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FORMAL STATISTICAL MODELS FOR ESTIMATING RADIOCARBON 
CALIBRATION CURVES

C E Buck1 • P G Blackwell
Department of Probability & Statistics, University of Sheffield, United Kingdom.

ABSTRACT. We report on the development and implementation of a model-based statistical method for the estimation of
radiocarbon calibration curves using diverse data. The method takes account of uncertainty on both the 14C and calendar
scales, coherently integrating data, the calendar age estimates of which arise from different dating methods. It also allows for
correlation between observations, if they have particular sources of uncertainty in common. We adopt an approach based on
a random walk model, tailoring it to take account of possible calendar age offsets between different data sources by adding a
random effect component. The latter allows us to use the same modeling framework for constructing the new calibration
curve IntCal04, the comparison curve NotCal04, the Southern Hemisphere curve SHCal04, and the marine calibration curve
Marine04.

1. INTRODUCTION

When the IntCal98 group put together the data for the 1998 internationally agreed radiocarbon cal-
ibration curve, they saw their primary task as collecting high-quality data. The task of constructing
a calibration curve from these data was then undertaken using relatively simple data averaging
methods based on those of Ward and Wilson (1978). Since 1998, however, the statistical community
has shown interest in estimation of the underlying 14C calibration curve from raw data, and it has
become clear that the methods adopted in 1998 ignore several important features of the data, and
hence of the problem that we are seeking to solve. As a result, in this paper we outline an approach
to curve construction that we have devised for IntCal04. The work we report here has benefited
greatly from a considerable body of literature on Gaussian process modeling within the Bayesian
statistics research community, but in particular from the work of GomÈz Portugal Aguilar et al.
(2002), Christen and Nicholls (2000), and from detailed discussions with Andrew Millard in the
Department of Archaeology at the University of Durham to whom we are greatly indebted.

In seeking methods for curve construction for IntCal04, we were concerned with several specific
aspects of the problem that had not been handled satisfactorily in the past. In particular, we wanted
to be able to take account of the fact that:

1. Most samples in the IntCal database do not derive their carbon from a single year of metabo-
lization;

2. Many samples in the IntCal database have calendar age estimates that derive from methods
other than dendrochronology (e.g. U/Th dating) and are, hence, not precisely known (but have
measures of uncertainty associated with them);

3. Not all samples in the IntCal database have independent calendar age estimates—some, for
example, derive their calendar age estimates from a wiggle match, and hence their calendar age
estimate is related to all the others in the same sequence;

4. The 14C calibration curve is intended to be our best estimate of the relationship over time
between 14C age and calendar age and, since this relationship is a continuously varying one,
observations from it are correlated.

In the past, all four of these factors (and several other more subtle ones discussed below) have been
ignored both in the construction of internationally agreed calibration curves and in the methodolog-
ical literature cited above. Knox and McFadgen (1997) do address the issue of the averaging of
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blocks of tree rings, as part of an approach to calibration curve construction based on Fourier anal-
ysis, but their method relies on constant block size and equally spaced observations.

Here, we address all of these issues, by formally modeling the relationship between the data and the
calibration curve.

2. THE UNDERLYING MODEL

2.1 Simplest Case

In the simplest case, we have a single 14C determination X (BP) with known calendar date θ
(cal BP); we then typically assume that X is given by the true value of the calibration curve at date
θ, written µ(θ), plus a term ε which has a Gaussian distribution with variance σ 2 (and mean zero),
giving

X = µ(θ ) + ε,

ε ~ N(0,σ 2).

To learn about the curve for a particular date, θ* say, we do not use only those observations with
θ = θ*, because we believe that for any θ near θ*, knowing µ(θ) would tell us something about
µ(θ*). To formalize this, we express our prior beliefs about the relationships between different
points on the curve in terms of a random walk. We represent our beliefs about changes in the curve
from one year to the next by a Gaussian distribution, with mean or “drift” β and variance (per year)
r2. So we have the following:

µ(θ +1) = µ(θ) + Zθ+1,

Zθ+1 ~ N(β,r2),

or 

µ(θ +1) ~ N[µ(θ)+ β,r2],

and more generally, 

µ(θ +δ ) ~ N[µ(θ )+δβ, |δ |r2].

If we wish to evaluate the curve at a date θ*, then we have

X ~ N[µ(θ*) + (θ –θ*)β, |θ –θ*| r2 +σ2].  

