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The formal theory of Green functions is reviewed for many particle 

problems in nuclear physics or in solid state physics. In particular, one­

and two-particle Green functions are discussed in detail. The Feynman 

amplitudes are also explained together with the effective potential and its 

applications. This article contains the following sections: 

§ 1. Preliminary remarks 

§2. Definition of Green functions 

§3. Structure of equations satisfied by Green functions 

3 •1 One-particle Green function 

3 • 2 Two-particle Green function 

§4. Perturbation theory and its foundation 

§5. Spectral representation and its application 

§6. Connection with reaction matrix 

§7. Amplitudes and their equations 

7 •1 Definitions of amplitudes and effective potential 

7 • 2 Nuclear optical model 

7 • 3 One electron in insulators and semi-conductors 

Appendix I. Functional differentiation 

Appendix II. Schwinger's dynamical principle 

Appendix III. Polaron problem 

§1. Preliminary remarks 

In classical field theories the notion of the Green function originates 

in considering contributions from a unit source located at a given point 

to the field strengths at another point. For example, consider a simple 

kind of scalar field, say ¢(X), where x represents a space-time point x 

and t. Now we suppose that the'field is characterized by the field equation 

Dx¢(x) =](x), (1·1) 

where Dx is a linear operator and f(x) the source function of the field. 

Eq. (1•1) has a particular solution 
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4 T. Kato, T. Kobayashi and M. Namiki 

¢>(x) ~ G(x, x')f(x')d4x' (1•2)* 

under the condition that ¢>vanishes as f tends to zero. One calls the kernel 

function G(x, x') in the right member of (1·2) the "Green function" or 

the "propagator". Owing to the linearity of the operator Dx, the Green 

function G(x, x') is independent of f(x) and consequently, is written down 

as follows; 

G(x, x') 
8¢>(x) 
o](x'f · 

(1•3) 

(About the functional derivative, see Appendix I. In particular, refer to 

Eq. (A•3).) From (1•1) and (1•3) we immediately obtain the equation 

for G 

DxG(x, x') ow (x x'), (1·4) 

where the formula 8](x)jo](x') oc 4 l(x x') has been used, and o(4)(x) 

8(x)a(t) is the four-dimensional delta function. The form of Eq. (1•4) 

or (1· 2) permits us to interpret the Green function** as contributions 

from a unit source. Therefore all the problems have been reduced to 

solving Eq. (1•4) under the appropriate boundary conditions. 

In nonlinear field theories we have not so simple relations between 

the field and the source as in linear theories. Taking into account the 

condition that ¢> is so chosen as to vanish when f tends to zero, the field 

¢> could be expanded in the Taylor type of series: 

¢>(X)=\[ -~p~(X?--J f(x')d4x' 
j a](x) J=o 

+ _ _!~ \\[-~-- iJ
2

¢>_(_~l__ . ·] f(x')f(x")d 4x' d4x" + · · · (1· 5) 
2! jj a](x')of(x") J=o • 

Thus the simple relation like (1•2) between the field and source holds 

only for an infinitesimally small source o](x), that is, 

¢>(x) = ~ G(x,x')o](x')d4x', (1•6) 

where the Green function in nonlinear theories should be defined by 

G( ') _
1
. o¢>(X) 

X, X = j!;; o j(x') . (1·7) 

In general, the Green function obeys the complicated equation 

* In what follows, we shall use the abbreviation d 4x =d3xdt. 

** Mathematically speaking, the Green function is nothing but the elementary solution 

of the equation Dxu=O. 
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Formal Theory of Green Functions 

The operator .mx is not necessarily equal to Dx, and is defined by 

.mxG(x, x') ==lim····~·····§ .. .,-~Dx [¢] 
J_,.o o](x) 

5 

(1·8) 

(1·9) 

In other words the operator .mx (and then the equation of G) cannot be 

constructed, unless we have the full knowledge about ¢. 

We can also introduce in a natural way the Green function method 

into second-quantized theories of many-particle systems or into quantum 

field theories. The field is described by the operator function ¢(x) obey­

ing the following type of equation: 

Dx¢(x) ](x), (1·10) 

where Dx is a linear or nonlinear operator and ](x) a c-number function 

representing an external source distribution. In order to introduce the 

(c-number) Green function in a way analogous to that in classical theories, 

we must prepare the expectation value <t~>Cx)> of the field operator ¢(x). 

To do this, we first consider the expectation value of an operator, say Q, 

which is defined by 

(1•11a) 

I m> being the state of the medium. When the medium is in a mixed 

state described by a density matrix p, (1•11a) must be replaced with 

where 

<Q> Tr{pQ} /Tr{p}, 

p=~lm>wm<ml, 
m 

(1•11b) 

(1·12) 

Wm being the weight factor of a state I m> in the mixed state of the 

medium. In practical cases we often choose, as the state I m>, an eigen­

state of the total Hamiltonian of the system. However, since eigenstates 

of the total Hamiltonian are not stationary in the presence of the time­

dependnt external field or source, specification of states by them becomes 

not to be meaningful. Thus it is required to modify the definition (1•11a) 

or (1•11b) (and (1•12)) in the presence of the time-dependent external 

source. To do this, we have only to design the external source in such 

a way that it is independent of time at the beginning and at the end of 

the process. Consequently the eigenstates, I mz> at the beginning and 

I mF > at the end, of the total Hamiltonian may be utilized for the purpose 

of specification of states. Assuming* that I mF > approaches to I mz> as 

* If the state I m> is the non-degenerate ground state of the medium, this assumption 

is valid. Otherwise, this may mean that one must select an appropriate class of variations 

for the external sources. And see 3). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

5
.3

/1
8
4
4
7
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



6 T. Kato, T. Kobayashi and M. Namiki 

the external source tends to zero, we may generalize the definition (1•1la) 

or (1•11b) as follows; 

or 

where 

<Q>- <mF I Q I mz> l<mF I mz> 

=Tr{pQ} /Tr{p}, 

P- b! mz>wm<mF J, 
m 

(1•11a') 

(1•11b') 

(1·12') 

Owing to the definition (1•11a) or (1•11b), we can now consider the 

expectation value <¢(x)> of the second-quantized field operator ¢(x). 

The function <¢Cx)> has a non-vanishing value only in the presence of 

the external source, because, when 0, the operator ¢(x) has an effect 

of decreasing the particle number by one* and then <m I¢> I m> 0. 

Hence the function <¢Cx) > could be expanded in the same type of 

series as (1• 5), that is, 

In linear cases the right member of (1·13) vanishes except the first term. 

In general, we can write the formula 

(1•14) 

only for an infinitesimally small source a](x). Here the function defined 

by 

G(x, x') =lim}<pJ~)> 
I-'>0 a](x) 

(1·15) 

is to be regarded as the Green function in second-quantized theories of 

many-particle systems. 

The above function G(x, x') is called the one-particle Green function 

which describes one-particle (or one-hole) propagations in a medium. To 

describe two or more particle propagations, we would necessitate the two­

or many-particle Green function which will be defined in the next section. 

In interacting systems the Green functions obey the very complicated 

equations, in which the operators may not be constructed unless the 

problem is completely solved. Nevertheless, it is known that the Green 

function method is very useful for the purpose of approximate calculations 

* Strictly speaking, ¢ should change the difference between numbers of particles and 

holes by one. 
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Formal Theory of Green Functions 7 

or general discussions of some physical quantities. The purpose of this 

article is to study the structures of the Green functions and the equations 

satisfied by them, and to explain their applications to some many-particle 

problems. 

The Green function method has originally been introduced by Feyn­

man1) and Schwinger2
) into quantum field theories, and has been developed 

by many authors. 

§2. Definition of Green functions 

For the moment let us consider the system composed of two kinds of 

particles, one being bosons and the other fermions, and denote the boson 

field by ¢(x) and the fermion field by 'f'(x), respectively. For simplicity 

¢(x) is a real scalar field, namely, it describes neutral particles without 

spin. The Lagrangian density of the system is a function of the field 

operators and their derivatives with respect to space and time variables. 

In order to introduce artificially the external sources, f(x) for bosons and 

r;(x) for fermions, one must add the extra term 

(2·1) 

to the Lagrangian density. The subscript a stands for the spin or index. 

Here it is noted that r;(x) is only a c-number function which is anti­

commutable with other spinors. Following discussions given in the previous 

section, we may define the one-boson Green function K(x, x') and the one­

fermion Green function G(x, x') by 

K(x, x') 

