
Research Journal of Applied Sciences, Engineering and Technology 5(19): 4664-4670, 2013
ISSN: 2040-7459; e-ISSN: 2040-7467
© Maxwell Scientific Organization, 2013
Submitted: September 22, 2012 Accepted: November 23, 2012 Published: May 10, 2013

Corresponding Author: Shafiq Hussain, Department of Computing, Engineering and Technology, University of Sunderland,

UK, Tel.: 0044 7466638765
4664

Formal Specification of Security Properties using Z Notation

1Shafiq Hussain, 1Peter Dunne and 2Ghulam Rasool

1Department of Computing, Engineering and Technology, University of Sunderland, UK
2Department of Computer Science, COMSATS Institute of IT, Lahore, Pakistan

Abstract: Software security is a challenging issue for distributed and open systems. Despite the importance of
external protections of software systems, internal security has significant impact on the overall security of the
software systems. In this study, internal security issues of software systems are addressed. Internal security of
software systems is defined in terms of security properties: authentication, authorization, confidentiality, integrity,
non-repudiation and resource availability. Internal security of software systems largely depends on the integration of
these security properties into the software systems. A precise and unambiguous representation of these security
properties is crucial for any successful secure system. Majority of the existing models are based on informal or semi-
formal approaches to model these security properties. But no model is based on formal methods. Therefore, in this
study, a formal specification of these security properties is presented in Z notation because formal methods are the
only way to specify system properties unambiguously, completely and precisely. The resulting models are then
analyzed by using Z/EVES theorem prover. The formal specifications of these security properties are analyzed only
for syntax checking, type checking and automatic proofs of models.

Keywords: Availability, authentication, authorization, confidentiality, formal methods, integrity, non-repudiation

INTRODUCTION

Software security is a challenging and most
demanding aspect of current software systems,
particularly for web based systems. The emergence of
sophisticated and complex distributed systems has
made software security as an integral component of
secure systems. Software security depends not only on
the external protective measures but it also depends on
the internal security aspects of software systems
themselves. The internal security issues of software
systems are more challenging and complicated as
compared to external protections. This research is
focused on the internal security properties of software
systems. For internal security of software systems,
security properties: confidentiality, integrity, non-
repudiation, availability, authentication and
authorization must be integrated into the systems. In
authentication unique identification of a user or entity is
established. Any user who wants to get access the
system must have credentials to access the system by
system must have authentication policy predefined for
that user. Authorization security property enables an
authenticated user to access a particular resource in the
system. Users, who want access, must have access
rights for that resource. Confidentiality is the property
which allows an authorized user to read the contents of
a confidential resource. Confidentiality defines the read
access policy of the system. Only those users can read
confidential data who has rights to read that data.

Integrity security policy allows an authorized user to
write on a resource. Integrity policy defines write
access for users of the system. Only those users, who
have write permissions, can write data on a resource
that has permissions for writing. Non-repudiation
security property ensures auditing and logging
mechanisms of software systems. Non-repudiation
requires that every action by all the users of the system
must be properly recorded and logged in the system.
Availability security property enforces the availability
of system resources to legitimate users. Every user of
the system must get sufficient resources available in the
system to complete his/her tasks. These security
properties have been specified formally by using Z
notation, a formal specification and modeling language
and Z/EVES theorem prover has been used for
analyzing the resulting models.

LITRATURE REVIEW

With the speedy developments in the area of
distributed computing and web based systems, the
needs to resolve security issues become critical for
smooth and successful operations of software systems
(Subashini and Kavitha, 2011). For web based
distributed systems, there is a need of secure
communication mechanism because all communication
is dependent on message passing in these systems
(Savola and Abie, 2010). Security properties are the
mechanisms used to stop an attack on software systems

