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Abstract—Network-On-Chip (NOC) is an emerging paradigm to surmount 
traditional bus bused Systems-On-Chip (SOC) limits especially scalability and 
communication performances. A NOC includes many applications that can exe-
cute concurrently.  This situation may show some undesirable behaviors such as 
deadlock, livelock, starvation, etc. On the other hand, the application of formal 
methods to on-chip communication infrastructures has received more attention. 
Formal analysis of NOC communication will be very advantageous since it al-
lows proving some theorems or interesting qualitative/quantitative properties on 
the communication behavior where simulation/emulation techniques can fail 
easily. In this paper we try to give an overview of the most famous formal 
methods applied to the verification of communication inside NOCs. 

Keywords—Network-On-Chip, On-communication, Routing, Formal Verifica-
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1 Introduction 

Networks-On-Chip or NOCs [1] emerge as a new communication centric paradigm 
that replaces the well known Systems-On-Chip (SOC) to reduce the design complexi-
ty due to the use of multiple buses, guarantee a high level of quality of services of-
fered by the communication infrastructure and scalability. NOCs integrate computer 
networking concepts for on-chip communication between various processor cores. 
NOCs are characterized by their topologies, their routing algorithms, switching strate-
gies, network control flow, etc. NOCs include many communication scenarios that 
evolve concurrently.  These scenarios may show some undesirable behaviors such as 
deadlock, live-lock, starvation, etc. Testing and simulation/emulation based tech-
niques are not sufficient and often results in missing critical bugs. Consequently, a 
formal validation of the communication correctness will be mandatory. Formal meth-
ods [2] have been used to analyze the behavior of systems using mathematical reason-
ing or rigorous state-space exploration. Approaches to formal verification can be 
classified into two big categories: model checking and theorem proving. Model 
checking [3] is a mainstream formal verification method and involves the computer 
based mathematical modeling of the given system in the form of an automata or state-
space. This model is then used within a computer to automatically verify that it meets 
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rigorous specifications of the intended behavior. Theorem proving [3] uses deductive 
techniques for verifying the relationship between the logical specification and logical 
implementation of the given systems. Several works have been formally verified NOC 
communication using model-checking, theorem proving or a combination between 
them. In this paper, we present an exhaustive survey of works targeting formal speci-
fication and verification of the on-communication for NOCs. Firstly, we introduce 
some key concepts related to NOCs and define the communication in NOCs. Next, we 
present the pertinent works on formal specification and verification of the communi-
cation inside NOCs. We conclude our paper by a discussion on possible future inves-
tigations in the field of formal specification and verification of NOCs. 

2 Communication in NOC 

Networks On Chips have been proposed as a highly structured and scalable solu-
tion to address communication problems in SOC. On-chip interconnection network 
bring many advantages as high-bandwidth, low-latency, low-power consumption and 
scalability. With regard to NOC dimension, we can find two big classes that are 2D 
NOC and 3D NOC. There have been various topologies for 2D NOC architecture. 
These include mesh, torus, ring, star, binary tree, butterfly, octagon, SPIN (Scalable 
Programmable Integrated Network) and reconfigurable architectures.  

From the communication perspective, communication in NOC is related to many 
aspects that are: topology, the routing algorithm, the switching technique, the flow 
control, the arbitration technique, and QoS. The communication between the modules 
of a NOC is generally categorized as synchronous or asynchronous, with a recent shift 
towards Globally Asynchronous Locally Synchronous (GALS). Within the synchro-
nous scheme all the modules are synchronized to a global clock in order to achieve 
their intercommunication. In GALS systems, each module can be synchronized to a 
private local clock but their intercommunication is established asynchronously, rely-
ing on the request and acknowledgement communication handshakes and eliminating 
the need for a global system clock with its undesirably long interconnect wires. One 
of the main challenges when designing a NOC is the implementation of an efficient 
routing algorithm, which is used to determine the path traversed by packets from a 
source to a destination node. Performance, reliability, energy consumption, and fault 
tolerance represent just a short list of the major common metrics affected by the rout-
ing algorithm. Another important requirement of a routing algorithm is guaranteeing 
deadlock and livelock freedom. The former, occurs when two or more packets reserve 
some resources and wait for each other to release the rest of the resources, which 
never takes place, and all packets involved get blocked and make no progress towards 
their final destination. The latter, appears when packets wander around and never 
reach their destination (especially when non-minimal routes are allowed). 
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3 Formal methods for NOC 