Gas(X, x') (2•2) 

respectively. By making use of the formulas prepared in Appendix II, the 

functional derivatives in (2•2) become 

-~ij~:/(- -A {<TC¢Cx)¢(x'))> <¢Cx)><¢Cx')>}, 

~~~(t(~;~2 := k { <TC'i"a(X)'f"~(x') )>- <'l"a(x)><+~(x')>}, 

which yield the explicit definitions 

K(x, x') --A~<T(¢(x)¢(x')) >, 
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8 T. Kato, T. Kobayashi and M. Namiki 

(2·3) 

Here the symbol < .. ·> must be equated to (l•lla) or (l•llb). 

Now we briefly explain a physical content of the Green function. For 

example, consider· the one-fermion Green function defined in a pure state 

of the medium, that is, 

G(x, x') = A<m I T("fr(x)~*(x')) I m>. (2·4)* 

The expression for t>t', G(x, t; x', t') = (ih)- 1<m I ~(x, t)~*(x', t') I m>, 
may permit us to interpret the Green function as the amplitude for propa­

gation from x' to x of a particle. On the contrary, the Green function 

for t<t' may be explained as the amplitude for propagation from x to x' 
of a hole. In interacting system, however, such an interpretation could 

be justified only for the asymptotic behaviors. Nevertheless, the above 

interpretation is frequently used with understanding that it is only a 

crude interpretation. With similarly crude interpretations, therefore, we 

may define the two- and many-particle Green functions by the analogous 

expressions 

and 

Gn(xl, x2; x~, x~) =lim '!~sT~f'CJ--!)t'_~~-~)2>. 
J,n-'>-0 or;(xl )or;(x2) 

(ih)- 2 <TC~Cxt)~(x2)~*CxD~*CxD)> 

GmCxt, x2, x3; x~, xL xf).-lim __ o~<_T~y~x 1 )~_C; 2 )~(~ 3 22'2_ 
J.n-"'o or;( Xt) or; (X2) or;( X3) 

(ih )-3<TC ~(xl)~(x2)~(x3)~*(x~)~*(xD~* (xD) >, 

o2<T(¢(Xt)¢(x2)) > 
Kn:(Xl, x2; x~) xf) J.n-"'o-- ----iij(xDo](i;) -

= (ih)- 2 <T(¢(xl)¢(x2)¢(xD¢(x~) )>. 

(2·5) 

In §5 and §6 readers will find more detailed discussions on the relationships 

between the Green functions and some important quantities. 

In practical cases we often deal with particles moving in the medium 

which is in the ground state or in thermal equilibrium with temperature 

T (1/ [3). The former case is concerned with some nuclear problems or 

problems of matter near zero degree in absolute temperature. The latter 

is used for some finite temperature problems, in which the Green function 

* Here we have suppressed the spinor indices. In what follows we shall not write 

them explicitly. 
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Formal Theory of Green Functions 9 

(2·6)* 

is called the time-temperature Green function. If t and t' are replaced in 

(2•6) by i{3 and i[3', we obtain the temperature Green function which was 

first introduced by Matsubara.6
) The temperature Green functions are 

extensively used in statistical mechanics. 

Next, we shall explain a qualitative relation between the space-time 

variation of the Green function and the uniformity of the medium. Dif­

ferentiating the Green function with respect to x, one gets 

Ji'G(x, t; x', t') = -P'G(x, t; x', t') +n-2< [T(~(x, t)~*(x', t')),P] >· 
(2·7) 

Here we have used the equation 

P~(x, t) 
z 

[P, ~(x, t)], (2·8) 

P being the total momentum operator 

(2·9) 

If the state I m> is an eigenstate of P or the density matrix p is com­

mutable with P, in other words, if the medium is uniform in space, the 

last term in the right-hand side of (2•7) vanishes and the function G 

satisfies the equation 

(17 P')G(x, t; x', t') 0. (2·10) 

Eq. (2•10) means that G is a function depending only on the difference 

x x' with respect to the spatial coordinates, that is to say, a uniform 

function irrelevant to the origin of the coordinate system. Concerning the 

problems for finite nuclei or surface of solid, the medium is not uniform 

and consequently, G is not uniform function satisfying Eq. (2·10). Simi­

larly we can regard G as uniform with respect to the time coordinate, 

when and only when the state I m> is an eigenstate of the total Hamil­

tonian or the density matrix p is commutable with the total Hamiltonian. 

If the medium is uniform in space and time, G(x, x') is written down as 

a function of x--x' and t-t'. 

In the presence of time- and space-dependent external sources or fields, 

the Green functions and other quantities are not uniform in time and 

space. 

Finally it is noted that, by intervention of the spinor sources, the 

* H is often replaced with H- fl;N, where fL is the chemical potential and N the ope­

rator corresponding to the number of particles. 
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10 T. Kato, T. Kobayashi and M. Namiki 

calculations become considerably troublesome due to the strange properties 
of -r; or -r;*. Therefore it is desired to calculate the Green functions or 
other important quantities without resort to r; or r;*. For this purpose, 
(as will be seen in the next section) we have only to introduce the addi­
tional term --·t'*(x)"/P(X)({J(X), into the Lagrangian density, where ({J(X) 
is a real and scalar external field. 

§3. Structure of equations satisfied by Green functions 

In the present section the equations of the Green functions will be 
derived from their definitions and the fundamental equation. The struc­
tures of the Green functions will be suggested by investigating the equations, 
on which one can proceed to calculate the perturbation series of the Green 
functions. For the practical purpose we shall restrict ourselves to systems 
described by the Lagrangian density 

i'!t"/P*(x) 8 ~"(x)_ ~~!t~.P'/r*(x) ·P"/P(x) 
at 2m 

-. ~ ~t'*(x)t'*(x') U(x x')o/(x') r(x)d4x', 

where o/(x) is a spinor field of fermions and U(x-x')=V(x-x')o(t-t'), 
V(x x') being the potential for the two-particle interaction. Moreover it 
is assumed that U(x-x') is a symmetric function of x and x'. The 
Lagrangian density ( 3 •1) yields the Hamiltonian 

H = ~o/*(x)[ 2 ~ P'2]t-Cx)d
3
x 

+· ~ ~~ t*(x)o/*(x') U(x x')o/(x')o/(x)d4xd3x' (3·2) 

and the field equation 

For the sake of mathematical convenience mentioned at the end of the 
last section, we introduce a c-number external field ({J(X) by adding the 
term 

o/* (x )o/(x )({J( x) (3·4) 

to the Lagrangian density. This results in the modification 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

5
.3

/1
8
4
4
7
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Formal Theory of Green Functions 

in (3•2) and (3·3). Thus 't(x) obeys the equation 

~~"*(x') U(x x')'t(x')d4x']-t(x). 

(3·5) 

Following discussions in Appendix II, we can utilize the formula 

in-~(~--) <Q> = <T {Q't*(x)""(x)} >-<Q>< ""*(x)+Cx) >· 
f3q; X 

Differentiating (2•3) with respect to t, we get 

(3·6) 

11 

where the delta function comes from the jump of G at its discontinuous 

point t=t'. Substituting (3•3) into (3e7), one immediately obtains the 

equation 

[in_!_+ _R_p2] G(x x') = B<4 ) (x- x') 
at 2m ' 

+ (in)-1 ~d 4 x" U(x x")<TC ""*(x")+(x")+(x)""*(x')) > 

for the one-particle Green function. The last term of the right member 

can be written in terms of the two-particle Green function, that is 

[in--:r 2~ J72Jccx, x') f1<4l(x x') 

-in ~d 4 x" U(x- x")Grr (x, x"; x', x"). 

Thus the one-particle Green function is coupled with the two-particle 

Green function. Similary the equation of Grr includes the one-particle 

Green function G and the three-particle Green function Gm. In general, 

the equation of the N-particle Green function GN is participated with the 

(N +I)-particle Green function. Hence we have arrived at the set of 

simultaneous equations for an infinite number of Green functions, G, Grr, 

Gm, ... as follows; besides (3·8), 

N 

~ (3(4) (X1 Xi) ( l)i·-lGN-1 (X2,' '•XN; X~ .. ·X~-1, X~+1' "XN) 
i=l. 

(N22). (3·9) 
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12 T. Kato, T. Kobayashi and M. Namiki 

We may as well obtain, in a compact form, the equation to be satis­
fied by the one-particle Green function alone, by eliminating other Green 
