rather to discuss some of

the more interesting issues raised by the formalization, and to provide a road map

to the complete listings of the EHDM specification and verification, which are given

in the Appendices. The L_TEX-printed EHDM specification is given in Appendix

A; a cross-reference from identifiers to the module in which they are declared is

given in Appendix B; Appendix C reproduces the summary from the EHDM proof-

chain analysis for the result corresponding to Corollary 2. All the material in the

Appendices was generated directly by the EttDM system.

Since the specification language of EItDM is a rather rich, strongly typed higher-

order logic, it was possible to cast the model presented in the previous chapter into

EHDM fairly directly. The specification of the basic process-control model is given

in the module simplo_machine (page 59). The semantic subtypes of EHDM allowed

us to specify the various types of cell in a very natural and convenient manner.

For example, CT, the type corresponding to the active-task cells is specified as the

subtype of C (the type of all cells) satisfying (Ac : cell_type(c) _ sensor_cell). We

can then define the signature of the function task as CT _ task_fn and the EHDM

system will ensure that applications of the form task(c) occur only in contexts where

c can be proven to satisfy the subtype predicate for CT. These proof obligations

are called type-correctness-conditions (or tcc's for short) and are placed in system-

generated modules whose names end in _tcc. The definition of the function step, for

example, causes two such tcc's to be generated in the module simple_machine_tcc

(page 62). This latter module contains several other tcc's, including three that

are required to demonstrate the nonemptiness of the subtypes introduced, one that

31

32 Chapter 3. Specification and Verification in EHDM

is necessary to demonstrate the well-foundedness of the recursive definition for the

function run, 1 and two others that are similar to those just discussed for step. EItDM

provides a tool called the proof-chain analyzer that checks whether a verification is

complete. Among the conditions that it enforces is the requirement that all tcc's be

proven.

System-generated tcc modules automatically include trivial proof declarations

for the formulas concerned. When these automatically generated proof declarations

do not suffice to establish their corresponding theorem, the user must construct

more elaborate proof declarations in another module. (Being system generated,

and crucial to the type-correctness of the specification, tcc modules are protected

against modification by the user.) The three such declarations needed in this case

are given in the module s±mple_machine_tcc_proofs (page 64). A similar naming

convention is applied to other modules containing proofs for tcc's. In order to

satisfy the nonemptiness requirements on subtypes, we introduce three constants

corresponding to an arbitrary sensor, actuator, and active-task cell respectively

(strictly, the last of these is unnecessary--actuators are also active tasks). In any

application of the specification, instantiations for these constants must be supplied.

We do not define the relation G in the EnDM specification; the simpler relation G

is sufficient to state and derive all the results required. We introduce inizial_state

as an arbitrary constant of type szaze to serve as the initial value in the recursive

definition for the function run.

The rest of the specification in module simple_machine is a fairly direct translit-

eration of that given in Section 2.1, with one exception: the EHDM specification has

an extra argument for the function szep. This was intended to allow for the descrip-

tion of systems with a less rigid scheduling model than that eventually employed.

Thus, whereas Section 2.1 has

step(a,c) = a with [c := if c e Cs then sensor(c)(when(c)) else task(c)(a)],

the EHDM specification has

step(a,c,m) = a with [c := if c E Cs then sensor(c)(m) else task(c)(e)].

However, this latter version of the function is always used in the form

step(a, c, when(c)), so that it is equivalent to the first version.

The module sitaple_props (page 68) states and proves some simple consequences

of the previous definitions that are needed later. One, stay_correct_simple, is an

example of the type of condition that is often glossed over in conventional mathe-

matical presentations, such as that in Chapter 2. It states that if the output of cell

*The annotation "...by identity" in the recursive definition of run establishes identity as

the measure function for the recursion. The value of the measure function is required to be strictly

decreasing across recursive calls, and a tcc is generated to ensure that this is so.

33

a is used as an input to cell c, then the value recorded for a immediately after it is

computed will still be the same when it is accessed (possible much later) in order

to be used in the computation of c. In the case of the simple machine, this result

is straightforward; it is less so in the case of the replicated machine (since failures

must be accounted for). In either case, this is the step that will require a modified

proof if the specification is adjusted to model systems that do not keep all cell values

for all time (see page 47).

The proof of stay_correct_simple is by induction. The particular form of

induction used is a variant of simple induction over the natural numbers. This

is stated as the higher-order theorem induction_m in the module natinduction

(page 66). This module states two other induction schemes; all three are derived

from a statement of Noetherian induction given by the axiom general_induction

in the module noetherian (page 65). Note that general_induction is the only

induction scheme stated as an axiom; all the others are theorems derived from this

single axiom. Notice, too, that the module noetherian has assumptions (stated in

the assuming clause) that must be discharged in any instantiation. The module

natinduction discharges these assumptions for its particular instantiation.

The next three modules, sets (page 71), cardinality (page 72), and

orderedsets (page 74), introduce concepts related to sets that are needed in order

to state the model for the replicated machine. Sets are modeled by their character-

istic predicates; the type of (the predicate representing) a given set is dependent on

the type supplied as the actual parameter to the sets module. The sets module

defines the basic set operations of union, intersection, subset, and the like, as higher-

order functions. Those unfamiliar with the use of higher-order logic in specifications

may find these definitions particularly interesting.

The module cardinality introduces the notion of the cardinality (size) of a set

and defines some of its properties axiomatically. Some of the axioms we use, for

example

Jau bl+ lan bl = + Ibl,

are valid only for finite sets. Accordingly, an assumption is attached to this module

to ensure that only finite types may be supplied as its actual parameter. The

EI-IDM proof-chain analyzer checks that module assumptions are discharged in any

instantiations before the overall verification is declared complete.

The module orderedsets defines the function m±n (the value of the smallest

element) on sets whose elements are drawn from a type with a suitable ordering

relation.

The replicated system model is developed in the module repl_machine (page 75).

The specification follows very closely that given in Section 2.2. As with the step

function of simple_machine, the functions voice, ss'cep, and rstep all take a third

argument in the EHDM specification, but are always used in a manner that is consis-

tent with the two-argument forms given earlier. Another slight difference is in the

34 Chapter3. Specification and Verification in EItDM

specification of the condition that majority voting is performed only for voted cells.

In the EHDM specification, this is given in the axiom for the vote function, rather

than in the definition of rstep. The two approaches are obviously equivalent, but if

we were to revise the EI_DM specification, we would change it to the alternate form

used in Section 2.2. The form currently employed suggests that the voter is always

applied, but only actually does a vote when the cell is a voted one; it would be more

natural to specify that the voter always votes, but is applied only when the cell is a

voted one.

The required property of the maj (majority vote) function is specified in the

axiom maj_ax. Note that by specifying this function relative to a set of component

machines, rather than relative to the values recorded by their states, we avoid the

need to introduce the concept of a multiset. The majority vote function used in

Section 2.2 is a partial function: it is undefined if an absolute majority does not

exist. Functions in EItDM are total, however: the maj function, for example, has

some value even when an absolute majority does not exist--we simply know nothing

about what that value may be. In order to make use ofmaj _ax, the verification must

always establish that the conditions for the existence of an absolute majority are

satisfied. Thus the distinction between a truly partial function and a total function

whose values are unconstrained when applied outside its domain is moot in this

case. 2

Module supports (page 79) introduces the functions foundation, support, and

commit'ted_to that are needed in the statement of the Consistency Theorem. Sub-

sidiary functions backup and critical_times are used in the definitions.

The module correc_:ness (page 84) defines the functions 0K and t401(, the predi-

cates safe and correc_c, and states the_result, which corresponds to the Consen-

sus Theorem, and is the main result proved in the verification. The definition for

safe given in the EHDM specification is weaker than that given in Section 2.3, and

so "che_resul"c is stronger than Theorem 1 of Section 2.3. The difference is that the

formal specification of safe(c) requires only that the replicated machine be MOK

for those cells a that transitively contribute input to c; the definition in Section 2.3,

on the other hand, requires that the replicated machine be MOK for c and for all

cells executed earlier than c. Clearly the cells that transitively contribute input to

2If f: A ---, B is a partial function and x E A a value outside the domain of definition of f,

then the term f(x) has no meaning. There are two ways to capture the useful properties of partial

functions in EHDM: one is to use a total function with signature A --* B, but to specify nothing

about its values outside its domain of definition. In this case, the term f(x) has some value, but

we don't know what it is. Expressions like x = y D f(z) = f(y) are meaningful, and true, however.

The other approach is to use a total function with signature A' ---* B where A' C A

is the true domain. The quotient function, for example, is defined this way in EI-IDM:

quotient: function[number,nznum --* number], where nznum is the type of nonzero numbers de-

fined as a subtype of numbers by the predicate (Az: z # 0). In this case, the term quotient(x,y) is

type-correct only if it can be proved that y # 0 in the context of its use.

35

e must all be executed earlier than e, and so the second condition implies the first.

The reason we used a stronger definition for safe in the traditional mathematical

presentation than we did in the formal specification is that the stronger definition al-

lows Theorem 1 to be proved by simple induction over the natural numbers, whereas

the weaker definition requires a proof by Noetherian induction over the structure of

the data/tow dependency graph. Noetherian induction is rather tricky to state and

carry out in quasi-formal notation (and may not be familiar to all readers) and so

we opted for the stronger notion of safe, and hence a weaker theorem, in the tra-

ditional development. In the truly formal notation of EHDM, it is no more difficult

to perform Noetherian than simple induction, and so we used the definition for safe

that gave the strongest theorem.

The module connect (page 87) establishes a crucial lemma called stay_correct

which states that if a is a cell that provides direct input to cell c, and if all component

machines that were OK at a computed the correct value for a, and if the replicated

machine is safe at c, then all component machines that are OK for c will have the

correct value for a available when they execute c. The proof of this lemma involves

a subsidiary lemma called stay_correct_.vepl that is the analog, for the replicated

machine, of the stay_correct_simple lemma discussed earlier. Like the earlier

lemma, this one is proved by induction, but requires a more complex induction

scheme than the previous case, because the induction must not proceed beyond the

point to which the component machine is known to be OK. 3

A key step in the proof of stay_correct is provided by the lemma

torch_carried, which establishes that if cell a provides input to cell c, and if the

replicated machine is safe at c, then there is some component machine that is OK

at both a and c (and hence it "carries the torch" of correct values over from a to

c). The proof of this property is the one place where we depend on the fact that we

are using majority voting (and hence that the intersection of the sets of component

machines OK at a and OK at c must be nonempty).

The three modules sensor_step (page 91), nonvoted_ztep (page 94), and

voted_step (page 97) establish the three cases for the inductive step in the proof of

the_result (i.e., Consensus Theorem) in module correctness_proof (page 103).

Unlike the traditional-style proof for the Consensus Theorem given in Section 2.3,

where strong induction over the schedule of cell executions is employed, the veri-

fication in EHDM uses Noetherian induction on the dependency structure recorded

in the relation G. This is the most natural induction scheme to employ in this

case and, as noted earlier, allows a stronger formulation of the theorem. Since the

statement of the Consensus Theorem has the form of an implication, we actually

3The type C of cells is imphcitly defined to be infinite by the module simple..machine, since the

when and sched functions constrain it to be bijective with the naturals. The specification would be

improved if the bijection were established with a finite initial subset of the naturals. In this case,

the inductive proof of stay_correct_simple would also require revision.

36 Chapter 3. Specification and Verification in EItDM

employ a specialized form of Noetherian induction called mod_£nduction that is tai-

lored to this case. The statement and proof of rood_induction appear in the module

noetherian.

The three modules concerned with the establishingthe inductivestepfor the

proof of the_result each prove a lemma which states,for the case of the cellc

considered(i.e.,a sensorcell,a nonvoted active-taskcell,and a voted cell,respec-

tively),that ifthe replicatedmachine is safeat c, and correctat allcellsa that

provideinput to c,then the replicatedmachine willbe correctat c. The proofsof

theseresultsessentiallyfollowfrom applicationsof the definitionsof the functions

step, sstep, vote, rstep, rrun, and rrunto, but are somewhat tediousin EHDM

sinceitstheorem proverlacksa rewriter:numerous lemmas are requiredto break

the proof down intomanageable pieces,each involvingthe applicationofjustone

or two definitions.

Finally, the module outputs contains the spedfication and proof for the formula

actuators_correct, which corresponds to Corollary 1 in Section 2.3.

The complete verification of the__result requires the mechanized checking of 93

proofs (in addition, there are 9 automatically generated tcc proofs that fail; these

are supplanted by successful proofs among the 93) and takes about 7 minutes on

a Sun SPARCstation 2. The terse proof-chain analysis for the_result is given in

Appendix C. The effort required to formally specify and verify the model in EttDM

was between three and four man-weeks.

Chapter 4

Reconciliation with the LaRC

Model

In this chapter we explain the connection between our model and that developed

by Di Vito, Butler and CaldweU of NASA Langley Research Center (LaRC) [9]; for

brevity, we will generally refer to this as the "LaRC model."

A major difference between our model and the LaRC model is that we allocate

the elementary units of activity to a single-level structure of cells, whereas the LaRC

model considers a hierarchy of subframes, frames and cycles (in ascending order).

Thus, in our model, cells are drawn from a simple type C, whereas in the LaRC

model the units of activity (which we will call "LaRC-cells") are represented by

triples which we write as [p, f, s], where p is the cycle, 1 f is the frame, and s is the

subframe. There are an indefinite number of cycles, M frames, and frame f has

My subframes. If we let INk denote the first k natural numbers, then we require

p E l_, f E INM, and s E INMI.: The sequence of frames repeats to form cycles;

hence the properties of the LaRC model are primarily specified in terms of the last

two components of the LaRC triples. Dataflow dependencies are represented by a

relation --* on these pairs, where

[L d [g,t]

means that subframe s of frame f supphes input to subframe t of frame g. If

f >gV(f=gAs > t)

1We use the variable p, suggesting period, rather than c, suggesting cycle, to avoid confusion

with c as a cell.

_This is an example of a dependent type: a type that depends on the value of a variable. EHDM

has dependent typing, but lacks a syntax for stating the product type required here. A more

advanced specification language under development at SRI permits this type definition to be stated

directly.

37

38 Chapter 4. Reconciliation with the LaRC Model

then the input comes from [f, s]'s execution in the previous cycle. The directed

graph associated with _ is called the task graph.

The second major difference between the LaRC model and ours is that we as-

sociate voting with individual cells, whereas the LaRC model treats voting as a

separate activity performed at the end of each complete frame. The LaRC model

employs a predicate VP (for Voting Pattern) to indicate what results are to be voted

in each frame: VP(f,s,g) is true just in case the result of subframe s in frame f is

voted at the end of frame g.

The association of votes with frames in the LaR.C model renders it strictly weaker

than our model: we can model any system that can be represented within the LaRC

model, but we can also model systems (for example, those having votes elsewhere

than at the end of the frame) that cannot be represented within the LaRC model.

In order to substantiate the first of these claims (the second is self-evident), we now

indicate how the LaRC model can be represented within our formulation.

To do this, we introduce a new "voting" cell at the end of every frame in the

LaRC task graph and, to a first approximation, we add an arc to the task graph

between each (regular) cell and the voting cell of the frame that votes that cell's

value; we also replace those dataflow references to the value of the original cell made

by ceils scheduled in frames later than one that votes its value by references to the

value of the voting cell. We say "in principle" because the process is complicated

when a value is voted by more than one frame. In this case, the voting cells of the

later frames vote on the previously voted value, not on the value of the original cell;

similarly, any references to the value always retrieve the most recently voted version.

(This is because there really is only one copy of the value).

Figure 4.1 gives a pictorial representation of the transformation just described.

