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ABSTRACT

Verification is indispensable for building reliable of hardware/soft-
ware co-designs. However, the scope of formal methods in this
domain is limited. This is attributed to the lack of unified property
specification languages, the semantic gap between hardware and
software components, and the lack of verifiers that support both
C and Verilog/VHDL. To address these limitations, we present an
approach that uses a bounded co-verification tool, HW-CBMC,
for formally validating hardware/software co-designs written in
Verilog and C. Properties are expressed in C enriched with special-
purpose primitives that capture temporal correlation between hard-
ware and software events. We present an industrial case-study,
proving bounded safety properties as well as discovering critical co-
design bugs on a large and complex text analytics FPGA accelerator
from IBM R©.

Keywords
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1. INTRODUCTION
The ever-increasing complexity of SoCs and tighter integration of

hardware (HW) and software (SW) components makes a strong case
for formal co-verification techniques. Correct functionality of the
co-design requires verification of not only the individual HW and
SW components but also their complex interplay. The challenges in
co-verification are manifold: 1) lack of means to specify properties
over the co-design, 2) the semantic gap between the synchronous
clock-driven HW and the asynchronous event-driven SW, and 3) lack
of co-verification tools that support co-designs, which are typically
written in a combination of C and Verilog/VHDL.

A key to building an effective co-verification tool is to translate
the HW and SW models to a common representation with formal
semantics, which we call co-verification model, enabling specifi-
cation of system-level properties across HW/SW boundaries. The
co-verification model must be able to exploit the expressivity of
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the underlying reasoning engines: a joint bit-level model is easy
to construct but is an ill-fit for word-level Satisfiability Modulo
Theory (SMT) solvers. In this paper, we perform symbolic execu-
tion of the HW and SW in tandem to generate the co-verification
model. We can synthesize either a bit-level netlist (represented as
And-Inverter Graph) or word-level netlist (represented in a format
that resembles the SMT-LIB standard) from the HW given in RTL
Verilog. Similarly, the SW, given in C, is automatically translated
into a Static Single Assignment (SSA) form. A monolithic veri-
fication condition is generated from these two models, which is
then solved using a satisfiability (SAT) or SMT solver. A co-design
property is specified in C with the support of a special primitive,
called next_timeframe(), which can express temporal correlation be-
tween HW and SW events. Our co-design properties are expressive,
amenable to verification reuse and can be readily used in assertion-
based verification. Additionally, our tool also supports a subset of
the IEEE Property Specification Language (PSL), which formally
captures design intent for HW given in Verilog RTL.

Our technique is embodied in our HW/SW co-verification tool,
HW-CBMC [7]. HW-CBMC performs bounded model checking
of reachability properties of HW/SW co-designs. The HW/SW
co-designs can be specified in Verilog RTL and C, respectively.

We report an industrial application of HW-CBMC on the Text
Analytics FPGA Accelerator (TAA) co-design [14, 13]. Text analyt-
ics is key in big data analytics. Heterogeneous computing platforms
involving CPU and FPGA are popular in big data analytics. How-
ever, verification of such platforms has received little attention. The
TAA, as illustrated in Figure 1, is an FPGA-based streaming text
analyzer, shown to increase the throughput of the information extrac-
tion system called SystemT [13]. The TAA is a co-design in which
the SW sends documents or streams of data packets to the FPGA for
analysis and reacts to the response of the HW. The FPGA processes
text analytics queries, which mostly consist of regular expression
matching. The HW in the TAA is a Verilog RTL implementation
and the SW is written in C. Formally verifying the TAA co-design
poses a challenge mainly due to the semantic gap between the FPGA
accelerator and the SW, the lack of co-specification, the interleaving
state-space of the HW and SW threads, and the sheer complexity of
the whole system.

Contribution: Our contributions are three-fold:

1. We present an automatic, bounded HW/SW co-verification
tool HW-CBMC, which formally validates co-designs writ-
ten in Verilog RTL and C, respectively.

2. A unified property specification framework for HW/SW co-
verification is presented. The framework allows specification
of properties over hardware and software events and their



Figure 1: Overview of the Text Analytics Accelerator design

temporal correlations. Our tool also supports a subset of
IEEE Property Specification Language (PSL).