functions. This procedure may be achieved by means of functional dif­
ferentiation with respect to 9(x) introduced at the beginning of the present 
section. In the following subsections, we shall investigate the structures 
of the equations satisfied by the one-particle Green function and by the 
two-particle Green function. 

3·1 One-particle Green function 

Denote the Green function in the external field 9 by Gcp. Gcp obeys 
the equation 

[in :t 2 ~ 172 
9(x) Jccp(x, x') a<4l(x x') 

+ (in)- 1 \d4x" U(x~ x") <T ( 'fr*(x")'fr(x")'fr(x)'fr*(x')) >· 
Using (3 • 6), we can rewrite the last term of the right member as follows; 

(in)- 1 \d4x" U(x~x") <TC t'*(x'')t'(x") 'fr(x)'fr*(x')) > 

V9'(x)G9'(x, x') +in \d4x" U (x x")- 8 ~-tx"fGcp (x, x'), 

where we have used the abbreviation 

Vg> (x) \d4x" U(x x")< 'fr*(x")'fr(x") > 

~in \d4x" U(x x")tr G9'(x", t"; x", t" + 0), (3·10) 

where tr stands for the trace on spinor indices. Hence the equation for 
G9' becomes 

[in_!)__ +~:__P 2 9(x) Vcp(x) 
at 2m 

~in\ d4x" U(x ~ x") _ __a_Jc (x x') = o<4) (x ~ x') 
j a9(x") 9' ' · 

(3·11) 

This includes only the one-particle Green function. Here it must be 
remembered that the function 9(x) is to be put equal to zero everywhere 
after all calculations have been completed. The function defined by 

V(x) lim V9'(x) \<m 1'/r*(x", t)'r(x", t) lm> V(x x")d3x" 
g>0-0 j 

or (3·12) 
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Formal Theory of Green Functions 13 

is interpreted as the static average potential for a particle moving in the 

medium. Since the state I m> is an eigenstate of H or is commutable 

with H, the function V(x) is independent of time. On the other hand 

V(x) is naturally reduced to a constant independent of x if G is uniform 

in space, in other words, if the medium is in an eigenstate of the total 

momentum operator P or in a mixed state described by p commutable 

with P. The dependence of V ( x) on space coordinates is a reflection of 

the non-uniformity of the medium. Moreover it is easy to see that V(x) 

is a real function. 

The last term* of the left member in (3•11), after the limit q;_,.O, 

represents the exchange effects between the particle in consideration and 

the medium particles or among the medium particles and the pair-excitation 

effects of the medium caused by motions of the particle, because the 

operation o/oq;(x) means the creation of a particle-hole pair at x. Such a 

term is to be regarded as the result of elimination of many-particle Green 

functions in the set of equations, in which their participation means all 

possible exchanges among particles and all possible excitations of the 

medium. The situation (or effect of o/oq;) is well visualized by introduc­

ing the graphical method developed in quantum field theory. 

In order to introduce the graphical method analogous to relativistic 

vacuum field theories, lt is of essential importance to utilize extensively 

tl).e fact that the annihilation operator t' can be interpreted as a creation 

operator of a hole in the medium when applied to the state vector of the 

medium. This resembles the creation operator for anti-particles in rela­

tivistic vacuum field theory. However, there is an essential difference 

between relativistic vacuum field theory and the present theory. In the 

present theory t' cannot always be interpreted as a creation operator of 

a hole, because the medium has only a finite number of degrees of free­

dom. Hence it must be understood that the complete parallelism between 

both theories holds if we discard the terms vanishing at the limit of 

infinite freedom of the medium. 

For the purpose of formulating the graphical method, we first assume 

the existence of the inverse function G~ 1 (x, x') satisfying the relations 

~ G~ 1 (x, x") Gg;(X", x')d4x" o(4
) (x x'), 

~ G:P (x, x") G~ 1 (x", x')d4x" = o\4) (x -- x'). (3·13) 

* It may be worth while to remark that the Green function is free from divergences 

because the functional differentiation occurs only in the integral with the kernel U (x- x"). 

In contrast with this, the equation of the Green function contains the corresponding term 

lim (o/o<P (x)) G'f' (x, x') in some cases of divergent field theories. 
'f'_,.O 
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14 T. Kato, T. Kobayashi and M. Namiki 

In other words, the inverse function G;/ is nothing but the operator ap­
plied to G'P, although it must be written as an integral operator. Now 
define the quantities <<p(x)> and i.lcp(X, x') by 

<<P(x)>=<p(x) + V'P(x)- V(x), 

Llcp(X, x') ~d 4 x'U(x x")-~~(~~'2 . (3·14) 

Then Eq. (3•11) becomes 

[itt-%r + 2 ~ 17
2 

V(x) <<PCx)> 

-iit~d•x"LI~(x, x") tl<(",PtX''):>Jc.cx, x') 8'.,(x x'). (3·15) 

The functions <<PCx)> and Llcp(X, x') are respectively regarded as the 
external field and the two-particle potential modified by interaction with 
the medium. Differentiating one of (3•13) with respect to <<p(X) >, we 
immediately obtain the formula 

aG<p(x,x') 

a<<PCx")> 
(3•16) 

Replacing the functional derivative in ( 3 •15) with ( 3 •16), one can find 
the explicit form of the integral operator G;, 1 as follows; 

(3·17) 

where we have used the abbreviation 

(3·18) 

r 'P being defined by 

(3·19) 

Here let us define the quantity ;s9' by 

.Scp(x, x') = V(x)a(4)(x-x') +II cp(x, x'). 

Then G;,1 is rewritten as 

G;,l(x, x') [itt~~-+ 2 ~ 172 -<<p(x)> Ja(4 )(x-x') -.s'P(x, x'), 

(3•21) 
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Formal Theory of Green Functions 15 

from which we find the relation 

r<p(~,r:;; x") awe~ ()8( 4 )(~ x")+~a~:f~n5~-. (3•22) 

For Ll<p and <qJ > we obtain the equations 

Ll<p (x, x') U (x- x') (i h) tr~~~ ~d 4 x" d 4 ~' d 4 ~" d4r:;' Ll<p(x, t;') 

x r <;>(~', ~"; r::') G<p(~", x") G<p(x", ~') U(x"- x') (3·23) 

and 

<qJ(x)>=<p(X) ili~d 4 x" U(x-x")tr [G<p(x", t"; x", t" +0) 

-G(x",t"; x",t"+O)] 

from (3·10) and (3•14). Here it may be convenient to introduce the 

polarization ter~ defined by 

P <p ( r:;', x") (ih )tr~ ~d 4 ~' d 4 ~"r<p ( ~', ~"; t;') G<p ( ~" x") G<p (x", ~'), (3 • 25) 

so that we can rewrite (3·23) as 

Ll<p (x, x') U(x x')- ~~d 4 t;' d4x" Ll<p (x, r:;') P <p ( r::', x") U(x"- x'). 

(3·23') 

Therefore we have formulated a set of six equations in the six unknowns, 

G<J>, Ll<J>, .J;<J>, r <J>, P <J> and <<p >, which are rewritten in matrix form as 

follows: 

[Po- -fm-P2
- < <p >- .J;<J> J G<J> = 1, 

.I; <p iii UG iliLl<p Gg>r <p , 

Ll<p U -- Ll<pP <p U, 

P <p ilir <p G<p G<p , 

r<p=1+ - 8 <~>- , 
<(/)> (/) ihU(G<p G), 

(3•26a) 

(3•26b) 

(3•26c) 

(3•26d) 

(3•26e) 

(3•26f) 

where we used the matrix notations, such as <xI Po I x'> (ih8 /8t)a<4
l (x x'), 

<xlplx'> (li/i)P'8(4 )(x x'), <xi.E<plx'> .s<p(x,x'), <xiG<plx'>= 

G<J>(x, x'), and so on. 

Here it may be of interest to remark the resemblance of the equation 
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16 T. Kato, T. Kobayashi and M. Namiki 

obtained in derivation of (3•26) to the ordinary eigenvalue problem of a 
differential operator. The ordinary eigenvalue problem is characterized by 
the equation 

Ly .1y 

and a boundary condition imposed on y, where L is a differential operator, 
A its eigenvalue, and y its eigenfunction belonging to A. There, A and y 
depend sensitively on the boundary condition. Corresponding to different 
boundary conditions, one must find different sets of eigenvalues and 
eigenfunctions of the same operator L. Here equate the operator 

iti~d 4 x"U(x-x")(l3jl3<p(X")) with L, IIcp with A and Gcp withy, respec· 

tively. Then II C? may be regarded as an eigenvalue of a functional 
differential operator. In fact, Eq. (3•27) always has the same form what· 
ever may be the medium, in which the particle moves, and whatever 
boundary conditions may be imposed on GC?. However, the equation, after 
