
Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

Formal Specification and Verification of Communication
in Network-On-Chip: An Overview

https://doi.org/10.3991/ijes.v6i4.9416

Fateh Boutekkouk	
University of Oum El Bouaghi, Algeria
Fateh_boutekkouk@yahoo.fr

Abstract—Network-On-Chip (NOC) is an emerging paradigm to surmount
traditional bus bused Systems-On-Chip (SOC) limits especially scalability and
communication performances. A NOC includes many applications that can exe-
cute concurrently. This situation may show some undesirable behaviors such as
deadlock, livelock, starvation, etc. On the other hand, the application of formal
methods to on-chip communication infrastructures has received more attention.
Formal analysis of NOC communication will be very advantageous since it al-
lows proving some theorems or interesting qualitative/quantitative properties on
the communication behavior where simulation/emulation techniques can fail
easily. In this paper we try to give an overview of the most famous formal
methods applied to the verification of communication inside NOCs.

Keywords—Network-On-Chip, On-communication, Routing, Formal Verifica-
tion, Model checking, Theorem proving

1 Introduction

Networks-On-Chip or NOCs [1] emerge as a new communication centric paradigm
that replaces the well known Systems-On-Chip (SOC) to reduce the design complexi-
ty due to the use of multiple buses, guarantee a high level of quality of services of-
fered by the communication infrastructure and scalability. NOCs integrate computer
networking concepts for on-chip communication between various processor cores.
NOCs are characterized by their topologies, their routing algorithms, switching strate-
gies, network control flow, etc. NOCs include many communication scenarios that
evolve concurrently. These scenarios may show some undesirable behaviors such as
deadlock, live-lock, starvation, etc. Testing and simulation/emulation based tech-
niques are not sufficient and often results in missing critical bugs. Consequently, a
formal validation of the communication correctness will be mandatory. Formal meth-
ods [2] have been used to analyze the behavior of systems using mathematical reason-
ing or rigorous state-space exploration. Approaches to formal verification can be
classified into two big categories: model checking and theorem proving. Model
checking [3] is a mainstream formal verification method and involves the computer
based mathematical modeling of the given system in the form of an automata or state-
space. This model is then used within a computer to automatically verify that it meets

iJES ‒ Vol. 6, No. 4, 2018 15

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

rigorous specifications of the intended behavior. Theorem proving [3] uses deductive
techniques for verifying the relationship between the logical specification and logical
implementation of the given systems. Several works have been formally verified NOC
communication using model-checking, theorem proving or a combination between
them. In this paper, we present an exhaustive survey of works targeting formal speci-
fication and verification of the on-communication for NOCs. Firstly, we introduce
some key concepts related to NOCs and define the communication in NOCs. Next, we
present the pertinent works on formal specification and verification of the communi-
cation inside NOCs. We conclude our paper by a discussion on possible future inves-
tigations in the field of formal specification and verification of NOCs.

2 Communication in NOC

Networks On Chips have been proposed as a highly structured and scalable solu-
tion to address communication problems in SOC. On-chip interconnection network
bring many advantages as high-bandwidth, low-latency, low-power consumption and
scalability. With regard to NOC dimension, we can find two big classes that are 2D
NOC and 3D NOC. There have been various topologies for 2D NOC architecture.
These include mesh, torus, ring, star, binary tree, butterfly, octagon, SPIN (Scalable
Programmable Integrated Network) and reconfigurable architectures.

From the communication perspective, communication in NOC is related to many
aspects that are: topology, the routing algorithm, the switching technique, the flow
control, the arbitration technique, and QoS. The communication between the modules
of a NOC is generally categorized as synchronous or asynchronous, with a recent shift
towards Globally Asynchronous Locally Synchronous (GALS). Within the synchro-
nous scheme all the modules are synchronized to a global clock in order to achieve
their intercommunication. In GALS systems, each module can be synchronized to a
private local clock but their intercommunication is established asynchronously, rely-
ing on the request and acknowledgement communication handshakes and eliminating
the need for a global system clock with its undesirably long interconnect wires. One
of the main challenges when designing a NOC is the implementation of an efficient
routing algorithm, which is used to determine the path traversed by packets from a
source to a destination node. Performance, reliability, energy consumption, and fault
tolerance represent just a short list of the major common metrics affected by the rout-
ing algorithm. Another important requirement of a routing algorithm is guaranteeing
deadlock and livelock freedom. The former, occurs when two or more packets reserve
some resources and wait for each other to release the rest of the resources, which
never takes place, and all packets involved get blocked and make no progress towards
their final destination. The latter, appears when packets wander around and never
reach their destination (especially when non-minimal routes are allowed).

16 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3 Formal methods for NOC

Many experts in the field of NOC design have discussed the need for formal meth-
ods to generate a design which is correct by construction. By applying formal meth-
ods, a very abstract formal model is established then it will be refined over many steps
to finally obtain an implementation which is correct. The abstract model can be used
for early functional correctness verification, design exploration or non-functional
requirements validation. Formal methods have been applied continuously in NOC
communication analysis to prove using model checking or theorem proving the ab-
sence of some undesirable properties like deadlock, livelock, starvation or the pres-
ence of some desirable properties like liveness, security, fairness, etc. or the satisfac-
tion of QoS constraints such as latency, bandwidth, response time or power consump-
tion using some combination of model checking and simulation/static analysis meth-
ods. In this context, many formal specification languages and associated tools have
been developed at the aim of formal verification of NOC communication and espe-
cially the routing. Some of these languages are standard and software-oriented. Some
others are not standard but specific to NOC.