From now on, we will imagine that we are interested in a single such point at a time; the reasoning
behind this, and its advantages and disadvantages, are discussed in Section 4.3.

If we have multiple observations relevant to µ(θ*), as we always do in practice, then we can write
them as X1,...,XN, with

Xj ~ N[µ(θ*) + (θj –θ*)β, |θj –θ*|r2 + ] (1). 

However, we can not take the Xjs to be independent, since the component of our uncertainty that
derives from the random walk is common to multiple observations.

σj
2
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To allow for this appropriately, we need to write Xj explicitly in terms of the “steps” of the random
walk. If θj > θ*, we have

Xj = µ(θj) + εj

= µ(θ*) + Zθ*+1 +...+ Zθ j + εj

= µ(θ*) + Zθ + εj ,

with a corresponding expression if θj < θ*. It is then clear that some of the Zθ s may be common to
different Xjs.

This gives the covariance between two observations Xi and Xj, say, as

Cov(Xi,Xj) = r2(min{θi,θj} – θ*) (2),

if θi,θj > θ*, since min{θi,θj} – θ* is the number of Z terms in common, with a similar expression if
θi,θj < θ* and zero covariance otherwise.

Finally, we can represent the uncertainty in all the Xjs, and the dependence between them, by relat-
ing all of them to a collection of Zθs. In practice, we use only the potentially relevant Xjs, namely
those associated with calendar dates in some “window” (θmin,θmax) around θ*. Writing

X = , ε = , M = , Z = ,

we have

M = BZ,

where the matrix B is of the form

,

extended to cover the range (θmin,θmax), and so

X = ABZ + ε ,

θ θ∗ 1+=

θj

∑

X1

…
XN

ε1

…
εN

µ θmin( )

…

µ θ∗( )
…

µ θmax( )

Zθmin 1+–

…
Zθ∗–

Zθ∗ 1+

…
Zθmax

1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1
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where the matrix A is defined by aj,θ = 1 if θ = θj and aj,θ = 0 otherwise. Since the Zθs are indepen-
dent, this matrix representation allows us to readily calculate covariances between all the Xjs.

Our approach for this simplest case is related to the approaches of Christen and Nicholls (2000) and
GomÈz Portugal Aguilar et al. (2002), but does not in itself model any part of the calibration curve
in sufficient detail; for that, we need to allow a more general structure for our observations.

2.2 Averaging Over Blocks

Often, a single determination Xj arises not from material that dates to a single year, but from an aver-
age over nj successive years. In principle, this could be a weighted average (allowing say for differ-
ent amounts of datable material from different tree rings), but since our main applications—Hughen
et al., McCormac et al., Reimer et al., and van der Plicht et al. (this issue)—will assume equal
weights in such cases, we will do the same here to avoid unduly complex notation. We can write

Xj ~ N(mj, ),

where

mj = [µ(θj) + µ(θj +1) + ... + µ(θj +nj –1)] / nj. 

More generally, we can extend the matrix formulation above by redefining A so that aj,θ = nj
–1 if

θj ≤ θ ≤ θj + nj – 1 and aj,θ = 0 otherwise. Again, the covariances between all the Xjs can be obtained
immediately in this way.

This structure enables us to estimate those parts of calibration curves that involve only negligible
error on the calendar scale, essentially those using tree-ring data only. This includes the most recent
parts of IntCal04 (Reimer et al., this issue), to 12.4 cal kyr BP, and the part of SHCal04 based purely
on Southern Hemisphere data (McCormac et al., this issue).

2.3 Uncertainty in Calendar Dates

In practice, we sometimes do not observe each θj directly. We may instead observe Tj where

Tj ~ N(θj, ).

In the absence of any prior information about θj, this implies

θj ~ N(Tj, ).

Note that if we extend the possible values of θj from exact years to any possible value, then the ran-
dom walk defined above can be thought of as a Gaussian process or diffusion, and Equations 1 and
2 still hold. Then Xj has mean µ(θ*) and variance

r2E[|θj – θ*| |Tj] + ,

which can be calculated analytically when θj ~ N(Tj, ).