In the figure, vertical dashed lines indicate frame boundaries, and the left to right

order of cells on the page suggests their temporal order of execution. The top image

portrays an unvoted system with three frames and two subtasks in each frame; the

numbered arcs indicate the dataflow dependencies. The lower two images portray

the system after transformation to frame-based voting systems. The double circles

represent the new voting tasks and the unnumbered arcs that curve below the line

of circles represent the dataflow dependencies of these new voting tasks. The middle

image portrays "continuous voting" (see Section 4.1.1), in which all data are voted

every frame---hence each voting task has a link back to the previous voting task in

order to access the previously voted values of earlier tasks. Arcs corresponding to the

original dataflow references retain the same numbering scheme in this transformed

portrayal. Observe that arc number 7, for example, no longer reaches back to

a task several frames earlier, but only to the previous voting task. The bottom

image portrays the system after transformation to a frame-based voting system

using "cyclic voting" (see Section 4.1.2), in which each frame votes only the data

generated in that frame. Here, arc 7 must still reach back to the frame containing

39

7 !

I
I

No Voting

o o+o.o
Continuous Voting

Cyclic Voting

Figure 4.1: Representation of Frame-Based Voting

4O Chapter 4. Reconciliation with the LaRC Model

the task of interest, but the data is acquired from the voting task of the frame

concerned.

Formal description of the transformation is complicated by the need to take care

of the details. We identify the cells of our model with the triples [p, f, s] of the

LaRC task graph, together with an initialization cell and the special voting cells;

we denote the initialization cell by c_, and the voting cell at the end of frame g of

cycle q by v(q,g). The basic datafiow connections _ of the LaRC task graph give

rise to edges in our graph G as follows:

([p,f,s],[q,g,t]) e -G iff If, s] _ [g,t] and

p=qA{ f <gV (f=gAs<t)

V

p=q-lA{ f>gv

Cells that would otherwise be dependent on frame -1 instead make reference to the

initialization cell:

(ci,[O,g,t])eC iff If, s]--+ [g,t]A(f >gV(f--gAs > t)).

The execution schedule for the LaRC model is implicit in the frame structure:

all the subframes for frame 0 are executed in order, then those for frame 1, and

so until the last subframe of frame M - 1, at which point a new cycle starts over

at subframe 0 of frame 0. If we let K(f) I-1= _g=0 Mg denote the total number of

subframes in the first f frames of the task graph, then we require

and

when(cl) = O,

when([p,f,s]) = p × (K(M) + M) + (K(f) + f) + s + 1

when(v(q,g)) = q × (K(M) + M) + (K(g) + g) + Mg + 1.

We define orderings > and > over (cycle,frame) pairs based on their position in

the execution sequence:

(p,f) > (q,g) if(p > q) V (p= q A f > g), and

(p, f) _> (q, g) if(p>q) V(p=q/Xf_>g).

We also use the inverse relations < and < whenever convenient and extend the

relations to voted cells by the convention

v(q,g) <_ v(r,h) iff (q,g) <<(r,h).

4.1. Specitic Voting Patterns 41

A voting cell v(q,g) is a candidate voting cell for ordinary cell [p, f, s] if VP(f, s, g),

and either q = p A g _> f or q = p + 1 A g < f; the candidate cell that is least with

respect to the _< ordering is the primary voting cell for [p, f, s], the others are

secondary voting cells for [p, f, s].

An arc ([p, f, s], v(q,g)) is added to G when V(q.g) is the primary voting cell for

[p, f, s]. An arc (v(q.g), v(r,h)) is added to G when v(r,h) is a secondary voting cell for

[p, f, s], and v(q,g) is the largest candidate voting cell for [p, f, s] with respect to the

_> ordering such that (q,g) < (r,h). Finally, we replace arcs ([p,f,s],[q,g,t])e G,

by arcs (v(_,h), [q, g, t]) where v(_,h) is the largest candidate voting cell for [p, f,s]

with respect to the >_ ordering such that (r, h) < (q, g).

We claim that the transformation just described will cast an instance of the

LaRC model into an instance of our model in a way that preserves its essential

properties. Despite its notational complexity, the transformation is really quite

simple: it "unrolls" the cyclic schedule of the LaRC model into fiat structure that

we require, and it encodes the frame-based voting of the LaRC model in the voted

cells of our model.

4.1 Specific Voting Patterns

In the following sections we will derive results similar to those of [9, Section 14]

for specific voting patterns. We will use the general character of the transformation

between the LaRC model and ours described above, but will not undertake literal

translations of the LaRC Theorems. Instead, we will state what we consider to be

the main thrust of the LaRC Theorems directly in the terms of our model, and will

conduct our proofs within that context. In this way, we avoid the tedious labor of the

transformation, preserve the clarity of the presentation of each result, and increase

its generality of application. We claim, but do not prove, that if the statements of

the Theorems of [9, Section 14] are transformed in the way described above, then

the resulting "mapped" theorems will be special cases of those given below.

All we require to state our first two results is a notion of "frame." The idea is

that all cells belong to exactly one frame; the members of each frame are executed

sequentially; the last cell executed in each frame is a voted cell, and no other cells

are voted.

Thus we introduce the set

• F = {0, 1,...,Ifl} of frames, with mapping

• frame: C _ F, and equivalence relation

• ,..,CCxC

where

a ,_ c _f frame(a) = frame(c).

42 Chapter 4. Reconciliation with the LaRC Model

Thus frame(c) denotes the frame to which cell c belongs, and a _ c indicates that

a and c both belong to the same frame. The requirement that all the members of

a frame are executed in sequence, with no members of other frames intervening, is

simply stated by the requirement that the derived function

, frame-sched: M --+ F,

given by

frame-sched(m) a°Jframe(sehed(m)),

should be monotonic increasing.

The final cell executed in a frame is the only voted cell in that frame:

def
Cv = {clVa:a ~ c when(a) < when(c)}.

It is convenient to let voted-cell(f) denote the voted cell for frame f.

Equipped with these definitions, we can state and prove results about increas-

ingly less restricted frame-based voting patterns.

4.1.1 Continuous Voting

The idea here is that the entire state of the replicated machine is voted every frame.

Thus, any cell that requires a value from an earlier frame need only refer to the

voting cell of the immediately preceding frame. Hence, our formalization is:

Definition 1 (Continuous Voting) A replicated machine performs continuous

voting if:

(a,c) e G D a ,_ cV a = voted-cell(frame(c) - 1).

We have

Theorem 2 If a majority of machines is working throughout each consecutive pair

of frames, then the replicated machine is safe under continuous voting.

Proof.' For any cell c, we need to ensure that a majority of component machines

are working throughout the period from committed-to(c) to when(c). The definition

of continuous voting ensures

when(voted-cell(frame(c)- 1)) _< committed-to(c)

and

when(c) < when(voted-cell(frame(c))).

Hence, the requirement that a majority of machines are working throughout each

consecutive pair of frames is sufficient to ensure that the replicated machine is safe.

[]

4.1. Specific Voting Patterns 43

4.1.2 Cyclic Voting

The idea here is that cells in frame f never refer to cells from frames earlier than

f-e, where e is a parameter to the design. Further, when cells make "out of frame"

references, it is only to voted cells.

Definition 2 (Cyclic Voting) A replicated machine performs cyclic voting with

period e if:

(a, c) 6 G D a ~ c V (a = voted-cell(frame(e) - k) h 1 < k < e).

(Obviously, there is also a well-formedness condition: frame(e) - k > 0.) Notice

that cyclic voting reduces to continuous voting when e = 1.

Theorem 3 If a majority of machines are working throughout each sequence of e+ 1

consecutive frames, then the replicated machine is safe under cyclic voting.

Proof: For any cell c, we need to ensure that a majority of component machines

are working throughout the period from committed-to(c) to when(c). The definition

of cyclic voting ensures

when(voted-cell(frame(c)- e)) <_ committed-to(c)

and

when(c) < when(voted-cell(frame(c))).

Hence, the requirement that a majority of machines are working throughout each

consecutive sequence of e + 1 of frames is sufficient to ensure that the repficated

machine is safe. D

4.1.3 Optimal Voting

In this section, we examine conditions that allow a replicated machine to vote as

little data as possible, and as seldom as possible, yet still be able to recover from

transient failures in a fixed amount of time.

The general condition is very simple to state, but not very interesting:

Lemma 1 If there exists a constant B such that

Vc: when(voted-cell(frame(e)- B)) <_ committed-to(c),

and a majority of machines are working throughout each sequence of B + 1 consec-

utive frames, then the replicated machine is safe.

44 Chapter 4. Reconciliation with the LaRC Model

Proof: This result follows by the same argument used in Theorem 3. []

The conditions become more interesting when we consider cyclic schedules. It

is natural and convenient to think of cyclic schedules as generated by repeatedly

"unrolling" a more basic schedule for a single cycle. We assume such basic schedules

to be composed of "basic cells" of the form [f, s] where f is the frame, and s the

subframe. A relation --, defines the datafiow relationships among the basic cells:

[f, s] --* [g, t] means that subframe s of frame g provides input to subframe t of frame

g. Cells are executed in order by frames, and in subframe order within frames. As

before, we assume there are M frames.

So far, this model is the same as the LaRC model [9]; a difference is that here

we allow arbitrary basic cells to be designated as voted cells, whereas the LaRC

model considers voting to take place at the end of each frame and indicates that

cell [f, s] is voted in frame n by VP(f, s, n), As explained at the beginning of this

chapter, there is a straightforward transformation from the standard LaRC model

to the variant used here.

The frame length of a step [f, s] _ [g,

0 if

M if

g-f if

M + (g- f) if

A path in the basic schedule is a sequence

such that

t] is defined by

f =gAs<t,

f =gAs>t,

f < g, and

f>g

of cells

< If, [g,t],..., [h,u]>

If, [g,t] -,... -, [h,

The frame length of a path is the sum of the frame lengths of its individual steps.

We "unroll" the basic model to yield cells of the form [p, f, s] where p is the

cycle, and f and s are the frame and subframe as before. The graph G comprises

pairs of cells ([p, f, s], [q, g, t]) such that [f, s] ---, [g, t] in the basic model and

p=q if (f<g)

p=q-1 if (f>g)

A cell [p, f, s] is voted if [f, s] is designated

[p, f, s] is a sensor cell if it has indegree zero

such that [g,t] _ [f,s]).

The frame-time of a cell is its position in

v(f =ghs<t)

V(f =gAs>_t)

as a voted cell in the basic schedule;

in G (i.e., if there is no basic cell [g, t]

the execution sequence:

frame-time([p,f,s]) = p x M + f;

4.1. SpecificVotingPatterns 45

the frame length of an arc (_, f, s], [q,g, t])in the graph G is defined to be

frame-time([q, g, t]) - frame-time([p, y, s]).

Notice that the construction ensures that this value is nonnegative, and that it equals

the frame length of [f,s] _ [g,t] in the basic schedule. A path in the (unrolled)

schedule is a sequence of cells

< [p,f,s],[q,g,t],...,[r,h,u] >

such that each consecutive pair of cells are connected by an arc in the graph G. The

frame length of this path is defined as

frame-time(It, h, u]) - frame-time([p, f, s]).

It is easy to see that this equals the sum of the frame lengths of the individual arcs,

and that it also equals the frame length of the basic path

< [f,s],[g,t]...[h,u] >.

A path

< [p,/, s], [q,g, t], . . . , >

is a commitment path if

• The cell [p, f, s] is either a sensor cell or a voted cell, and

• No other cells in the sequence are voted, except possibly the last.

Then we have

Lemma 2 If there exists a bound B on the frame-length of any commitment-path,

and a majority of machines are working throughout each sequence of B + 1 consec-

utive frames, then the replicated machine is safe.

Proof: If

< [p,f,s],[q,g,t],...,[r,h,u] >

is a commitment-path, then

[p, f, s] • support([r, h, u]).

If no commitment-path has frame length longer than B, it follows that

when(voted-cell(frame(It, h, u] - B))) <_ committed-to(It, h, u])

and the result follows by the previous lemma. []

The existence of the bound B is determined by the presence of vote-free cycles

(loops) in the basic task graph:

46 Chapter 4. Reconciliation with the LaRC Model

Lemma 3 There exists a bound B on the frame-length of any commitment-path if

and only if all cycles in the basic task graph contain at least one voted cell.

Proof: Suppose there is no such bound B. Then there are commitment-paths of

arbitrary frame lengths--and therefore of arbitrary lengths, since the frame length

of any individual step is fixed. Since the number of basic cells is fixed and finite, it

follows that there must exist a commitment-path of the form

<...[p,f,s]...[q,f,s]... >

in which the components of some unvoted basic cell [f, s] are repeated and no voted

cells appear in between. The construction of the graph G is such that this can only

happen if there is a cycle

[f,s]-+--- --+If,S]

in the task graph comprising only unvoted cells.

Suppose, on the other hand, that the basic task graph contains a cycle

[f, s] [f, s]

comprising only unvoted cells. Then a commitment-path can be constructed con-

taining a segment derived from enough iterations of this basic cycle that the frame-

length exceeds any fixed bound B. []

Combining these lemmas, we obtain

Theorem 4 Recovery from transient faults is possible if and only if there are no

vote-free cycles in the basic task graph. Further, if all paths of the form

[f, s] --* [g, t] --* ... _ [h, u],

where at most the first and last elements are voted, have path lengths no longer than

B, and if a majority of machines are working throughout each sequence of B + 1

consecutive frames, then the replicated machine is safe.

Proof: Combine the preceding three lemmas. []

Chapter 5

Discussion and Conclusions

We begin with a consideration of possible extensions to this work. These extensions

fall into four categories, listed in order of increasing complexity:

• Proof of additional properties within the current model,

• Modification of the current model in order to enhance its abstractness,

• Development of more concrete models on top of the current model, and

• Significant extensions to the model in order to encompass a wider class of

systems.

We consider each of these categories in turn.

A topic where additional proofs would expose the underlying requirements more

clearly concerns the retention of stored values. The current model treats the system

state as a function recording the values of all cells encountered during the entire

lifetime of the system. Obviously this is not how we expect the system to be imple-

mented. It is intuitively clear that the only cells whose values need to be retained

axe those which have been computed but not yet used--that is, the value of cell c

needs to be retained only for the interval from when(c) to max{when(a)l(c , a) e -G}.

This can be specified by modifying the definition of the basic function step.

Currently, we have

step(a, c) _f a with [c := if c E Cs then sensor(c)(when(c)) else task(c)(a)].

This definition can be replaced by two axioms specifying a modified function step1:

step'(a, c)(c) = if c e Cs then sensor(c)(when(c)) else task(c)(a)

and

Ya, b : (a, b) E -G A when(a) < when(c) < when(b) D step'(a, c)(a) = a(a).

47

48 Chapter 5. Discussion and Conclusions

To establish that step' is an adequate replacement for step we need to prove that

the actuator commands are the same in both cases.

There are two ways to carry out this proof. One would establish a variant

specification for simple._ach±ne using step' instead of step, and would prove that

actuator outputs are the same in both cases--that is, it would verify a theorem

of the form runto(c)(c) = runto'(c)(c). This approach would leave the existing

specification and verification unchanged but would require a fairly extensive new

verification that would mirror, in many respects, the verification already performed.

The other approach would modify repl__achine to use step' instead of step and

would then carry this additional complication along in the proof of fault masking.

This approach is probably the simplest, since the definition of step is used only five

times in proofs concerning the replicated machine.