3. The tool has been evaluated on the Text Analytics FPGA
Accelerator [14, 13] co-design from IBM R©. The experi-
mental results demonstrate that HW-CBMC automatically
uncovered several critical co-design bugs and proved several
complex properties of the TAA in less than 15 minutes.

The rest of the paper is organized as follows. Section 2 explains
the verification framework. The experimental evaluation appears in
Section 3. Section 4 explains related work. Section 5 concludes.

2. VERIFICATION FRAMEWORK

2.1 Front-end
HW-CBMC supports HW design in IEEE 1364-2005 System

Verilog standard and SW implementations in C89, C99 and C11.
In a typical SoC environment, SW communicates with the HW
through its input/output ports. Given a HW design in Verilog RTL,
HW-CBMC automatically generates an interface module in C con-
sisting of all HW input/output/inout port signals. The interface
module enables the SW to communicate with the HW ports through
special primitives called set_inputs() and next_timeframe(). When
the SW executes set_inputs(), it directs HW-CBMC to set the HW
ports to the values assigned by the SW. A call to next_timeframe()
advances the HW clock. Section 3 demonstrate the use of these
handshake primitives on the TAA co-design.

2.2 Generating Unified Co-verification Model
Figure 2 illustrates the architecture of HW-CBMC. A unified

co-verification model is generated by translating the HW and SW
semantics to a common formal semantics. The top flow in Figure 2
synthesizes the input HW design given in Verilog RTL to either
a bit-level netlist or a word-level netlist. The bit-level netlist is
represented as an AIG, whereas the word-level netlist is represented
in a format that resembles the SMT-LIB standard. The bottom
flow in Figure 2 translates the SW given in C into static single
assignment (SSA) form. A unified monolithic verification condition
is then generated from the SSA and HW netlist. The verification
condition is represented in either DIMACS or SMT-LIB format,
which is then checked with a SAT or SMT solver, respectively.

2.3 Analysing HW/SW Interaction Patterns
A system comprises a set of concurrent SW and HW threads,

which interleave asynchronously. Concurrency is a key challenge in
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Figure 2: HW-CBMC Tool Flow

co-verification. The number of interleavings between the SW and
HW threads can be extremely large, which may become a bottle-
neck in the verification process. We formalize the communication
between HW and SW using transactions. Transactions allow us to
decompose the HW/SW interleaving state-space into easily verifi-
able service-level [1] interactions, thereby reducing the number of
interleavings.

Software Transaction.
A Software Transaction (ST ) is an untimed state machine with a

unique start state and an unique end state. Transitions in ST may be
guarded with a quantifier free predicates over SW variables or HW
port signals (for example, acknowledgement received from HW).
If the guard evaluates to TRUE, it may perform some action, which
may be read/write into shared memory or cacheline or HW ports.
If the guard is not specified, it is assumed to be TRUE. ST is often
manifested as control-flow paths in the SW. An execution of ST ,
also called a SW transaction instance, is a simple path from start
state to end state. Repeated execution of ST can happen only in a
sequential manner.

Hardware Transaction.
Consider a HW RTL design with a inputs {I}, outputs {O}, wires

{Wire} and a set of state elements such as Registers {Reg}. RTL
designs also support memory elements which is a sequence of reg-
isters. Note that {I} ⊆ {Wire}, and {O} ⊆ {Reg}∪ {Wire}. All
state elements are fixed-width unsigned integers. An update of RTL
design changes the values of {Reg} and {Wire}.

DEFINITION 1. A transaction step ϕ is defined by a pair ϕ ≡
〈Γϕ,∆ϕ〉. Here, Γϕ ≡ {α1,α2, . . .αm} is a set of updates to state

elements such as {Reg} where α_i is an update at the i-th transac-

tion step. Whereas, ∆ϕ ≡ {β1,β2, . . .βn} is a set of combinational

updates to {Wire}, where β_ j is an update at the j-th transaction

step.