the replacement (3 • 27), is sensitive to the boundary conditions or the 
state of the medium. Therefore the replacement (3•27) may be regarded 
as a sort of eigenvalue equation accompanied with an appropriate boundary 
condition. 

All the needed quantities are obtained from the <p·dependent functions 
by the limit operation <p---c>O. Denote every function at the limit <p=O by 
the same letter without subscript <p, for example, 

r ( ~, r: ; x") -lim r cp ( ~, r: ; x") . 
cp~O 

We then obtain the equation 

[in-Zr + 2 ~ J72Jccx, x') -· ~d 4 x" ;s(x, x") G(x", x') = ac 4
) (x x'), 

(3·28) 
where 

;s(x, x') = V(x)aw (x- x') + II(x, x'), 

II(x, x') itv~~d 4 x"d 4 ~.d(x, x')G(x, ~)r(~, x'; x"). 

By analogy we shall call 2J the self-energy part. Evidently the function 
II includes the term 

uex(x, x') itvU(x-x') G(x, x') 

which is interpreted as the exchange effect between two particles corres· 
ponding to the first term V in 2J • This fact will be seen from the 

. comparison of the two terms 
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}.,orrnal Theory of Green Functions 

V(x)G(x, x') = -in\d 4 ~U(x-~)G(~, ~) G(x, x'), 

~Ir.t;(x, ~) G(~, x')d 4 ~ ifi ~d 4 ~ U(x ~) G(x, ~) G(~, x'), 

17 

(3·31) 

in which the latter will be obtained from the first equation by exchange 

between x and ~ in the first arguments of two G's in the right member 

of the first equation. Now we divide .s into two parts as follows: 

where 

.S8 (x, x') = V(x)o(4 ) (x-x') + rrx(x, x'), 

_sF (x, x')- .S(x, x')- IIe"'(x, x'). 

(3•32) 

(3·33) 

The meaning or role of the division will later be clarified in the graphical 

representation and in construction of the effective potentital. 

Now we can explain the graphical representation. G(x, x') is graphi­

cally represented by drawing a heavy solid line, connecting points x with 

x', with an arrow toward x from x'. According as t>t' or t<t', the line 

corresponds to a particle line or a hole line in the medium. Ll(x, x') is 

represented. by a heavy broken line without an arrow connecting x and 

x'. r ( ~, (; x) is the vertex part with an outgoing particle point ~, an 

incoming particle point ( and a force point x. In the perturbation theories, 

the unperturbed functions Go and L10 = U will be represented respectively 

by a fine solid line and a fine broken line. Now we can draw a graph 

corresponding to II in a way suggested by its definition (3e29). Fig. 1 

shows the graph of II. This has the structure similar to the proper self­

energy graph of an electron in quantum electrodynamics. The terms of 

.S8 are shown in Fig. 2, in which the fine broken line shows the element­

ary interaction U. There the above-mentioned exchange is well visualized. 

The graph of P is given in Fig. 3. 

')--u-OG 
(i) (ii) 

Fig. l. The graph of II. Fig. 2. The graph of 2::; 8 : (i) V and (ii) IIex. 

---~---
Fig. 3. The graph of P. 
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18 T. Kato, T. Kobayashi and M. Namiki 

In uniform media all the functions introduced above are independent 

of the origin of the coordinate system, so that they can be regarded as 
functions of differences among the space-time variables, that is, 

and so on. 

G(x,x') =G(x~x'), 

.s(x, x') .S(x ~ x'), 

Ll(x, x') =LI(x-x') 

r ( r;, (, ; x") = r ( r; (, ; r; - x") 

Therefore it is convenient to write them in the momentum represen­
tation or by the Fourier transform. First, for example, consider the 

Fourier transform* of G(x, x') denfined by 

G(p, p') ~~e~ipxG(x, x')eiP'"''d4xd4x', (3•34) 

where hp (P,P0 ) is a momentum four-vector and px=(Px-Pot)jh. 
Because of the uniformity of G(p, p'), it becomes 

G(p, P') (2n:) 4G( P )a<4)(p-P'), (3•35) 

where 

(3•36) 

Inversely we have the formula 

G(x x') (3·37) 

Furthermore one obtains the formulas 

Ll(x- x') = ( 2 ~) 4 -- ~eik<z~xf) Ll(k )d4k 

_E(X X') _( 2 ~-yj,-~eiP(x-ro!)_s(p)d4p, (3•38) 

by means of the similar procedures. The vertex part is represented by 

its Fourier transform defined by 

r(p', p; k) ~~~e-i1J'i:HPs-ikx"r(t;-(,; r; x")d4t;d4(,d4x" 

= (2n:) 4r(p; k)o<4 l(P-P'+k), (3·39) 

where 

(3·40) 

* For all Fourier transforms we shall use the same letters as the functions in the 

configuration representation. Readers should not confuse them. 
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Formal Theory of Green Functions 19 

which yields 

r(~-(; ~-x") = ~(2~)8-~~eiP(t;-slr(p; k)e-ik<ti--x")d4pd4k. (3·41) 

The appearance of delta-function in (3o35) or (3e39) is a reflection of 

the uniformity of the medium. Consequently it must be remembered that 

the momenta carried by particles are subject to the conservation law in 

each line or at each vertex. 

In the momentum representation Eq. (3•28) becomes 

(3·42) 

which has the formal solution 

(3•43) 

The self-energy part .S has the form 

.s(p) V+II(p), (3·44) 

where Vis a constant* as mentioned above and 

(3·45) 

From (3•25) and (3•23') it is easily shown that Li(k) obeys the equation 

Li(k) = U(k)- Li(k )P(k) U(k), (3·46) 

where 

(3·47) 

Eq. (3•46) has the formal solution 

Li(k) = U(k) [1+P(k) U(k)] - 1
• (3·48) 

Thus we could obtain all the functions G, Li, .S, II and P, if the vertex 

part r(p; k) were given. However r cannot be obtained unless we 

solve the complicated equation containing the functional derivative as 

follows: 

(3·49) 

* (3•10) yields 
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20 T. Kato, T. Kobayashi and M. Namiki 

(For the Fourier transforms of functional derivatives, see Appendix I.) 

Here the <;o-dependent functions have appeared again! Approximate ap­

proaches to the Green functions will be discussed in the next section and, 

for more details, in other articles of the present issue. 

3.2 Two-particle Green function 

In this subsection we shall formulate the equation to be satisfied by 

the two-particle Green function Grr. For simplicity, we simply denote the 

argument variables of Grr as follows: 

Grr (1, 2; 1', 2') = (ili)-- 2 <TC~(1)'/r(2)~*(2')"fr*(1') )>. (3·50) 

Differentiating (3·50) with respect to t1, we easily obtain the equation 

iii a~~ GrrJJ(1, 2; 1', 2') 8(1, 1') Gg>(2, 2') 8(1, 2') Gg>(2, 1') 

+ (i'li)-2<T(ili ay(~) ... ~(2)'/r*(2')"f'*(1'))> 
atl 

which, together with (3•5) and (3•6), yields the equation 

<3 1 GrrJJ (1, 2; 1', 2') = 8(1, 1') Gg> (2, 2')- 8(1, 2') Gg> (2, 1'), 

where 

Here D(1) is the functional-differential operator written as 

D(1) -ili~d(3)iJJJ(1, 3)- 8 <:::_~~ 35 > , 

(3·51) 

(3·52) 

where we have used the abbreviation d (3) d 4X 3 • Hence an equation 

satisfied by Grr is easily derived from (3•51) and (3•15) in the following 

form: 

91<32Grr9'(1, 2; 1', 2') 8(1, 1')8(2, 2') 8(1, 2')8(2, 1'). (3·54) 

However Eq. (3•54) is not what we wanted, because it contains explicitly 

the functional derivatives. 

First we intend to separate the one-particle component from Grr. For 

this purpose the equation of G should be written in the form 

~~ [G- 1 (1, 1") G- 1 (2, 2") --- W(1, 2; 1", 2")] Gn (1", 2"; 1', 2')d(1")d(2") 

8(1, 1')8(2, 2') 8(1, 2')6'(2, 1') (3•55)* 

* To avoid complicated suffices, we shall suppress the subscript rp of G or Gn. But 
Eq. (3•55) holds when rp tends to zero. 
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Formal Theory of Green Functions 21 

or, in the rna trix form, 

(3·55') 

where G-1(1, 1') or c-1(2, 2') is the operator given by (3•17) or (3·21), 

and 112 stands for the matrix defined by the element <12111211'2'> 

o(1, 1')o(1, 2') o(1, 2')o(2, 1'). The first term in the left member of 

(3·55) or (3•55') may express the one-particle component of Grr, because 

the one-particle Green function describes the one-particle propagation in 

a sense. What we want is the function W which would represent the 

sentiales two-particle interactions. The integral form of (3• 55) is 

Grr (1, 2; 1', 2') = G(1, 1') G(2, 2')- G(1, 2') G(2, 1') 