The corresponding covariance in the calendar age errors for observations Xi and Xj involves

E[c(θi –θ*, θj –θ*)|Ti,Tj],

where 

σj
2

τj
2

τj
2

σj
2

τj
2
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c(φ,ψ) =  if φ,ψ have the same sign,

This term cannot be calculated analytically, but must be obtained by numerical integration. In many
cases, it is appropriate to regard the calendar age errors in θi and θj as independent, e.g. if the obser-
vations relate to completely separate data sources, or if they are directly dated using U/Th dating.
More generally, the uncertainties in θi and θj may be linked, e.g. if they have some layer-counting or
sequence-matching error in common. Then we take

Ti,Tj | θi,θj

to be bivariate normal and assume a uniform prior, as before; numerical integration can still be used
to evaluate Cov(Xi,Xj). For example, if Xi and Xj are in the same “floating” sequence of observations,
assigned absolute dates by wiggle matching, then any wiggle-matching error, ω, will be common to
the two, and so we might have

Ti = θi + ω,

Tj = θj + ω,

ω ~ N(0,τ 2),

if there is no other calendar age error. If, on the other hand, Ti and Tj are determined by layer count-
ing within the same varved sequence, and Ti < Tj, then any error accrued up to layer Ti will also affect
Tj , and we might have

Ti = θi + ωi,

Tj = θj + ωi + ωj,

where both ωi and ωj have Poisson distributions that, like the 14C counting errors, can be approxi-
mated by normal distributions for present purposes.

As a final example, in addition to having calendar date estimates for individual samples, in some
cases we also have prior information that observations are ordered in time. For example, because of
the physical deposition process, the speleothems giving rise to data used here have annual laminae
whose ordering should be respected in the statistical analysis. Enforcing a strict ordering is not easy
to do within this framework (although it would be straightforward in the more general approach
described in Section 5.1). Instead, in this case we specify a high positive correlation between the
errors on the calendar dates, so that if, e.g., one layer is much older than estimated, the same is very
likely to be true for nearby layers.

The approach described in this section enables us to allow in a coherent way for calendar errors on
observations, as is needed for the older part of IntCal04 (Reimer et al., this issue), beyond
12.4 cal kyr BP.

2.4 Offsets Between Curves

Looking at Lake Suigetsu and the Bahamas speleothems (and others) which form part of the NotCal
data (discussed in detail in van der Plicht et al., this issue), it is clear that there are real differences
between the individual “comparison” data sets; we can think of each source having its own offset
from the overall, average curve. Looking at plots of the data (given in van der Plicht et al., this

min φ ψ,{ }
0{ otherwise.
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issue), it is clear that such an offset can be large and does change over time, although short-term
changes tend to be small. Similarly, in constructing the Southern Hemisphere calibration curve,
SHCal (McCormac et al., this issue), it is clear that an offset exists between the curves for the North-
ern and Southern Hemispheres, and that allowance must be made for it if we are to use Northern
Hemisphere data to help learn about the Southern Hemisphere calibration curve

To take account of such offsets, we can extend our model as follows. We denote the offset for the kth
source of data at date θ by νk(θ). At any given date of interest θ*, νk(θ*) can be thought of as ran-
dom; we take its prior distribution to have the form

νk(θ*) ~ N(γk, )

for all θ*. For any given k, we assume that νk(θ) changes only slowly compared with changes in
µ(θ), as is clear from casual inspection of the data. We represent νk(θ) as a random walk2 of the same
form as µ(θ) with steps having variance .

An observation Xj from source k will then have mean

µ(θ*) + (θj – θ*)β + γ – k,

and variance

|θj – θ*| (r2 + ) + + (3)

(cf. Equation 1). If two observations, Xi and Xj say, are both from source k, the covariance between
them will be

Cov(Xi,Xj) = + (r2 + )(min{θi,θj} – θ*) (4)

if θi,θj > θ* with a similar expression if θi,θj < θ*; if they are from the same data set and θi < θ* < θj
or θj < θ* < θi, their covariance is simply .

The ways in which this framework is applied in NotCal and SHCal are outlined in Section 4.2.

3. IMPLEMENTATION

Given the model described above, it is in principle straightforward to take a collection of observa-
tions, with knowledge of the size and type of errors both in calendar age and 14C date, and produce
estimates and standard errors for points on the calibration curve.