DEFINITION 2. A Hardware Transaction H T = (V,Σ,→, init,

comp) is a labelled transition system, where V is a set of transaction

steps ϕ with a unique source vertex, init ∈ V , and a unique sink

vertex, comp ∈ V , Σ ⊆ 2G is a set of labels where G is a set of

quantifier free Boolean predicates over αi and β j and →⊆V ×Σ×V

is a set of labelled transitions.

Each execution of H T is a non-empty sequence of transaction
steps where each transaction step happens in a single clock. The
first step is called initiation event (init). Assuming the duration of
H T is finite, there must exist some distinguishable last completion
event (comp). After a transaction step ϕ is executed, the set of state
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Figure 3: Some HW Transactions for RTL block in TAA

update in Γϕ and combinational updates in ∆ϕ is carried out and the
value of Boolean predicates in G is evaluated to determine the next
step ϕnext , that is, a predicate over βi ∈ ∆ϕ and α j ∈ Γϕ enables a
transaction step. This process continues until H T reaches the comp

state. Closest to our notion of H T is the micro-architecture-level
transaction by Mahajan et al. [10].

Figure 3 presents a fragment of H T corresponding to a RTL
block of TAA design. Let us consider a possible execution of H T ,
(init → t1 → t4 → t6 → comp). At init, the SW sets the RTL input
signal, (rst_i = 0), based on which the execution in H T follows
the edge to t1. At t1, a combinational update β1 is performed which
updates cs based on HW input signals, cyc_i, stb_i, adr_i and we_i.
Assuming that (cs && we_i) holds true, the execution proceeds
to step t4 which performs some combinational updates (β2,β3,β4)
based on the values in adr_i. The next step is determined by the
predicates over β2,β3 and β4. Assuming that β2 holds true, the exe-
cution proceeds to t6. During the execution of t6, three state update
(dtr_no,rts_no, loopback) and two combinational updates (β5,β6)
are performed. After t6, H T leads to comp and the transaction
finishes its execution. The labels in the edges corresponds to the
Boolean predicates G computed over elements in Γϕ and ∆ϕ. The
blue arrows point to the state updates or combinational updates at a
particular transaction step ϕ.

We must emphasize that a single transaction instance in ST may
trigger sequence of transaction steps in a H T that spans several
clock cycles as is evident from this example.

Producer-consumer Interaction.
An interaction is said to exhibit producer-consumer interaction

pattern if (1) the set of variables V written by the execution of ST
and and the set of variables V ′ written by the execution of H T
are disjoint (V ∩V ′ = /0), (2) and the executions of ST and H T
consumes values in V ′ and V , respectively.

The TAA co-design exhibits a producer-consumer relationship
in which the SW and HW transactions never write to the same
virtual memory space at the same time. When ST writes to a shared
address space, H T reads from that shared space. Similarly, when
H T updates a shared memory or a cacheline, ST consumes the
data from that shared space. We also observed similar producer-

consumer interaction patterns in other co-designs, such as coherent
FFT coprocessor [4].

2.4 Property Specification for Co-verification
The lack of unified property specification language has been a ma-

jor bottleneck for the application of formal techniques for effective
co-verification. To address this challenge, HW-CBMC supports
a unified property specification in C with special primitives that
allow verification engineers to write temporal assertions over both
HW and SW events. Closest to our unified property specification
for co-verification is the language xPSL [17] proposed by Xie et
al., which is the extension of IEEE PSL. Additionally, HW-CBMC
also supports a subset of IEEE PSL that includes immediate and
concurrent assertions except sequences. In this paper, we classify
co-design properties into two classes – transaction-level property
and component-level property.

Transaction-level Property.
A Transaction-level property (ψt ) formally captures the design

intent of the interaction between a ST and H T , that is, it is defined
at the transaction boundaries. Thus, a transaction-level property
follows implication structure – the antecedent of the implication is
an event in ST or H T and the consequent is an event in H T or ST
respectively. An event in ST may be a function call or an update
to program variables. Similarly, an event in H T corresponds to an
update of combinational or sequential elements. Figure 4 presents
some examples of transaction-level properties for the TAA co-design.
Note that the HW events are in marked bold to distinguish it from
SW events. The properties in figure 4 capture different segments
of the waveform in Figure 7. For example, property P1.1 and P2.1
corresponds to the segment W1 and W2 respectively.