3.1 Z notation

The Z notation is an ISO standard, used to specify data-dominated systems. Z for-
mal language belongs to the class of state or model-based formal specification lan-
guages. It is based mainly on the axiomatic set theory, lambda calculus and the first
order predicate logic. The unit specification in Z is called schema. There exist two
schema types: data schema and operation schema. Z schemas can then be combined to
form the whole specification. System data are constrained by their invariants and the
operations by their pre/post-conditions. Z uses the theorem proving technique to rea-
son about the correctness and the coherence of the system. Authors in [4] presented a
Z specification of the routing in a mesh NOC with six routers and asymmetric links
between them. The first objective of this work is to evaluate the routing scheme con-
sidering latency, status link and shortest route. In order to better understand the dy-
namism of the operations, and more specifically those related to routing techniques,
authors used the animation tool namely Possum.

3.2 Event B

Event B is an extension of the B method to support reactive systems.
Invented by Jean-Raymond Abrial, the B method is a formal method for specifica-

tion and verification of data oriented systems. The B method follows a successive
refinement approach to finally generate a correct by construction program from ab-
stract specifications. There are three kinds of specification unities in B; the abstract
machine, the refinement and the implementation. The verification process in B is
based on what we call proofs obligations (PO). As Z notation, B language is qualified
as a state-based formal specification language. Event B method introduces two new

iJES ‒ Vol. 6, No. 4, 2018 17

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

concepts: the event and the context concepts. In the context of NOCs, Event B was
used by many researchers to formally verify the correctness of communication. Au-
thors in [5] used the event B method to design a fault tolerant mesh NOC for System-
on-Chip (SOC)-based reconfigurable Field- Programmable Gate Array (FPGA). The
formalization process is based on an incremental and validated correct-by construc-
tion development of the NOC architecture. Indeed, this work provides a framework
for developing the Network-on-Chip Architecture and the XY routing algorithm using
essential safety properties together with a formal proof that asserts its correctness. The
complexity of the development is measured by the number of proof obligations which
are automatically/manually discharged. In another work, Kamali [6] proposed three
(3) abstract models namely M0, M1, and M2 at three increasing levels of detail for 3D
NOCs. These can be used for modeling and verifying 3D NOC-designs in the early
stages of the system development. Each of these models provides templates for com-
munication constraints and guarantees the communication correctness. She showed
how to apply such an abstract model to verify a concrete 3D NOC routing algorithm.
This is achieved by modeling the correctness condition via invariants; as each model
added detail to the previous model, the invariant needed to reflect these added details
in a consistent manner. In order for the invariant to be satisfied by a model, a number
of proof obligations needs to be discharged. Moreover, in order for the models to
respect the refinement relation some other proof obligations need to be generated. As
she have employed the RODIN platform to specify the 3D NOC modeling, many of
these proof obligations have been automatically discharged, while for the rest it was
possible to discharge them interactively. Model checking can also be applied via the
model checker Pro-B that is associated to the RODIN platform to verify the liveness
property.

3.3 Concurrent Haskell

Concurrent Haskell is an extension of the purely functional language Haskell
which expresses concurrency at a high level of abstraction.

Authors in [7] presented an approach which uses Concurrent Haskell to produce
concise formal specifications of a real-world NOC that is the SpiNNaker. The latter is
specifically for the real-time simulation of large-scale spiking neural networks. It is a
multicast communication network. It places a heavy emphasis on fault tolerance. The
system is implemented as a 2D array of nodes interconnected through bi-directional
links in a triangular formation. The NOC is asynchronous, and serves to decouple the
many different clock domains across the chip. Using Concurrent Haskell, SpiNNaker
chips are modeled as concurrent processes, communicating with each other via chan-
nels which represent the inter-chip links. For the processor-NOC links, three initial
assumptions are considered: the NoC-processor links will never fail, the processors
and NOC fabric will always process packets fast enough to prevent deadlock across
the NOC-processor links and the NOC arbiter will be fair in so much as all input re-
quests will be serviced eventually. This work used a very simple model for the ARM
cores, which simply accepts and generates traffic; they are functions that wait to take
packets and then emit new ones, with their own address as the source address.

18 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3.4 Promela

PROMELA (PROcess MEta LAnguage) is a high level language to specify sys-
tems descriptions supported by the SPIN tool. Authors in [8] presented a new formal
model of the Hermes NOC router with five bi-directional ports and the bounded buff-
ers at input port, including the XY routing algorithm, priority based arbitration logic,
wormhole switching and the request-ack handshake protocol of the communication
scheme using a new formal language called Heterogeneous Protocol Automata (HPA)
which is then mapped manually to PROMELA. HPA is a finite state machine with
bounded counters that models clocked and clockless systems. The definition allows
modeling of event and clock based transitions. Communication interfaces are modeled
in HPA as Synchronous Finite State Machines (SFSM) and Asynchronous Finite State
Machines (AFSM). The target NOC is a Hermes mesh NOC where packets always
take a deterministic route in XY routing. The simulator and model checker inbuilt in
the SPIN tool are used for verification. The properties are specified in linear temporal
logic (LTL). Using the SPIN model checker, authors verified that:

(a) All the packets sent from source node are received correctly at the right destina-
tion node b. (b) The packets flow through a valid path and take the same path every
time. A valid path implies that packets are routed only through the routers that are part
of the mesh network. In another work [9], authors used PROMELA to specify Pro-
grammable Network-On-Chip (PNOC), which is a circuit, switched NOC architec-
ture. The topology contains series of subnets where multiple nodes are connected to a
single router through the router port interfaces. A light handshaking mechanism is
required to establish or remove connection from a node. This flexible system allows
runtime insertion and removal of nodes. Properties including deadlock freedom, star-
vation freedom, mutual exclusion and liveness are verified using the SPIN model
checker. Authors in [10] proposed a new deadlock recovery algorithm and they de-
scribed a PROMELA model which allows the formal verification for the SOCIN
NOC with 2D grid topology. In the PROMELA model, authors changed SOCIN’s
routing algorithm (originally based on dimensional ordering) and have forced config-
urations of deadlocks to test the proposed algorithm.