+ ~~~~ G(1, 3) G(2, 4) W(3, 4; 3', 4') G1r (3', 4'; 1', 2')d(3)d( 4)d(3')d( 4') 

(3·56) 

or, in the rna trix form, 

Applying the operator ::£1 to (3•56), we obtain 

9i 1 Grr (1, 2; 1', 2') o(1, 1') G(2, 2') o(1, 2') G(2, 1') 

+ ~ G(2, 2") [~ ~ W (1, 2"; 3', 4') G(3', 4'; 1', 2')d (3')d ( 4') 

ili~~L1(1, 6)r(2", 5'; 6) { G(1, 1') G(5', 2') G(1, 2') G(5', 1') 

+ ~~~~ G(1, 3) G(5', 4) W(3, 4; 3', 4') 

X G(3', 4'; 1', 2')d(3)d ( 4)d (3')d ( 4')} d (5')d(6) 

(3·56') 

iii~~~~ G(1, 3)L1(1, 6)-a<~-( 6 )'5~ { W(3, 2"; 3', 4') G(3', 4'; 1', 2')} 

xd(3)d(6)d(3')d(4') Jd(2"). 

Comparing the last equation with (3•51), the extra term in the right 

member must vanish, that is to say, we obtain the equation 

~~ W(1, 2; 3', 4') Grr (3', 4'; 1', 2')d (3')d ( 4') 

ili~~L1(1, 6)r(2, 5'; 6)G(l, 5'; 1', 2')d(5')d(6) 

+iii~~~~ G(1, 3)L1(1, 6)a<<p~ 6 )>- [ W(3, 2; 3', 4') G(3', 4'; 1', 2')] 

X d (3)d ( 6)d (3')d ( 4') (3• 57) 
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22 T. Kato, T. Kobayashi and M. Namiki 

or, in the matrix form, 

W G ]1 = ifiL112r 2 G J[ + ifi G1L112 8 <~ 25 - [ W G n J . (3·57') 

Denoting the first term in the right member of (3·57) by W( 11Gn, 

w(l) is written as 

W<1l(1, 2; 3', 4') =ifi~~L1(1, 6)r(2, 5'; 6)<1, 5' 1112!3', 4'>dC5')d(6) 

ifi~ [L1(1, 6)r(2, 4; 6)8(1, 3') L1(1, 6)r(2, 3'; 6)8(1, 4')] d(6). 

(3·58) 

This function is graphically represented by a single force-bridge between 

two particle-lines. See Fig. 4. The two terms in (3·58) express the 

1}------
3' L1 

1 }------
4' 

Fig. 4. The graph of W(l) 

exchange effect as expected. The last term does not contain any iteration 

of any graph, but represents more complicated bridges between two particle­

lines. 

§4. Perturbation theory and its foundation 

As was seen in last section, we must treat the very complicated 

equation and then devise a way to obtain the Green function. Most of 

calculations are usually performe~ through the perturbation expansion or 

its modifications. So we shall here explain the formal expansions of the 

Green function and the related functions into the perturbational series. 

If we had the complete knowledge about the wave function belonging 

to the state of the medium, we could calculate .};8 and might use it as 

the starting point of the perturbation theory. However, it is not easy to 

prepare the correct wave function of the medium, so that we should 

proceed to the perturbational calculations of G together with solving the 

state of the medium. The knowledge about the medium presents the 

initial and boundary conditions to be imposed upon the Green function G. 

From the form of the definition (2•3), lt is seen that the perturbation 

expansion of G becomes two folds because the state vector I m> or the 

density matrix p must be expanded in the perturbation series besides the 
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Formal Theory of Green Functions 23 

Heisenberg operator 'fr. However it may be possible to perform the two 

expansions by a single procedure such as prepared in quantum field theory. 

We shall first discuss on it. 

Suppose that the total Hamiltonian of the system is divided into two 

parts, that is, 

(4·1) 

where Ho and Hr are, respectively, the unperturbed and the perturbation 

Hamiltonian. Further assume that we know the set of eigenvector I ([Jm> 
of H 0 obeys the equation 

(4·2) 

EJJ, being an eigenvalue of Ho or an unperturbed energy. Corresponding 

to the division ( 4·1), it may be useful to express quantities in the inter­

action representation in which the time evolution operator is defined by 

(4•3) 

The S-matrix can be produced from U(t, t') by some appropriate limiting 

procedures3
): S- U( oo, - oo). The S-matrix is expanded in the pertur­

bation series 

(4·4) 

where 

Now we may write a desired form for the perturbation expansion of G 

in the following way: 

G(x, x') (i'li)-1<T(U(oo, -oo),h(x)o/'f(x'))>o 

~ (i'li)-n-·l~~·~~~~t 1 · · ·dtn<T(Hr(tl) · · ·HI(tn)o/z(X)'fr'f(x')) >o, 

(4·5) 

where t'z is the field operator in the interaction representation defined by 

o/z(x) == U- 1 (t, O)o/(x) U(t, 0) 

and <TC · · ·) >o stands for 

(4·6) 

<TC .. ·)>o <mmiT( .. ·) lmm>l<(/)rnl U(oo, -oo) jmm>· (4•7) 

The Green function in consideration is the one defined by (2•4). (For 

the definition (2•6), see later discussions.) If the expansion formula 
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24 T. Kato, T. Kobayashi and M. Namiki 

( 4•5) is verified, we can use the well-known graphical method as formu­

lated by Feynman4
) and Dyson5

) in quantum field theory and by Matsubara6
) 

in statistical mechanics. There the expansion could be performed on the 

basis of the unperturbed Green function 

Go(X, x') = (i'/i)- 1<(/Jm IT( t'z(X)t''f (x')) I (/Jrn>· (4·8) 

Since U ( oo, oo) conserves energies, the vector S I (!Jm> becomes 

again an eigenvector of Ho belonging to Eg. Hence S I a>m> coincides 

with I (!Jm> except for a numerical factor, if we are concerned with the 

non-degenerate eigenstate. That is to say, one gets 

(4·9) 

Sm being the numerical factor defined by 

(4·10) 

Although Eq. (4·9) is not necessarily valid in degenerate cases, it might 

be possible to represent the unperturbed state of the medium by a simul­

taneous eigenstate of H 0 and S. Eq. (4•5) will be justified only in such 

cases. Now let us consider the vectors defined by 

(4·11) 

for the state of the medium. They are both the eigenvectors of H 

belonging to an eigenvalue Ern, where Em may be written in terms of the 

energy shift as follows: 

(4·12) 

The energy shift becomes negligibly small in systems composed of a finite 

number of particles in an infinitely large volume. For example, this may 

be understood through a simple scattering of a particle by a fixed poten­

tial. However, the energy shift is no longer discarded in some interesting 

systems which have an infinite number of particles in an infinitely large 

volume but a finite density. In general, therefore, we have the relation 

HU(O, - oo) = U(O, - oo) (Ho + JH0 ), (4•13) 

where 

(4·14) 

This may be evident from (4•12) and (4•11). Now Eqs. (4·9) and (4•11) 

give us the important relation 

jm+>=--t~-U(O, -oo)S- 1 1(/Jrn>= S~ U(O,oo)j@rn>=-~flm->. 

(4·15) / 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

5
.3

/1
8
4
4
7
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Formal Theory of Green Functions 25 

Here it is emphasized that Eq. ( 4•15) is verified only in the media whose 

unperturbed state can be represented by a simultaneous eigenvector of Ho 

and S. In such cases Eq. ( 2 • 4) can be rewritten as 

(4•16) 

Rewriting the expression obtained above, we finally get, 

Therefore we can perform the perturbation expansion of G(x, x') by a 

single procedure produced by expanding U ( oo, oo), and immedia tetly 

obtain (4•5). Division by Srn=<a>ml U(oo, -oo) la>rn> means that we 

should omit all graphs that are not connected with x or x'. Further lt 

may be worth while to write the following expression of Go: 

. , ' _ f 1 
, x;"(x)exp{ (i/lt)E~(t-t'))x;"•(x') 

G0 (x, t, x, t ) -l 
ifl, 1 ~x~ 0 l*(x)exp { + (i/h)E~(t- t') }Xk0

) (x') 

t>t', 

t<t'. 

(4·18) 

Here x~o) and x~n are, respectively, the amplitudes of a particle in the n-th 

state and of a hole in the n-th state determined by H0 , which are defined 

by 

X~ll (x) <a>m 11Jr(x) I a>n,m+l>, 

x~l(x) <a>mi1Jr*(x) la>n,rn+1>, (4·19) 

where I a>n,m+1> is the vector representing the n-th state of the (medium 

+-one particle or hole)-system governed by H 0 • 

Next we discuss the Green function defined by (2•6). If any new 

energy gap or any new bound state is not produced by introducing Hz 

into the system governed by Ha, then we can regard { I m+ >} or { I m~>} 
as a complete set and use, for example, { I m+ >} as the vector system 

over which the summation in the trace of (2~6) is performed. In general 

cases we have not necessarily the relation (4·15), as pointed out above. 

However, an appropriate unitary transformation can bring them to a vector 

set satisfying (4•15). Since the trace is invariant under unitary trans-

. formations, we can use the new vector set satisfying ( 4• 15) to perform 

the summation in the trace. Denoting the new vectors with the same 

letters, Eq. (2• 6) can be rewritten as 

~<m-1 T( 1jr(x)1Jr*(x') )e-BH 1 m+>S;;; 1 

G(x, x') (ih) "' . :t·zm::.l e-(3rr I m j.>s~ 1 

"' 
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26 T. Kato, T. Kobayashi and M. Namiki 

<(J)ml U(oo, O)T(1]r(x)'f'*(x')) U(O, oo) lmm> 
~-············································································ ..... •······················•• ··················-· •............... 

= (itt)-1 .. .111. __ ~-·---~-<;,t[!!!':l.[/(oo,_=~l_mm2 ______ ~-··--·--· 
<mm I U( oo, O)e-rm U(O, oo) I mm> 

~ ·---~--·········~·~·-·-·--~--

m <mm I U( oo, oo) I mm> 

where ( 4•15) and ( 4•11) have been used. Eq. ( 4·13) yields the relation 

so that one obtains 

or 

= (itt)-l Tr{e-B<.Fio+.dHolT( U( oo, ~ oo )'t/Pz(X)o/T(X')) }connected 
---------f-r {e:::s<J::r:t::a}J~) }- --- -- ··· ·· · · ·· · ·························· ··-· 

(4•20) 

where Tr(· .. ) connected is defined by the right members themselves in (4•20). 

If considered by (4•20), the perturbation expansion of this Green function 

contains twofold procedures for U(oo, ~oo) and l1H0 • The fact that the 

perturbation series of G cannot be obtained by a single procedure makes 

the problems very complicated. If only U( oo, oo) is expanded, we will 

reach similar expansion formula or similar graphs with understanding that 

we should use the function 

Go(X, x') (4•21) 

as the zeroth-order Green function. Go defined by (4•21) obeys the same 

equation to be satisfied by (4·8), but it must be subject to another 