A topic where increased abstraction in the current model and verification would

expose underlying requirements more clearly is the choice of voting strategy. The

current model is firmly based on majority voting, but other strategies such as plural-

ity voting have attractions. As long as the working machines constitute an absolute

majority, plurality voting exhibits the same behavior as majority voting. If the

working machines should fail to form an absolute majority, however, the majority-

voted system will break down, whereas a plurality-voted system may break down

or may not, depending on whether enough of the failed machines agree on a com-

mon, wrong value to win the plurality vote. There seems to be no way to measure

the likelihood of this latter event, nor any sound way to engineer a system so that

failed machines are unlikely to agree, and so we do not advocate the use of plurality

voting as a way to enhance the claimed reliability of the system. There seems little

harm, however, and possibly some value, in using voting strategies that are more

robust than strict majority--so that there is at least some chance the system may

continue to work even after an explosion, or other catastrophic event, has rendered

10-9 irrelevant. 1

These considerations provide the motivation for a more careful examination of

the voting and fault-model assumptions required for the Consensus Theorem to

hold. There are two places in the present development where the properties of

strict majority voting are employed. One, noted in Chapter 3, is in the proof of

torch_carried, the other is in the proof of voce._lemma in module vol:ed_step.

It would be very worthwhile to revisit these proofs and to determine a minimal

characterization of the properties actually required of the voting function in order

for the fault-masking properties to be retained. (Majority is a strict requirement for

the torch_carried property, but there seem to be other ways to conduct the part of

the proof in which this property is used.) The ability to conduct such investigations

is one of the benefits of a truly formal development: the axiomatic and definitional

_Paul Miner of NASA LaRC first drew these considerations to our attention.

49

basis of the development is known precisely, and the effect of controlled variations

can be rigorously explored. 2

A prime candidate for a more concrete model to be constructed on top of the one

developed here is that of Di Vito, Butler and Caldwell. As indicated in Chapter 4,

the main results proved for that model can also be derived from ours; it would be

interesting to formally verify those derivations. At a later stage in this program of

work, when an actual design for a reliable computing platform for DFCS has been

developed, it will be valuable to attempt to instantiate our model for that design.

The characteristics of some potential system designs cannot be seen as instan-

tiations of our model: it will be necessary to significantly revise and extend the

model in order to accommodate such designs. Among the revisions and extensions

that would be most illuminating are those that break the lock-step synchronization

of task executions in the component machines. One extension would still require

the same workload for each component machine, but would allow them to execute

different schedules. Obviously there are constraints that require a notion of "consis-

tency" to be satisfied among schedules--they must synchronize for votes and must

not deadlock, for example. The practical benefit of allowing different schedules on

different channels is that simultaneous transient failures of several channels, such as

a lightning strike might induce, will be less likely to all affect the activations of a

single task; instead, the damage will be shared among several different tasks, and

all may still be executed by a majority of working processors.

Another extension would introduce different workloads for different machines.

This allows different quantities of replication for different activities and permits

better utilization of resources. For example, one really critical activity may run

on all processors, another less critical one may run on only three, while another,

presumably unimportant, task may run on but a single machine.

So much for future extensions; we now turn to a consideration of the significance

of the work actually performed. The work described is just one of the first steps in

a much larger program and it would be premature to evaluate the overall program

at this stage. We can, however, ask what the model developed here contributes to

a science of DFCS design, and we can ask what further value is contributed by its

formal specification and verification.

Clearly, our model addresses only a small fragment--redundancy management--

of the overall problem of DFCS design, and is a highly abstracted representation of

2It may seem moot to explore the circumstances under which a Consensus Theorem can hold with

less than _2 working channels when the underlying Byzantine fault tolerant sensor distribution

and clock synchronization algorithms require _ working channels. Our response is that it would3

be worthwhile to investigate the behavior of these Byzantine fault-tolerant algorithms when fewer

than the required channels are available. It should be possible to tolerate nonByzantine failures

with only _2 working channels, but it is unknown whether the standard Byzantine algorithms

do so. There has, however, been some investigation of algorithms that tolerate multiple failure

modes [58, 59].

5O Chapter 5. Discussion and Conclusions

that fragment. Small though that fragment may be, however, the evidence cited in

Section 1.2 suggests that it is one of the most crucial problems; if managed poorly,

redundancy can reduce, rather than enhance, the overall reliability of a DFCS.

Recall the summary of Mackall [23, pp. 40-41] quoted on page 8, and which reads

in part:

"... qualification of such a complex system as this, to some given level

of reliability, is difficult ... [because] the number of test conditions be-

comes so large that conventional testing methods would require a decade

for completion. The fault-tolerant design can also affect overall sys-

tem reliability by being made too complex and by adding characteristics

which are random in nature, creating an untestable design.

"... reducing complexity appears to be more of an art than a science

and requires an experience base not yet available. If the complexity is

required, a method to make system designs more understandable, more

visible, is needed."

The purpose of the work described here (and of the larger program) is precisely to

address these pleas for testable designs, purged of "random characteristics," and

which are more "understandable, more visible."

We contend that our model shows that certain principles of design--Byzantine

fault tolerant distribution of sensor samples, loosely synchronized execution, ma-

jority voting of all actuator outputs, and periodic majority voting of internal

state data--provide predictable behavior that masks faults and provides transient-

recovery. These principles of design are encoded in the axioms and definitions of

our model; the conclusion is derived by mathematical reasoning from that basis.

Other models have been devised that address similar problems. A general

method, known rather misleadingly as the "state-machine approach" for construct-

ing reliable systems from unreliable components that periodically vote their results

was developed by Lamport in a series of classic papers [60-62] (see also Schneider's

tutorial [63]). The development here can be seen as a modification of Lamport's

"state-machine" approach to the case where voting is performed intermittently.

The model most similar to our is, of course, that of Di Vito, Butler and Cald-

well [10,9]. The formal connection between the two models was discussed in Chap-

ter 4; here we consider less tangible issues--style, abstractness, and the influence of

formal verification.

A maxim usually attributed to Einstein holds that a theory should be "as simple

as possible---but no simpler." In our domain, simplicity is closely related to the ab-

stractness of the model considered: the advantage of abstraction is that it reduces

a problem to its simplest form and exposes its essential properties to scrutiny, un-

cluttered by extraneous matter; the danger is that too much is left out, so that the

model fails to capture those aspects of reality that are of interest. When formal

51

verificationis undertaken, abstraction has economic, as well as philosophical con-

sequences: it will generally be easier, and hence require less resources, to verify an

abstract model than a more concrete one. Furthermore, the abstract model should

have wider applicability, and hence the cost of its verification can be amortized over

more instantiations. Of course, the cost of one instantiation must be borne in order

to reach the level of detail considered in the more concrete model.

Our model is considerably more abstract than that of Di Vito, Butler and Cald-

well; we explained the reasons for our choices in Section 1.3.1 and considered the

reconciliation between the two models in Chapter 4. For the purpose of formal ver-

ification, we consider our model to have distinct advantages: it has been subjected,

essentially without change, to formal specification and mechanical proof checking

in EHDM, whereas we believe that direct verification of the LaRC model would be

a considerable challenge. Whether the added concreteness of the LaRC model ren-

ders it a more effective specification for human review is something we leave to our

readers to decide.

The remaining question we consider is whether formal specification and me-

chanical proof checking added anything of value to the quasi-formal description and

proof presented in Chapter 2. The first thing to note is that the description and

proof given in Chapter 2 were heavily influenced by the formal verification--both

before and after the latter was performed. It was influenced even before the formal

verification was attempted because the model was constructed with formal specifi-

cation and verification (in EItDM) in mind. Hence, it is expressed directly in terms

of (higher-order) functions; the LaRC model, on the other hand, uses vectors, se-

quences, sets, and iterated conjunction operators. These can all be expressed in

terms of (higher-order) functions and we would not hesitate to use them where they

contribute to clarity--on the other hand, we generally prefer to do without these

constructs when a comparably simple specification can be found that is expressed

directly in terms of functions. After the formal verification had been performed, we

revised some of the definitions and the proof of Chapter 2 in order to bring them

more closely into line with the corresponding EHDM versions.

There is one improvement derived from the formal verification that we did not

retrofit to development of Chapter 2: this is a stronger formulation of the main

Consensus Theorem. The Consensus Theorem is stated as

/d safe(c), then

Vj E R: OK(j)(e) _ good-value(j, c).

where

safe(c) def (Va: when(a) <_ when(c) _ MOK(a)).

52 Chapter 5. Discussion and Conclusions

In the EIIDM verification, the Theorem was strengthened by giving a weaker

(recursive) definition for safe:

safe(c) defMOK(e) A (Va: (a, c) E G D safe(a)).

The stronger theorem requires only that the replicated machine is MOK for all

those cells that transitively contribute input to cell c; the weaker form requires it

be MOK for all cells executed prior to c.

Obviously, the stronger theorem could have been stated and proved in the quasi-

formal development just as well as the weaker one. The significant point, however, is

that it was the weaker formulation, and correspondingly a proof by simple induction,

that arose most naturally in the quasi-formal development. In formal verification,

the familiar convenience of simple induction is less of a driving force, and we were

led to contemplate the stronger theorem, which requires a more difficult Noetherian

induction.

The main benefit that we see accruing from the mechanically checked verification

is the precision with which the underlying assumptions are now known. Formally,

this basis consists of 18 axioms (of which only 11 are directly concerned with the

model, while the remaining 7 deal with supporting concepts such as cardinality), and

15 definitions (which provide only conservative extensions in Ett DM). Informally, we

have acquired a much better appreciation of the issues concerning the retention of

stored values, and of the way in which fault masking is dependent on the properties

of majority (as opposed to other kinds of) voting. As described above, we are now

in a position to investigate these issues formally.

In future work, we hope to explore these issues, and also to extend our formal

specification and verification toward the behavior of a realistic operating system

that will implement the fault-masking techniques modeled here. The next step will

be to combine the model used here with that for clock synchronization [38], in order

to consider the more realistic case of replicated computers that are synchronized

only within some bound _, and in which computation and communication take a

certain amount of time.

Acknowledgements

We are grateful to Ricky Butler of NASA Langley Research Center for posing the

challenge of applying formal methods to aspects of digital flight control systems, and

for structuring the overall problem into manageable pieces. Our treatment of'the

problem tackled in this report owes much to discussions with Ben Di Vito, and to

his model for fault masking and transient recovery. Jim Caldwell provided valuable

assistance and encouragement in the first stage of the formal verification reported

here.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Spitzer, Cary R.: Digital Avionics Systems. Prentice Hall, Englewood Cliffs,

N J, 1987.

Federal Aviation Administration Technical Center, Atlantic City, NJ. Digital

Systems Validation Handbook-Volume II, Feb. 1989. DOT/FAA/CT-88/10.

Radio Technical Commission for Aeronautics, Washington, DC. Software Con-

siderations in Airborne Systems and Equipment Certification, Mar. 1985. DO-

178A.

Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version $.l--User's Guide, November

1988. See [6] for the updates to Version 5.2.

Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.0--Description of the EHDM

Specification Language, January 1990. See [6] for the updates to Version 5.2.

Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.2--Supplement to User's and

Language Manuals, March 1991. Current version number is 5.2.0.

Rushby, John; von Henke, Friedrich; and Owre, Sam: An Introduction to For-

mal Specification and Verification Using EHDM. Computer Science Laboratory,

SRI International, Technical Report SRI-CSL-91-2, Menlo Park, CA, Feb. 1991.

von Henke, Friedrich; Shankar, Natarajan; and Rushby, John: Formal Seman-

tics of EHDM. Computer Science Laboratory, SRI International, Menlo Park,

CA, January 1990. This document describes EttDM Version 5.0; see [6] for

informal descriptions of the changes in Version 5.2.

Di Vito, Ben L.; Butler, Ricky W.; and CaldweU, James L.: Formal Design and

Verification of a Reliable Computing Platform for Real-Time Control. NASA

TM-102716, Oct. 1990.

53

54 References

[io]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Di Vito, Ben L.; Butler, Ricky W.; and Ca]dwell, James L.: High Level Design

Proof of a Reliable Computing Platform. In 2nd. International Working Con-

ference on Dependable Computing for Critical Applications, Tucson, AZ, Feb.

1991, IFIP WG. 10.4, pp. 124-136.

Droste, Carl S.; and Walker, James E.: The General Dynamics Case Study on

the F16 Fly-by-Wire Flight Control System. AIAA Professional Study Series.

American Institute of Aeronautics and Astronautics. Undated.

Learmount, David: A320 Certification: the Quiet Revolution. Flight Interna-

tional, February 27, 1988, pp. 21-24.

Anonymous: French Report Details 1988 Crash of A320 following Air Show

Flyby. Aviation Week and Space Technology, June 4 to July 30, 1990, pp. 107-

108, 78-79, 99-103, 98-99, 60-64, 90-93, and 90-93. (Continued over seven

issues of the magazine).

Puyplat, Didier: A320: First of the Computer-Age Aircraft. Aerospace Amer-

ica, vol. 29, no. 5, May 1991, pp. 28-30.

Dornheim, Michael A.: X-31 Flight Tests to Explore Combat Agility to 70 Deg.

AOA. Aviation Week and Space Technology, March 11, 1991, pp. 38-41.

Morse, W.D.; and Ossman, K.A.: Model Following Reconfigurable Flight Con-

trol System for the AFTI-F16. AIAA Journal of Guidance, Control, and Dy-

namics, vol. 13, no. 6, November-December 1990, pp. 969-976.

Ishmael, Stephen D.; Regenie, Victoria A.; and Macka]l, Dale A.: Design

Implications from AFTI/F16 Flight Test. NASA TM-86026, 1984.

Traverse, P.: Dependability of Digital Computers on Board Airplanes. In

International Working Conference on Dependable Computing for Critical Ap-

plications, Santa Barbara, CA, Aug. 1989, IFIP WG. 10.4, pp. 53-60.

Federal Aviation Administration. System Design Analysis, September 7, 1982.

Advisory Circular 25.1309-1.

Butler, Pdcky W.; and Johnson, Sally C.: The Art of Fault-tolerant System

Reliability Modeling. NASA TM-102623, Mar. 1990.

Manacher, G.K.: Production and Stabilization of Real-Time Task Schedules.

Journal of the ACM, vol. 14, no. 3, July 1967, pp. 439-465.

Richards, P.: Timing Properties of Multiprocessor Systems. Tech. Operations

Inc., Technical Report TDB60-27, Burlington, MA, Aug. 1960.

References 55

[23] Mackall, Dale A.: Development and Flight Test Experiences with a Flight-

Crucial Digital Control System. NASA TP-2857, 1988.

[24] Mackall, Dale A.: AFTI/F-16 Digital Flight Control System Experience. In

Beasley, Gary P., editor 1984:, NASA Aircraft Controls Research 1983. NASA

Conference Publication 2296, 1984, pp. 469-487. Proceedings of workshop held

at NASA Langley Research Center, October 25-27, 1983.

[25] Mackall, Dale A.; and Allen, James G.: A Knowledge-Based System De-

sign/Information Tool for Aircraft Flight Control Systems. In AIAA Com-

puters in Aerospace Conference VII, Monterey, CA, Oct. 1989, pp. 110-125.

Collection of Technical Papers, Part 1.

[26] Kieckhafer, R.M.; Walter, C.J.; Finn, A.M.; and ThambiduraJ, P.M.: The

MAFT Architecture for Distributed Fault Tolerance. IEEE Transactions on

Computers, vol. 37, no. 4, Apr. 1988, pp. 398-405.

[27] Kopetz, Hermann; et al.: Distributed Fault-Tolerant Real-Time Systems: The

Mars Approach. IEEE Micro, vol. 9, no. 1, Feb. 1989, pp. 25-40.

[28] Wensley, John H.; et al.: SIFT: Design and Analysis of a Fault-Tolerant Com-

puter for Aircraft Control. Proceedings of the IEEE, vol. 66, no. 10, Oct. 1978,

pp. 1240-1255.