3.5 Timed automata and their extensions

Timed automata are extensions of classical finite automata with clock variables and
logical formulas on the clock (temporal constraints). Extended Timed Automata
(ETA) extend timed automata by adding non-clock variables (discrete variables) with
their corresponding transition functions.

Authors in [11] used timed automata for the modeling and formal verification for
the global validation of the behavior of a passive integrated photonic routing struc-
ture. Optical Networks on Chip are the alternative solution for Metallic interconnects.
This work proposed a two steps methodology. The first step works on high level of
abstraction and the second step works on low level of abstraction and precisely on the
network segments. The passive transport part is represented by λ-router, which is
shared by all the IP blocks to route the data through the network. The routing in the

iJES ‒ Vol. 6, No. 4, 2018 19

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

optical network presented is realized by a 4x4 λ-router. Using UPPAAl, the models
were simulated and formally verified. The formal verification consists of checking
some properties of the system. The verified properties are: the absence of deadlock,
the absence of contention (i.e. simultaneous wavelength can be sent through the net-
work and/or through the router, from the same initiator, in the same time), the verifi-
cation of the truth table (i.e. there is one and only one wavelength that connects one
initiator with one target), and all the locations in the automaton representing the
switch are eventually taken. Authors in [12] modeled the router designs of BiNOC:
Bidirectional NOC architecture with dynamic self-reconfigurable channel in ETA.
BiNOC is a conventional mesh-based NoC design with XY-based wormhole routing.
It allows configuring the direction of a channel dynamically. The ETA models are
composed into a system state graph, which will be input to the model checker State
Graph Manipulator (SGM). The other input to SGM will be the given property, which
is specified into the CTL formula. Four crucial properties of the NOC router, namely,
mutual exclusion, starvation freedom, deadlock freedom, and conditions for traffic
congestions are investigated.

3.6 Lotos

LOTOS (Language of Temporal Ordering Specification) an ISO standard, is an al-
gebraic language based on temporal ordering of events. LOTOS is used for protocol
specification. It consists of two parts: a part for the description of data and operations,
based on abstract data types, and a part for the description of concurrent processes,
based on process calculus. Authors in [13] used value-passing CHP (Communicating
Hardware Processes) to generate LOTOS specification. The latter is then verified
using the CADP verification toolbox for LOTOS. CHP are a natural approach for the
description of asynchronous hardware architectures. These calculi are extensions of
standard process calculi with particular synchronization features implemented using
handshake protocols. As a case study, authors considered the ANOC (Asynchronous
NOC) architecture, which is used as the backbone of Faust, a 4th generation wireless
telecom baseband. ANOC implements the GALS paradigm and connects the nodes in
a 2D-Mesh topology. The ANOC model in CHP was abstracted. In this case study,
authors dealt in particular with the verification of the most complex component of a
node of ANOC, namely the input controller with several realistic scenarios. The func-
tional properties describing the protocol behavior of the input controller are: protocol
correctness (i.e. the input controller must comply at its inputs with the ANOC proto-
col, and transmit the incoming data to an output controller), data integrity (i.e. the
contents of the communications must be preserved by the input controller), and cor-
rect packet routing (i.e. the input controller has to route all the flits of a packet in the
right direction). These properties were verified using a generic SVL (Scripting Verifi-
cation Language) script, calling the model checking and equivalence checking tools of
CADP.

20 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3.7 ACL2

ACL2 is a theorem prover and its specifications are written in an applicative subset
of Common Lisp and are thus executable. An important feature of ACL2 is to denote
both a powerful theorem proving system and an execution engine in the same envi-
ronment. The theorem proving system has a high degree of automation. Authors in
[14] addressed the formal verification of NOCs by means of ACL2. In their previous
work, the authors presented the generic network on chip model (GeNoC). It consists
of a meta-model of on-chip communication architectures and its implementation in
the logic of a theorem proving system. It is a highly generic and parameterized object.
The main function of the meta-model is function GeNoC. It takes as main argument a
list of messages emitted at source nodes and returns a list of messages received at
destination nodes. Function GeNoC produces two output lists: the list of messages
that have reached their destination, and the list of messages that are still at their
source, or traveling in the network. The model is implemented in the ACL2 theorem
prover. The enhanced formalization presented in [14] constitutes a significant pro-
gress, both mathematically simpler and offering a much larger expressive power. The
methodology is demonstrated on a realistic and state-of-the-art design, the Spidergon
network from STMicroelectronics. It is an extension of the Octagon network to an
arbitrary even number of nodes. Spidergon forms a regular architecture, where all
nodes are connected to three neighbors and a local IP. Twenty three (23) proof obliga-
tions were defined. Once the different proof obligations of each component have been
proven, the general correctness property is directly obtained from the instantiated
proof obligations. This generic aspect of GENOC reduces the verification to discharg-
ing proof obligations local to each constituent and provides a compositional approach.
Verified instances of the constituents can easily be re-used. Authors in [15] proposed
a methodology that supports the specification of parametric NOCs. They provide
sufficient constraints that ensure deadlock-free routing, functional correctness, and
liveness in a parametric NOC inspired by the HERMES architecture. The latter is
based on 2D mesh architecture. The routing policy is based on the XY routing algo-
rithm. HERMES uses the wormhole switching technique. The contribution of this
work is the addition of two new theorems to GeNoC. The first one ensures that the
routing function is deadlock free. The second one proves that all messages injected in
the network eventually leave the network, i.e., liveness. To prove the original GeNoC
correctness theorem, one has to prove that the routing function terminates and ends in
the correct destination. This only proves that computing one route for one message is
correct when there is no other message in the network. Deadlock and evacuation are
global properties that depend on the interaction of several messages. All theorems
were implemented using the ACL2 ‘Sedan’, an Eclipse interface to the ACL2 theorem
prover.