boundary condition different from the one imposed on ( 4•8). In spite of 

the easy form of equation, therefore, the explicit form of Go can not be 

obtained unless we can solve the energy spectrum of the total Hamiltonian. 

Nevertheless one might devise a way to calculate G. If l1H0 can be 

calculated by some types of approximation methods, for example, the per­

turbation method or the variational method, we have only to substitute 

it into (4•21). We prefer such a method to the formal expansion of the 

factor exp(- (3H), because some parts of all contributions of i1H0 to G 

may be summed up by the exponential function. Finally we remark the 

simplest two cases; (i) JE,/h is a constant for all states, and (ii) 11Er?t J.Ei!t, 

J. being independent of m. In the first case we can directly drop out the 

term H from ( 4•20) and ( 4~21), so the expansion of G contains only a 
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Formal Theory of Green Functions 27 

single procedure caused by U( co~ co). In the second case, if we know 

X, we have only to modify {3 or another parameter in H 0 and to drop out 

.dH0 from (4•20) and (4•21). 

In the following of this section, we assume the full knowledge about 

G 0 (x~ x') and formulate the formal expansion of the Green function and 

the related functions. This will be explained on the basis developed in 

the previous section, without resorting to the direct use of ( 4 • 5) or ( 4 • 21) . 

First we suppose that H 0 has the form 

H 0 = ~ ~* (x)( ~ 2 ~-17 2 )'f'(x)d3x + ~~ )fr*(x) 8(X, x')'tfr(x')d4x' d 8x, 

(4•22) 

where 8(x, x') is, in general, the non-local potential appropriately chosen. 

In this case the one-particle function G obeys the equation 

[if1-tt + 2 ~-f7 2 ]Go(X, x') ~ ~d 4 x" 8(x, x") G0 (x", x') = a<4
l (x- x'). 

(4•23) 

If we use Go as the starting point of perturbation theory, it is convenient 

to rewrite the equation of G in the following integral equation 

G(x, x') Go(X, x')+ ~~d 4 x" d4x"' G0 (X, x") 

x [..E(x", x"') ~ 8(x", x"')] G(x"', x') 

or symbolically, 

Go+ Go [.E~E] G. (4•25) 

The convergence or accuracy of the perturbation series essentially relies 

on the choice of 8. If in passing of the particle in consideration the 

medium is almost always in its ground state, we may consider the static 

approximation to be good and choose 8 as 

(4•26) 

This may be regarded as simple application of the Hartree-Fock method 

to our problem. For this choice we should solve the equation (in the 

symbolical matrix form) 

(4•27) 

which may be treated by the successive iteration. Besides ( 4•26), we 

have other possibilities of choosing 8, for example, those suggested by 
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28 T. Kato, T. Kobayashi and M. Namiki 

Brueckner's method. Detailed discussions will be given elsewhere in this 
issue. 

The perturbation series of G is obtained by successive iteration, where 
the perturbation series of .S is required. To get the series of .S, we 
should prepare the series of Ll, P and r. The perturbation series of i1 is 
immediately obtained as follows: 

Ll(x, x') = U(x-x')- (ih) ~~d 4 x"d 4 (' U(x' -x")tr [G0 (x", (') G0 ((', x")] 

x U(x (') + ···, ( 4•28) 

where we have used the lowest-order term of P in the series 

P(t;', x") ih tr [ Go(X", C) Go((', x")] + .... (4·29) 

Similarly we get 

r(~, t:; x") =o< 4 l(~-t:)o< 4 l(~-x") +ihU(~-t:) Go(~,x") Go(x", t:) + .... 
(4·30) 

The graphs corresponding to the perturbation series of i1 are shown in 
Fig. 5 and the graph of r in Fig. 6. The series produced by iteration of 

Fig. 5. Graphical represen­

tation of the series of 
.d. 

-----j + 

________ .... 
u 

Fig. 7. Graphical representation J 
of the series of G. Go . 

I 
~ 

+ 

t 

Fig. 6. Graphical represen­

tation of the series of 

r. 

Go 

Zo-Eo 

Go 
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Formal Theory of Green Functions 29 

(4•24) or (4•25) is graphically represented as in Fig. 7, but the concrete 

form of (.Jl 8) depends on the choice of 8. The graphs of .Jl3 can 

simply be drawn by substituting the graphs of G into the heavy solid 

line in Fig. 2. In the graphs all the fine lines correspond to the un­

perturbed function. Next we write the perturbation series for 

2?' (x, x') _.:_ - (ift) 2 ~~d 4 x" d4
(' U(x'- x")G0 (x", (')Go(C', x") 

x U(x (')G0 (x, x') 

+ (ift) 2 \\d 4 x"d 4 ~U(x x")G0 (X, ~) U(~ x')Go(~, x")Go(x", x') 

+·" ' 
(4·31) 

which is graphically represented in Fig. 8. In particular, the first two 

terms are interpreted as the exchange-pair between two excited particles 

or holes. See Fig. 9. As understood from Fig. 8 or Fig. 9, the function 

.J.;F describes all the reactions to the one-particle (or hole) motions from 

u 

Go 
Go 

u 

+ 

Fig. 8. Graphical representation of the series of ,S1r. 

A 
~ 

__ q_J I u 

'-v---' 
A. 

Fig. 9. Int~~rpretation of the :first two terms of (4•12). 

+ ... 
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30 T. Kato, T. Kobayashi and M. Namiki 

virtual or provisional excitations of the medium caused by passing of a 

particle or hole. 

+ ~--~---A j 
frr~ 

+ ... 

+ 

~------

t--- \ 
+ ... 

(ii) 

Fig. 10. Graphical representation of the series of W: 

(i) Graphs of W<1) and (ii) Graphs of W- wm. 

Finally we write the series of the interaction function W operating 

on the two-particle Green function in the graphical representation. See 

Fig. 10. 

§5. Spectral representation and its application 

We shall now consider the spectral representation of the Green func­

tion in this section. This approach has extensively been developed by 

Landau,8
) Galitskii-Migdal9

) and Martin-Schwinger.7) Since we are interested 

in the problems in uniform media and in the absence of external field, 

the function depends only on the difference of two coordinates, x = x 1 x2 , 

t t1 t2. The problems in the presence of external field will be considered 
later in the section.7

),g),lO) 

The space-time dependence of the matrix element of operator t'(x) 

is given by 

t'nm(X, t) = +~~ exp {i (knmX- ())nmt)} (5•1) 

in the representation making the total Hamiltonian diagonal, where 

hknm Pn Pm, 

and n and m refer to the states in consideration. En(E,m), Pn(Prn) and 

Nn(Nm) are the total energy, momentum and total number of particles of 

state n(m), respectively. By means of these matrix elements, the one 

particle Green function defined by (2•3) or (2·6) can be expressed as 
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Formal Theory of Green Functions 31 

G(x, t) (fA) -l exp { [i(En pNn Q)} 
n,m 

for t>O 

n,m 

for t<o, (5·2) 

or 

n,m 

X exp {[i(Enm+ p,)} exp {i (knmX- Wnmf)} for t<O, 

where Q is Gibbs potential of the system. The last formula is derived 

from the fact 

otherwise. 

The plus or minus sign in (5•2) corresponds to the bosons or fermions, 

respectively. In the absence of interaction among particles (5•2) turns 

out to be 

(5·3) 

where <nk> <atak> denotes the expectation value of number operator. 

The momentum representation of the Green function defined by 

G(k, t) ~G(x, t) exp( ikx)d3x 

can be obtained from (5·3) in the form 

G0(k, t) (iti,)- 1(2rc)-3<1 nk> exp( iwt) 

+ (ifi)-·1(2rc)-3<nk> exp( iwt) 

The Fourier transform of the Green function defined by (3·34) is 

G(k, e) 

(5·4) 

where o denotes a positive infinitesimal quantity. In the limiting case of 

large system with a given density or in the limit of continuous quantum 
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32 T. Kato, T. Kobayashi and M. Namiki 

number, we can write (5•5) in the following form 

(5·6) 

where A(k, E) and B(k, E) are defined as limiting functions in such a 
way 

A(k, E)dE=lim( )(2n) 3 I+~~~ 12 exp { {:)(En p,Nn Q)} 
n,m 

X a<sl(knm k) E<Enm<E+dE 

B(k, E)dE=lim( ) (2n) 3 I+~~ 12 exp {-{:)(En p,Nn-52)} 
n,m 

X a<sl (knm- k) E<Enm<E+dE. (5•7) 

This expression (5•6) is essentially same as Lehmann's expansion in the 
quantum field theory. 

With aid of the well-known formula 

and from (5•2), (5·5) is expressed in the form as 

G(k, e)= (2n) 3 ~I~"~~ 12 exp {- f3(En- p,Nn- t2)} a<sl (knm- k) 
n,m 

Using the expression (5·8), we can obtain the relations connecting the 
real part of the Green function G' with its imaginary part G".' In case of 
the Bose field the relation is 

G' (k, e)= __ L p\= tanh {:)(z + p,) G__" (k, e2_dz, 
n -'-= 2 Z e 

and in case of the Fermi field we obtain 

G' (k, e) (5·9') 

As a useful application of the spectral representation of the two 
particle Green function we consider the current caused by external field, 
which is expressed by a vector potential A(x, t). In this case the follow­
ing terms must be added to the total Hamiltonian 

H 1 ~ \A(x,t)j< 0
l (x, t)d3x 2 ~ \A(x,t)j< 1

l (x, t)d3x, 

where 
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Formal Theory of Green Functions 33 

pol(x, t) = 2 ~-[ --7--1'"/r*(x, t)r(x, t) +'t*(x, t)--7-l't-(x, t) J 
and 

jCll (x, t) 
e2 me 't*(x, t)'t(x, t)A(x, t). (5·10) 

Taking into account the contributions up to the first order terms in 

A, we have 

pol (x, t) = jo(x, t) 
1 

\: dt'~d 3 x' t jo(x, t), jo(x', t')J A(x', t') t>t', 

(5•11) 

where j 0 (x, t) is the current density operator in the absence of external 

field. Using the two particle Green function defined by (3•50), we obtain 

the following relation: 

<io(x, t)jo(x', t')> ( 2 ~(-):l~~~=x cr1 ~2)(1'~ I'D 
xi->x2=x1 11 

X< o/*(x1t1)1/r(x2t2) f'*(x'tt;)"fr(x~t~) > 

( --- 2 -f!_~:-__)
2

lim CP1 --17 2) (17~- I'DG1r Cx2t2, x~t~; xdlJ xUD. 
m Xl-c>Xz=x t 

(5·12) 

xi-x2=x' 11 

Therefore, the current can be expressed in terms of the two particle Green 

function 

e2 
<i(x, t)>= ---<'t*(x, t)o/(x, t)>A(x, t) 

me 

(5•13) 

Thus the two particle Green function gives us sufficient information for 

calculating the current density to the first order term of A(x, t).12