Many experts in the field of NOC design have discussed the need for formal meth-
ods to generate a design which is correct by construction. By applying formal meth-
ods, a very abstract formal model is established then it will be refined over many steps 
to finally obtain an implementation which is correct. The abstract model can be used 
for early functional correctness verification, design exploration or non-functional 
requirements validation. Formal methods have been applied continuously in NOC 
communication analysis to prove using model checking or theorem proving the ab-
sence of some undesirable properties like deadlock, livelock, starvation or the pres-
ence of some desirable properties like liveness, security, fairness, etc. or the satisfac-
tion of QoS constraints such as latency, bandwidth, response time or power consump-
tion using some combination of model checking and simulation/static analysis meth-
ods. In this context, many formal specification languages and associated tools have 
been developed at the aim of formal verification of NOC communication and espe-
cially the routing. Some of these languages are standard and software-oriented. Some 
others are not standard but specific to NOC. 

3.1 Z notation 

The Z notation is an ISO standard, used to specify data-dominated systems. Z for-
mal language belongs to the class of state or model-based formal specification lan-
guages. It is based mainly on the axiomatic set theory, lambda calculus and the first 
order predicate logic. The unit specification in Z is called schema. There exist two 
schema types: data schema and operation schema. Z schemas can then be combined to 
form the whole specification. System data are constrained by their invariants and the 
operations by their pre/post-conditions. Z uses the theorem proving technique to rea-
son about the correctness and the coherence of the system. Authors in [4] presented a 
Z specification of the routing in a mesh NOC with six routers and asymmetric links 
between them. The first objective of this work is to evaluate the routing scheme con-
sidering latency, status link and shortest route. In order to better understand the dy-
namism of the operations, and more specifically those related to routing techniques, 
authors used  the animation tool namely Possum. 

3.2 Event B 

Event B is an extension of the B method to support reactive systems.  
Invented by Jean-Raymond Abrial, the B method is a formal method for specifica-

tion and verification of data oriented systems. The B method follows a successive 
refinement approach to finally generate a correct by construction program from ab-
stract specifications. There are three kinds of specification unities in B; the abstract 
machine, the refinement and the implementation. The verification process in B is 
based on what we call proofs obligations (PO). As Z notation, B language is qualified 
as a state-based formal specification language. Event B method introduces two new 
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concepts: the event and the context concepts. In the context of NOCs, Event B was 
used by many researchers to formally verify the correctness of communication. Au-
thors in [5] used the event B method to design a fault tolerant mesh NOC for System-
on-Chip (SOC)-based reconfigurable Field- Programmable Gate Array (FPGA). The 
formalization process is based on an incremental and validated correct-by construc-
tion development of the NOC architecture. Indeed, this work provides a framework 
for developing the Network-on-Chip Architecture and the XY routing algorithm using 
essential safety properties together with a formal proof that asserts its correctness. The 
complexity of the development is measured by the number of proof obligations which 
are automatically/manually discharged. In another work, Kamali [6] proposed three 
(3) abstract models namely M0, M1, and M2 at three increasing levels of detail for 3D 
NOCs. These can be used for modeling and verifying 3D NOC-designs in the early 
stages of the system development. Each of these models provides templates for com-
munication constraints and guarantees the communication correctness. She showed 
how to apply such an abstract model to verify a concrete 3D NOC routing algorithm. 
This is achieved by modeling the correctness condition via invariants; as each model 
added detail to the previous model, the invariant needed to reflect these added details 
in a consistent manner. In order for the invariant to be satisfied by a model, a number 
of proof obligations needs to be discharged. Moreover, in order for the models to 
respect the refinement relation some other proof obligations need to be generated. As 
she have employed the RODIN platform to specify the 3D NOC modeling, many of 
these proof obligations have been automatically discharged, while for the rest it was 
possible to discharge them interactively. Model checking can also be applied via the 
model checker Pro-B that is associated to the RODIN platform to verify the liveness 
property. 

3.3 Concurrent Haskell 

Concurrent Haskell is an extension of the purely functional language Haskell 
which expresses concurrency at a high level of abstraction. 