For each date θ* at which we wish to estimate the curve, we select those observations X1,...,XN asso-
ciated with calendar dates in a suitable window (θmin,θmax) around θ*. Then X1,...,XN given µ(θ*)
have a multivariate normal distribution with all means equal to µ(θ*), and with covariance given by
the calculations above. We use a uniform prior for µ(θ*); it is then straightforward to invert the
covariance matrix numerically and obtain a posterior estimate for µ(θ*) and an associated standard
deviation. Results of this form, based on different data sets with different error structures, are given
in Hughen et al., McCormac et al., Reimer et al., and van der Plicht et al. (this issue). 

2Strictly speaking, since we take the typical size of these offsets to be constant over time, the process ν (⋅) should have some
tendency to revert to zero, and should be modeled by, e.g., a stationary autoregressive process. However, provided the rate
of change of the offset is small (u << W), the random walk is a reasonable approximation to such a process.

Wk
2

uk
2

uk
2 Wk

2 σj
2

Wk
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2

Wk
2
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In practice, this relies on some decisions that have to be made about details of the implementation,
and these are discussed in Section 4.

4. PRACTICALITIES

4.1 Specifying the Random Walk

The implementation outlined Section 3 depends crucially on how the random walk of Section 2.1 is
specified. For the purposes of IntCal, it was felt vital to have an explicit, repeatable numerical
method (as opposed to a simulation-based approach), and, in practice, that means assuming partic-
ular values for the mean β and variance (per year) r2.

It is natural to take a value of 1 for β, since we would expect the calibration curve to change by
approximately 1 (calibrated) year per (calendar) year. In fact, our experimentation shows that the
results are very insensitive to the specific value used for β ; a more precise value based on current
knowledge of 14C decay rates makes no difference to the curve obtained.

It is less clear a priori what is a reasonable value for r. Christen and Nicholls (2000) estimate a
value of r = 7.9 on the basis of single-year data from Stuiver et al. (1998) by using a combination of
a full MCMC implementation (see Section 5.1) of a random walk model and by repeated analyses
of 100-yr blocks of the same data. In the same way, we looked in detail at particular high-resolution
subsets of the IntCal04 data. For the results in Hughen et al., McCormac et al., Reimer et al., and
van der Plicht et al. (this issue), we therefore take r = 8.

4.2 Describing the Offsets

In a similar way to fixing r in Section 4.1, for NotCal and SHCal we also need to specify the param-
eters defining the random offsets in Section 2.4 and the rate at which they may change over time.
Formal estimation of these quantities is difficult without the full simulation-based framework men-
tioned in Section 5.1; instead, we experimented with repeated analyses of the data to determine
which values were consistent with the data.

For NotCal, we had little prior information about the offsets; for all non-IntCal data sources, offsets
were taken to be centered at zero (“random effects” in the usual terminology of the statistical litera-
ture) but with some large variance. We took γk = 0, Wk = 1000, and uk = 10 for the non-IntCal data
sources (and γk = Wk = uk = 0 for those sources meeting the IntCal criteria). Results are very insen-
sitive to the exact values used.

The offset between SHCal and IntCal is better understood, and we expect its direction and approxi-
mate magnitude to be fairly consistent. We need to allow for the offset to extend the Southern Hemi-
sphere curve back beyond 990 cal BP, the limit of the Southern Hemisphere data; our prior for that
analysis comes from considering the separate IntCal and SHCal curves back to that point. The offset
between them varies gradually over time, and its value at 990 cal BP (and hence our “best guess” at
its value at any earlier date) is 55 yr. Based on this, and the variability of the offset between
50 cal BP and 990 cal BP, we take γk = 55, Wk = 25, and uk = 1 for the Northern Hemisphere data
used, and of course, γk = Wk = uk = 0 for the Southern Hemisphere data themselves.

4.3 Why One Point at a Time?

As mentioned in Section 2.1, we choose to organize our calculations by treating separately each
desired point on the curve. The advantage of this approach is that it enables us to limit the observa-
tions that have to be considered in any one calculation to a reasonable number, typically much
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smaller than the size of the whole data set. Obviously, this involves some element of approximation,
but for each point on the curve we choose a suitable “window” of data points to use, so that the effect
of excluding the remaining points is negligible (see Section 4.4).

Calculating points on the calibration curve separately has the theoretical disadvantage that it does
not give the posterior covariances between the estimated values. However, given the form in which
the calibration curves are generally reported and used, these covariances are not likely to be used
routinely even if available.