) 

The Fourier transform of (5•12) can be expressed as follows. 

Fzn(kw; k' w') 

where 

XGn(k+k1 , w+w1 , k' +k~, w' +w't; k1, ro1, k~, wDdk1dk~dw1dw~, 

(5·14) 
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34 T. Kato, T. Kobayashi and M. Namiki 

= (2~) 16 ~~~~exp {i (k1x1 + kzxz -- k~x~ -- k~x~) i (wd1 +wztz wft~ -- w~tD} 

X Gn Ck1m1, kzwz; k;w~, x~w~) dk1dkzdk~dk~dw1dw~dw 2 dwf (5 •15) 

and 

Fzn(x, t; x', t') = ( 2 ~) 3 - ~exp {i (kx -- k' x') -i (wt- w't')} 

X Fzn(kw; k' w')dkdk' dwdw'. (5•16) 

Hereafter we shall use the correlation function F(x, t; x', t') instead of 

the two-particle Green function. The second term of (5•11) is also ex­

pressed in terms of correlation functions of the currents as, 

X A(x, t). 

Introducing the symmetrized product 

Skz(x, t; x', t') =< {jk(x, t), iz(x', t')} > 
=<jk(x, t)jz(x', t') + jz(x', t')jk(X, t)> 
=Fkz(x, t; x', t') +Fzk(x', t'; x, t) 

and its Fourier transform defined by 

Skz(x,x',w) ~Skz(x,x'; t t')eiw<t--tnd(t t'), 

(5•17) 

(5•18) 

the expectation value of the commutator of jk(x, t) and jz(x', t') is written 

in the following form: 

< [ · ( t) · ( ' t')J > r= dw -iw<t-tn t h Sfiw S ( , ) }k x, , Jz x, = j_=-2-;.-e an ~ 2 -- kz x, x ; w , 

(5·19) 

where the invariant property of trace for cyclic permutation of operators 

has been used. 

Restricting the problem under the consideration to a uniform medium, 

we can define the momentum representation of Skz(x, x'; w) by 

Skz(k, m) = ~d 3 (x-x')e-ik(x-x')Skz(x-x'; w). 

Since the tensor elements Skz(k, w) are expressed by . 

Sk~,(k, w) ihzS1 (k2
, w2

) + (kkkl k2i3kz)S2 (k 2
, w2

), 

Eq. (5•14) can be written in terms of (5·21), 

(5·20) 

(5•21) 
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Formal Theory of Green Functions 35 

akzli'D ~~~m ~dske-iw<t-tfll-ik(x-x')S2(k2, m2) tanh~~~ J. 
(5·22) 

In our problem the electric field E(x, t) and magnetic field H(x, t) are 

determined (from the vector potential A(x, t)) by the formulas 

E 
1 8A 

c at ' 

We thereby obtain, after a little manipulation, the following form 

<J(x, ~d 3 x'~:dt' {a(x x', t t')E(x', t') 

+ c :t -r(x-x', t-t') 17 x H}, (5·23)* 

where 

a(x x',t-t') . ! 
4 

\""am\ a3ke-iw(t-t/)+ik(x-xns
1 
(k2, m2) ta!J.h(J?nmL?.)_ 

(2n) h j_oo j m 

r(x x', t t') _ -· ~ _____ \"" dm \ aske-iw(t-t'l-!-ik(x-xnSlk2, m2) tan}li_~ftm/?). 
(2n) 4 hc2 J-oo J m 

From these relations we can calculate electric conductivity, polarizability 

and magnetic susceptibility by the Fourier transform. The real part and 

the imaginary part of the Fourier transform of a or r satisfy the well­

known Kramers-Kronig's dispersion relation. 

§6. Connection with reaction matrix 

The advantage and powerfulness of the Green function lie in the fact 

that one can formulate complicated problems without resorting to the 

concrete knowledge of the system in consideration or the nature of inter­

actions intervening. Therefore, the structure or the formal aspect of the 

theory will be clarified, and the perspective to advance the theory into 

new stages will be given through the study of the Green function. Such 

* In derivation of (5•23) we get the non gauge-invariant extra term directly propor­

tional to the vector potential itself which has the factor (~ :: ~: ta:h( ~ f3hoo )s 1 (k 2 ~ 2 ) n~
2

), 
in its integrand, n being the particle density per unit volume. However, this term should 

vanish by virture of the conservation law of charge, so that we obtain the sum rule 

r + 
00 

doo 1 ( 1 ) ne 
2 

J -oo-2n- ~-tanh -2- f3hoo S1 (k 2w2
) = in for the spectral distribution function S1 (k 2oo2

). 
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36 T. Kato, T. Kobayashi and M. Namiki 

usefulness, however, is also its inconvenience at the same time. Being 

able to discuss formal aspects of the system, we are in rather difficult 

situation to calculate physically interesting quantities in practice. We have 
to admit some approximation to the Green function. For such a purpose 

it may be convenient to use another method which, however, is closely con­

nected with the Green function. The method of the reaction matrix seems 

to serve our purpose. Actually it is known that the direct approximation 

to the Green function leads to the usual Brueckner reaction matrix for 
the ground-state energy and generalizations thereof. Brueckner and his 

collaborators13
) extensively developed nuclear many-body problems based 

upon the reaction matrix. Goldstone,14) Thouless15
) examined in greater 

detail Brueckner's theroy, and enriched the contents of the theory. An 

approach similar to this problem has also been used by Kleid6
) and 

Prange. 

With the aid of the appropriately defined reaction matrix they eluci­
dated the Brueckner's theory for infinite nuclear matter. In this section 

we shall briefly review the use of the reaction matrix based upon the 

works by above mentioned people. 

Now looking back §3 we have derived single-particle and two-particle 

Green function there. 

and 

[ ihJ-~ + _fi
2 

f72]GC1 1')- ih \ d3 (1") U(1··- 1")Gn (1", 1; 1", 1') 
8t1 2m ' j 

a(41 (1 1') (6·1) 

Gn (1, 2; 1', 2') = G(1, 1')G(2, 2') G(1, 2')G(2, 1') 

+ ~G(1, 3)G(2, 4) W(3, 4; 3', 4')Gn(3', 4'; 1', 2')d(3)d(4)d(3')d(4') 

(6•2) 

or symbolically, 

Gn G1G2112+G1G2 WGn. (6·2') 

Here relevant definitions or notions are the same as the ones used in §3. 

Actually W is considered to be functional of the propagator G, and 

G in turn depends on W. So the solution to such coupled equations as 
(6•1) and (6·2) is extremely difficult and seems to be impossible to 

obtain in practice. j 

The following two approximations, however, may enable us to step 
further, to neglect the dependence of propagator on W, or to ignore the 

dependence of the interaction operater on G. 

Now we shall introduce the function defined by 
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Formal Theory of Green Functions 

JC(1, 2; 1', 2') U(1 2)ac3l(1 1')a(31 (2 2')ac(1 2) 

+ \ U(l-1")@n (1", 2"; 1', 2') U(2- 2")d (1")d(2"), 

37 

(6·3) 

where @ satisfies the equation formally same as (6•1) in which all time 

integrations are construed to extend only over the past, i.e., 

X U(1"- y")@I[ ( y"t"' 1"; y"t"' 1'). 

Correspondingly, 

@li (1, 2; 1', 2') @(1, 1')@(2, 2') @(1, 2')@(2, 1') 

+ \J(S) (3) \d( 31 ( 4) \J<S) (3') \J(SJ ( 4') \dc(3)dc( 4)dc(3')dc( 4') 

X @(1, 3)@(2, 4)w(3, 4; 3', 4')@n (3', 4'; 1', 2'). 

(6·4) 

(6·5) 

These are the model single-particle and two-particle propagators defined by 

Klein and Prange, respectively, which are essentially the same as Thouless' 

R and L. It can easily be seen from (6a2) and (6•3) that JC satisfies 

the integral equation 

JC(1, 2; 1', 2') U(1 2)a(31 (1-l')a(31 (2--2')ac(1 2) 

+ \:,dc(t") \:~c(2") ~dc 31 (1") \des) (2") U(1- 2)o(1- 2) 

x @(1, 1'')@(2, 2")(X (1", 2"; 1', 2') 

0 t<t'. 

This is then the reaction matrix which forms the basis of Brueckner's 

work. 

Let us define the Fourier transforms by 

JCmnpq \d 3 x1d 3 x2d 3 x~d 3 xf exp(imx1 + inx2)JC (X1X2 ; x~x~) 

X exp( --ipx~ -iqx~), 

Then (6 .. 6) can be written in the Fourier transform as 

(6·7) 
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38 T. Kato, T. Kobayashi and M. Namiki 

where summation should be restricted to the states above the Fermi sea. 

IRtz(E) is the convolution of the two single-particle propagators defined 

by 

(6·9) 

Here a ( +) subscript denotes relevant quantities for particle which are 

analytic in the upper half-plane. 

Now performing the Fourier transform and separating the Green func­

tion into two parts, one obtains the equations 

@t(E) G1ol+(E)[1 + --
2
1-, \ dE1 ~ J{kzkz(E + E1)®1 (El)@t(E)], 
ret j z<kF 

(6·10) 

@k(E) = G~ 01 -(E)[ 1- (
2
;i) 2 \~~E1dE2 

x :E.~JC•t•t(~~~~~,)i~i(E, E,) J' (6·11) 

where G<;jH(E) is the unperturbed propagator for particle (hole). @- re­

presents the corresponding hole Green function which are analytic in the 

lower half-plane, and has such a simple solution as 

@"k(E) 1 
-E= ~i _:_ia , 

where 

With the aid of analytic properties of @t(E) it turns out to be 

@!:(E) 

0 

for Z>kF 

for Z<kF. 

(6·12) 

(6·13) 

(6·14) 

If we make an approximation usually done in which we replace the denomi­

nator of (6•14) by its real part, J{kzkz(E-+-ei) can be replaced by 

ReJ{klkl ( ei + e[·). et satisfies 

ei= "h
2

2

k
2 

+ ~ Re [cXklkz(ei+e"k) -J{kuk(ei+ek)] 
m Z<kF 

(6·15) 

Correspondingly (6·8) can be written in this approximation as follows, 
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Formal Theory of Green Functions 39 

(6·16) 

This is the reaction matrix neglecting "off-the-energy-sh~!r' propagation. 

(6•15) and (6·16) are the equations to obtain interac" __ n energy of a 

pair of particles. The energy is determined through the solution of the 

reaction matrix JC. On the other hand J{ depends on the energy in the 

intermediate states which must also be determined by the reaction matrix. 

The system of these equations has such a complicated structure of the 

infinite ladder of equations, that we do not enter here into the detailed 

discussion of the solution. Brueckner et al. succeeded to reduce the ladder 

to a single equation without approximation by introducing a parameter 

with an infinite range in the denominator of the integral equation for the 

reaction matrices. Readers may refer to the original paper on these dis­

cussions. 

Finally we record the total energy of the ground state obtained in 

our approximation: 

E(A) -~ Ak~ _l\d(1)d(3)(2)d(1')d(3 )(2') \o dc(2') 
5 2 J J-oo 

xJC(12, 1'2') [@(1', 1)@(2', 2) -@(1', 2)@(2', 1)] 

3 
Ak} +-- 2.~~ b [JCmnmn(e;;; +e;;) JCmnnm(e;;; +e;;)]. 

mn 

§7. Amplitudes and their equations 

In many-particle systems we can often observe the systematic one- or 