Authors in [7] presented an approach which uses Concurrent Haskell to produce 
concise formal specifications of a real-world NOC that is the SpiNNaker. The latter is 
specifically for the real-time simulation of large-scale spiking neural networks. It is a 
multicast communication network. It places a heavy emphasis on fault tolerance. The 
system is implemented as a 2D array of nodes interconnected through bi-directional 
links in a triangular formation. The NOC is asynchronous, and serves to decouple the 
many different clock domains across the chip. Using Concurrent Haskell, SpiNNaker 
chips are modeled as concurrent processes, communicating with each other via chan-
nels which represent the inter-chip links. For the processor-NOC links, three initial 
assumptions are considered: the NoC-processor links will never fail, the processors 
and NOC fabric will always process packets fast enough to prevent deadlock across 
the NOC-processor links and the NOC arbiter will be fair in so much as all input re-
quests will be serviced eventually. This work used a very simple model for the ARM 
cores, which simply accepts and generates traffic; they are functions that wait to take 
packets and then emit new ones, with their own address as the source address. 
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3.4 Promela 

PROMELA (PROcess MEta LAnguage) is a high level language to specify sys-
tems descriptions supported by the SPIN tool. Authors in [8] presented a new formal 
model of the Hermes NOC router with five bi-directional ports and the bounded buff-
ers at input port, including the XY routing algorithm, priority based arbitration logic, 
wormhole switching and the request-ack handshake protocol of the communication 
scheme using a new formal language called Heterogeneous Protocol Automata (HPA) 
which is then mapped manually to PROMELA. HPA is a finite state machine with 
bounded counters that models clocked and clockless systems. The definition allows 
modeling of event and clock based transitions. Communication interfaces are modeled 
in HPA as Synchronous Finite State Machines (SFSM) and Asynchronous Finite State 
Machines (AFSM). The target NOC is a Hermes mesh NOC where packets always 
take a deterministic route in XY routing. The simulator and model checker inbuilt in 
the SPIN tool are used for verification. The properties are specified in linear temporal 
logic (LTL). Using the SPIN model checker, authors verified that: 

(a) All the packets sent from source node are received correctly at the right destina-
tion node b. (b) The packets flow through a valid path and take the same path every 
time. A valid path implies that packets are routed only through the routers that are part 
of the mesh network. In another work [9], authors used PROMELA to specify Pro-
grammable Network-On-Chip (PNOC), which is a circuit, switched NOC architec-
ture. The topology contains series of subnets where multiple nodes are connected to a 
single router through the router port interfaces. A light handshaking mechanism is 
required to establish or remove connection from a node. This flexible system allows 
runtime insertion and removal of nodes. Properties including deadlock freedom, star-
vation freedom, mutual exclusion and liveness are verified using the SPIN model 
checker. Authors in [10] proposed a new deadlock recovery algorithm and they de-
scribed a PROMELA model which allows the formal verification for the SOCIN 
NOC with 2D grid topology. In the PROMELA model, authors changed SOCIN’s 
routing algorithm (originally based on dimensional ordering) and have forced config-
urations of deadlocks to test the proposed algorithm. 

3.5 Timed automata and their extensions 

Timed automata are extensions of classical finite automata with clock variables and 
logical formulas on the clock (temporal constraints). Extended Timed Automata 
(ETA) extend timed automata by adding non-clock variables (discrete variables) with 
their corresponding transition functions. 

Authors in [11] used timed automata for the modeling and formal verification for 
the global validation of the behavior of a passive integrated photonic routing struc-
ture. Optical Networks on Chip are the alternative solution for Metallic interconnects. 
This work proposed a two steps methodology. The first step works on high level of 
abstraction and the second step works on low level of abstraction and precisely on the 
network segments. The passive transport part is represented by λ-router, which is 
shared by all the IP blocks to route the data through the network. The routing in the 
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optical network presented is realized by a 4x4 λ-router. Using UPPAAl, the models 
were simulated and formally verified. The formal verification consists of checking 
some properties of the system. The verified properties are: the absence of deadlock, 
the absence of contention (i.e. simultaneous wavelength can be sent through the net-
work and/or through the router, from the same initiator, in the same time), the verifi-
cation of the truth table (i.e. there is one and only one wavelength that connects one 
initiator with one target), and all the locations in the automaton representing the 
switch are eventually taken. Authors in [12] modeled the router designs of BiNOC: 
Bidirectional NOC architecture with dynamic self-reconfigurable channel in ETA. 
BiNOC is a conventional mesh-based NoC design with XY-based wormhole routing. 
It allows configuring the direction of a channel dynamically. The ETA models are 
composed into a system state graph, which will be input to the model checker State 
Graph Manipulator (SGM). The other input to SGM will be the given property, which 
is specified into the CTL formula. Four crucial properties of the NOC router, namely, 
mutual exclusion, starvation freedom, deadlock freedom, and conditions for traffic 
congestions are investigated.  