[29] Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the Presence

of Faults. Journal of the ACM, vol. 27, no. 2, April 1980, pp. 228-234.

[30] Garman, John R.: The "Bug" Heard 'Round the World. ACM Software Engi-

neering Notes, vol. 6, no. 5, Oct. 1981, pp. 3-10.

[31] Anonymous: Reprogramming Capability Proves Key to Extending Voyager 2's

Journey. Aviation Week and Space Technology, August 7, 1989, pp. 72.

[32] Butler, Ricky W.: A Survey of Provably Correct Fault- Tolerant Clock Synchro-

nization Techniques. NASA TM-100553, February 1988.

[33] Kopetz, Herman; and Ochsenreiter, Wilhelm: Clock Synchronization in Dis-

tributed Real-Time Systems. IEEE Transactions on Computers, vol. C-36,

no. 8, Aug. 1987, pp. 933-940.

[34] Lamport, L.; and Melliar-Smith, P.M.: Synchronizing Clocks in the Presence

of Faults. Journal of the ACM, vol. 32, no. 1, January 1985, pp. 52-78.

[35] Ramanathan(Parameswaran; Shin, Kang G.; and Butler, Ricky W.: Fault-

Tolerant Clock Synchronization in Distributed Systems. IEEE Computer,

vol. 23, no. 10, Oct. 1990, pp. 33-42.

56 References

[36] Schneider, Fred B.: Understanding Protocols for Byzantine Clock Synchroniza-

tion. Department of Computer Science, Cornel] University, Technical Report

87-859, Ithaca, NY, August 1987.

[37] Srikanth, T.K.; and Toueg, Sam: Optimal Clock Synchronization. Journal of

the ACM, vol. 34, no. 3, July 1987, pp. 626-645.

[38] Rushby, John; and yon ttenke, Friedrich: Formal Verification of a Fault Toler-

ant Clock Synchronization Algorithm. NASA CR-4239, June 1989.

[39] Infis, A.H.; and Moore, W.R.: Economic Approach to Fault-Tolerant Synchro-

nization. IEE Proceedings, Part E, vol. 135, no. 2, Mar. 1988, pp. 82-86.

[40] Cristian, Flaviu: Probabilistic Clock Synchronization. IBM Almaden Research

Center, Technical Report RJ 6432, San Jose, CA, September 1988.

[41] Lamport, Leslie; Shostak, Robert; and Pease, Marshall: The Byzantine Gen-

erals Problem. ACM TOPLAS, vol. 4, no. 3, July 1982, pp. 382-401.

[42] Bevier, William R.; and Young, William D.: Machine Checked Proofs of the

Design and Implementation of a Fault-Tolerant Circuit. NASA CR-182099,

Nov. 1990.

[43] Bevier, W.R.; and Young, W.D.: The Design and Proof of Correctness of a

Fault-Tolerant Circuit. In 2nd. International Working Conference on Depend-

able Computing for Critical Applications, Tucson, AZ, Feb. 1991, IFIP WG.

10.4, pp. 107-114.

[44] Deckert, James C.; Desal, Mukund N.; Deyst, John J.; and Willsky, Alan S.:

F-8 DFBW Sensor Failure Identification Using Analytic Redundancy. IEEE

Transactions on Automatic Control, vol. AC-22, no. 5, Oct. 1977, pp. 795-803.

[45] DeLaat, John C.; and Merrill, Walter C.: A Real Time Microcomputer Im-

plementation of Sensor Failure Detection for Turbofan Engines. IEEE Control

Systems Magazine, vol. 10, no. 4, June 1990, pp. 29-37.

[46] Isermann, Rolf: Process Fault Detection Based on Modeling and Estimation

Methods--A Survey. Automatica, vol. 20, no. 4, July 1984, pp. 387-404.

[47] Merrill, Walter C.; DeLaat, John C.; and Abdelwahab, Mahmood: Turbofan

Engine Demonstration of Sensor Failure Detection. AIAA Journal of Guidance,

Control, and Dynamics, vol. 14, no. 2, March-April 1991, pp. 337-349.

[48] Ray, Asok; and Luck, Rogelio: An Introduction to Sensor Signal Validation in

Redundant Measurement Systems. IEEE Control Systems Magazine, vol. 11,

no. 2, Feb. 1991, pp. 44-49.

References 57

[49]

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[6o]

WiUsky, Alan S.: A Survey of Methods for Failure Detection in Dynamic

Systems. Automatica, vol. 12, no. 6, Nov. 1976, pp. 601-611.

Chandraskeran, B.; and Punch III, W.F.: Data Validation During Diagnosis, A

Step Beyond Traditional Sensor Validation. In Proceedings, AAAI 87 (Volume

2), Seattle, WA, July 1987, pp. 778-782.

Scarl, Ethan A.; Jamieson, John R.; and Delaune, Carl I.: Diagnosis and Sensor

Validation through Knowledge of Structure and Function. IEEE Transactions

on Systems, Man, and Cybernetics, vol. SMC-17, no. 3, May/June 1987, pp.

360-368.

Marzullo, Keith: Tolerating Failures of Continuous-Valued Sensors. De-

partment of Computer Science, Cornell University, Technical Report 90-1156,

Ithaca, NY, Sept. 1990.

Moser, L.; Melliar-Smith, P.M.; and Schwartz, R.: Design Verification of SIFT.

NASA CR-4097, September 1987.

Williams, John: Built to Last. Astronomy Magazine, vol. 18, no. 12, Dec. 1990,

pp. 36-41.

Kopetz, H.; Kantz, H.; Grfinsteidl, G.; Puschner, P.; and Reisinger, J.: Tol-

erating Transient Faults in MARS. In Digest of Papers, FTCS 20, Newcastle

upon Tyne, UK, June 1990, IEEE Computer Society, pp. 466-473.

Shankar, Natarajan: Mechanical Verification of a Schematic Protocol for

Byzantine Fault-Tolerant Clock Synchronization. Forthcoming NASA Contrac-

tor Report, 1991.

Boyer, Robert S.; and Moore, J Strother: MJRTY--A Fast Majority Vote

Algorithm. Institute for Computing Science, University of Texas, Technical

Report 32, Austin TX, Feb. 1981.

Meyer, Fred J.; and Pradhan, Dhiraj K.: Consensus with Dual Failure Modes.

IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 2, Apr.

1991, pp. 214-222.

Thambidurai, Philip; and Park, You-Keun: Interactive Consistency with Mul-

tiple Failure Modes. In Proc. 7th Symposium on Reliable Distributed System,

Columbus, OH, Oct. 1988, IEEE Computer Society, pp. 93-100.

Lamport, L.: The Implementation of Reliable Distributed Multiprocess Sys-

tems. Computer Networks, vol. 2, 1978, pp. 95-114.

58 References

[61] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed

System. CACM, vol. 21, no. 7, July 1978, pp. 558-565.

[62] Lamport, L.: Using Time Instead of Timeout for Fault-Tolerant Distributed

Systems. ACM TOPLAS, vol. 6, no. 2, April 1984, pp. 254-280.

[63] Schneider, Fred B.: Implementing Fault-Tolerant Services Using the State

Machine Approach: A Tutorial. ACM Computing Surveys, vol. 22, no. 4, Dec.

1990, pp. 299-319.

Appendix A

bTEX- printed Specification

Listings

The following specification listings were formatted and converted to mathematical

notation automatically using the ERDM _.TEX-printer.

simple_machine: Module

Exporting all

Theory

n: Var nat

M: Type is nat

m: Var M

C, D: Type

a, c: Var C

cell_types: Type = (sensor_cell, actuator_cell, task_cell)

cell_type: function[C _ cell_types]

Cs : Type from C with (A c : cell_type(c) = sensor_cell)

CA : Type from C with (A c : cell_type(c) = actuator_cell)

CT : Type from C with (A c : cell_type(c) _ sensor_cell)

59

60 Appendix A. I6TEX-printed Specification Listings

start_cell: Cs

arb_task: CT

arb_actuator: CA

(.1,.2) e G: function[C, C -* bool]

sensor_ax: Axiom (3 a: (a, c) E G) _ -,(c in Cs)

sched: function[M --* C]

when: function[C --* M]

Gbar_when: Axiom (a, c) E G D when(a) < when(c)

sched_when_ax: Axiom (sched(rn) = a) _ (m = when(a))

dowhen_pos: Axiom when(c) > 0

p, q: Var M

unique_when: Lemma p _ q D sched(p) _ sched(q)

previous: function[C -_ C] == (A c: sched(pred(when(c))))

sched_whendemrna: Lemma a = sched(when(a))

when_scheddemma: Lemma m = when(sched(ra))

dowhen_previous: Lemma when(previous(c)) = pred(when(c))

state: Type is function[C _ D]

initiM_state: state

s, t: Var state

sensor_fn: Type is function[M _ D]

sensor: function[Cs -* sensorfn]

t_k_fn: Type is function[state _ D]

task: function[CT -_ task_fn]

simple_machine 61

dependency: Axiom

c in CT A (Va: (a,c) E G D s(a) = t(a))

D task(c)(s) = task(c)(t)

step: function[state, C, M --* state] =

(_8, c,m:s

with [(c):=

if c in Cs then sensor(c)(m) else task(c)(s) end if])

identity: function[M _ nat] == (A m : m)

run: Reeursive function[M _ state] =

(),m:

if m = 0 then initial_state else step(run(m - 1), sched(m), m) end if)

by identity

runto: function[C ---*state] =-- (A c: run(when(c)))

Proof

sched_when_proof: Prove sched_whenAemma from

sched_when_ax {m *-- when(a)}

when_sched_proof: Prove when_scheddemma from

sched_when_ax {a _ sched(m)}

dowhen_prev_proof: Prove dowhen_previous from

when_schedAemma {m _ pred(when(c))}

unique_when_proof: Prove unique_when from

when_schedAemma {m _ p}, when_schedAemma {m _ q}

End simple_machine

62 Appendix A. IbTEX-printed Specification Listings

simple_machine_tcc: Module

Using simple_machine

Exporting all withsimple_machine

Theory.

m: Var naturainumber

a: Var C

c: Var C

s: Var function[C _ D]

t: Var function[C _ D]

sensors_TCCl: Formula (3 c : cell_type(c) = sensor_cell)

actuators_TCCl: Formula (3 c : cell_type(c) = actuator_cell)

active_tasks_TCCl: Formula (3 c : cell_type(c) # sensor_cell)

dependency_TCCl: Formula

(c in CT A (V a: (a,c) • G D s(a): t(a)))

D (ceil_type(c) # sensor_cell)

step_TCCl: Formula (c in Cs) D (ceU_type(c) = sensor_cell)

step_TCC2: Formula (_(c in Cs)) D (cell_type(c) # sensor_cell)

run_TCCl: Formula (-,(m = 0)) D (m - i >_ 0)

run_TCC2: Formula (-,(m = 0)) D identity(m) > identity(m - 1)

Proof

sensors_TCC 1_PROOF: Prove sensors_TCC 1

actuators_TCC1_PROOF: Prove actuators_TCC 1

active_tasks_TCCl_PROOF: Prove active_tasks_TCC1

dependency_TCC 1_PROOF: Prove dependency_TCC 1

step_TCC1-PROOF: Prove step_TCC1

sim ple_m achine_t cc 63

step_TCC2__PROOF: Prove step_TCC2

run_TCCI_PROOF: Prove run_TCC1

run_TCC2_PROOF: Prove run_TCC2

End simple_machine_tcc

64 Appendix A. I_TEX-printed Specification Listings

simple_machine_tcc_proofs: Module

Proof

Using simple..mackine_tcc

sensors_TCCl_PROOF: Prove sensors_TCC1 (c _- start_cell)

active_ta.sks_TCCl_PROOF: Prove active_tasks_TCC1 (c _ arb_task)

from distinct_cell_types

actuators_TCCl_PROOF: Prove actuators_TCC1 (c _- arb__ctuator)

End simp]e_machine_t cc_proofs

noetherian 65

noetherian: Module [dom: Type, <: function[dom, dom --* bool]]

Assuming

measure: Vat function[dora _ nat]

a, b: Var dom

well_founded: Formula

(3 measure : a < b D measure(a) < measure(b))

Theory

p, A, B: Vat function[dom _ bool]

d, all, d2: Vat dom

general_induction: Axiom

(Vdl: (Vd_ : d_ < d, D p(d2)) D p(d,)) D (Vd: p(d))

d3, d4: Var dom

mod_induction: Theorem

(V d3, d4:d4 < d3 D A(d3) D A(d4))

A (Vdl: (Vdz: d2 < dl D (a(dl) A B(d_))) D B(dl))

D (Vd: A(d) D B(d))

Proof

mod_proof: Prove

modinduction {dl _ dl_pl, d3 _ dl_pl, d4 _ d2}

from general_induction {p ,-- (,k d: A(d) D B(d))}

End noetherian

66 Appendix A. l_,TEX-printed Specification Listings

natinduction: Module

Theory

i, m, ml, n: Par nat

p: Var function[nat --_ bool]

induction: Theorem (p(0) A (V i: p(i) D p(i + 1))) D p(n)

induction_m: Theorem

p(m) A (Y i : i > m A p(i) D p(i + l)) D (V n : n > m D p(n))

hmited_induction: Theorem

(re<m1 Dp(m))A(Vi:i>mAi<-_lAp(i)Dp(i+l))

(v _ : _ >__ ^ _ < ,n_ _ p(n))

Proof

Using noetherian

prey: function[nat, nat _ bool] == (A m, n : m + 1 = n)

instance: Module is noetherian[nat, prev]

x: Par nat

identity: function[nat _ nat] == (A n : n)

discharge: Prove well_founded {measure _ identity}

ind_proof: Prove induction {i _ pred(dl@pl)} from

general_induction {d _ n, d2 _ i}

ind_m_proof: Prove induction_m {i _ i@pl + m} from

induction

{p_-- (Ax :p@c(x + m)),

n_ ifn>__m thenn-m else0end if}

limited_proof: Prove limited_induction {i _ i@pl} from

induction_m {p _ (A x : x _<ml D p@c(x))}

End natinduction

natinduetion_tee 67

natinduction_tcc: Module

Using natinduction

Exporting all withnatinduction

Theory

m: Var naturalnumber

n: Var naturalnumber

ind_m_proof_TC C 1: Formula

(m_>0) A(n_>0) D(ifn_>m then n-melse0end if_>0)

Proof

ind_m_proof_TCCl_PROOF: Prove ind_m_proof_TCC1

End natinduction_tcc

68 Appendix A. I$TEX-printed Specification Listings

simple_props: Module

Using simple_machine, natinduction

Exporting wit hsimple_machine

Theory

a, c: Vat C

stay_correct_simple: Lemma

(a, c) E G D runto(previous(c))(a) = runto(a)(a)

simple_sensor_stepdemma: Lemma

c in Cs D runto(c)(c) = sensor(c)(when(c))

simple_step_lemma: Lemma

_(c in Cs) D runto(c)(c) = task(c)(run(pred(when(c))))