A SW event may trigger a sequence of transaction steps in a HW.
This is handled by writing monitors (in C) which keeps track of
the number of clock cycles elapsed between the two events. For
example, consider the property P3.2 shown in Figure 4. When
afu_ta_clear_halt() has done a MMIO write, the HW signals halt

and hw_rslt_ea is set to LOW and A0 respectively in the next cycle.
HW-CBMC provides a next_timeframe() primitive to keep track of
the HW clock. Thus, whenever the SW event, afu_ta_clear_halt(),
is successfully complete, the monitor calls a next_timeframe() be-
fore asserting the resultant HW signals (halt, hw_rslt_ea).

Monitors (in C)

/ / a f u _ t a _ s u b m i t ( ) r e t u r n s 1

/ / on s u c c e s s f u l j o b s u b m i t

i n t moni to r_P1 . 1 ( ) {
a s s e r t ( ! a f u _ t a _ s u b m i t ( )
| | ( mm_valid == 1) ) ;

}

/ / a f u _ t a _ r e a d ( ) i s a HW

/ / r e q u e s t e d read o p e r a t i o n

i n t moni to r_P2 . 3 ( ) {
a s s e r t ( ! a f u _ t a _ r e a d ( ) | |
( ( ge t0_data_r&0x1 )==1) ) ;

}

/ / a f u _ t a _ w a i t ( ) r e t u r n s 1

/ / on s u c c e s s f u l e x i t

/ / f rom w a i t i n g

i n t moni to r_P3 . 1 ( ) {
a s s e r t ( ! ( put_data_v ==1

&& hw_rs l t_ea ==STS )

| | a f u _ t a _ w a i t ( ) ) ;
}

i n t moni to r_P3 . 2 ( ) {
i f ( a f u _ t a _ c l a r _ h a l t ( ) ) {

n e x t _ t i m e f r a m e ( ) ;
a s s e r t ( h a l t ==0

&& hw_rs l t_ea ==A0 ) ; } }
i n t moni to r_P3 . 3 ( ) {

i f ( h w _ r e q _ r e a d _ b u f s ( ) ) {
n e x t _ t i m e f r a m e ( ) ;
n e x t _ t i m e f r a m e ( ) ;
a s s e r t ( data_ack == 1 ) ;

}}

Figure 4: Transaction-level property as monitor (in C)

Component-level Property.
A component-level property (ψc) is defined purely at the level

of individual components of a co-design system. Recall that a



component may be a HW model, a SW model or an interface model
which contains only the interface logic. A component-level property
captures the design intent of a component in terms of its input/output
behaviors. This type of property is useful in a co-design environment
for verifying individual components. Note that unlike the structure
of ψt which requires the antecedent or consequent to be a HW or SW
event, ψc only contains signals (ports) or variables of a particular
component. Figure 5 presents some examples of component-level
properties for the accelerator core unit. The properties are expressed
as monitors (in C) as shown on the right side of Figure 5. The
equivalent System Verilog Assertion (SVA) are shown on the left
side of Figure 5.

System Verilog Assertions Monitor (in C)

P1 . 2 : a s s e r t p r o p e r t y
(@( posedge c l k )
mm_ack == 1|−>
( mm_valid == 1 &&
##2 j o b _ s u b m i t == 1 ) ) ;

i n t moni to r_P1 . 2 ( ) {
a s s e r t ( ! mm_ack | | mm_valid ) ;
n e x t _ t i m e f r a m e ( ) ;
n e x t _ t i m e f r a m e ( ) ;
a s s e r t ( j o b _ s u b m i t ) ; }

P2 . 1 : a s s e r t p r o p e r t y
(@( posedge c l k )

( c t r l _ s t a t e == 1 && g e t _ v
&& g e t _ r ) |−> ##1
( c t r l _ s t a t e == 2 ) ) ;
P2 . 2 : a s s e r t p r o p e r t y