3.6 Lotos 

LOTOS (Language of Temporal Ordering Specification) an ISO standard, is an al-
gebraic language based on temporal ordering of events. LOTOS is used for protocol 
specification. It consists of two parts: a part for the description of data and operations, 
based on abstract data types, and a part for the description of concurrent processes, 
based on process calculus. Authors in [13] used value-passing CHP (Communicating 
Hardware Processes) to generate LOTOS specification. The latter is then verified 
using the CADP verification toolbox for LOTOS. CHP are a natural approach for the 
description of asynchronous hardware architectures. These calculi are extensions of 
standard process calculi with particular synchronization features implemented using 
handshake protocols. As a case study, authors considered the ANOC (Asynchronous 
NOC) architecture, which is used as the backbone of Faust, a 4th generation wireless 
telecom baseband. ANOC implements the GALS paradigm and connects the nodes in 
a 2D-Mesh topology. The ANOC model in CHP was abstracted. In this case study, 
authors dealt in particular with the verification of the most complex component of a 
node of ANOC, namely the input controller with several realistic scenarios. The func-
tional properties describing the protocol behavior of the input controller are: protocol 
correctness (i.e. the input controller must comply at its inputs with the ANOC proto-
col, and transmit the incoming data to an output controller), data integrity (i.e. the 
contents of the communications must be preserved by the input controller), and cor-
rect packet routing (i.e. the input controller has to route all the flits of a packet in the 
right direction). These properties were verified using a generic SVL (Scripting Verifi-
cation Language) script, calling the model checking and equivalence checking tools of 
CADP. 
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3.7 ACL2 

ACL2 is a theorem prover and its specifications are written in an applicative subset 
of Common Lisp and are thus executable. An important feature of ACL2 is to denote 
both a powerful theorem proving system and an execution engine in the same envi-
ronment. The theorem proving system has a high degree of automation. Authors in 
[14] addressed the formal verification of NOCs by means of ACL2. In their previous 
work, the authors presented the generic network on chip model (GeNoC). It consists 
of a meta-model of on-chip communication architectures and its implementation in 
the logic of a theorem proving system. It is a highly generic and parameterized object. 
The main function of the meta-model is function GeNoC. It takes as main argument a 
list of messages emitted at source nodes and returns a list of messages received at 
destination nodes. Function GeNoC produces two output lists: the list of messages 
that have reached their destination, and the list of messages that are still at their 
source, or traveling in the network. The model is implemented in the ACL2 theorem 
prover. The enhanced formalization presented in [14] constitutes a significant pro-
gress, both mathematically simpler and offering a much larger expressive power. The 
methodology is demonstrated on a realistic and state-of-the-art design, the Spidergon 
network from STMicroelectronics. It is an extension of the Octagon network to an 
arbitrary even number of nodes. Spidergon forms a regular architecture, where all 
nodes are connected to three neighbors and a local IP. Twenty three (23) proof obliga-
tions were defined. Once the different proof obligations of each component have been 
proven, the general correctness property is directly obtained from the instantiated 
proof obligations. This generic aspect of GENOC reduces the verification to discharg-
ing proof obligations local to each constituent and provides a compositional approach. 
Verified instances of the constituents can easily be re-used. Authors in [15] proposed 
a methodology that supports the specification of parametric NOCs. They provide 
sufficient constraints that ensure deadlock-free routing, functional correctness, and 
liveness in a parametric NOC inspired by the HERMES architecture. The latter is 
based on 2D mesh architecture. The routing policy is based on the XY routing algo-
rithm. HERMES uses the wormhole switching technique. The contribution of this 
work is the addition of two new theorems to GeNoC. The first one ensures that the 
routing function is deadlock free. The second one proves that all messages injected in 
the network eventually leave the network, i.e., liveness. To prove the original GeNoC 
correctness theorem, one has to prove that the routing function terminates and ends in 
the correct destination. This only proves that computing one route for one message is 
correct when there is no other message in the network. Deadlock and evacuation are 
global properties that depend on the interaction of several messages. All theorems 
were implemented using the ACL2 ‘Sedan’, an Eclipse interface to the ACL2 theorem 
prover. 