Proof

m: Var M

indstep: Lemma run(m)(a) = runto(a)(a) D run(m + 1)(a) = runto(a)(a)

indstep_proof: Prove indstep from

run {m _- m + 1},

step (s _- run(m), c _- sched(m + 1), m *-- m + 1},

unique_when {p _- when(a), q _- m Jr 1},

sched_whendemma

q: Var M

stay_simple_proof: Prove stay_correct_simple from

induction_m

{p _ (A q: run(q)(a) = runto(a)(a)),

m _ when(a),

n _ when(previous(c))},

indstep {m _ i@pl},

sched_when_lemma {a ,-- previous(c)},

Gbar_when,

when_sched_lemma {m _ pred(when(c))}

simple_props 69

simple_sensor_step_proof: Prove simple_sensor_stepAemma from

run {._ _ when(c)),
step {s _- run(pred(when(c))), m _ when(c), c _- c),

sched_whenlemma {a _ c),

dowhen_pos

simple_stepAemma_proof: Prove simple_stepAemma from

run {m _ when(c)),

step {m _ when(c), s _ run(pred(when(c)))),

sched_whenAemma {a _ c),

dowhen_pos

End simple_props

7O Appendix A. I6TEX-printed Specification Listings

simple_props_tcc: Module

Using simple_props

Exporting all withsimple_props

Theory

c: Var simple_mackine.C

i: Var naturalnumber

simple_sensor_stepdemma_TCC 1: Formula

(c in Cs) D (cell_type(c) = sensor_cell)

simple_stepdemma_TCC 1: Formula

(-_(c in Us)) D (cell-type(c) _ sensor _cell)

Proof

simple_sensor_stepdemma_TCC 1_PROOF: Prove

simple_sensor_stepdemma_TCC 1

simple_stepdemma_TCCl_PROOF: Prove simple_stepdemma_TCC1

End simple_props_tcc

sets 71

sets:Module [T: Type]

Exporting all

Theory

set:Type isfunction[T--*bool]

x,y,z: Var T

a,b:Var set

.I U .2: function[set,set--*set]==

(_a,b: (_: a(x) v b(x)))

.1 N*2: function[set, set _ set] ==

(_,b: (_: a(_)^ b(_)))

1 \ .2: function[set, set -- set] ==

(A.,b: (A_: _(_)^ _b(_)))

add: function[T, set _ set] == (Az,a: (Ay:x = y v a(y)))

{*i}: function[T _ set] == (Az: (A y: y = x))

*1 C_.2: function[set, set _ bool] =

(_a,b: (v z: _(z) _ b(z)))

.1 6.2: function[T, set ---, bool] == (A z,b: b(z))

empty: function[set ---, bool] -- (ha: (V x: _a(z)))

0: set == (A x : false)

fullset: set == (A x : true)

extensionality: Axiom (V x : x E a = x E b) D (a = b)

End sets

72 Appendix A. I_TEX-printed Specification Listings

cardinality: Module [T: Type]

Using sets[T]

Exporting all

Assuming

x, y, z: Var T

N: Var nat

f: Var function[T-_ nat]

finite:Formula

(3 N, f : (V x,y : f(x) < N A (f(x) = f(y) _ x = y)))

Theory

a, b, c: Mar set

I* 1]: function[set --, nat]

card_ax: Axiom]a U b] +]an bJ =]al +]bI

card_subset: Axiom a C_b Dla] <]b[

card_empty: Axiom la] = 0 ¢_ empty(a)

empty_prop: Lemma lal > 0 D (3 x : x E a)

card_prop: Lemma

a_CcAbC_cA2,]a I>lclA2*lb]>lc]DlaNb[>0

Proof

empty_prop_proof: Prove empty_prop {x _ x@p2} from

card_empty, empty

subset_union: Sublemma a C_c A b C_c D a t3 b C_ c

subset_union_proof: Prove subset_union from

*1 C_*2 {z *- z@p3, b _- c},

*1 C_*2 {z *---z@p3, a <---b, b *---c},

*1 c_ .2 {a _ a u b, b ,-- c}

m, n, p: Var nat

cardinMity 73

twice_prop: Sublemma2*m>pA2*n>pDm+n>p

twice_proof: Prove twice_prop

card_proof: Prove caxd_prop from

twice_prop {m _ lal, n ,--Ibl, p _ Icl},

card_ax,

subset _union,

card_subset {a _ a U b, b _ c}

End cardinality

74 Appendix A. I$TEX-printed Specification Listings

orderedsets: Module [T: Type, <: function[T, T _ bool]]

Using sets[T]

Exporting min withsets[T]

Assuming

x, y, z: Vat T

reflexive: Formula z < z

transitive: Formula x _<y h y < z D x < z

antisymmetry: Formula x _< y A y < x D z = y

dichotomy: Formula x <_ y V y _< x

Theory

a: Var set

min: function[set --, T]

min_ax: Axiom min(a) E a h (Vx :x E a D min(a) _< x)

End orderedsets

repl_machine

repl_machine:Module

Using simple_machine,sets,cardinality

Exporting all withsimple_machine

Theory

n: Var nat

m: Var M

c: Var C

voted: Type from C

voted_ax: Axiom

(c in CA D c in voted) A (c in voted D -_(c in Cs))

r: nat

R: Type from nat with (A n : n _< r)

i: Var R

F: function[R _ function[M --. bool]]

rstate: Type is function[R ---. state]

a, r: Var rstate

maj: function[rstate, C ---*D]

A: Var set[R]

x: Var D

maj_ax: Axiom

(3 A: 2 •]A[> Ifullset[R][A (V i: i • A D a(i)(c) = x))

D maj(o', c)= x

vote: function[rstate, C, M _ rstate]

75

76 AppendixA. I$TEX-printed Specification Listings

vote_ax: Axiom

_(F(i)(m))

D vote(a, c, m)

= if c in voted

then a

with [(i)(c):= maj(a,c)]

else a

end if

sstep: function[rstate, C, M _ rstate]

sstep_ax: Axiom _(F(i)(m)) D sstep(a, c, m)(i) = step(a(i), c, m)

rstep: function[rstate, C, M _ rstate] ==

(A a, c, m : vote(sstep(a, c, m), c, m))

rrun: Recursive function[M -_ rstate] =

(Am:
if m=0

then (A i : initial_state)

else rstep(rrun(m - 1), sched(m), m)

end if)

by identity

rrunto: function[C -* rstate] == (A c : rrun(when(c)))

Proof

dishargedinite: Prove

finite[R] {f _ (A i --* nat : i), N _- r) from

Rdnvariant {R_var _ x_c}

End repl_machine

repl_machine_tcc 77

repl_machine_t cc: Module

Using repl_machine

Exporting all withrepl_machine

Theory

n: Var naturalnumber

m: Var naturalnumber

z: Var R

R_TCCI: Formula (S n : n _< r)

rrun_TCCl: Formula (-_(m = 0)) D (m - 1 >_ 0)

rrun_TCC2: Formula (-.(m = 0)) D identity(m) > identity(m - 1)

Proof

R_TCCI_PROOF: Prove R_TCC1

rrun_TCCI_PROOF: Prove rrun_TCC1

rrun_TCC2__PROOF: Prove rrun_TCC2

End repl_machine_tcc

78 Appendix A. BTEX-printed Specification Listings

repl.machine_tcc_proofs:Module

Proof

Using repl_machine_tcc

R_TCCI..PROOF: Prove R_TCC1 {n _ r)

End repl_machine_tcc_proofs

supports

supports:Module

Using repl..machine,orderedsets[M,naturalnumbers.<],sets[C]

Exporting support,committed_to

wit hrepl_machine,orderedsets[M,naturalnumbers.<],sets[C]

Theory

a, b, c: Var C

foundation: Recursive function[C --* set[C]] =

(Ac:

(Aa:

C'-'_

V ('_(cin voted V c in C$)

^ (3 b :(b,c)e _ ^ a E foundation(b)))))

by when

backup: function[C--+set[C]]=

(Ac:(A_:(_b:(b,c)e _ ^_efoundation(b))))

support: function[C_ set[C]]=

(A c :(A a :a E foundation(c)V (c in voted ^ a e backup(c))))

Gbar_support: Lemma (a,c) E _ D a E support(c)

in_own_support:Lemma c E support(c)

subset_support:Lemma

-,(ain voted)^ (a,c)E _ D support(a)C support(c)

S,T: Var set[C]

i:Var R

t,m: Var M

critical_times:function[C--*set[M]]--=

(Ac: (At: sched(t)E support(c)))

committed_to: function[C_ M] == (A c :rain(critical_times(c)))

commit_when_lemma: Lemma committed_to(c)<_when(c)

79

8O Appendix A. I_TEX-printed Specification Listings

commit_supportdemma: Lemma

a E support(c) D committed_to(c) <: when(a)

commit_Gbar..lemma: Lemma

(a, c) E G ^ -_(a in voted) D committed_to(c) __ committed_to(a)

Proof

discharge_reflexive: Prove reflexive

discharge_transitive: Prove transitive

discharge_antisymmetry: Prove antisymmetry

discharge_dichotomy: Prove dichotomy

support_backup: Sublemma a E support(c) = (c = a V a E backup(c))

support_backup_proof: Prove support_backup from

support,

backup {b _ b_p3},

foundation {b ,--- b_p2},

sensor_ax {a ,- b@P2 }

Gbar_support_prf: Prove Gbar_support from

support_backup, backup {b _ a}, foundation {c _- a}

in_own_support_proof: Prove in_own_support from

support_backup {a _ c}

found_support: Sublemma -_(c in voted) D foundation(c) = support(c)

found_support_proof: Prove found_support from

support {a _ z@p2},

extensionality[C] {a ,-- foundation(c), b _ support(c)}

found_sub_support: Sublemma (b, c) E G D foundation(b) C support(c)

found_sub_support_proof: Prove found_sub_support from

*1 C ,2 [C] {a _ foundation(b), b _ support(c)},

support_backup {a _ z@pl},

backup {b _ b@C, a *-- z@P1}

subset_support_proof: Prove subset_support from

found_sub_support {b _ a}, found_support {c _ a}

supports 81

committedAemma: Sublemma

committed_to(c)E critical_times(c)

A (V t:t E critical_times(c)D t> committed_to(c))

committed_proof:Prove committedAemma from

min_ax {a _ critical_times(c), x .-- t}

commit_when_proof: Prove commit_whenAemma from

in_own_support,

committedAemma {¢_ when(c)},

sched_whenAemma {a _ c}

commit_support_proof: Prove commit_supportAemma from

committedAemma {t *-- when(a)}, sched_whenJemma

commit_Gbar_lemma_proof: Prove commit_GbarAemma from

subset_support,

.1 c_.2 [c]

{a _- support(a),

b _- support(c),

z *-- sched(committed_to(a))},

committedlemma {t _ committed_to(a)},

committed_lemma {c *-- a}

End supports

82 Appendix A. I_TEX-printed Specification Listings

supports_tcc:Module

Using supports

Exporting allwithsupports

Theory

a: Var simple_machine.C

c: Var simple_rnachine.C

z: Var simple_machine.C

x: Var sirnple_machine.C

b:Var simple_machine.C

foundation_TCC 1: Formula

((b, c) E 9) A (_(c in voted V c in Cs)) ^ (-_(c = a))

D when(c) _>when(b)

Proof

foundation_TCC1_PROOF: Prove foundation_TCC1

End supports_tcc

supports_tcc_proofs 83

supports_tcc_proofs: Module

Proof

Using supports_tcc

foundation_TCCl_PROOF: Prove foundation_TCC1 from

Gbar_when {a _ b}

End supports_tcc_proofs

84 Appendix A. I$TEX-printed Specification Listings

correctness: Module

Using supports, sets[R], cardinality[R]

Exporting all with supports, sets[R]

Theory

i,j: Var R

a, c: Var C

m: Var M

OK: function[R --* set[C]] =

(,_i:

(_c:

(V m: committed_to(c) < m A m < when(c) D _F(i)(m))))

working: function[C --* set[R]] == (_ c: (,k i: OK(i)(c)))

MOK: function[C --* bool] = (_ c: 2, Iworking(c)l > Ifullset[R]l)

safe: Recursive function[C _ bool] =

(_ c: MOK(c)/x (V a : (a, c) E G D safe(a))) by when

correct: function[C --* boo1] =

(_ c: (V j: OK(j)(c) D rrunto(c)(j)(c) = runto(c)(c)))

the_result: Theorem safe(c) D correct(c)

End correctness

correctness_tcc 85

correctness_tcc: Module

Using correctness

Exporting all withcorrectness

Theory

a: Var simple_machine.C

c: Var simple_machine.C

safe_TCCl: Formula ((a, c) E G) A (MOK(c)) D when(c) > when(a)

Proof

safe_TCCI_PROOF: Prove safe_TCC1

End correctness_tcc

86 Appendix A. l_TEX-printed Specification Listings

correctness_tcc_proofs:Module

Proof

Using correctness_tcc

safe_TCCI..PROOF: Prove safe_TCC1 from Gbar_when

End correctness_tcc_proofs

connect 87

connect: Module

Using correctness,natinduction,simple_props

Exporting all

Theory

a, c: Var C

j: Var R

a_correct_at_c: function[C, C _ bool] =

(Aa, c:

(Vj:

og(j)(c) D rrunto(previous(c))(j)(a)= runto(previous(c))(a)))

stay_correct: Lemma

(V a: (a, c) E _ D safe(c) A correct(a))

D (V a: (a, c) E G D a_correct_at_c(a, c))

Proof

i: Var R

m: Var M

r_indstep: Lemma

OK(j)(c)

^ (a, c) _ e

A when(a) < m

A m < when(c) A rrun(m)(j)(a) = rrunto(a)(j)(a)

D rrun(m + 1)(j)(a)= rrunto(a)(j)(a)

88 Appendix A. I$TEX-printed Specification Listings

r_indstep_proof: Prove r_indstep from

rrun {m _ m + 1},

vote_ax

{a *-- sstep(rrun(m), sehed(m + 1), m + 1),

c .-- sched(m + 1),

m_m+l,

i_j},

sstep_ax

{a *-- rrun(m),

c .-- sched(m + 1),

m*--re+l,

i ,--j},

step {s *-- rrun(m)(j), c _ sched(m + 1), m _- m + 1},

unique_when {p _ when(a), q _ m + 1},

sched_when_lemma,

OK {i _j, m _-m+ 1},

commit.support-lemma,

Gbar_support

q: Var M

stay_correct_reph Lemma

(a, c) E G h OK(j)(c) D rrunto(previous(c))(j)(a) = rrunto(a)(j)(a)

stay_correct_repl_proof: Prove stay_correct_repl from

limited_induction

{p .-- (A q : rrun(q)(j)(a) = rrunto(a)(j)(a)),

m *-- when(a),

ml *-- when(c),

n *-- when(previous(c))},

rindstep {m .-- i@pl},

sched_when_lemma {a *-- previous(c)},

Gbar_when,

when_schedlemma {m .-- pred(when(c)) },

dowhen_pos

Gbar_OK: Lemma (a, c) e G A -.(a in voted) D (OK(/)(c) D OK(i)(a))

connect 89

Gbar_OK_proof: Prove Gbar_OK from

*1 C *2 [C] {a _ support(a), b _ support(c)},

OK {m _ re@P3},

OK {c *-- a},

Gbar_when,

commit_Gbar.lemma,

subset_support

not voted_transfer_correct: Lemma

(a, c) E G ^ safe(c) ^ -_(a in voted) ^ correct(a)

D OK(j)(c) D rrunto(a)(j)(a)= runto(a)(a)

notvoted_proof: Prove notvoted_transfer_correct from

Cbar_OK {i _ j}, correct {c _- a}

torch_carried: Lemma

(a, c) E G ^ safe(c) D (3 j : og(j)(a) A og(j)(c))

torch_proof: Prove torch_carried {j _ x_p2} from

card_prop[R]