3.8 DEVS based model checking

Discrete Event System Specification (DEVS) is a formalism for specifying modu-
lar, hierarchical coupled models composed of atomic models suited for simulation

iJES ‒ Vol. 6, No. 4, 2018 21

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

purposes. Authors in [16] presented a DEVS-based model checking verification
method for NOC models. For this purpose, a constrained version of the atomic DEVS
modeling formalism is formulated and applied to verification of an NOC router. This
is achieved by adding constraints on the state size and the number of transitions in the
atomic model. A model-checker is introduced into the DEVS-Suite simulator for
verifying constrained DEVS models. In order to demonstrate how the modeling and
implementation of constrained DEVS models are carried out for NOC components,
authors modeled and verified an atomic router model in a mesh 5x5 NOC using the
DEVS-Suite simulator. The authors used Java to implement a data collector using
Experimental Frame (EF) in the DEVS-Suite simulator that gives the designer flexi-
bility and support for creating experiments and calculating measurements based on
the states of models. In the proposed model-checking framework, the generator injects
various combinations of inputs to the model and the transducers are charged with the
task of gathering data from the model. These transducers can collect state data as well
as data derived from states and check them against some desired properties.

3.9 CSP and FSP

CSP (Communicating Sequential Processes) is a formal language for describing
patterns of interaction in concurrent systems. It belongs to the family of mathematical
theories of concurrency known as process algebras, or process calculi, based on mes-
sage passing via channels. In the context of a master thesis [17], the author formally
verified the OASIS NOC using the model checking technique. The OASIS NOC is a
complexity effective on-chip interconnection network designed and prototyped on a
FPGA. The OASIS NOC is a 2-D 4×4 mesh topology. Both refinement model check-
ing and probabilistic model checking techniques are used to verify the OASIS NOC
properties. The OASIS NOC is first formalized in CSP and then verified with the
FDR (Failure-Divergence Refinement) model checker for deadlock freedom. FDR is
the de facto model checker for the CSP language from Formal Systems Europe Lim-
ited [FSEL]. Its method of establishing whether a property holds is to test for the
refinement of a transition system capturing the property by the candidate machine.
The author also showed that PRISM model checker which is designed for verifying
probabilistic properties can be used to verify non probabilistic properties as deadlock
freedom. The behavior of a system to be verified by PRISM model checker is speci-
fied using a simple module-based language inspired by Reactive Modules formalism
of Alur and Henzinger. The fundamental components of the PRISM language are
modules and variables. The verification result of both FDR and PRISM shows that the
OASIS NOC is free from deadlock. Using PRISM, the OASIS NOC behaves as a
message buffer; receiving and delivering flits without any losses.

Authors in [18] presented a systematic approach that models concurrent processes
in a mesh NOC using Finite State Process (FSP); this model is exhaustively tested
with Labeled Transition State Analyzer (LTSA) tool developed by Jeff Magee and
Jeff Kramer. FSP (Finite State Processes) is a process specification language based
closely on the CSP. The authors proposed a set of rules that should be followed for
modeling a NOC concurrent system.

22 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3.10 SVA

SVA (System Verilog Assertions) is an assertion-based language offering a very
powerful way to describe design properties and temporal behaviors. An assertion is a
statement that validates assumptions or checks conditions in a program. It can be seen
as an observer that observes the state of the program and, if built that way, can block
further execution of the code, but it cannot alter the program itself. Assertions are
primarily used to validate the behavior of a design. They may also be used to provide
functional coverage information for a design. Assertions can be checked dynamically
by simulation, or statically by a model checker. In System Verilog, there are two
kinds of assertions: immediate (assert) and concurrent (assert property). Coverage
statements (cover property) are concurrent and have the same syntax as concurrent
assertions. Authors in [20] presented MCENOC, a Network-on-Chip (NoC) switching
architecture with predictable, formally verifiable timing behavior. Firstly, they used
Benes networks to model the MCENOC. A Benes network is a special case of the
Clos network; it refines the Clos concept into a topology of 2x2 switching elements. It
retains the same properties, but is constructed from the smallest possible switch size.
A Clos network is a kind of multistage circuit switching network used in the field of
telecommunications. Using SystemVerilog Assertions (SVA), formal properties are
defined helping the refinement of the specification of the design as well as enabling
the implementation to be exhaustively formally verified. The authors demonstrated
the performance of the design in terms of size, throughput and predictability, and
discussed the application level considerations needed to exploit this architecture.

Properties are defined in SVA, and then asserted for each of the ports or instances
defined in any configuration of the system. Checking of these properties is performed
using the Cadence JasperGold formal verification tool.

3.11 PVS

PVS is a verification system, combining language expressiveness with automated
tools. The language is based on higher-order logic, and is strongly typed. It includes
types and terms such as: numbers, records, tuples, functions, quantifiers, and recursive
definitions [21]. The PVS prover is interactive, but with a large amount of automation
built in. PVS includes an integrated model checker that is based on the μ-calculus. To
use the model checker, a finite transition system must be defined with an initial predi-
cate and a transition relation. The PVS prelude provides CTL temporal operators, as
well as several definitions of fairness. Authors in [22] discussed a formal specification
of the ÆTHEREAL protocol and its underlying network in terms of the PVS specifi-
cation language. The ÆTHEREAL protocol has been proposed by Philips to enable
both guaranteed and best-effort communication in an on-chip packet switching net-
work. Using PVS the authors proved the absence of deadlock for an abstract version
of the model.

iJES ‒ Vol. 6, No. 4, 2018 23

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3.12 ABS

ABS is a formal, executable modeling language for concurrent and distributed sys-
tems. It combines functional, imperative, and object-oriented programming styles
allowing intuitive, modular, high-level modeling of concepts, domain and data.