3.8 DEVS based model checking 

Discrete Event System Specification (DEVS) is a formalism for specifying modu-
lar, hierarchical coupled models composed of atomic models suited for simulation 
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purposes. Authors in [16] presented a DEVS-based model checking verification 
method for NOC models. For this purpose, a constrained version of the atomic DEVS 
modeling formalism is formulated and applied to verification of an NOC router. This 
is achieved by adding constraints on the state size and the number of transitions in the 
atomic model. A model-checker is introduced into the DEVS-Suite simulator for 
verifying constrained DEVS models. In order to demonstrate how the modeling and 
implementation of constrained DEVS models are carried out for NOC components, 
authors modeled and verified an atomic router model in a mesh 5x5 NOC using the 
DEVS-Suite simulator. The authors used Java to implement a data collector using 
Experimental Frame (EF) in the DEVS-Suite simulator that gives the designer flexi-
bility and support for creating experiments and calculating measurements based on 
the states of models. In the proposed model-checking framework, the generator injects 
various combinations of inputs to the model and the transducers are charged with the 
task of gathering data from the model. These transducers can collect state data as well 
as data derived from states and check them against some desired properties. 

3.9 CSP and FSP 

CSP (Communicating Sequential Processes) is a formal language for describing 
patterns of interaction in concurrent systems. It belongs to the family of mathematical 
theories of concurrency known as process algebras, or process calculi, based on mes-
sage passing via channels. In the context of a master thesis [17], the author formally 
verified the OASIS NOC using the model checking technique. The OASIS NOC is a 
complexity effective on-chip interconnection network designed and prototyped on a 
FPGA. The OASIS NOC is a 2-D 4×4 mesh topology. Both refinement model check-
ing and probabilistic model checking techniques are used to verify the OASIS NOC 
properties. The OASIS NOC is first formalized in CSP and then verified with the 
FDR (Failure-Divergence Refinement) model checker for deadlock freedom. FDR is 
the de facto model checker for the CSP language from Formal Systems Europe Lim-
ited [FSEL]. Its method of establishing whether a property holds is to test for the 
refinement of a transition system capturing the property by the candidate machine. 
The author also showed that PRISM model checker which is designed for verifying 
probabilistic properties can be used to verify non probabilistic properties as deadlock 
freedom. The behavior of a system to be verified by PRISM model checker is speci-
fied using a simple module-based language inspired by Reactive Modules formalism 
of Alur and Henzinger. The fundamental components of the PRISM language are 
modules and variables. The verification result of both FDR and PRISM shows that the 
OASIS NOC is free from deadlock. Using PRISM, the OASIS NOC behaves as a 
message buffer; receiving and delivering flits without any losses.  

Authors in [18] presented a systematic approach that models concurrent processes 
in a mesh NOC using Finite State Process (FSP); this model is exhaustively tested 
with Labeled Transition State Analyzer (LTSA) tool developed by Jeff Magee and 
Jeff Kramer. FSP (Finite State Processes) is a process specification language based 
closely on the CSP. The authors proposed a set of rules that should be followed for 
modeling a NOC concurrent system.  