{a _ working(c),

b _ working(a),

c ,-- fuUset JR] },

empty_prop[R] {a _ working(c) O working(a) },

safe,

safe {c *-- a},

MOK,

MOK {c _ a},

.1 C_.2 JR] {a *-- working(c), b _- fullset[R]},

.1 c__.2 [R] {a _ working(a), b *-- fuUset[R]}

e: Vat rstate

vote_appln: Lemma

-_(F(i)(when(a))) ^ a in voted

D vote(a, a, when(a))(i)(a) = maj(a, a)

vote__ppln_proof: Prove vote_appln from

vote_ax {c _ a, m *-- when(a)}

safe_at_a: Lemma OK(i)(c)h (a,c) E -G D -_(F(i)(when(a)))

safe_at_a_proof: Prove safe_a,t_a from

OK {m *- when(a)}, Gbar_when, Gbar_support, commit_supportlemma

9O Appendix A. I_TEX-printed Specification Listings

OK_OK: Lemma

safe(c) A OK(i)(c) A OK(/)(c) A (a, c) e G A a in voted

D rrunto(a)(i)(a)= rrunto(a)(j)(a)

OK_OK_proof: Prove OK_OK from

rrun {m _ when(a) },

sched_whenJemma,

nat_invariant {nat_var ,-- when(a)},

vote_appln {a ,- sstep(rrun(pred(when(a))), a, when(a))},

safe_at_a,

vote_appln

{i _ j, a _ sstep(rrun(pred(when(a))), a, when(a))},

safe_at_a {i ,-- j}

voted_transfer_correct: Lemma

(a, c) E G A safe(c) A a in voted A correct(a)

D OK(j)(c) D rrunto(a)(j)(a)= runto(a)(a)

voted_proof: Prove voted_transfer_correct from

OK_OK {i _ j_p2},

torch_carried,

correct {c _- a, j _ j@p2}

unvoted_transfer_correct: Lemma

(a, c) E G A sMe(c) A correct(a)

D OK(j)(c) D rrunto(a)(j)(a) = runto(a)(a)

unvoted_proof: Prove unvoted_transfer_correct from

voted_transfer_correct, notvoted_transfer_correct

stay_correct_proof: Prove stay_correct from

stay_correct_simple,

stay_correct_repl {j _- j@p3},

a_correct_at_c_

when_scheddemma {rn _- pred(when(c))},

unvoted_transfer_correct {j ,- jQp3}

End connect

sensor_step 91

sensor_step: Module

Using correctness, simple_props

Exporting withcorrectness, simple_props

Theory

a, c: Var C

sensor_inductive_step: Lemma

c in Cs h (V a : (a, c) E "G D safe(c) h correct(a)) D correct(c)

Proof

j: Var R

sensor_steplemma: Lemma

when(c) > 0 A-,(c in voted)

D OK(j)(c)

D rrunto(c)(j)= step(rrun(pred(when(c)))(j),c, when(c))

sensor_step_proof: Prove sensor_step_]emma from

rrun {m ,-- when(c)},

vote_ax

{i ,-- j,

m _ when(c),

a _- sstep(rrun(pred(when(c))), c, when(c))},

sstep_ax

{i_j,

a _- rrun(pred(when(c))),

m #-- when(c)},

sched_when_lemma {a *-- c},

OK {i _ j, m _ when(c)},

commit_when_lemma

sensor_rruntoAemma: Lemma

when(c) > 0 h c in Cs

D OK(j)(c) D rrunto(c)(j)(c)= sensor(c)(when(c))

92 Appendix A. I_TEX-printed Specification Listings

sensor_rrunto_proof: Prove sensor_rruntoAemma from

sensor_stepAemma,

step

{s *-- rrun(pred(when(c)))(j),

m *-- when(c),

C<-- C}_

voted_ax

main_sensorAemma: Lemma

when(c) > 0 A c in CS D OK(j)(c) D rrunto(c)(j)(c) = runto(c)(c)

main_sensor_proof: Prove main_sensorAemma from

simple_sensor_step Aemma, sensor_rrunto_lemma

sensor_ind_step_proof: Prove sensor_inductive_step from

dowhen_pos, main_sensorAemma {j ,-- j@p3}, correct, sensor_ax

End sensor_step

sensor_step_t cc 93

sensor_step_tcc: Module

Using sensor_step

Exporting all withsensor_step

Theory

c: Var simple_machine.C

j: Var repl_machine.R

sensor_rrunto/emma_TC C 1: Formula

(OK(j)(c)) h (when(c) > 0 A c in Cs)

D (cell_type(c) = sensor_cell)

Proof

sensor_rrunto_lemma_TCCl_PROOF: Prove sensor_rrunto_lemma_TCC1

End sensor_step_tcc

94

nonvoted_step: Module

Using correctness, connect

Exporting withcorrectness, connect

Theory

a, c: Var C

j: Var R

nonvoted_inductive_step: Lernma

-_(c in Cs)

^ "_(c in voted) ^ (V a : (a, c) E G 3 safe(c) ^ correct(a))

D correct(c)

nonvoted_task,OK: Lemma

-_(c in Cs) ^ (V a : (a, c) E "_ D a_correct_t_c(a, c))

D OK(j)(c)

task(c)(rrunto(previous(c))(j)) = task(c)(runto(previous(c)))

a_l_correct_atoc: function[C --* bool] =

(A c : (V a: (a, c) E _ D a_correct_at_c(a, c)))

Proof

nonvoted_task_OK_proof: Prove nonvoted_task_OK {a _ a@p2) from

a_correct_at_c {a _ a_p2},

dependency

{s ,-- rrun(pred(when(c)))(j),

t ,-- run(pred(when(c)))},

dowhen_previous

nonvoted_xrunto_task: Lemma

-_(c in Cs)

A -_(c in voted) ^ (V a : (a, c) E G D a_correct._t_c(a, c))

D OK(j)(c)D rrunto(c)(j)(c)= task(c)(rrun(pred(when(c)))(j))

Appendix A. lSTEX-printed Specification Listings

i)
J

non voted_step
95

nonvoted_rrunto_taskoproof: Prove nonvoted_rrunto_task from

rrun {m _- when(c)},

vote_ax

{a *-- sstep(rrun(pred(when(c))), c, when(c)),

m *-- when(c),

i

sstep_a_x

a *-- rrun(pred(when(c))),

m ,- when(c)},

step {m _- when(c), s _- rrun(pred(when(c)))(j)},

sched°when_lemma {a *-- c),

OK {i ,-- j, m +-- when(c)},

commit_when_lemma,

dowhen_pos

link: Lemma

-_(cin Cs) A -_(cin voted)A (V a :(a,c)E G D a_correct_at_c(a,c))

D OK(j)(c) D rrunto(c)(j)(c)= runto(c)(c)

link_proof: Prove link {a *-- a_p6} from

nonvoted_rrunto_t ask,

simple_steplemma,

nonvoted_task_OK,

dowhen_previous,

all_correct_at_c {a +-- a@p3},

all_correct_at_c {a ,-- a_pl}

main_non_voted_lemma: Lemma

-_(c in Cs)

^ -_(c in voted) ^ (V a : (a, c) e _ D safe(c) A correct(a))

D OK(j)(c) D rrunto(c)(j)(c)= runto(c)(c)

main_nonvoted_proof: Prove main_non_voted-lemma {a +- a_p2} from

link, stay_correct {a *-- a@pl}

nonvoted_ind_proof: Prove nonvoted.inductive.step {a _ a_pl} from

main_non_votedJemma {j *-- j@p2}, correct

End nonvoted_step

96 Appendix A. B_TEX-printed Specification Listings

nonvoted_step_tcc: Module

Using nonvoted_step

Exporting all withnonvoted_step

Theory

c: Var simple_machine.C

j: Var repl_machine.R

a: Var simple_machine.C

nonvoted_task_OK_TC C 1: Formula

(OK(j)(c))

A (-_(c in Cs) A (V a: (a, c) E G D a_correct_at_c(a, c)))

D (cell-type(c) _ sensor_cell)

nonvoted_rrunto_task_TC C 1: Formula

(OK(j)(c))

^ i,-,Cs)
A-_(c in voted)

A (V a: (a, c) E G D a_correct_at_c(a, c)))

D (cell_type(c) # sensor_cell)

Proof

nonvoted_task_OK_TCCl_PROOF: Prove nonvoted_task_OK_TCC1

nonvoted_rrunto_task_TCC1_PROOF: Prove nonvoted_rrunto_task_TCC1

End nonvoted_.step_tcc

voted_step

voted_step: Module

Using correctness, connect, nonvoted_step

Exporting induction_body withcorrectness, connect

Theory

a, e: Var C

voted_inductive_step: Lemma

c in voted A (V a: (a, c) e G D safe(c) A correct(a))

D correct(c)

induction_body: function[C --, bool] =

(A c: (V a: (a, c) e G D safe(c) h correct(a)))

Proof

i,j: Var R

a: Var rstate

m: Var M

voted_steplemma: Lemma

c in voted

D OX(j)(c)

sstep(rrun(pred(when(c))), c, when(c))(j)(c)

= task(c)(rrun(pred(when(c)))(j))

voted_step_proof: Prove voted_stepdemma from

sstep_ax

{i _j,

a _ rrun(pred(when(c))),

m _ when(c)),
step {m _ when(c), s _-- rrun(pred(when(c)))(j)},

OK {i _- j, m _- when(c)},
commit_when lemma,

voted_ax

97

98 Appendix A. ISTEX-printed Specification Listings

sstep_task/emma: Lemma

c in voted^ (V_: (-,c) e _ _ __co_,ect__t_¢(_,c))
D OK(j)(c)

D sstep(rrun(pred(when(c))), c, when(c))(j)(c)

= task(c)(run(pred(when(c))))

sstep_task_proof: Prove sstep_task.lemma {a *-- a@p2} from

voted_step.lemma, nonvoted_task_OK, dowhen_previous, voted_ax

x: Var D

majlemma: Lemma

MOK(c)A (Vi: OK(i)(c) D a(i)(c) = z) D maj(a,c) = x

maj_proof: Prove majlemma {i _ i@pl} from

maj_ax {A *-- working(c)}, MOK

vote_lemma: Lemma

OK(j)(c)

A MOK(c)

^ c in voted

A committed_to(e) g m

h m < when(c)

A (V i: OK(i)(c) D sstep(a,c,m)(i)(c)= x)

D rstep(a, c, m)(j)(c) = x

voteAemma_proof: Prove vote_lemma {i ,--- i@p2} from

vote_a,x {i (-- j, a (-- sstep(a, c, m)},

majlemma {a _ sstep(a, c, m)},

OK {i _ j}

rstep_task: Lemma

MOK(c)

A c in voted

h OK(j)(c) A (V a : (a, c) 6 G D a_correct_at_c(a, c))

D rstep(rrun(pred(when(c))), c, when(c))(j)(c)

= task(c)(run(pred(when(c))))

active_task: function[C --, CT] ==

(A c --. CT : if c in Cs then arb_task else c end if)

voted_step 99

rstep_task_proof: Prove rstep_task {a +- a@pl} from

sstep_task_lemma {j _-- i_p2},

vote_lemma

{ z _ task(active_task(c)) (run(pred(when(c)))),

a _ rrun(pred(when(c))),

m _- when(c)),

commit_when_lemma,

voted_ax

rrunto_task: Lemma

MOK(c)

A c in voted

A OK(j)(c)A (V a: (a, c) E G D a_correct_at_c(a, c))

D rrunto(c)(j)(c) = task(c)(run(pred(when(c))))

rrunto_task_proof: Prove rrunto_task {a ,--- a@pl} from

rstep_task,

rrun {m _ when(c)),

dowhen_pos,

sched_whenJemma {a _ c)

voted linklemma: Lemma

c in voted A MOK(c) A (V a: (a, c) e G D a_correct_at_c(a, c))

D OK(j)(c) D rrunto(c)(j)(c) = runto(c)(c)

voted_link_proof: Prove voted_link__lemma {a _ a@pl) from

rrunto_task, simple_step_lemma, voted_ax

main_voted hemma: Lemma

c in voted A induction_body(c)

D OK(j)(c) D rrunto(c)(j)(c) = runto(c)(c)

sensors_not_voted: Lemma c in voted D -_(c in Cs)

sensors_not_voted_proof: Prove sensors_not_voted from voted_ax

100 Appendix A. I6TEX-printed Specification Listings

main_vote_proof: Prove main_voteddemma from

voted_tinkdemma,

safe,

stay_correct (a _ a_pl),

sensor_ax,

sensors_not_voted,

induction_body {a _ a_}p3},

induction_body (a *- a_p4}

voted_ind_step_proof: Prove voted_inductive_step {a _ aC}p3) from

main_voted_lemma {j *- j_p2}, correct, induction_body

End voted_step

voted_step_tcc

voted_step_tcc: Module

Using voted_step

Exporting all withvoted_step

Theory

c: Var simple_machine.C

j: Var repl_machine.R

i: Var repl machine.R

a: Var simple_.machine.C

voted_step_lemma_TCC 1: Formula

(OK(j)(c)) A (c in voted) D (cell_type(c) _ sensor_cell)

sstep_task_lemma_TCC1: Formula

(OK(j)(c))

A (c in voted A (V a : (a, c) E G D a_correct_at_c(a, c)))

D (cell_type(c) _ sensor_cell)

rstep_task_TCCl: Formula

(MOK(c) A c in voted

A OK(j)(c)A (V a: (a, c) e G D a_correct_at_c(a, c)))

D (cell_type(c) _ sensor_cell)

active_task_TCC 1: Formula

(cell_type(if c in Cs then arb_task else c end if) _ sensor_cell)

Proof

voted_steplemma_TCCl_PROOFi Prove voted_step_lemma_TCC1

sstep_task_lemma_TCCl__PROOF: Prove sstep_taskAemma_TCC1

rstep_task_TCC 1_PROOF: Prove rstep_task_TCC 1

active_task_TCC l_PROOF: Prove active_task_TCC 1

End voted_tep_tcc

102 Appendix A. l_TEX-printed Specification Listings

voted.step_t cc_proofs: Module

Proof

Using voted.step_tcc

voted.stepJemma_TCCl_PROOF: Prove voted_stepJemma_TCC1 from

voted_ax

sstep_taskJemma_TCCl_PROOF: Prove sstepotaskJemma_TCC1 from

voted._x

rstep_task_TCCl_PROOF: Prove rstep_task_TCC1 from voted_ax

End voted.step_tcc_proofs

correctn ess_proof 103

correctness_proof: Module

Using correctness, voted_step, nonvoted_step, sensor_step,

noetherian[C, (*1,_2) 6 _]

Exporting withcorrectness

Proof

a, c: Var C

discharge_well_founded: Prove well_founded {mea.sure *-- when} from

Gbar_when {c _ b}

inductive_step: Lemma

(V a : (a, c) E G D safe(c) ^ correct(a)) D correct(c)

almost_final_proof: Prove inductive_step {a _ a@p7} from

sensor _in ductive_step,

voted_inductive_step,

nonvoted_inductive-step,

induction_body (a _ a_pl},

induction_body {a _ a_p2},

induction_body {a _ a_p3},

induction_body

final_proof: Prove the_result from

mod_induction

{A *-- safe,

B ,- correct,

d _-- c,

d2 _ a@p3},

safe {a _ d4@pl, c _ d3@pl},

inductive_step {c _ dl_pl)

End correctness_proof

104 Appendix A. I_TEX-printed Specification Listings

outputs: Module

Using correctness

Exporting all withcorrectness

Theory

c: Var C

j: Var R

actuators_correct: Corollary

c in voted h safe(c) h -_F(j)(when(c))

D rrunto(c)(j)(c)= runto(c)(c)

Proof

a: Var C

a: Var rstate

i: Var R

m: Var M

vote_gives_maj: Lemma

_F(i)(m) A a in voted D vote(a, a, m)(i)(a) = maj(a, a)

vote_gives_maj_proof: Prove vote_gives_maj from vote_ax {c +-- a}

rrun_gets_maj: Lemma

-_F(i)(when(a)) A a in voted

D rrunto(a)(i)(a) = maj(sstep(rrun(pred(when(a))), a, when(a)), a)

rrun_gets_Inaj_proof: Prove rrun_getsAnaj from

rrun {m +-- when(a)),

vote_gives_maj

{a +-- sstep(rrun(pred(when(a))), a, when(a)),

m +-- when(a)),

dowhen_pos {c +-- a},

sched_whenJemma

working_agreement: Lamina

-_F(i)(when(a)) A -_F(j)(when(a)) A a in voted

D rrunto(a)(i)(a)= rrunto(a)(j)(a)

outputs 105

working_agreement_proof: Prove working_agreement from

rrun_gets_maj, rrun_gets.maj {i *-- j}

safe_OK: Lemma safe(c) D (3j : OK(j)(c))

safe_OK_proof: Prove safe_OK {j ,-- x@p4} from

safe,

MOK,

nat_invariant {n_t_var _ [fuUset[R][},

empty_prop[R] {a _ working(c)}

actuators_correct_proof: Prove actuators_correct from

the_result {c _ c@c},

correct {j _ i@p3, c _ c@c},

working_agreement {a *-- c@c, i ,--- j@p4},

safe_OK,

OK {m _ when(c), i *-- i@p3},

commit_whenAemma

End outputs

Appendix B

Cross-Reference Listing

This Appendix provides a cross-reference listing to the identifiers declared in the

F_IiDM specification. It should assist in reading and navigating the EHDM specifica-

tions in Appendix A.