(@( posedge c l k )
( g e t _ d a t a _ v ) |= >

##2 ( c t r l _ s t a t e == 3 ) ) ;

i n t moni to r_P2 . 1 ( ) {
i f ( c t r l _ s t a t e ==1 &&
g e t _ v && g e t _ r ) {

n e x t _ t i m e f r a m e ( ) ;
a s s e r t ( c t r l _ s t a t e == 2 ) ; } }

i n t moni to r_P2 . 2 ( ) {
i f ( g e t _ d a t a _ v ) {

n e x t _ t i m e f r a m e ( ) ;
n e x t _ t i m e f r a m e ( ) ;
a s s e r t ( c t r l _ s t a t e == 3 ) ; } }

Figure 5: Component-level property (in SVA) as monitor (in C)

2.5 Debugging using Counterexample Trace
A bug in a co-design environment may occur due to defective

HW or erroneous SW implementation or both. To ease the process
of localizing bugs in co-verification, HW-CBMC generates a coun-
terexample trace up to a user-specified bound in case of property
failure. The trace contains concrete assignments to SW variables,
interface signals and HW RTL signals for each timeframe that leads
to the bug. The counterexample trace is generated in the value
change dump (.vcd) format, which can be viewed graphically using
a waveform viewer.

3. EXPERIMENTAL RESULTS
We report experimental results for HW/SW co-verification of

the proprietary Text Analytics FPGA Accelerator co-design using
our tool HW-CBMC. All our experiments were performed on
an Intel R© Xeon 3.40 GHz machine with 32 GB RAM. All times
and memory consumption are reported in seconds and Megabytes
respectively.

State-of-the-art Co-verification tools: Building automated co-
verification tools has received little attention in the past. We are not
aware of any automated formal co-verification tool that can readily
accept co-designs written in C and Verilog RTL. In this paper, we
present HW-CBMC to address this gap.

3.1 Case Study: Text Analytics FPGA Accel-
erator Co-design

Figure 1 illustrates the overall architecture of TAA co-design.
It consists of a core component (dotted outline), which is responsible
for the communication with the SW and is the key HW component to
be verified. The core uses an IP block for the POWER Service Layer
(PSL) to implement the CAPI protocol. The PSL is black boxed
and assumed to operate correctly. On the other side, the core uses
the Query Core (QC) to process the input data and generate results.

Figure 6: Communication between TAA FPGA and SW

through the virtual memory space

The QC is a custom IP block that is different for every defined
query. The correctness of the results from the QC is verified in a
separate step. Our co-verification effort focus on the communication
between the core and the SW. For this purpose, the QC is replaced
by a greybox, which implements the communication protocol and
generates a predefined number of random results that need to be
written back to memory.

The TAA consists of 15879 registers, 8886 ALUTs (Adaptive
LUT) and two memory blocks on the FPGA, each of 16 Kb each.
The design statistics are obtained by synthesis for an Altera Stratix V
FPGA.

The TAA leverages the Coherent Accelerator-Processor Interface
(CAPI) [16], enabling the accelerator to operate in the virtual mem-
ory space of a process just like a SW thread on the CPU. Because
the accelerator operates on memory regions shared with the SW,
similar mechanisms have to be implemented to avoid both SW and
HW accessing the same data at the same time. Thus, verification of
the access control mechanism is needed to prevent data corruption,
data loss, or faulty executions.

Figure 6 illustrates the various data structures accessed by the SW
process and the accelerator. Furthermore, the SW can push small
amounts of data (up to 64 bits) via memory-mapped I/O operations
(MMIO) to the accelerator. All the data structures are grouped
into a structure called work element descriptor (WED). The SW
prepares the WEDs. The WED holds a status field, which is used
to notify the SW if the accelerator has completed processing or
requires help. The input buffers are only read by the accelerator
and results are written into a HW results buffer. This buffer has
a fixed size, which is also stored in the WED. As the number of
results cannot be determined beforehand, the accelerator fills this
buffer until it is full. The SW can then fetch the results from the HW
buffer and put them into a final result buffer, which it can re-size if
required. The text analytics FPGA accelerator interacts with a SW
that sends documents or streams of data packets to the FPGA for
analysis. The left-hand side of Fig. 8 gives a simplified code-snippet
of the SW that implements the orchestration strategy for interacting
with the FPGA. The interface functions, given on the right-hand
side of Fig. 8, are the lowest level of implementation that accesses
the HW ports. The access to the HW ports is done through a global
structure, afu_ta_core, which contains all the input/output ports of
the top-level RTL module of text analytics accelerator. The SW
transactions are highlighted in red, followed by calls to monitors
(marked in blue), that checks the validity of a transaction.