22 http://www.i-jes.org



Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview 

3.10 SVA 

SVA (System Verilog Assertions) is an assertion-based language offering a very 
powerful way to describe design properties and temporal behaviors. An assertion is a 
statement that validates assumptions or checks conditions in a program. It can be seen 
as an observer that observes the state of the program and, if built that way, can block 
further execution of the code, but it cannot alter the program itself. Assertions are 
primarily used to validate the behavior of a design. They may also be used to provide 
functional coverage information for a design. Assertions can be checked dynamically 
by simulation, or statically by a model checker. In System Verilog, there are two 
kinds of assertions: immediate (assert) and concurrent (assert property). Coverage 
statements (cover property) are concurrent and have the same syntax as concurrent 
assertions. Authors in [20] presented MCENOC, a Network-on-Chip (NoC) switching 
architecture with predictable, formally verifiable timing behavior. Firstly, they used 
Benes networks to model the MCENOC. A Benes network is a special case of the 
Clos network; it refines the Clos concept into a topology of 2x2 switching elements. It 
retains the same properties, but is constructed from the smallest possible switch size. 
A Clos network is a kind of multistage circuit switching network used in the field of 
telecommunications. Using SystemVerilog Assertions (SVA), formal properties are 
defined helping the refinement of the specification of the design as well as enabling 
the implementation to be exhaustively formally verified. The authors demonstrated 
the performance of the design in terms of size, throughput and predictability, and 
discussed the application level considerations needed to exploit this architecture. 

Properties are defined in SVA, and then asserted for each of the ports or instances 
defined in any configuration of the system. Checking of these properties is performed 
using the Cadence JasperGold formal verification tool. 

3.11 PVS 

PVS is a verification system, combining language expressiveness with automated 
tools. The language is based on higher-order logic, and is strongly typed. It includes 
types and terms such as: numbers, records, tuples, functions, quantifiers, and recursive 
definitions [21]. The PVS prover is interactive, but with a large amount of automation 
built in. PVS includes an integrated model checker that is based on the μ-calculus. To 
use the model checker, a finite transition system must be defined with an initial predi-
cate and a transition relation. The PVS prelude provides CTL temporal operators, as 
well as several definitions of fairness. Authors in [22] discussed a formal specification 
of the ÆTHEREAL protocol and its underlying network in terms of the PVS specifi-
cation language. The ÆTHEREAL protocol has been proposed by Philips to enable 
both guaranteed and best-effort communication in an on-chip packet switching net-
work. Using PVS the authors proved the absence of deadlock for an abstract version 
of the model. 
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3.12 ABS 

ABS is a formal, executable modeling language for concurrent and distributed sys-
tems. It combines functional, imperative, and object-oriented programming styles 
allowing intuitive, modular, high-level modeling of concepts, domain and data.  

ABS models are fully executable and model system behavior precisely. ABS can 
model synchronous as well as asynchronous communication. ABS has been devel-
oped to provide the foundations for scalable formal verification: there is a program 
logic as well as a compositional proof system that makes possible to prove global 
system properties by reasoning about object-local invariants; ABS comes with an IDE 
and a range of analysis as well as productivity tools, specifically, there is a formal 
verification tool called KeY-ABS. Authors in [23] developed an approach with a case 
study of a Network-on-Chip packet switching platform. They provided an executable 
formal model in ABS of a generic MxN mesh chip with an unbounded number of 
packets and verified several crucial properties. Their concern was formal verification 
of unbounded concurrent systems. They showed how scalable verification can be 
achieved by compositional and local reasoning about history-based specifications of 
observable behavior. The approach is realized in the proof system KeY-ABS. They 
demonstrated the viability of the verification approach by proving the correctness of 
safety properties for an ABS model of an ASPIN (Asynchronous Scalable Packet 
Switching Integrated Network) NOC of arbitrary, unbounded size. Formal proofs of 
global properties such as “no packets are lost" and “a packet is never sent in a circle" 
were reported. 

3.13 Petri Nets and their extensions 

Generally speaking, Petri Nets have been used to model and simulate traffic in 
NOC systems. Authors in [25] presented formal models for multicast traffic in NOC 
architectures. They formalized multistage interconnection networks with semantics 
inspired by the high-level version of the Petri box algebra, which allows one to repre-
sent concurrent communication systems in a compositional way. 