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4665

and are built into the software systems (Bishop, 2003a).
The security properties are required to be specified
precisely at the requirements engineering phase of
software development (Wolter et al., 2009). The
security properties such as authentication,
authorization, confidentiality, integrity, non-repudiation
and availability are the main security properties and
must be built into the software systems (Bertino et al.,
2009; Menzel and Meinel, 2009). Authentication and
authorization are the basic controls for software
systems and all other security mechanisms such as
confidentiality are dependent on these two properties
(Jie et al., 2011; Welch et al., 2003; Thompson and
Montague, 2011; Sandhu and Samarati, 1994).
Authentication property makes it ensure for a user to be
identified the system as a legitimate user of the system
(López et al., 2007). Authorization is built on the
authentication property and determines the access or
denial of a user to access particular resources in the
system (Joshi et al., 2005; Hu and Ahn, 2011; Ahn and
Sandhu, 2000). Strict authentication and authorization
mechanisms enable an enhanced and more secure
environment for execution of business on the systems
particularly electronic commerce and banking systems
(Ferraiolo et al., 2001; Kolovski et al., 2007).
Confidentiality property determines the read access to
data in the system and grants read access to only those
users who have read rights for that data (Bishop,
2003b). Integrity property determines the write access
to data in the software system and grants write access to
users who have write access for that data (Zhou et al.,
2010; Xu and Liu, 2009; Thompson and Montague,
2011). Non-repudiation property ensures the auditing
and logging mechanism in the software systems. It
makes it mandatory to record any action performed by
authorized users in the system (Feng et al., 2010;
Onieva et al., 2009). Availability property manages the
readiness of system resources for legitimate users. It
ensures system resource must be available to legal users
when demanded and no deadlock occurs (Milanovic
and Milic, 2011; Bishop, 2003a; Arci et al., 2003).
Formal methods are mathematics based techniques for
developing mathematical models of software systems
and enables to analyze software designs to remove
flaws before implementation. Hence, reducing huge
effort spent at the testing phase (Jacky, 1996; Xia and
Tang, 2008; Zafar and Alhumaidan, 2011; Sidek and
Ahmad, 2009). Formal specification helps us to specify,
analyze and design computer systems ranging from
commercial systems such as banking systems to critical
systems such as air traffic control systems (Zafar, 2009;
Coronato and De Pietro, 2011; Hussain et al., 2011).
Software security is important area for the application
of formal methods because security properties are
impossible for exhaustive testing. Formal methods have
been used successfully in many security systems such
as SSAI and Correctness by Construction (Gilliam
et al., 2001; Dimitrov, 2011; Woodcock et al., 2009).

The use of formal methods for software systems helps
to analyze system properties by using powerful tools to
produce formal proofs and making possible the
production of more reliable and secure software
systems (Almeida et al., 2011).

FORMAL METHODS

Formal methods are mathematics based tools and

techniques used for developing mathematical models
and designs of software systems. Formal methods can
be applied at all the stages of software development life
cycle from specification to implementation. Formal
methods help to write formal specifications from the
requirement documents in a precise way. In this way,
common specification errors such as incompleteness
and ambiguities can be removed. These specification
errors are occurred due to the ambiguous nature of
design methodologies being used for developing
software applications. These design methodologies are
based on informal and semi-formal techniques. The
solution lies with the use of formal methods. By using
formal methods, software systems are designed without
ambiguities in formal specification language such as Z.
The resulting models are then analyzed by using formal
method tools such as theorem provers and model
checkers. These models can be verified and validated
by automatic formal methods tools. Formal proofs of
desired properties can also be generated by using
theorem provers such as Z/EVES and Isabelle. There
are some areas of computer science such as security
where exhaustive testing is not possible because
security properties are very hard to prove before
implementation. Therefore, formal methods can be used
to validate security properties before implementation.
Theorem provers are normally used to generate formal
proofs of software systems while model checkers are
used to validate models and remove faults such as
deadlocks. The use of formal method specification
languages, model checkers and theorem provers
depends on the nature of the application being
developed. Formal methods can be categorized broadly
into three types: formal specification languages such as
Z, VDM-SL, VDM++, Object-Z, B-Method, Event-B
and Alloy etc., model checkers such as SPIN, Alloy and
Pro-B, theorem provers such as Z/EVES, Isabelle, Coq
and RODIN. In this study, security properties have been
specified in Z notation. Z/EVES theorem prover has
been used for analysis of models produced in Z. Z is a
model based language and built on set theory. Models
in Z are a collection of state variables, invariants on
state variables, set of operations and a set of pre and
post conditions.

INFORMAL MODEL

In this study, six security properties have been
considered. These security properties include

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4666

authentication, authorization, confidentiality, integrity,
non-repudiation and availability. These security
properties are defined informally as follows:

Authentication: Authentication is the mechanism in
which unique identification of a user of the software
system is determined. Authentication process ensures a
login policy stored in the software system. Any user
who want to login into the system must provide unique
credentials such passwords defined in the login policy
for that user.

Authorization: Authorization property grants or denies
access to system resources for a particular user. If the
user has access rights for intended resources, he or she
is granted access to that resource otherwise, no access is
granted. Access is granted to user depending upon the
policy already defined for the users according to the
roles of the users.