ABS models are fully executable and model system behavior precisely. ABS can
model synchronous as well as asynchronous communication. ABS has been devel-
oped to provide the foundations for scalable formal verification: there is a program
logic as well as a compositional proof system that makes possible to prove global
system properties by reasoning about object-local invariants; ABS comes with an IDE
and a range of analysis as well as productivity tools, specifically, there is a formal
verification tool called KeY-ABS. Authors in [23] developed an approach with a case
study of a Network-on-Chip packet switching platform. They provided an executable
formal model in ABS of a generic MxN mesh chip with an unbounded number of
packets and verified several crucial properties. Their concern was formal verification
of unbounded concurrent systems. They showed how scalable verification can be
achieved by compositional and local reasoning about history-based specifications of
observable behavior. The approach is realized in the proof system KeY-ABS. They
demonstrated the viability of the verification approach by proving the correctness of
safety properties for an ABS model of an ASPIN (Asynchronous Scalable Packet
Switching Integrated Network) NOC of arbitrary, unbounded size. Formal proofs of
global properties such as “no packets are lost" and “a packet is never sent in a circle"
were reported.

3.13 Petri Nets and their extensions

Generally speaking, Petri Nets have been used to model and simulate traffic in
NOC systems. Authors in [25] presented formal models for multicast traffic in NOC
architectures. They formalized multistage interconnection networks with semantics
inspired by the high-level version of the Petri box algebra, which allows one to repre-
sent concurrent communication systems in a compositional way.

Authors in [26] applied deterministic and stochastic Petri-Nets (DSPNs) to model
on-chip communication. In their contribution, the modeling of basic NOC communi-
cation scenarios featuring different processor cores, network topologies and commu-
nication schemes is presented. In order to provide a test bed for the verification of
modeling results a state-of-the-art FPGA-platform has been utilized. This platform
allows to instantiate a soft-core processor network, which can be adapted in terms of
communication network topologies and communication schemes. Quantitative results
for modeling effort and computational complexity were presented. Furthermore, a
more complex hierarchical NOC has been modeled and the influence of parameters
like the distribution of read and writes accesses has been studied.

24 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

3.14 PSL

PSL (Property Specification Language) has emerged as one of the standard asser-
tion languages and is on its way to becoming an IEEE standard. PSL is designed to
capture design intent in an executable, formal, unambiguous manner. Authors in [27]
presented a methodology to use assertions in NOC designs to facilitate debugging,
monitoring, and ensuring reliable and failure-free operation. They relied on their own
assertion-checker generator (MBAC) to produce efficient RTL-level checkers from
high-level temporal assertions, with optional debugging features. The MBAC asser-
tion compiler generates hardware that only monitors the circuit behavior, guarantee-
ing that the hardware will behave as originally intended. Furthermore, automatically
translating PSL assertions into hardware checkers at RTL code eliminates the risk of
introducing errors into the assertion circuitry itself, which is likely to occur if the
translations were done manually. To optimize the usefulness of the assertion checkers,
they applied small modifications on the existing NOC to provide the chronology of
errors. To this effect, they introduced a NOC-level high-priority messaging system.

3.15 SDL

The Specification and Description Language (SDL) is a specification language tar-
geted at the unambiguous specification and description of the behavior of reactive and
distributed systems, defined by ITU-T in Recommendations Z.100 to Z.106, original-
ly focused on telecommunication systems.

Authors in [30] described the design of a NOC simulator using SDL. Features of
SDL for representing structural hierarchy using blocks, concurrent processes and
dynamic generation of processes, communication channels of user defined data types
and timers are useful for modeling a NOC architecture at various levels of communi-
cation protocols. The event driven SDL simulator carried out interesting experiments
to evaluate various architectural options like buffer size in switches, and their effect
on the performance like delay and packet loss. The target NOC is the KTH-VTT NOC
Architecture consisting of a two-dimensional mesh of switches or micro-routers.
Cores (called resources) are placed in the slots formed by the switches. To have flexi-
bility as well as efficiency of simulation, authors provided a mode switch in the model
so that it is possible to simulate the model either at data-link layer or at the network
layer. Since data-link layer does not add information on how the routing and buffers
work, it would be possible to leave this layer out when making evaluations of network
performance at network layer level.

3.16 Timed Rebeca

Timed Rebeca is an extension of Rebeca formal specification language, capable of
modeling functional and timing behaviors of distributed reactive systems.

Rebeca is an actor based modeling language with a Java-like syntax. Actors can be
considered as a reference model for concurrent computation. A Rebeca model consists
of reactive classes and a main part that contains instantiation of reactive objects (re-

iJES ‒ Vol. 6, No. 4, 2018 25

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

becs) from reactive classes. Authors in [31] targeted maximum end-to-end packet
latency for comparison of different routing algorithms. Network topology, router
buffers, routing algorithm, communication policy, storage strategy and channels are
modeled. Timing behaviors like link delay and the delay for writing and reading
to/from buffers are also considered in the model. Using an actor based modeling lan-
guage; they efficiently mapped the constituents of GALS NOC to actor model. To this
end, a formal model for GALS NOC was presented using high level modeling lan-
guage Rebeca. The model was then used for comparison between three routing algo-
rithms, namely XY (deterministic), Odd-Even (adaptive) and DyAD (dynamically
adaptive and deterministic) with respect to the maximum end-to- end packet latency.
Results of comparison were presented under two different traffic patterns and showed
that under distributed traffic a deterministic routing could better work. However, in a
directed traffic -that is of more interest in real applications- adaptive routing algo-
rithms are better. The routing performance results obtained through Rebeca model
checking confirm the same previously published results in simulations.