Authors in [26] applied deterministic and stochastic Petri-Nets (DSPNs) to model 
on-chip communication. In their contribution, the modeling of basic NOC communi-
cation scenarios featuring different processor cores, network topologies and commu-
nication schemes is presented. In order to provide a test bed for the verification of 
modeling results a state-of-the-art FPGA-platform has been utilized. This platform 
allows to instantiate a soft-core processor network, which can be adapted in terms of 
communication network topologies and communication schemes. Quantitative results 
for modeling effort and computational complexity were presented. Furthermore, a 
more complex hierarchical NOC has been modeled and the influence of parameters 
like the distribution of read and writes accesses has been studied. 
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3.14 PSL 

PSL (Property Specification Language) has emerged as one of the standard asser-
tion languages and is on its way to becoming an IEEE standard. PSL is designed to 
capture design intent in an executable, formal, unambiguous manner. Authors in [27] 
presented a methodology to use assertions in NOC designs to facilitate debugging, 
monitoring, and ensuring reliable and failure-free operation. They relied on their own 
assertion-checker generator (MBAC) to produce efficient RTL-level checkers from 
high-level temporal assertions, with optional debugging features. The MBAC asser-
tion compiler generates hardware that only monitors the circuit behavior, guarantee-
ing that the hardware will behave as originally intended. Furthermore, automatically 
translating PSL assertions into hardware checkers at RTL code eliminates the risk of 
introducing errors into the assertion circuitry itself, which is likely to occur if the 
translations were done manually. To optimize the usefulness of the assertion checkers, 
they applied small modifications on the existing NOC to provide the chronology of 
errors. To this effect, they introduced a NOC-level high-priority messaging system. 

3.15 SDL 

The Specification and Description Language (SDL) is a specification language tar-
geted at the unambiguous specification and description of the behavior of reactive and 
distributed systems, defined by ITU-T in Recommendations Z.100 to Z.106, original-
ly focused on telecommunication systems. 

Authors in [30] described the design of a NOC simulator using SDL. Features of 
SDL for representing structural hierarchy using blocks, concurrent processes and 
dynamic generation of processes, communication channels of user defined data types 
and timers are useful for modeling a NOC architecture at various levels of communi-
cation protocols. The event driven SDL simulator carried out interesting experiments 
to evaluate various architectural options like buffer size in switches, and their effect 
on the performance like delay and packet loss. The target NOC is the KTH-VTT NOC 
Architecture consisting of a two-dimensional mesh of switches or micro-routers. 
Cores (called resources) are placed in the slots formed by the switches. To have flexi-
bility as well as efficiency of simulation, authors provided a mode switch in the model 
so that it is possible to simulate the model either at data-link layer or at the network 
layer. Since data-link layer does not add information on how the routing and buffers 
work, it would be possible to leave this layer out when making evaluations of network 
performance at network layer level.  

3.16 Timed Rebeca 

Timed Rebeca is an extension of Rebeca formal specification language, capable of 
modeling functional and timing behaviors of distributed reactive systems. 

Rebeca is an actor based modeling language with a Java-like syntax. Actors can be 
considered as a reference model for concurrent computation. A Rebeca model consists 
of reactive classes and a main part that contains instantiation of reactive objects (re-

iJES ‒ Vol. 6, No. 4, 2018 25



Paper—Formal Specification and Verification of Communication in Network-On-Chip: An Overview 

becs) from reactive classes. Authors in [31] targeted maximum end-to-end packet 
latency for comparison of different routing algorithms. Network topology, router 
buffers, routing algorithm, communication policy, storage strategy and channels are 
modeled. Timing behaviors like link delay and the delay for writing and reading 
to/from buffers are also considered in the model. Using an actor based modeling lan-
guage; they efficiently mapped the constituents of GALS NOC to actor model. To this 
end, a formal model for GALS NOC was presented using high level modeling lan-
guage Rebeca. The model was then used for comparison between three routing algo-
rithms, namely XY (deterministic), Odd-Even (adaptive) and DyAD (dynamically 
adaptive and deterministic) with respect to the maximum end-to- end packet latency. 
Results of comparison were presented under two different traffic patterns and showed 
that under distributed traffic a deterministic routing could better work. However, in a 
directed traffic -that is of more interest in real applications- adaptive routing algo-
rithms are better. The routing performance results obtained through Rebeca model 
checking confirm the same previously published results in simulations. 

4 Discussion 

According to our analysis, we can state that: 

• There is a panoply of formal specification languages and tools for NOC communi-
cation verification.  

• Most of these languages and associated tools are not standard, consequently their 
interoperability is infeasible. 

• Most of related works verify packet switching routing in 2D mesh topology and 
XY routing algorithm.  