Table 1 presents the detailed results for HW/SW co-verification
of the text analytics co-design. Figure 4 and Figure 5 gives the



Figure 7: Waveform of the accelerator core when W1) receiving

a WED pointer, W2) requesting and receiving the actual WED

and W3) writing results until the results buffer is full and is

cleared by SW before processing continues.

properties under verification. Column [1-12] in Table 1 report
the property id, type of property, the bound up to which the HW
transition system is unwound, the unwind depth for the SW, number
of SAT clauses, number of variables, the verification result (safe

or unsafe), the source of the bug (HW or SW or Interface logic) if
unsafe, and the total verification run time and memory consumption
for bit-level and word-level backend solvers, respectively. Note
that the value of bound must be greater or equal to the number of
next_time f rame() calls. The unwind depth is determined by the
highest bound among all bounded loops in the SW.

Bit-level versus Word-level Verification: HW-CBMC offers two
different verification backends – 1) bit-level and 2) word-level. We
configured HW-CBMC with MiniSAT-2.2.0 [3] and Z3 [2] for bit-
level and word-level reasoning, respectively, for our experiments.
The theories used for SMT solvers are theory of bit-vector, arrays
and uninterpreted functions. Though the runtimes for both the back-
ends are very close to each other, the bit-level backend performed
marginally better than the word-level backend.

Proving bounded safety: We proved several properties of the
TAA co-design. Table 1 gives runtimes for proving two transaction-
level properties (P1.1, P3.1) and two component-level properties
(P1.2, P2.2). The property ψt = P1.1 in Figure 4 specifies that
when the SW executes a f u_ta_submit(), it performs a MMIO write
to a specific offset address on the HW, thereby setting the HW signal
mm_valid to HIGH. On the other hand, P1.2 and P2.2 are purely
RTL properties that check the correctness of the accelerator core
and controller finite state machine (FSM) respectively. Refer to
waveform segment W1, W2 and W3 of Figure 7 for a pictorial
illustration of {P1.1, P1.2}, {P2.2} and {P3.1}, respectively.

Bug hunting: We identified four critical bugs – three transaction-
level bugs (P2.3, P3.2, P3.3) and one component-level bug (P2.1).
Due to the space limit, we only explain one scenario, P3.3. This
bug is triggered when the FPGA accelerator attempts to read the
WED data structure from the main memory. The data channel
that is used for this transfer is shared between the FSM control
logic and GET0 module which fetches the document data after
the WED has been transferred. Thus, the HW components that
control the flow control (data acknowledge) on this channel are –
core FSM and document GET0 module. While the FSM signals
enable the registers that capture the WED, the flow control has been
fully overtaken by GET0 module. In such a scenario, the data-
flow would never advance because the data is never acknowledged.
This scenario occurs due to a bug in the combinational logic of the
shared data channel which always pass the flow control to the GET0
module. If GET0 receives backpressure from the query core it never
acknowledge the read for the WED data and the entire processing is

Main Function Interface Functions

// WED structure

struct afu_ta_wed {

uint8_t *doc;

uint32_t docSize;

uint32_t *sts;

uint32_t *buf;

uint32_t bufSize;

}

int main(void)

{

// Allocate the WED structure

struct afu_ta_wed *wed;

int afu_ret = 0;

afu_ta_init(&wed);

uint32_t *results, result_block = 0;

results = malloc(wed->bufsSize);

******************

afu_ta_start();

******************

assert(!afu_ta_start() || reset == 0);

*******************

afu_ta_submit(wed);

*******************

monitor_P1.1();

// Wait for HW to become active

for(int i=0;i<=15;i++) {

if(afu_ta_core.states == 0)

idle();

else break;

}

while(afu_ret!=0) {

**********************************

afu_ret = afu_ta_wait(wed);

afu_ta_copy_results(wed, results);