4 Discussion

According to our analysis, we can state that:

• There is a panoply of formal specification languages and tools for NOC communi-
cation verification.

• Most of these languages and associated tools are not standard, consequently their
interoperability is infeasible.

• Most of related works verify packet switching routing in 2D mesh topology and
XY routing algorithm.

• A lack in formal methods for circuit switching, other topologies expect the mesh
one, and importantly 3D NOCs.

Model checking suits well control-dominated systems (i.e. systems whose behavior
can be expressed as state-space), it brings many advantages due to its automatic, and
hence user-friendly, nature. Moreover, the ability to provide counter examples in case
of failures makes model checking a more preferable choice for industrial usage as
compared to the other interactive formal verification approaches like theorem prov-
ing. However, model checking suffers from the space explosion problem and its ap-
plicability is restricted to finite state systems. In the literature, many solutions have
been proposed to solve the big problem of the state explosion, among them, we find
notably symbolic, probabilistic and distributed model checking. The latter solution
seems to be very promising. On the other hand, theorem-proving suits well data-
dominated systems and appropriate for infinite systems. A major challenge with theo-
rem proving is its automation especially for systems using higher order logic. Most of
theorem provers are interactive. Since NOCs are generally, data/control dominated
system, a combination of both model checking and theorem proving seems a promis-
ing solution. Amjad [34] investigates the idea of combination between model check-
ing and theorem proving and apply it to verify the AMBA protocol. Complement

26 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

formal verification techniques with trace-based simulation is also an interesting solu-
tion and many works have investigated this idea.

In terms of formal specification languages for NOCs, authors have proposed many
formalisms and theories from both software and hardware communities. Here, we
discuss some of these languages especially the well-known ones and highlight their
appropriateness to NOC modeling and verification.

Z language is a too abstract and does not support hardware aspects such as timing,
reactivity and concurrency, synchronization, etc. Furthermore, the refinement in Z is
done manually. In its current form, we see that Z is not very suitable for NOC verifi-
cation. Comparatively to Z, Event B seems to be more appropriate for NOC verifica-
tion since it supports many hardware aspects at higher level of abstraction like reac-
tivity and concurrency. The most important in Event B is the refinement and automat-
ic PO (proofs obligation) generation and verification. A clear drawback in Event B is
the lack of timing and QoS support. PROMELA, which is a C like language, does not
offer the necessary abstraction for NOCs modeling. PROMELA is qualified as a tran-
sition-based language. Petri Nets and their variants match well the formal quantitative
analysis of NOCs. SDL and due to its graphical notations and simulation/formal veri-
fication capacities are good candidates for NOC verification. PSL and SVA are asser-
tion-based languages and very suitable for the formal verification of the hardware part
of NOCs. Establish a link between formal techniques and state of the art system level
standard languages for NOCs, such as SystemC may be an alternative good solution.
In this context, authors in [35] proposed to integrate model checking into SystemC.
Authors in [36] models SystemC fixed-point arithmetic in the theorem prover HOL.
Similarly to the standard SystemC, authors have defined a sub set of VHDL and de-
fined its semantics in the theorem prover ACL2 [37], or in a certain model checker as
CV [38]. Boutekkouk [39] formalized a sub set of VHDL into Maude language. The
latter is based on equational algebra and rewriting logic theory. The idea of Sys-
temC/VHDL formal verification suits well legacy code reuse. However, this idea
deals with low level models and consequently it consumes much time for verification.
Abstraction of these models can alleviate this problem but at the prize of imprecise
results. ESTEREL and SIGNAL are two synchronous languages that seem very ap-
propriate to model and verify ANOC, since they implement well the GALS philoso-
phy [40]. The Architecture Analysis & Design Language (AADL) is another good
candidate for NOC simulation and formal verification. AADL has been used to model
both software and hardware architecture of an embedded, real-time system. AADL
includes many tools for simulation, performance estimation and formal verification
using model-checking [41]. What we need is a standard language for NOC specifica-
tion and verification. This language has to satisfy the following requirements:

• More friendly and supports well the graphical notations.
• Multi-paradigm (i.e. supports a variety of Models of Computation and semantics)
• Has the capacity to model and refine both software and hardware through different

levels of abstraction.
• Generic enough to model different topologies (2D, 3D), different routing, switch-

ing and control flow techniques.

iJES ‒ Vol. 6, No. 4, 2018 27

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

• Supports both model checking, theorem proving and trace-based simulation inte-
grated into one unified environment.

• Supports tools for integration and interoperability with other tools and existing
state of the art formal languages for NOCs.

5 References

[1] Agarwal, A., Iskander, C. and Shankar, R. (2009). Survey of Network on Chip (NoC) Ar-
chitectures & Contributions. Journal of Engineering, Computing and Architecture, Vol.3
(1).

[2] Wing, J.M. (1994). Formal Methods. In Encyclopedia of Software Engineering, John
Wiley & Sons, Inc., New York, pp. 504-517. Revision in Second Edition.

[3] Ouimet, M. (2007). Formal Software Verification: Model Checking and Theorem Proving,
Embedded Systems Laboratory Technical Report ESL-TIK-00214.

[4] Ramos, K.D.N., Ribeiro, C.M.F.A., Moreira, A.M. and Silva, I.S. (2006). A Formal ap-
proach for Network-On-Chip design. In iiWAS2006: The 8th International Conference on
Information Integration and Web-based Application & Services, 4 - 6 December, Yogya-
karta Indonesia.