• A lack in formal methods for circuit switching, other topologies expect the mesh 
one, and importantly 3D NOCs. 

Model checking suits well control-dominated systems (i.e. systems whose behavior 
can be expressed as state-space), it brings many advantages due to its automatic, and 
hence user-friendly, nature. Moreover, the ability to provide counter examples in case 
of failures makes model checking a more preferable choice for industrial usage as 
compared to the other interactive formal verification approaches like theorem prov-
ing. However, model checking suffers from the space explosion problem and its ap-
plicability is restricted to finite state systems. In the literature, many solutions have 
been proposed to solve the big problem of the state explosion, among them, we find 
notably symbolic, probabilistic and distributed model checking. The latter solution 
seems to be very promising. On the other hand, theorem-proving suits well data-
dominated systems and appropriate for infinite systems. A major challenge with theo-
rem proving is its automation especially for systems using higher order logic. Most of 
theorem provers are interactive. Since NOCs are generally, data/control dominated 
system, a combination of both model checking and theorem proving seems a promis-
ing solution. Amjad [34] investigates the idea of combination between model check-
ing and theorem proving and apply it to verify the AMBA protocol. Complement 
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formal verification techniques with trace-based simulation is also an interesting solu-
tion and many works have investigated this idea.  

In terms of formal specification languages for NOCs, authors have proposed many 
formalisms and theories from both software and hardware communities. Here, we 
discuss some of these languages especially the well-known ones and highlight their 
appropriateness to NOC modeling and verification. 

Z language is a too abstract and does not support hardware aspects such as timing, 
reactivity and concurrency, synchronization, etc. Furthermore, the refinement in Z is 
done manually. In its current form, we see that Z is not very suitable for NOC verifi-
cation. Comparatively to Z, Event B seems to be more appropriate for NOC verifica-
tion since it supports many hardware aspects at higher level of abstraction like reac-
tivity and concurrency. The most important in Event B is the refinement and automat-
ic PO (proofs obligation) generation and verification. A clear drawback in Event B is 
the lack of timing and QoS support. PROMELA, which is a C like language, does not 
offer the necessary abstraction for NOCs modeling. PROMELA is qualified as a tran-
sition-based language. Petri Nets and their variants match well the formal quantitative 
analysis of NOCs. SDL and due to its graphical notations and simulation/formal veri-
fication capacities are good candidates for NOC verification. PSL and SVA are asser-
tion-based languages and very suitable for the formal verification of the hardware part 
of NOCs. Establish a link between formal techniques and state of the art system level 
standard languages for NOCs, such as SystemC may be an alternative good solution. 
In this context, authors in [35] proposed to integrate model checking into SystemC. 
Authors in [36] models SystemC fixed-point arithmetic in the theorem prover HOL. 
Similarly to the standard SystemC, authors have defined a sub set of VHDL and de-
fined its semantics in the theorem prover ACL2 [37], or in a certain model checker as 
CV [38]. Boutekkouk [39] formalized a sub set of VHDL into Maude language. The 
latter is based on equational algebra and rewriting logic theory. The idea of Sys-
temC/VHDL formal verification suits well legacy code reuse. However, this idea 
deals with low level models and consequently it consumes much time for verification. 
Abstraction of these models can alleviate this problem but at the prize of imprecise 
results. ESTEREL and SIGNAL are two synchronous languages that seem very ap-
propriate to model and verify ANOC, since they implement well the GALS philoso-
phy [40]. The Architecture Analysis & Design Language (AADL) is another good 
candidate for NOC simulation and formal verification. AADL has been used to model 
both software and hardware architecture of an embedded, real-time system. AADL 
includes many tools for simulation, performance estimation and formal verification 
using model-checking [41]. What we need is a standard language for NOC specifica-
tion and verification. This language has to satisfy the following requirements: 

• More friendly and supports well the graphical notations. 
• Multi-paradigm (i.e. supports a variety of Models of Computation and semantics) 
• Has the capacity to model and refine both software and hardware through different 

levels of abstraction. 
• Generic enough to model different topologies (2D, 3D), different routing, switch-

ing and control flow techniques.  
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• Supports both model checking, theorem proving and trace-based simulation inte-
grated into one unified environment. 

• Supports tools for integration and interoperability with other tools and existing 
state of the art formal languages for NOCs. 
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