**********************************

monitor_P2.3();

if(afu_ret>1) {

// Increase result buffer

result_block++;

*************************************

afu_ta_increase_buffer(wed, results,

result_block);

afu_ta_clear_halt(wed, afu_ret);

*************************************

monitor_P3.2();

} else {

break;}

************************

hw_req_read_bufs(wed);

************************

monitor_P3.3();

}

}

/∗ ====== IDLE =========∗/

void i d l e ( ) {

s e t _ i n p u t s ( ) ;

n e x t _ t i m e f r a m e ( ) ;

}

/∗ ====== MMIO WRITE ======∗/

void core_mmio_wr i t e

( i n t o f f s e t , u i n t 6 4 _ t d a t a )

{

o f f s e t = o f f s e t >> 2 ;

a f u _ t a _ c o r e . mm_valid = 1 ;

a f u _ t a _ c o r e . mm_rnw = 0 ;

a f u _ t a _ c o r e . mm_dw = 1 ;

a f u _ t a _ c o r e . mm_addr = o f f s e t ;

a f u _ t a _ c o r e . mm_wr_data = d a t a ;

s e t _ i n p u t s ( ) ;

i d l e ( ) ;

a f u _ t a _ c o r e . mm_valid = 0 ;

s e t _ i n p u t s ( ) ;

}

void mmio_wri te64 (

s t r u c t c x l _ a f u _ h ∗afu_h ,

i n t o f f s e t , u i n t 6 4 _ t d a t a ) {

core_mmio_wr i t e ( o f f s e t , d a t a ) ;

}

/∗ ====== AFU_TA START ======∗/

i n t a f u _ t a _ s t a r t ( ) {

a f u _ t a _ c o r e . r e s e t = 1 ;

i d l e ( ) ;

a f u _ t a _ c o r e . r e s e t = 0 ;

a f u _ t a _ c o r e . mm_valid = 0 ;

a f u _ t a _ c o r e . g e t 0 _ r = 0 ;

i d l e ( ) ;

}

/∗ ===== AFU_TA SUBMIT =======∗/

i n t a f u _ t a _ s u b m i t (

s t r u c t a fu_ ta_wed ∗wed ) {

mmio_wri te64 ( afu_h , 0x80 ,

( u i n t 6 4 _ t ) wed ) ;

}

/∗ ===== AFU_TA CLEAR =======∗/

i n t a f u _ t a _ c l e a r _ h a l t ( u i n t 3 2 _ t

t h r e a d I d , s t r u c t a fu_ ta_wed ∗wed )

{

wed−> s t s [ 0 ] = 0 ;

i f ( s t r e a m i d ==36)

mmio_wri te64 ( afu_h , 0x90 , 0 ) ;

i f ( s t r e a m i d ==38)

mmio_wri te64 ( afu_h , 0x98 , 0 ) ;

i f ( s t r e a m i d ==40)

mmio_wri te64 ( afu_h , 0xa0 , 0 ) ;

i f ( s t r e a m i d ==42)

mmio_wri te64 ( afu_h , 0xa8 , 0 ) ;

}

Figure 8: Code snippet of SW model interacting with TAA HW

blocked. The bug is manifested in the FPGA HW with a unrolling
bound of 150. The counterexample trace provided by HW-CBMC
help to localize the bug and fix the orchestration strategy on the data
channel.

3.2 Challenges and Experiences
We describe various challenges and experiences for formal verifi-

cation of text analytics co-design. It is worth mentioning that the
simulation-based verification using a commercial simulator could
not cover all possible testcases due to the large number of possible
interleavings between the SW and the HW components. However,
the application of the formal co-verification tool HW-CBMC au-
tomatically detected several critical bugs. Majority of these bugs
are either because of the divergence of HW RTL from the behavior
expected by the SW or due to a timing mismatch in the low-level
SW interface that interacts with the RTL.

One of the most important tasks in our co-verification effort is
to write meaningful properties that cover all possible scenarios and
interleavings between the SW and the text analytics HW. A total
of 23 transaction-level properties are verified for the TAA co-design.
Another 15 component-level properties are verified to determine the
correctness of the SW or the HW FPGA accelerator in a stand alone
manner. The maximum time taken for verifying each property is
approximately 15 minutes. Due to the space limit, we report only
eight representative properties in this paper.