106

107

Identifier

a_correct_at_c

active_task

active_tasks

active_tasks_TCCl

active_tasks_TCCl_PR00F

active_tasks_TCC1_PR00F

active_task_TCC1

active_task_TCC1_PR00F

actuators

actuators_correct

actuators_correct_proof

actuators_TCCl

actuators_TCCl_PR00F

actuators_TCCl_PR00F

add

all_correct_at_c

almost_final_proof

antisymmetry

arb_actuator

arb_task

backup

C

card

card_ax

card_empty

cardinality

card_proof

card_prop

card_subset

cell_type

cell_types

commit_Gbar_lemma

commit_Gbar_lemma_proof

commit_support_lemma

commit_support_proof

committed_lemma

Declaration

defined-fn

literal-fn

subtype-with

formula

prove

prove

formula

prove

subtype-with

formula

prove

formula

prove

prove

literal-fn

defined-fn

prove

formula

const

const

defined-fn

type

function

axiom

axiom

module

prove

formula

axiom

function

type

formula

prove

formula

prove

formula

Module

connect

voted_step

simple_machine

simple_machine_Zcc

simple_machine_tcc

simple_machine_tcc_proofs

voted_step_tcc

voted_step_tcc

simple_machine

outputs

outputs

simple_machine_tcc

simple_machine_tcc

simple_machine_tcc_proofs

sets

nonvoted_step

correctness_proof

orderedsets

simple_machine

simple_machine

supports

simple_machine

cardinality

cardinality

cardinality

cardinaliZy

cardinality

cardinality

cardinality

simple_machine

simple_machine

supports

supports

supports

supports

supports

Table B.I: EItDM Identifers used in the Specification (continues)

108 Appendix B. Cross-Reference Listing

Identifier Declaration Module

committed_proof

committed_to

commit_when_lemma

commit_when_proof

connect

correct

correctness

correctness_proof

correctness_tcc

correctness_tcc_proofs

critical_times

D

dependency

dependency_TCC1

dependency_TCCl_PROOF

dichotomy

difference

discharge

discharge_antisymmetry

discharge_dichotomy

discharge_reflexive

discharge_transitive

discharge_well_founded

disharge_finite

dowhen

dowhen_pos

dowhen_previous

dowhen_prev_proof

empty

empty_prop

empty_prop_proof

emptyset

extensionality

F

final_proof

finite

prove

ter-fn

formula

prove

module

defined-fn

module

module

module

modu_

_teral-fn

type

axiom

formula

prove

formula

fiter_-fn

prove

prove

prove

prove

prove

prove

prove

function

axiom

formula

prove

defined-fn

formula

prove

fiteral-const

axiom

function

prove

formula

supports

supports

supports

supports

connect

correctness

correctness

correctness_proof

correctness_tcc

correctness_tcc_proofs

supports

simple_machine

simple_machine

simple_machine_tcc

simple_machine_tcc

orderedsets

sets

natinduction

supports

supports

supports

supports

correctness_proof

repl_machine

simple_machine

simple_machine

s imple_machine

s impl e_mach ine

sets

cardinality

cardinality

sets

sets

repl_machine

correctness_proof

cardinality

Table B.I: EttDM Identifers used in the Specification (continues)

109

Identifier Declaration Module

foundation

foundation_TCCl

foundation_TCCl_PKDDF

foundation_TCCl_PRDOF

found_sub_support

found_sub_support_proof

found_support

found_support_proof

fullset

Gbar

Gbar_OK

Gbar_OK_proof

Gbar_support

Gbar_support_prf

Gbar_when

general_induction

identity

identity

ind_m_proof

ind_m_proof_TCCl

ind_m_proof_TCCl_PKOOF

ind_proof

indstep

indstep_proof

induction

induction_body

induction_m

inductive_step

in_own_support

in_own_support_proof

instance

intersection

limited_induction

limited_proof

link

link_proof

recursive-fn

formula

prove

prove

formula

prove

formula

prove

literal-const

function

formula

prove

formula

prove

axiom

axiom

hteral-fn

hteral-fn

prove

formula

prove

prove

formula

prove

formula

defined-fn

formula

formula

formula

prove

module

literal-fn

formula

prove

formula

prove

supports

supports_tcc

supports_tcc

supports_tcc_proofs

supports

supports

supports

supports

sets

simple_machine

connect

connect

supports

supports

simple_machine

noetherian

natinduction

simple_machine

natinduction

natinduction_tcc

natinduction_tcc

natinduction

simple_props

simple_props

natinduction

voted_step

natinduction

correcZnessproof

supports

supports

natinduction

sets

natinduction

natinduction

nonvoted_step

nonvoted_step

Table B.I: EI-IDM Identifers used in the Specification (continues)

110 Appendix B. Cross-Reference Listing

Identifier Declaration Module

M

main_non.voted_lemma

main_nonvoted_proof

main_sensor_lemma

main_sensor_proof

main_voted_lemma

main_vote_proof

maj

maj _ax

maj _lemma

maj _proof

memb er

rain

min_ax

mod_induction

mod_proof

MOK

natinduction

natinduc_ion_tcc

noetherian

nonvoted_ind_proof

nonvoted_inductive_step

nonvoted_rrunto_task

nonvoted_rrunto_task.proof

nonvoted_rrunto_task_TCC1

nonvoted_rrunto_task.TCCl_PROOF

nonvoted_step

nonvoted_step_tcc

nonvoted.task_OK

nonvoted_task_OK_proof

nonvoZed_task_OK_TCCl

nonvoted_task_OK_TCC1_PROOF

notvoted_proof

notvoted_transfer_correct

OK

OK_OK

type

formula

prove

formula

prove

formula

prove

function

axiom

formula

prove

literal-fn

function

axiom

formula

prove

defined-fn

module

module

module

prove

formula

formula

prove

formula

prove

module

module

formula

prove

formula

prove

prove

formula

defined-fn

formula

simple_machine

nonvoted_step

nonvoted_step

sensor_step

sensor_step

voted_step

voted_step

rep1_machine

rep1_machine

voted_step

voted_step

sets

orderedsets

orderedsets

noetherian

noetherian

correctness

natinduction

natinduction_tcc

noetherian

nonvoted_step

nonvoted_step

nonvoted_step

nonvoted_step

nonvoZed_step_tcc

nonvoted_sZep_tcc

nonvoted_step

nonvoted_step_tcc

nonvoted_step

nonvoted_step

nonvoted_step_tcc

nonvoted_step_tcc

connect

connect

correctness

connect

Table B.I: EHDM Identifers used in the Specification (continues)

111

Identifier Declaration Module

OK_OK_proof

orderedsets

outputs

prey

previous

r

R

reflexive

repl_machine

repl_machine_tcc

repl_machine_tcc_proofs

r_indstep

r_indstep_proof

rrun

rrun_gets_maj

rrun_gets_maj_proof

rrun_TCC1

rrun_TCCI_PROOF

rrun_TCC2

rrun_TCC2_PROOF

rrunto

rrunto_task

rrunto_task_proof

rstate

rstep

rstep_task

rstep_task_proof

rstep_task_TCCl

rstep_task_TCCl_PROOF

rstep_task_TCCl_PROOF

R_TCC1

R_TCCI_PROOF

R_TCCI_PROOF

run

run_TCCl

run_TCCI_PROOF

prove

module

module

literal-fn

literal-fn

const

subtype-with

formula

module

module

module

formula

prove

recursive-fn

formula

prove

formula

prove

formula

prove

literal-fn

formula

prove

type

literal-fn

formula

prove

formula

prove

prove

formula

prove

prove

recursive-fn

formula

prove

connect

orderedsets

outputs

natinduction

simple_machine

repl_machine

rep1_machine

orderedsets

rep1_machine

repl.machine_tcc

repl_machine_tcc_proofs

connect

connect

repl_machine

outputs

outputs

repl_machine_tcc

repl_machine_tcc

repl_machine_tcc

repl_machine_tcc

repl_machine

voted_step

voted_step

repl_machine

repl_machine

voted_step

voted_step

voted_step_tcc

voted_step_tcc

voted_step_tcc_proofs

rep1_machine_tcc

repl_machine_tcc

rep1_machine_tcc_proofs

simple_machine

simple_machine_tcc

simple_machine_ice

Table B.I: EHDM Identifers used in the Specification (continues)

112 Appendix B. Cross-Reference Listing

Identifier Declaration Module

formularun_TCC2

run_TCC2_PROOF

runto

safe

safe_aZ_a

s af e_ at_ a_proof

safe_OK

safe_0K_proof

safe_TCC1

saf e_TCCI_PR00F

safe_TCO%_PR00F

sched

sched_when_ax

sched_when_lemma

sched_when_proof

sensor

sensor_ax

sensor_fn

sen sor _ ind_ st ep_proof

sensor_inductive_step

sensor_rrunto_lemma

sens or_ rrunt o_ I emma_ TCC i

sensor_rrunZo_ lemma_TCCl _PROOF

sensor_rrunto_proof

sensors

sensors_not_rot ed

sensors_not_voted_proof

sensors_TCC1

sensors_TCCI_PR00F

sensors_TCCl_PROOF

sensor_step

sensor_sZep_lemma

sensor_step_proof

sensor_step_tcc

set

sets

prove

literal-fn

recursive-fn

formula

prove

formula

prove

formula

prove

prove

function

axiom

formula

prove

function

axiom

type

prove

formula

formula

formula

prove

prove

subtype-with

formula

prove

formula

prove

prove

module

formula

prove

module

type

module

simple_machine_tcc

simple_machine_tcc

simple_machine

correctness

connect

connect

outputs

outputs

correcZness_Zcc

correctness_tcc

correctness_tcc_proofs

simple_machine

simple_machine

simple_machine

simple_machine

simple_machine

simple_machine

simple_machine

sensor_step

sensor_step

sensor_step

sensor_step_tcc

sensor_step_tcc

sensor_step

simple_machine

voted_step

voted_step

simple_machine_tcc

simple_machine_tcc

simple_machine_tcc_proofs

sensor_step

sensor_step

sensor_step

sensor_step_tcc

sets

sets

Table B.I: FJtDM Identifers used in the Specification (continues)

113

Identifier Declaration Module

simple_machine

simple_machine_tcc

simple_machine_tcc_proofs

simple_props

simple_props_tcc

simple_sensor_step_lemma

simple_sensor_step_lemma_TCCl

simple_sensor_step_lemma_TCCl_PROOF

simple_sensor_step_proof

simple_step_lemma

simple_st ep_lemma_proof

simp le_st ep_l emma_ TCC l

simple_ st ep_lemma_TCC 1_PROOF

singleton

sstep

sstep_ax

sstep_task_lemma

sstep_task_lemma_TCCl

sstep_task_lemma_TCCl_PROOF

sstep_task_lemma_TCCl_PRODF

sstep_task_proof

start_cell

state

stay_correct

stay_correct_proof

stay_correct_repl

stay_correct_repl_proof

stay_correct_simple

stay_simple_proof

step

step_TCCl

step_TCCI_PROOF

step_TCC2

step_TCC2_PROOF

subset

subset_support

module

module

module

module

module

formula

formula

prove

prove

formula

prove

formula

prove

literaJ-fn

function

axiom

formula

formula

prove

prove

prove

const

type

formula

prove

formula

prove

formula

prove

defined-fn

formula

prove

formula

prove

defined-fn

formula

simple_machine

simple_machine_tcc

simple_machine_tcc_proofs

simple_props

simple_props_tcc

simple_props

simple_props_tcc

simple_props_ice

simple_props

simple_props

simple_props

simple_props_tcc

simple_props_tcc

sets

repl_machine

repl_machine

voted_step

voted_step_tcc

voted_step_tcc

voted_step_tcc_proofs

voted_step

simple_machine

simple_machine

connect

connect

connect

connect

simple_props

simple_props

simple_machine

simple_machine_ice

simple_machine_tcc

simple_machine_tcc

simple_machine_tcc

sets

supports

Table B.l: EttDM Identifers used in the Specification (continues)

114 Appendix B. Cross-Reference Listing

Identifier Declaration Module

subset_support _proof

subset_union

subset_union_proof

support

support_backup

support _backup _proof

supports

supports_Zcc

supports_tcc_proofs

task

task_fn

the_result

torch_carried

torch_proof

transitive

twice_proof

twice_prop

under

union

unique _when

unique_when_proof

unvoted_proof

unvot ed_transf er_correct

vote

vote_appln

vote_appln_proof

voZe_ax

voted

voted_ax

voted_ind_szep_proof

voted_induct ire_st ep

voted_link_lemma

voted_link_proof

voted_proof

voted_step

voted_step_lemma

prove

formula

prove

defined-fn

formula

prove

module

module

module

function

type

formula

formula

prove

formula

prove

formula

const

literal-fn

formula

prove

prove

formula

function

formula

prove

axiom

subtype

axiom

prove

formula

formula

prove

prove

module

formula

supports

cardinal ity

cardinality

supports

supports

supports

supports

supporZs_tcc

supporZs_tcc_proofs

simple_machine

simp ie_mach ine

correctness

connect

connect

orderedsets

cardinality

cardinality

simple_machine

sets

simple_machine

simple_machine

connect

connect

repl_machine

connect

connect

repl_machine

repl_machine

rep1_machine

voted_step

voted_step

voted_step

voted_step

connect

voted_step

voted_step

Table B.I: EHDM Identifers used in the Specification (continues)

115

Identifier Declaration Module

voted_step_lemma_TCCl

voted_step_lemma_TCCl_PROOF

voted_step_lemma_TCCl_PROOF

voted_step_proof

voted_step_tcc

voted_step_tcc_proofs

voted_transfer_correct

vote_gives_maj

vote_gives_maj_proof

formula

prove

prove

prove

module

module

formula

formula

prove

vote_lemma

vote_lemma_proof

well_founded

when_sched_lemma

when_sched_proof

.orking

working_aEreement

.orking_agreement_proof

formula

prove

formula

formula

prove

literal-in

formula

prove

voted_step_tcc

voted_step_tcc

voted_step_tcc_proofs

voted_step

voted_step_tcc

voted_step_tcc_proofs

connect

outputs

outputs

voted_step

voted_step

noetherian

simple_machine

simple_machine

correctness

outputs

outputs

Table B.I: EHDM Identifers used in the Specification

Appendix C

Results of Proof-Chain

Analysis

The following pages reproduce the output from the EttDM proof-chain analyzer in

"terse mode" applied to the formula actuators_correct in module outputs. The

EItDM proof-chain analyzer examines the macroscopic structure of a verification--

checking that all the premises used in a proof are either axioms, definitions, or

formulas which are, themselves, the target of a successful proof elsewhere in the

verification. If any formulas are used from a module having an assuming clause, then

the proof-chain analyzer checks that those assumptions are discharged by successful

proofs; similarly, if formulas are used from a module having a tcc module, then

the proof-chain analyzer checks that all the tccs in that module are discharged by

successful proofs. The proof-chain analyzer ignores unsuccessful proofs (such as

automatically-generated tcc proofs) when a successful proof for the same formula

can be found. The "terse mode" output reproduced here provides a commentary

on only the "interesting" cases, namely proof obligations involving assuming clauses

and tccs, and a summary. All the proofs listed in the summary were performed by

the EIt DM theorem prover in "checking mode."