Confidentiality: Confidentiality property determines
the read access to data in the system and grants read
access to only those users who have read rights for that
data. Confidential data can only be read by the users
who are authorized to read that data. Some additional
credentials are required to read confidential data.

Integrity: Integrity property determines the write
access to data in the software system and grants write
access to users who have write access for that data.
Data can only be written by the users who are
authorized for it. There must be a strict writing policy
in the system to ensure integrity of data. The common
issue of data integrity such as redundancy,
inconsistency etc. must be considered.

Non-repudiation: Non-repudiation property ensures
the auditing and logging mechanism in the software
systems. It makes it mandatory to record any action
performed by authorized users in the system. This
policy sets limits on the legitimate users of the system
and ensures that every action or activity of these users
must be recorded. It helps for auditing at the later
stages.

Availability of resources: Availability property
manages the readiness of system resources for
legitimate users. It ensures that system resource must be
available to legal users when demanded and no
deadlock occurs. The resource allocation algorithm
should be defined in such as way that at least sufficient
system resources remain available to legitimate users
all the time. System resources must not be consumed by
existing users of the system.

FORMAL MODEL

The formal models of security properties have been
developed by using Z notation, a formal specification
and modeling language. This formal model consists of

static model and dynamic model. In static model, state
variables are defined formally along with invariants on
these variables. The invariants impose constraints on
data hold by these variables. Furthermore, these
invariants should remain true for all the time for smooth
functioning of the system. In dynamic model,
operations on the system are defined along with a set of
pre and post conditions.

Static model: The static model of security properties
starts with the definition of basic types for users,
credentials, resources and actions on those resources. In
the following specification USER represents set of
users, CREDENTIAL represents set of credentials the
user may have, RESOURCE represents set of resources
in the system and ACTION represents the set of action
allowed on system resources in the system:

[USER, CREDENTLAL, RESOURCE, ACTION]

The following specification describes global types
in the system. The global types are accessible in all the
schemas on the system. In this model of security
properties, only one global type OPERATIONS has
been defined. This global type is used in the definition
of confidentiality and integrity properties:

OPERTIONS::=READ|WRITE|APPEND|EXECUTE

This schema describes the state of the system

having state variables and invariants on them.

Access Control System
Users: ℙ user
Resources: ℙ resource
Action: ℙ action
registered_ users: User→ ℙ CREDENTIAL
user_resources: USER→ ℙ RESOURCE
resource_actions: RESOURCE→	ℙ ACTION
user_actions: User →	ℙ ACTION
authenticated_ users: User → ℙ CREDENTIAL
authorized_ users: User → ℙ CREDENTIAL
log: USER → ℙ ACTION
owner: USER → ℙ RESOURCE
dom registered_users	⊆ users
dom users_ resources	⊆ users
∀u: USER| u ∈ dom users_resources. User_resources u
⊆ resources
dom user_action ⊆ users
∀u: USER| u ∈ dom user_action . user_actions u
⊆actions
dom resource-action ⊆ resources
∀r: RESOURCE| r ∈ dom resource_action.
resource_action r ⊆ actions
dom authenticated_users ⊆ users
dom authorized_users ⊆ users
dom log ⊆ users
∀u: USERS| u ∈ dom log. log u ⊆ actions

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4667

dom owner ⊆ users
∀u: USER| u ∈ dom owner. owner u ⊆ resources

This is the initialization schema and which ensures

that at least one state of the system exists and system
will work for at least one time.

init = ø
Access Control System
users = ø
resources = ø
actions
dom registered_users = ø
dom users_resources = ø
dom resource_ action = ø
dom authenticated- users = ø
dom authorized_users = ø
dom log = ø
dom owner = ø

Dynamic model: The following is the dynamic model
of the system in which basic operations for the system
have been defined as follows:

Basic operations: This operation adds users into the
system. The pre-condition says that users to be added
must not already be added into the system.

Add_ Users
∆Access Control System
urs? : ℙ USER
∀u: USER|u ∈ urs:. U ∉ users
users` = users ∪ urs?

This operation adds resources into the system. This
operation requires that resources to be added must not
already be added into the system.

Add_Resources
ΔAccess ControlSystem
rcs?: ℙ RESOURCE
∀r: R ESOURCE|r ∈ rcs?. r ∉ resources
resources` = resources ∪ rcs?

This operation adds actions into the system and
ensures only allowed actions on the system resources.
The pre-condition says that actions to be added must
not already be added in the system.