The subsequent task is to systematically black-box and grey-box
the RTL blocks such as the POWER Service Layer that do not



Table 1: HW/SW Co-verification of Text Analytics Co-design
Property Property Bound Unwind #Clauses #Variables Verification Bug Bit-level Netlist Word-level Netlist

Type (HW) (SW) Result Type Time (sec) Memory (MB) Time (sec) Memory (MB)

P1.1 ψt 20 10 7744051 3441174 SAFE – 137.5 3125.4 142.6 3128.2

P1.2 ψc 40 15 8325191 4190234 SAFE – 488.3 4287.6 492.2 4261.7

P2.1 ψc 60 25 8389278 4202189 UNSAFE Hardware 583.4 4675.4 588.9 4562.8

P2.2 ψc 70 35 8976345 3894572 SAFE – 543.8 4785.3 578.5 4806.7

P2.3 ψt 90 40 9231568 5673214 UNSAFE Software 619.2 5183.9 623.3 5297.4

P3.1 ψt 95 60 9567821 5789213 SAFE – 629.6 5321.9 667.3 5342.7

P3.2 ψt 100 70 9646713 5986743 UNSAFE Hardware 685.7 5561.5 678.3 5568.9

P3.3 ψt 150 80 9784516 6342518 UNSAFE Hardware 717.4 5921.9 778.2 5921.6

impact the verification of the text analytics engine. For scalable
and effective co-verification, the HW/SW interaction behavior is
analysed to decompose the complex interleaving into simple and
easily verifiable interaction patterns. Recall that the TAA co-design
exhibits producer-consumer relationship. This helps us to identify
those events (transactions) that drive a component to a desired state.
Note that such a pre-defined state is derived from the operation man-

ual of the TAA co-design. The advantage of such decomposition is
two fold – scalability and faster bug hunting. The improved perfor-
mance is mainly attributed to the fine granularity of properties that
captures the design intent for shorter interaction sequence between
the SW and the FPGA accelerator. In case of property failure, a
counterexample trace is provided by HW-CBMC which contains
the SW and HW traces that leads to the bug. The counterexample
trace is analyzed to localize the source of the bug.

4. RELATED WORK
Previous work [1, 6] addresses co-verification in the presence

of a Transaction Level Model (TLM) of HW. Malik et al. [1] have
developed a methodology for firmware validation using a service
function-based TLM that models both firmware and its interacting
HW component. The work of [8, 17] concerns co-verification for
the case of an RTL HW. Unified high-level HW/SW models for
co-verification have been pursued in the past [9]. Notably, Monni-
aux [11] model HW and SW as C programs, which are formalized
as pushdown systems (PDS), Li et al. [8] use Büchi Automata to
model HW and a PDS to model SW to generate a unified model,
called Büchi Pushdown System (BPDS). The work of [15, 5, 12]
performs co-verification using abstraction techniques. To assist
co-verification at a high level of abstraction, Xie et al. [17] have
developed a property-specification language called xPSL, which
extends IEEE PSL to temporal assertions over HW and SW events.

5. CONCLUSION
We have presented HW-CBMC, a HW/SW co-verification tool

that formally validates co-designs written in C and Verilog RTL.
We also presented an unified property specification framework for
co-verification that can express temporal assertions over SW and
HW events. To enable effective co-verification, we decompose the
interleavings between HW and SW into transaction-level properties,
thereby allowing faster detection and localization of bugs.

We demonstrated bounded HW/SW co-verification of the text ana-
lytics FPGA accelerator co-design from IBM R© using HW-CBMC.
We proved several complex properties of the text analytics co-design.
We found several critical co-design bugs using our tool in less
than 15 minutes. There are several further directions to explore. In
future, we plan to extend the applicability of our verification method-
ology to other industrial co-designs. An interesting direction is to
explore other decomposition techniques to reduce the size of the
BMC formula. Another possible direction is to explore unbounded
proof techniques in HW/SW co-verification.
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