116

117

Proof chain for formula actuators_correct in module outputs

Use of the formula

correctness.the_result

requires the following TCCs to be proven

correctness_tcc.safe_TCC1

Formula correctness_tcc.safe_TCCl is a termination TCC for correctness.safe

Proof of

correctness_tcc.safe_TCC1

must not use

correctness.safe

Use of the formula

simple_machine.Gbar_when

requires the following TCCs to be proven

simple_machine_tcc.sensors_TCC1

slmple_machine_tcc

slmple_machine_tcc

slmple_machine_tcc

slmplemachine_tcc

slmple_machine_tcc

slmple_machinetcc

slmple_machine_tcc

.actuators_TCCl

active_tasks_TCC1

dependency_TCC1

step TCC1

step_TCC2

_m_TCCl

run_TCC2

Formula simple_machine_tcc.run_TCC2 is a termination TCC for simple_machine.run

Proof of

simple_machine_tcc.run_TCC2

must not use

simple_machine.run

Use of the formula

noetherian[simple_machine.C, simple_machine.Gbar].mod_induction

requires the following assumptions to be discharged

noetherian[simplemachine. C, simple machine.Gbar].well_founded

Use of the formula

sensor_step.sensor_inductive_step

requires the following TCCs to be proven

sensor_step_tcc.sensor_rrunto_lemma_TCC1

Use of the formula

simple_props.simple_sensor_step_lemma

requires the following TCCs to be proven

simple_props_tcc.simple_sensor_step_lemma_TCCl

simple_propstcc.simple_step_lemma_TCC1

118 Appendix C. Results of Proof-Chain Analysis

Use of the formula

repl_machine.rrun

requires the following TCCs to be proven

repl_machine_tcc.R_TCC1

repl_machine_¢cc.rrun_TCCl

rep1_machine_tcc.rrun_TCC2

Formula repl_machine_tcc.rrun_TCC2 is a termination TCC for repl_machine.rrun

Proof of

repl_machine_tcc.rrun_TCC2

must not use

repl_machine.rrun

Use of the formula

supports.commit_when_lemma

requires the following TCCs to be proven

supports__cc.foundation_TCCl

Formula supports_tcc.foundation_TCCl is a termination TCC for

supports.foundation

Proof of

supports_tcc.foundation_TCC1

must not use

supports.foundation

Use of the formula

orderedsets[naturalnumber, <=].min_ax

requires the following assumptions to be discharged

orderedsets[naturalnumber, <=].reflexive

orderedsets[naturalnumber, <=].transitive

orderedsets[naturalnumber, <=].antisymmetry

orderedsets[naturalnumber, <=].dichotomy

Use of the formula

voted_step.voted_inductive_step

requires the following TCCs to be proven

voted_step_tcc.voted_step_lemma_TCC1

voted_step_tcc.sstep_task_lemma_TCC1

voted_step_tcc.rstep_task_TCCl

voted_step_tcc.active_task_TCC1

Use of the formula

nonvoted_step.nonvoted_task_OX

requires the followin E TCCs to be proven

nonvoted_step_tcc.nonvoSed_task_OK_TCC1

119

nonvoted_step_tcc.nonvoted_rrunto_task_TCC1

Use of the formula

natinduction.induction_m

requires the following TCCs to be proven

natinduction_tcc.ind_m_proof_TCCl

Use of the formula

noetherian[naturalnumber, natinduction.prev].general_induction

requires the following assumptions to be discharged

noetherian[naturalnumber, natinduc_ion.prev].well_founded

Use of the formula

cardinality[repl_machine.R].card_prop

requires the following assumptions to be discharged

cardinality[repl_machine.R].finite

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:

cardinality [EXPR3. card_ax

cardinality [EXPR]. card_empty

cardinality [EXPR]. card_subset

naturalnumbers.nat_invariant

noetherian[EXPR, EXPR].general_induc$ion

orderedsets[EXPR, EXPR].min_ax

repl_machine.R_invariant

repl_machine.maj_ax

repl_machine.sstep_ax

repl_machine.vote_ax

repl_machine.voted_ax

sets[EXPR].extensionality

simple_machine.Gbar_when

simple_machine.dependency

simple_machine.distinct cell_types

simple_machine.dowhen_pos

simple_machine.sched_when_ax

simple_machine.sensor_ax

Total: IB

The definitions are:

connect.a_correct at c

correctness.MOK

correctness.DE

120 Appendix C. Results of Proof-Chain Analysis

correctness, correct

correctness, safe

nonvot ed_step, all_correct_at_c

repl_machine, rrun

set s [EXPR]. empty

sets [EXPR] .subset

s imple_machine, run

s imple_machine, st ep

support s. backup

supports, foundation

support s. support

rot ed_st ep. induct ion_body

Total : 15

The formulae used are:

cardinality [EXPR]. card_prop

cardinality [EXPR]. empty_prop

cardinality [EXPR]. subset_union

cardinality [EXPR]. twice_prop

cardinality [repl_machine.]%J•finite

connect. Gbar_OK

connect. OK_OK

connect, notvot ed_transf er_correct

connect, r_indstep

connect, saf e_at_a

connect, stay_correct

connect, stay_correct_repl

connect, torch_carried

connect, unvot ed_transf er_correct

connect, vote_appln

connect, voted_transfer_correct

correctness, the_result

correctness_proof, inductive_step

correctness_tcc, safe_TCC1

nat induct ion. induct ion

nat induct ion. induct ion_m

nat induct ion. Iimit ed_ induct ion

natinduction_t cc. ind_m_proof_TCC1

noetherian [EXPR, EXPR]. mod_induction

noether Jan [nat uralnumber, nat induct ion. prey]. ,ell_founded

noetherian [simple_machine. C, simple_machine. Gbar]. well_founded

nonvot ed_step, link

nonvot ed_st ep. main_non_rot ed_lemma

nonvoted_step, nonvoted_induct ive_st ep

nonvoted_step, nonvoted_rrunto_task

nonvoted_step, nonvoted_task_OK

121

nonvoted_step_tcc.nonvoted_r_nto__ask_TCC1

nonvoted_sCep_tcc.nonvoted_task_OK_TCC1

orderedsets[naturalnumber, <=].antisymmetry

orderedsets[naturalnumber, <=].dichotomy

orderedsets[naturalnumber, <=].reflexive

orderedsets[naturalnumber, <=].transi¢ive

outputs.actuators_correct

outputs.rrun_gets_maj

outputs.safe_OK

outputs.vote_gives_ma j

outputs.workinE_agreement

repl_machine_tcc.R_TCC1

repl_machine_tcc.rrun_TCC1

repl_machine_tcc.rrun_TCC2

sensor_step.main_sensor_lemma

sensor_step.sensor_inductive_step

sensor_step.sensor_rrunto_lemma

sensor_step.sensor_step_lemma

sensor_step_tcc.sensor_rrun_o_lemma_TCC1

sxmplemachine.dowhen_previous

sxmple_machine.sched_,hen_lemma

slmple_machine.unique_when

slmple_machine.when_sched_lemma

slmple_machine_tcc.active_tasks_TCC1

slmple_machine_tcc.actuators_TCCl

slmple_machine_tcc.dependency_TCCl

sxmple_machine_tcc.run_TCC1

slmple_machine_tcc.run_TCC2

slmple_machine_tcc.sensors_TCC1

slmple_machine_tcc.step_TCC1

slmple_machine_tcc.step_TCC2

sxmple_props.indstep

sxmple_props.simple_sensor_step_le_a

slmple_props.simple_step_lemma

slmple_props.stay_correct_simple

s_mple_props_tcc.simple_sensor_s_ep_lemma_TCCl

slmple_props_tcc.simple_step_lemma_TCC1

supports.Gbar_support

supports.commit_Gbarlemma

supports.commit_support_lemma

supports.commitwhen_lemma

supports.committed_lemma

supports.found_sub_support

supports.found_support

supports.in_o,n_suppor_

supports.subsetsupport

122 Appendix C. Results of Proof-Chain Analysis

supports.support_backup

supports_tcc.foundation_TCCl

voted_step.main_voted_lemma

voted_step.maj_lemma

voted_step.rrunto_task

voted_step.rstep_task

voted_step.sensorsnot_voted

voted_step.sstep_task_lemma

voted_step.vote_lemma

voted_step.voted_inductive_step

voted_step.voted_link_lemma

voted_step.voted_step_lemma

voted_step_tcc.active_task_TCCl

voted_step_tcc.rstep_task_TCCl

voted step_tcc.sstep_task_lemma_TCCl

voted step_tcc.voted_step_lemma_TCC1

Total: 93

The completed proofs are:

cardinality[EXPR].card_proof

cardinality[EXPR].empty_prop_proof

cardinality[EXPR].subsetunion_proof

cardinality[EXPR].twice_proof

connect Gbar_OK_proof

connec_ OK_OK_proof

connect notvotedproof

connect r indstep_proof

connect safe_at_a_proof

connect stay correct_proof

connect stay_correct_repl_proof

connect torch_proof

connect unvoted_proof

connect vote_appln_proof

connect voted_proof

correctness_proof.almost_final_proof

correctness_proof.discharge_well_founded

correctness_proof.final_proof

correctness_tcc_proofs.safe_TCCl_PROOF

natinduction.d±scharge

natinducrion.ind_m_proof

natinduction.ind_proof

natinduction.limited_proof

natinduction_tcc.ind_m_proof_TCC1_PROOF

noetherian[EXPR, EXPR].modproof

nonvoted_step.link_proof

nonvoted_step.main_nonvoted_proof

123

nonvoted_step.nonvoted_ind_proof

nonvoted_step.nonvoted_rrunto_task_proof

nonvoted_step.nonvoted_task_OK_proof

nonvoted_step_tcc.nonvoted_rrunto_task_TCCl_PROOF

nonvoted_steptcc.nonvoted_$ask_OK_TCCl_PROOF

outputs.actuators_correct_proof

outputs.rrun_gets_maj_proof

outputs.safe_OK_proof

outputs.vote_gives_maj_proof

outputs.working_agreement_proof

repl_machine.disharge_finite

repl_machine_tcc.rrun_TCCl_PRODF

repl_machine_tcc.rrun_TCC2_PROOF

repl_machine_tcc_proofs.R_TCCl_PROOF

sensor_step.main_sensor_proof

sensor_step.sensor_ind_step_proof

sensor_step.sensor_rrunto_proof

sensor_step.sensor_step_proof

sensor_step_tcc.sensor_rrunto_lemma_TCCi_PROOF

slmple_machine.dowhen_prev_proof

slmple_machine.sched_when_proof

slmple_machine.unique_when_proof

slmple_machine.when_sched_proof

slmple_machine_tcc.dependencyTCCl_PROOF

slmple_machine_tcc.run_TCCl_PROOF

slmple_machine_tcc.run_TCC2_PROOF

slmple_machine_tcc.step_TCCl_PROOF

slmple_machine_tcc.step_TCC2_PROOF

slmple_machine_tcc_proofs.active_tasks_TCCl_PROOF

slmple_mach±ne_tcc_proofs.actuators_TCCl_PROOF

slmplemachine_tcc_proo_s.sensors_TCC1_PROOF

slmple_props.indstep_proof

slmple_props.simple_sensor_step_proof

slmple_props, simpl e_st ep_l emma_pr o of

simple_props, stay_simple_proof

simpl e_props_t cc. simpl e_s ens or_ st ep_l emma_TCC 1_PROOF

slmple_props_tcc.simple_step_lemma_TCCl_PROOF

supports. Gbar_support_pr_

support s. commit _Gbar_l emma_proof

supports, commit_support_proof

supports.commit_when_proof

supports.committed_proof

supports.discharge_antisymmetry

supports.discharge_dichotomy

supports.discharge_reflexive

supports.discharge_transitive

124 Appendix C. Results of Proof-Chain Analysis

supporCs.found_sub_supporg_proof

supports.found_support_proof

supports.in_o_n_support_proof

supports.subset_support_proof

supports.supporg_backup_proof

supports_tcc_proofs.foundation_TCC1_PgOOF

voted_step.main_vote_proof

vo_ed_step.maj_proof

voted_step.rrunto_task_proof

voted_step.rs_ep__ask_proof

vo_ed_step.sensors_nog_voted_proof

vo_ed_step.sstep_task_proof

voted_step.vote_lemma_proof

voted_step.voted_ind_step_proof

voted_step.voted_linkproof

voted_step.voted_step_proof

voted_step_tcc.active_task_TCCl_PgOOF

voged_step_tcc_proofs,rstep_task_TCCl_PROOF

voted_step_tcc_proofs.sstep_task_lemma_TCC1_PROOF

voted_step_tcc_proofs.voted_step_lemma_TCCl_PgOOF

Total: 93

NASA
_cace _r_l_r_

I. Report No.

NASA CR-4384

4. Title and Subtitle

Report Documentation Page

2. Government Access=on No. 3. Rec=p,ent'sCatalog No.

5. Report Date

Formal Specification and Verification of a Fault-

Masking and Transient-RecoveryModel for Digital

Flight-Control Systems

7. Author(s)

John Rushby

July 1991

6. Performing Organazatlon Co¢le

8. Performing Organization Report No.

10. Work Unit No.

505-64-i0-05

11. Contract or Grant No.

NASI-18969

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

9. Pe#o_ing Organization Name and Address

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

12. Sponsoring Agancy Name an AddreNr_

National Aeronautics and

Langley Research Center

Hampton, VA 23665-5225

Space Administration

15. Su_men_w Not_

Langley Technical Monitor:

Task 1 Final Report

RickyW. Butler

16. Abstract

We present the formal sq3ccSficalJon and mechanically checked verification for a model of fault-

masking and transient-recovery among the replicated computers of digital flight-control systems.

The verification establishes, subject to certain carefully stated assumptions, that faults among the

component computers will be masked-so that comm_nds sent to the actuators will be the same as

those that would be sent by a single computer that suffers no failures.

17. Key Wor_ (Suggested by Au_ods))

Digital Flight Control Systems, Formal

Methods, Formal Specification and Verifi-

cation, Proof Checking, Fault Tolerance,

Transient Faults, Majority Voting,

Modular Redundancy

18. Distributmn S=t=.w.t

Unclassified - Unlimited

Subject Category 62

19. Security ClamUf.Iof this repot)

Unclassified

i _. Secur_ Cla_. (_ _ I)ega)

Unclassified

NASA FORM 11128OCT gS

For sale by the National Technical Information Service. Springfield, Virginia 22161-2171

22. P.ce

A07

NASA-Langley, 1991