[5] Andriamiarina, M.B., Daoud, H., Belarbi, M., Méry, D. and Tanougast, C. (2012). Formal
Verification of Fault Tolerant NoC-based Architecture. In IWMCS2012: First International
Workshop on Mathematics and Computer Science, December, Tiaret, Algeria.

[6] Kamali, M., Petre, L., Sere, K. and Daneshtalab, M. (2011). Refinement-Based Modeling
of 3D NoCs. In FSEN 2011: International Conference on Fundamentals of Software Engi-
neering, April 20-22, Tehran, Iran.

[7] Lester, D. and Richards, D. (2008). Specification of a network-on-chip. In Proceedings of
the 20th UK Asynchronous Forum (UK-ASYNC).

[8] Palaniveloo, V.A. and Sowmya, A. (2011). Application of Formal Methods for System-
Level Verification of Network on Chip. In 2011 IEEE Computer Society Annual Sympo-
sium on VLSI, 4-6 July, Chennai, India. https://doi.org/10.1109/ISVLSI.2011.57

[9] Zaman, A. and Hasan, O. (2014). Formal verification of circuit-switched Network on chip
(NoC) architectures using SPIN. In International Symposium on System-on-Chip (SoC),
28-29 October, Tampere, Finland. https://doi.org/10.1109/ISSOC.2014.6972449

[10] Otero, J.C., Dillenburg, F.C., Ribeiro, L. and Wagner, F.R. (2011). Formal Verification of
a Deadlock Recovering Algorithm for Heterogeneus NoC Routing Support. Available at
ftp://ftp.inf.ufrgs.br/pub/simoo/papers/dsnoc11.pdf

[11] Gheorghe, L., Nicolescu, G. and IO’Connor, I. (2009). Modeling and formal verification of
a passive optical Network On Chip behavior. In ECEASST 21, Electronic Communication
of the European Association of Software Science and Technology, Vol. 21.

[12] Chen, Y.R, Su, W.T., Hsiung, P.A, Lan, Y.C, Hu, Y.H. and Chen, S.J. (2010). Formal
Modeling and Verification for Network-on-Chip. In The 2010 International Conference on
Green Circuits and Systems, 21-23 June Shanghai, China.
https://doi.org/10.1109/ICGCS.2010.5543050

[13] Garavel, H., Salaün, G. and Serwe, W. (2009). On the semantics of communicating hard-
ware processes and their translation into LOTOS for the verification of asynchronous cir-
cuits with CADP. Journal of Science of Computer Programming, Vol.74 Issue 3, pp.100-
127. https://doi.org/10.1016/j.scico.2008.09.011

28 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

[14] Borrione, D., Helmy, A., Pierre, L. and Schmaltz, J. (2009). A Formal Approach to the
Verification of Networks on Chip. EURASIP Journal on Embedded Systems, Vol.2009.
https://doi.org/10.1155/2009/548324

[15] Verbeek, F. and Schmaltz, J. (2010). Formal Specification of Networks-on-Chips: Dead-
lock and Evacuation. In DATE 2010: Design, Automation & Test in Europe Conference &
Exhibition, 8-12 March, Dresden, Germany.

[16] Gholami, S. and Sarjoughian, H.S. (2017). Modeling and verification of Network-On-Chip
using Constrained-DEVS. In TMS/DEVS '17, Proceedings of the Symposium on Theory
of Modeling & Simulation, 23 – 26 April, Virginia Beach, Virginia, USA.

[17] Kwaku, B.S. (2009). Formal verification of a Network On Chip, a Master thesis in com-
puter science, submitted to the African University of Science and Technology, December,
Abuja, Nigeria.

[18] Agarwal, A. and Shankar, R. (2006). Modeling Concurrency in NOC for Embedded Sys-
tems. In High Performance Embedded Computing (HPEC) Workshop, 19-21 September,
Massachusetts Institute of Technology, MIT Lincoln Labs, Boston, MA, USA.

[19] Gastel, B.V. and Schmaltz, J. (2013). A formalisation of XMAS. In ACL2 2013: Work-
shop on the ACL2 Theorem Prover and its Applications, May 30-31, Laramie, Wyoming,
USA. https://doi.org/10.4204/EPTCS.114.9

[20] Kerrison, S., May, D. and Eder, K. (2016). A Benes Based NoC Switching Architecture for
Mixed Criticality Embedded Systems. In MCSOC: IEEE 10th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip, 21-23 September, Lyon, France.
https://doi.org/10.1109/MCSoC.2016.50

[21] Owre, S. and Shankar, N. (2008). A Brief Overview of PVS. In TPHOLs '08: the 21st In-
ternational Conference on Theorem Proving in Higher Order Logics, 18-21 August, Mon-
treal, P.Q., Canada. https://doi.org/10.1007/978-3-540-71067-7_5

[22] Gebremichael, B., Vaandrager, F., Zhang, M., Goossens, K., Rijpkema, E. and Radulescu,
A. (2005). Deadlock Prevention in the ÆTHEREAL Protocol. In CHARME'05: 13 IFIP
WG 10.5 international conference on Correct Hardware Design and Verification Methods,
3-6 October, Saarbrücken, Germany. https://doi.org/10.1007/11560548_28

[23] Din, C.C, Tarifa, S.L.T, Hahnle, R. and Johnsen, E.B. (2015). History-Based Specification
and Verification of Scalable Concurrent and Distributed Systems. In ICFEM 2015: 17th
International Conference on Formal Engineering Methods, 3-5 November, Paris, France.

[24] Holcomb, D.E. (2013). Formal Verification and Synthesis for Quality-of-Service in On-
Chip Networks, A PhD dissertation submitted in partial satisfaction of the requirements for
the degree of Doctor of Philosophy in Electrical Engineering and Computer Sciences in the
Graduate Division of the University of California, Berkeley.