Add_Actions
∆Access Control System
Acns?: ℙ ACTION
∀a: ACTION| a ∈ acns: . a ∉ actions
Actions' = actions ∪ acns?

This operation adds registered users in the system.
Only those users who have proper credentials can be
registered in the system. They must be recognized in
the system and must not already be registered in the
system.

Add_Registered_ User
∆Access Control System
us?: USER
crdls?? ℙ CEDENTIAL
u? ∈ users
u? ∉ dom registered_users
registered_users' = rsgistered_users ∪ {(u? ↔crdls?)

This operation adds actions to a user. Only those
actions are added to a user for which he or she is
authorized in the system. The user must be a registered
user and actions must be recognized in the system.

Add_Actions_to_User
∆Access Control System
u?: USER
acns:” ℙ ACTION
u? ∈ dom registered_users
acns? ⊆ Actions
user_actions' = user_actions ∪ {(u? ↔acns?)}

This operation adds actions to system resources.
Both actions and resource must be recognized in the
system.

Add_Actions_to_Resource
∆Access Control System
r?: RESOURCE
acns?: ℙ ACTION
r? ∈ Resources
acns? ⊆ actions
resource_actions`=resource_actions ∪ {(u? ↔acns?)}

This operation adds resources to users depending
upon the requirements. The user must be a registered
user and resource must be recognized in the system.

Add_ Resource_to_User
∆Access Control System
U?: USER
acs?: ℙ RESOURCE
u? ∈ dom resistered_users
acs? ⊆ resource
user_resource' = user_resource ∪ {(u? ↔acs?)}

Formal model of security properties: Formal model
of security properties developed in Z notation
is presented in this subsection. All the six
security properties: authentication, authorization,
confidentiality, integrity, non-repudiation and
availability of resources are specified in the following
paragraphs.

The first schema below represents authentication
security property. A user who wants to login into the
system, enters user id and credentials. If the user
supplied user id and credential are matched with those
already stored in the system, the user is allowed to login
into the system.
Authentication

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4668

∆Access Control System
r?: USER
crdls?: ℙ CREDENTIAL
if u? ∈ dom resistered_users ∧ crdls? =
registered_users u?
then aauthenticated_users' = authenticated_users ∪ {(u?
crdls?)}
els authenticated_users' = authenticated_users

This schema represents the authorization security
property. This schema determines the access to system
resources for a particular user. A user enters user id,
credentials, actions he or she wants to perform, resource
on which actions are to be performed to the system.
This schema checks whether the user is registered or
not. If the user is a registered user then it checks
whether the required actions are allowed on the
requested resource and required actions are allowed to
that user. If yes the user is allowed to access that
resource.

Authorization
∆Access Control System
u?: USER
crdls?: ℙ CREDENTIAL
acs?: ℙ	ACTION
r?: RESOURCE
u? ∈ dom authenticated_users
if acs? ⊆ Resource_action r? ∧ acs? ⊆User_actions u?
then authorized_users' = authorized_users ∪ {(u? ↔
crdls)}
else authorized_users'= authorized_users

This schema describes the formal model of
confidentiality. Confidentiality refers to read access to
system resources. A user, who wants to read
confidential data, enters user id and system checks
whether the user is an authenticated user and an
authorized user. If the user is authenticated and
authorized then system checks the operations defined in
the system for that user. If the operation, defined for
that user is read operation then read access is granted to
that user.

Confidentiality
∆Access Control System
u?: USER
op?: OPERTIONS
u? ∈ dom authenticated_users
? ∈ dom authorized_users
if op = READ
then user_actions' = user_action ∪ {(u? ↔ action)}
els user_action' = user_actions

This schema describes the formal model of
integrity. Integrity refers to write access to system
resources. A user, who wants to write new data, append
data to an existing data or modify existing data, enters
user id and system checks whether the user is an
authenticated user and an authorized user. If the user is

authenticated and authorized then system checks the
operations defined in the system for that user. If the
operation, defined for that user is write operation then
write access is granted to that user.

Integrity
∆Access Control System
u?: USER
op?: OPERTIONS
u? ∈ dom authenticated_users
u? ∈ dom authorized_users
if op = WRITE ∨	op = APPENDREAD
then user_actions' = user_action ∪ {(u? ↔ action)}
els user_action' = user_actions

This schema describes non-repudiation security
property. Non-repudiation ensures the logging of any
event or activity performed by legitimate users. For
actions to be recorded, a user must be an authenticated
user and an authorized user.