4.4 Choosing the Window

To calculate each µ(θ*) for the IntCal curve, we used the 100 observations Xj with values Tj (or θj if
known) that were nearest to θ*. Experimentation showed that this was sufficient to calculate the
estimate of µ(θ*) accurately. The exception was a small part of the curve near θ* = 15,500, where
the presence of a large number of observations with large errors necessitated using more points; 200
points proved sufficient.

For the NotCal and SHCal curves, more care was needed in selecting those data points to be
included in each calculation, because of the widely varying levels of uncertainty of the observations
and the offsets between data from different sources. As far as possible, for the calculation of each
point we used equal numbers of observations from each source. At the same time, as far as possible
within each source, equal numbers from before and after θ* were selected. In undertaking this data
selection, we regarded all IntCal data as coming from a single source when using them in NotCal.
In selecting observations for calculation in SHCal, all Southern Hemisphere observations were
treated as a single source; IntCal observations were treated as 2 distinct sources, one for observa-
tions before 990 cal BP (the limit of the Southern Hemisphere data) and one for observations after
990 cal BP, to ensure sufficient overlap between Northern and Southern Hemisphere data for stable
estimation of the offset. In both these cases, 150 observations were used in estimating each point on
the curve.

4.5 Choosing Output Values

To actually generate a calibration curve, a decision has to be made as to which specific points on the
curve to estimate, i.e. the values of θ* to use. We chose to calculate the most recent part of the curve
at 5-yr intervals, which seems to be the most detailed level justified by the data and which is com-
patible with the 10-yr intervals used in IntCal98. Older parts of the curve are calculated at sparser
points, in line with the decreasing density (and increasing calendar error) of the data.

4.6 Numerical Integration

Evaluation of covariances between observations, in the presence of calendar age error (Section 2.3),
requires calculation of the expectation of

c(φ,ψ) = if φ,ψ have the same sign,

when φ and ψ have a bivariate normal distribution. This is carried out by numerical integration,
evaluating c(⋅,⋅) at a grid of points centered at the mean of the distribution of φ and ψ. A 25 × 25 grid
gives a sufficiently accurate answer for present purposes.

min φ ψ,{ }
0{ otherwise
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5. DISCUSSION

5.1 Alternative Implementations

It has been pointed out (A Millard, personal communication) that some of the modeling in Section 2
fits within the framework of Dynamic Linear Modeling (see e.g. West and Harrison 1997). This
would have the advantage of allowing us to estimate multiple points on the curve simultaneously,
and obtain the appropriate covariances; however, it does not readily extend to incorporating the
errors in calendar dates necessary beyond 12 kyr. 

As mentioned in Section 4.2, a more flexible approach to fitting the models of Section 2 would be
to use a simulation-based Markov chain Monte Carlo (MCMC) approach. Such an approach would
allow the incorporation of uncertainty about r and W (and other parameters if necessary) and would
automatically give covariances between points on the curve, as well as estimates and standard devi-
ations for any other aspect of the curve. However, for the specific purpose of producing a standard
calibration curve, this approach has the disadvantages that it is harder to describe and that it is inher-
ently harder to reproduce. Thus, for present purposes we have used the numerical approach
described in Section 3.

5.2 Extending the Modeling

There are some aspects of the calibration process, taken as given in the methodology described here,
that might usefully be incorporated in the process of estimating the calibration curve. One is the
“wiggle matching” of floating sequences, which should itself be affected by the calibration curve, so
the 2 processes should ideally be carried out jointly. For present purposes, in estimating the curve we
have taken the “wiggle match” and associated error as given. Another similar case is the interpola-
tion of calendar ages within U/Th-dated sequences; again, the process of interpolation and of cali-
bration should ideally be treated as interdependent.

More ambitiously, since any sample with both absolute and 14C dating information, however uncer-
tain, tells us something about the calibration curve, there is an argument that calibration of individ-
ual samples is itself interdependent with the process of constructing the curve.

Finally, there is scope for incorporating prior information about mechanisms thought to be involved
in the dynamics of atmospheric 14C. For example, it would be interesting to allow a component of
periodic behavior corresponding to solar cycles. The current approach does not do this, since it lies
beyond the primary purpose of the standard calibration curves, although it is interesting to note that
there are such cycles, with periods of 11 and 25 yr for example, detectable in our estimated curve.
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