[25] Pelz, E. and Tutsch, D. (2007). Formal Models for Multicast Traffic in Network on Chip
Architectures with Compositional High-Level Petri Nets. In ICATPN 2007: 28th Interna-
tional Conference on Applications and Theory of Petri Nets and Other Models of Concur-
rency, 25-29 June, Siedlce, Poland. https://doi.org/10.1007/978-3-540-73094-1_23

[26] Blume, H., von Sydow, T., Becker, D. and Noll, T.G. (2005). Modeling NoC Architectures
by Means of Deterministic and Stochastic Petri Nets. In Embedded Computer Systems:
Architectures, Modeling, and Simulation. SAMOS2005. Lecture Notes in Computer Sci-
ence, vol. 3553.

[27] Chenard, J.S., Bourduas, S., Azuelos, N., Boule, M. and Zilic, Z. (2007). Hardware Asser-
tion Checkers in On-line Detection of Faults in a Hierarchical-Ring Network-On-Chip. In
DATE 2007: Design Automation and Test in Europe Workshop on Diagnostic Services in
Networks-on-Chips, Apvril 20, Nice, France.

iJES ‒ Vol. 6, No. 4, 2018 29

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

[28] Parikh, R., and Bertacco, V. (2011). Formally Enhanced Runtime Verification to Ensure
NoC Functional Correctness. In MICRO-44: the 44th Annual IEEE/ACM, International
Symposium on Microarchitecture, 3-7 December, Porto Alegre, Brazil.

[29] Dridiy, M., Lallaliy, M., Rubiniy, S., Singhoffy, F. and Diguet, J.P. (2017). Modeling and
Validation of a Mixed-Criticality NoC Router Using the IF Language. In NoCArc'17:
the10th International Workshop on Network on Chip Architectures, 14 October, Cam-
bridge, MA, USA. https://doi.org/10.1145/3139540.3139543

[30] Holsmark, R., HÄogberg, M. and Kumar, S. (2003). Modelling and Evaluation of a Net-
work on Chip Architecture using SDL. In SDL '03: System Design, 11th SDL Forum, 1-4
July, Stuttgart, Germany.

[31] Sharifi, Z., Mohammadi, S. and Sirjani, M. (2013). Comparison of NoC Routing Algo-
rithms Using Formal Methods. In PDPTA’13: the International Conference on Parallel and
Distributed Processing Techniques and Applications, 22-25 July, 2013, Las Vegas, USA.

[32] Zhang, Z., Serwe, W., Wu, J., Yoneda, T., Zheng, H. and Myers, C. (2016). An Improved
Fault-Tolerant Routing Algorithm for a Network-on-Chip Derived with Formal Analysis.
In Science of Computer Programming Journal, Vol. 118, pp.24-39.
https://doi.org/10.1016/j.scico.2016.01.002

[33] Zhang, Z. (2016). Verification Methodologies for fault-tolerant Network-On-Chip systems,
A PhD dissertation submitted to the faculty of the University of Utah, Department of Elec-
trical and Computer Engineering, the University of Utah.

[34] Amjad, H. (2004). Combining model checking and theorem proving, Technical Report
Number 601, UCAM-CL-TR-601, ISSN 1476-2986.

[35] Cimatti, A. Narasamdya, I. and Roveri, M. (2013). Software Model Checking SystemC. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ,Vol.32,
Issue 5. https://doi.org/10.1109/TCAD.2012.2232351

[36] Akbarpour, B. and Tahar, S. (2003). Modeling SystemC Fixed-Point Arithmetic in HOL.
In ICFEM: 5th International Conference on Formal Engineering Methods, 5-7 November,
Singapore.https://doi.org/10.1007/978-3-540-39893-6_13

[37] Georgelin, P., Borrione, D. and Ostier, P. (2002). A framework for VHDL combining the-
orem proving and symbolic simulation. In ACL2'02: the Third International Workshop on
the ACL2 Theorem Prover and its Applications, March, Grenoble, France.

[38] Deharbe, D., Shankar, S. and Clarke, E.M. (1998). Formal verification of VHDL: the mod-
el checker CV. In XI Brazilian Symposium on Integrated Circuit Design, 3 October, Rio
de Janeiro, Brazil. https://doi.org/10.1109/SBCCI.1998.715418

[39] Boutekkouk, F. (2012). Maude specification generation from VHDL. In AIM 2012: the
Second International Conference on Advances in Information Technology and Mobile
Communication, 27-28 April, Bangalore, India.

[40] Amde, M., Felicijan, T., Efthymiou, A., Edwards, D. and Lavagno, L. (2005). Asynchro-
nous on-chip networks. In Computers and Digital Techniques, Vol.152, Issue 2, pp.273–
283. https://doi.org/10.1049/ip-cdt:20045093

[41] Pellizzoni, R., Meredith, P., Nam, M.Y., Sun, M., Caccamo, M. and Sha, L. (2009). Han-
dling Mixed-Criticality in SoC-based Real-Time Embedded Systems. In EMSOFT '09: the
seventh ACM international conference on Embedded software, 12-16 October, Grenoble,
France. https://doi.org/10.1145/1629335.1629367

30 http://www.i-jes.org

Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview

6 Author

Fateh Boutekkouk is a senior lecturer in informatics at the University of Oum El
Bouaghi-Algeria- and a member in ReLaCS2 laboratory. He works on embedded
systems and Networks On Chip (NOC) modeling, performance estimation and formal
verification.

Article submitted 24 August 2018. Resubmitted 13 August 2018. Final acceptance 15 August 2018. Fi-
nal version published as submitted by the author.

iJES ‒ Vol. 6, No. 4, 2018 31