Non Repudiation
∆Access Control System
u?: USER
acns!: ℙ ACTION
u? ∈ dom authenticated_users
u? ∈ dom authorized_users
acns! = user_action u?
if user_action u? ≠ ø then log' = log ∪ {(u? ↔
acns!)}els log' = log

This schema defines the availability of resources

security property. There are predefined and recognized
set of resources in the system. Any authenticated and
authorized user is allocated a set of resources to
perform his or her actions. The free set represents
resources which are not currently occupied. To ensure
availability, the free set must never be empty.

Availability
Access Control System
Free: ℙ RESOURCE
u?: USER
u? ∈ dom authenticated_users
u? ∈ dom authorized_users
owner u? ് ø
free = resources / owner u?
free ∪ owner u? = resources
free ∩ owner u? = ø
free് ø

FORMAL ANALYSIS

In this study, formal analysis of models of security
properties is done by using Z/EVES theorem prover.
This analysis was done for syntax checking, type
checking and automatic formal proofs checking of Z

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4669

Fig. 1: Formal analysis of security properties

paragraphs. Other types of analysis such as invariants
preservations, domain checking, validation of certain
properties and formal proofs are not in the scope of this
study. For brevity, only one snapshot taken from
Z/EVES theorem prover has been shown in Fig. 1. In
this snapshot, we have three columns: syntax, proof and
main window containing actual specification of
properties. Here, “Y” in syntax column shows that the
specification in the main window has correct syntax and
correct type. The “Y” in proof column shows that the
specified paragraphs have no pending proof and all the
attached invariants, pre-conditions and post-conditions
have been satisfied.

CONCLUSION AND FUTURE WORK

In this study, software security is discussed as
external protections and internal mechanisms. Software
security is mainly concerned with the internal security
of the software system. For internal security, security
properties such as authentication, authorization,
confidentiality, integrity, non-repudiation and
availability of resources has been defined and
discussed. A review of relevant literature has been
presented. Formal methods have been described very
briefly as mechanisms to formally specify security
properties. An informal description of security
properties is also presented in this study. Then the
formal model is developed along with very brief
commentary on the formal schemas. At the end, brief

analysis of formal models has been presented. In the
future, these formal models will be refined to add more
details in the models. Analysis of properties such as
domain checking, invariants preservation and
precondition calculation is also a future task. In the
future, an investigation will be performed to generate
formal proofs of these security properties to validate the
models.

REFERENCES

Ahn, G.J. and R. Sandhu, 2000. Role-based

authorization constraints specification. ACM
Trans. Inform. Syst. Security, 3(4): 207-226.

Almeida, J.B., M.J. Frade, J.S. Pinto and S.M. de
Sousa, 2011. An Overview of Formal Methods
Tools and Techniques. Rigorous Software
Development, Undergraduate Topics in Computer
Science, pp: 15-44.

Arci, D., G. Maier, A. Pattavina, D. Petecchi and M.
Tornatore, 2003. Availability models for protection
techniques in WDM networks. Proceeding of 4th
International Workshop on Design of Reliable
Communication Networks (DRCN), pp: 158-166.

Bertino, E., M. Lorenzo, P. Federica and S. Anna, 2009.
Security for Web Services and Service-Oriented
Architectures. Springer, Heidelberg, pp: 208,
ISBN: 354087741X.

Res. J. Appl. Sci. Eng. Technol., 5(19): 4664-4670, 2013

4670

Bishop, M., 2003a.Computer Security: Art and Science.
Addison-Wesley, Boston, pp: 1084, ISBN:
0201440997.

Bishop, M., 2003b. What is computer security? IEEE
Secur. Priv., 1(1): 67-69.

Coronato, A. and G. De Pietro, 2011. Formal
specification and verification of ubiquitous and
pervasive systems. ACM Trans. Auton. Adapt.
Syst., 6(1).

Dimitrov, V., 2011. Relationship specification in Z-
notation. Phys. Part. Nucl. Lett., 8(4): 391-394.

Feng, J., C. Yu, K. Wei-Shinn and L. Pu, 2010.
Analysis of integrity vulnerabilities and a non-
repudiation protocol for cloud data storage
platforms. Proceedings of the 39th International
Conference on Parallel Processing Workshops.
IEEE Computer Society Washington, DC, USA,
pp: 251-258.

Ferraiolo, D.F., R. Sandhu, S. Gavrila and R. Kuhn,
2001. Proposed NIST standard for role-based
access control. ACM Trans. Inform. Syst. Secur.,
4(3): 224-274.

Gilliam, D.P., J.C. Kelly, J.D. Powell and M. Bishop,
2001. Development of a software security
assessment instrument to reduce software security
risk. Proceedings of the 10th IEEE International
Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises. IEEE
Computer Society Washington, DC, pp: 144-149.

Hu, H. and G.J. Ahn, 2011. Multiparty authorization
framework for data sharing in online social
networks. Data Appl. Secur. Priv., 25: 29-43.

Hussain, S., H. Erwin and P. Dunne, 2011. Threat
modeling using formal methods: A new approach
to develop secure web applications. Proceeding of
7th International Conference on Emerging
Technologies (ICET), pp: 1-5.

Jacky, J., 1996. The Way of Z: Practical Programming
with Formal Methods. Cambridge University Press,
Cambridge, pp: 372, ISBN: 0521559766.

Jie, W., J. Arshad, R. Sinnott, P. Townend and Z. Lei,
2011. A review of grid authentication and
authorization technologies and support for
federated access control. ACM Comp. Surv., 43(2):
1-26.

Joshi, J.B.D., E. Bertino, U. Latif and A. Ghafoor,
2005. A generalized temporal role-based access
control model. IEEE Trans. Knowl. Data Eng.,
17(1): 4-23.

Kolovski, V., J. Hendler and B. Parsia, 2007. Analyzing
web access control policies. Proceedings of the
16th International Conference on World Wide Web
(WWW ’07). ACM, New York, NY, USA, pp:
677-686.

López, G., A.F. Gomez, R. Marin and O. Canovas,
2007. A network access control approach based on
the AAA architecture and authorization attributes.
J. Network Comp. Appl., 30(3): 900-919.

Menzel, M. and C. Meinel, 2009. A security meta-
model for service-oriented architectures.
Proceeding of IEEE International Conference on
Services Computing (SCC). Bangalore, India, pp:
251-259.

Milanovic, N. and B. Milic, 2011.Automatic generation
of service availability models. IEEE T. Serv.
Comp., 4(1): 56-69.

Onieva, J.A., J. Lopez and J. Zhou, 2009. Fundamentals
of Non-repudiation. Secure Multi-party Non-
repudiation Protocols and Applications: Advances
in Information Security. Springer, US, pp: 1-15.

Sandhu, R.S. and P. Samarati, 1994. Access control:
Principle and practice. IEEE Commun. Mag.,
32(9): 40-48.

Savola, R.M. and H. Abie, 2010. Development of
measurable security for a distributed messaging
system. Int. J. Adv. Secur., 2(4): 358-380.

Sidek, R.M. and N. Ahmad, 2009. Deriving formal
specification using Z notation. Proceeding of IEEE
International Conference on Computer Technology
and Development (ICCTD), pp: 225-229.

Subashini, S. and V. Kavitha, 2011. A survey on
security issues in service delivery models of cloud
computing. J. Network Comp. Appl., 34(1): 1-11.

Thompson, J. and P. Montague, 2011. Review of Data
Integrity Models in Multi-level Security
Environments. Addendum, Retrieved from:
http://www.dtic.mil/cgibin/GetTRDoc?AD=ADA5
42134.

Welch, V., F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski et al., 2003. Security for grid services.
Proceeding of 12th IEEE International Symposium
on High Performance Distributed Computing,
pp: 48-57.

Wolter, C., M. Menzel, A. Schaad, P. Miseldine and C.
Meinel, 2009. Model-driven business process
security requirement specification. J. Syst.
Architect., 55(4): 211-223.

Woodcock, J., P.G. Larsen, J. Bicarregui and J.
Fitzgerald, 2009. Formal methods: Practice and
experience. ACM Comp. Surv., 41(4): 1-36.

Xia, J. and H. Tang, 2008. Formal method for
requirement analysis using Z notation. Sci.
Technol. Eng., 8(8): 2245-2246.

Xu, Q. and G. Liu, 2009. Configuring clark-wilson
integrity model to enforce flexible protection.
Proceeding of International Conference on
Computational Intelligence and Security (CIS), pp:
15-20.

Zafar, N., 2009. Formal specification and validation of
railway network components using Z notation.
Software IET, 3(4): 312-320.

Zafar, N.A. and F. Alhumaidan, 2011. Transformation
of class diagrams into formal specification.
IJCSNS, 11(5): 289-295.

Zhou, Z.Y., Y.P. He and H.L. Liang, 2010. Hybrid
mandatory integrity model composed of Biba and
Clark-Wilson policy. J. Software, 21(1): 98-106.