two- particle motions. There the surrounding particles behave as if they 

were a sort of medium for the systematic motions of one or two particle 

in consideration. Such a motion may be described by the one- or two­

particle amplitude. In the present section we shall define them in a 

reasonable way and study the equations satisfied by them. In particular, 

the one-particle amplitude will be explained in detail through investigation 

of the problems of the nuclear optical model and of the Hydrogen-like 

motion of an electron in insulator. 

7 •1 Definitions of amplitudes and effective potential 

First we consider the one-particle amplitude. Suppose that the system 

is in a state represented by a vector IE, a>, where E is the energy of 

the system and a other quantum numbers. Now we know that the vector 

't*(x) I m> asymptotically approaches to the vector representing the state 

in which a particle is found at a point x in the medium whose state is 
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40 T. Kato, T. Kobayashi and M. Namiki 

I m>. Therefore it may be inferred that the one-particle amplitude defined 
by 

x(xt, <m I t(x) IE, a> (7·1) 

describes, in an asymptotical sense, the systematic one-particle motions in 

the many-particle system. Here it is noted that t' is the field operator in 

the Heisenberg representation. When a systematic one-particle motion is 

observed, the state vector IE, a> may be written down as follows: 

or 

(7•2b) 

Here IE+, a> and IE-, a> correspond, respectively, to an initial state 

and a final state of the medium in I m> and a particle in q:>(x). From 

the definition it is quite easy to show the equation 

where the energy of the state I m> is put zero. From (7•3) one gets 
the equation 

(7·4) 

In other words, the state IE±, a> is an eigenvector of the total Hamil­

tonian belonging to an eigenvalue E and is independent of t1. Hence the 

time-interval (t1, oo) is chosen in a remote past, while ( oo, t1) in a 

remote future. To show (7•3), we have only to apply H to the right 

member of (7·2) to commute H with t'* and to perform integration by 

parts. Next we can show that IE+, a> and IE-, a> are subject to the 

outgoing-wave and the ingoing-wave boundary conditions, respectively. This 

will be seen in the following: The expression (7•2) can be rewritten as 

or 

(7·5) 

where we have used the equation 

t'(x, t) exp{(i/it)Ht}t'(x)exp{ (ijtt)Ht} 
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Formal Theory of Green Functions 41 

and the abbreviation 

The form (7 • 5) shows explicitly the boundary conditions. Thus we can 

write the amplitude X as 

x(x, t) = lim-_!- \
11 

dt'\ dx' <m I '/~'(X, t) t* (x', t') I m>~o(x')e-(i/h)fotf-l(tf-tl/to) 
to-'i>oo to J-oo J 

= lim itt \tl dt'\ dx'G(x, t; x', t')~o(x')e-<i!A)Et'+(tf-tlltol, 
lo-'i>oo to J -oo J 

where the definition (2•4) has been used. 

(7·6) 

The time in x(x, t) does not take a value in the time-interval (tt, -co), 

because the time-interval was chosen in a remote past. Consequently the 

amplitude should obey the equation 

(7•7) 

where we have used the equation (3•28) of the Green function. 

All the above formulas and equations can describe the one-hole propa­

gations in the medium, if we replace t'* by 't and reverse the order in 

time. 

Next we shall derive the effective potential for the one-particle motions 

in the medium. From the definition it is easily shown that the amplitude 

x(x) oscillates harmonically in time, namely, 

x(x, t) x(x, O)e-<i!A)Bt. (7·8) 

Hence we can rewrite the last term of the left member of (7 • 7) as 

follows: 

~d 4 x'b (x, x')x(x') = ~d 3 x' <xI q; E I x'>xCx', t), 

where 

<xI q; E I x'> ~dt' .L:(x, t; x',t')e<i!AlE<t-t'). (7•10) 

In derivation of (7·9), we have assumed that the medium is uniform in 

time, or in other words, .L:(x, x') is a function of (t t') with respect to 

time variable. The function <xI q;B I x'> is nothing but the effective 

potential for the one-particle motion in question. As is seen from (7·10), 

the effective potential is, in general, non-local and dependent of energy E. 
Only when the wave-length of the incident particle is much longer than 

the characteristic length for non-locality (in other words, the correlation 
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42 T. Kato, T. Kobayashi and M. Namiki 

length), we can treat as the local potential 

(7•11) 

First we discuss the properties of CV~, corresponding to .JJs defined 

by (3•33), which is regarded as the contribution of the medium in the 

fixed state. From (3•33) and (7•10) we immediately get the formula 

<xiCV~ix'>= V(x)o(x-x')+ifiG(x,O; x',O) V(x-x'). (7•12) 

Therefore the static part CV~ never depends on the energy E. Further­

more, it is easy to prove the hermitian property of CVL that is, 

(7•13) 

The hermitian property of CV~ tells us the facts that CV~ is never respon­

sible for probability dissipation of the one-particle amplitude in consideration, 

in other words, for the real excitations of the medium. Such properties 

of CV~ show that CV~ is worthy to be called the static part of the effective 

potential. 

The non-hermitian property of the effective potential originates in the 

fluctuation part .JJF defined by (3• 33). Denote the contribution of .JJF to 

the effective potential by CV~. The fluctuation part CV~ is, in general, 

decomposed into the hermitian part q;~r and the anti-hermitian part ql~i, 

that is, 

n7F=n7Fr -z'n?Fi 
'-'V E- '-'V E '-V E • (7•14) 

Both the matrices q;~r and q;~; are hermitian. In order to illustrate the 

concrete form of CVL we shall calculate the function <xI CV~ I x'> to the. 

lowest order in the perturbation theory formulated in §4. Substituting 

(3•33) into the definition of cv~ and using the explicit formulas (4·18) 

and ( 4•31), we obtain, after some calculations, the contribution of the first 

two terms of (4·31) to the effective potential as follows: 

<xI CV~ I x'> = (itt)-1 ~~~~t'exp{ (i/fi) (E- E~ E~-- E2) (t t')} 

X Ftmn(x)F,*mn(x') 

(in)- 1 ~~~ dt'exp{(i/n)(E+E~+E~+E~)(t t')} 

where we have used the abbreviation 
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Formal Theory of Green Functions 

Frmn(x) = ~d 3 x" V(x-x")xi2l(x")x~~(x, x"), 

FTmnCx) ~d 3 x"V(x x")x;:;l(x")Xi0i(x, x"). 

Here X~~/ and xjOJ are, respectively, defined by 

x}~ (x, x") 

The functions Frmn and F1mn have the properties 

43 

(7·16) 

(7·17) 

(7•18) 

due to the anti-symmetric properties of xj 0 ~ and xi~· To evaluate the time 

integrals in ( 7 •15), we can use 

(i1L)- 1 ~~~t' exp[ {-a(t t') J 

(in)-- 1 ~~ dt' exp[ ~-,a(t t') J 

irca(a) + P~!_ __ 
a ' 

irca(a) + 1 
a 

Hence we can immediately write down q;~r and q;~; as follows: 

<xI q;~i I x'> = TCb a(E- E~- E~- E~)Ftmn(x)Ft~n(x') 
lmn 

TC b a(E + E~ + E~ + EZ) FT~n (x) Ftmn (x'). 
lt>w 

(7·19) 

(7·20) 

(7•21) 

It is easy to prove the hermiticity of q;~r and CV~i. The last term in 

the right member of (7 • 21) vanishes in the cases of particle propagation, 

because it is impossible to realize the energy relation E+E~+E~+E~ 0, 

corresponding to spontaneous excitations of the medium. Inversely, 

the first term vanishes for hole propagation, since the enegy relation 

E- E~ -- E,~ -- E2 = 0 is never realized. For the moment we shall discuss 

the particle propagation. 

From (7•20) and (7·21) we can calculate the expectation value of 

q;~ for the amplitude X as follows: 
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44 T. Kato, T. Kobayashi and M. Namiki 

(x, C{J~"X) ~~x*(x)<x I C{J~" I x'>x(x')d3xd3x' 

P b ... I.<~-~ riJ~n,>J: .. +P bJ.<m.L}:J~£~~>-~ 
tmn E--E,-Em-E~ tmii E+E~+E~+E2 ' 

where 

Here we have used the abbreviations 

<xl Vllmn> ~X*(x)F,mn(x)d 3 x, 

<m I Vlxlmn> ~x(x)FtmnCx)d 3 x. 

(7•22) 

(7·23) 

(7·24) 

(7·25) 

Thus we know that q;~; has a positive expectation value, and that WFJ 

is nothing but the time rate of the transition probability for exciting the 

medium or for decay of its excited state. This is the situation just ex­

pected, because the anti-hermitian part q;~;, responsible for the probability 

dissipation of the one-particle amplitude, is one of the contribution of the 

fluctuation part represented by Fig. 8 to the effective potential. There 

it is noted that the probability dissipation of the one-particle amplitude is 

caused by the pair-excitations of the medium. For hole propagation we 

have the negative expectation value of q;~;. It is reasonable, however, 

because hole propagation can be regarded as the time-reversed process of 

particle propagation. The expression (7 • 22) for the expectation value of 

C{J~" has a strong resemblance to the self-energy of a particle or to the 

level shift in quantum field theory. In fact, the hermitian part CrJ~" is 

responsible for modification of effective mass or for the shifts of the 

resonance level. Therefore the fluctuation part C{J~ represents reactions 

of virtual or provisional excitations of the medium to the one-particle 

motion in consideration. 

Finally we explain the equation satisfied by the two-particle amplitude 

defined by 

(7•26) 

which may be interpreted in an asymptotic sense such as given for the 

one-particle amplitude. When a sort of systematic two-particle motion 

can be observed, the vector IE, a> may be written down as follows: 
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Formal Theory of Green Functions 45 

(7·27) 

where E 1 +E2 is given. , a> is expressed in an analogous way. 

It is also easy to prove that IE+, a> is an eigenvector of H belonging 

to an eigenvalue E and is independent of t. From (7 • 26) and (7 • 27) it 

follows that 

-~ EU~ +- ~\~t!c_} . 
(7·28) 

Thus, since the interval (t 1 , oo) is chosen in a remote past, the ampli-

tude x(x 1, x2) should obey the equation 

~~ [G- 1(1, 1')G-1(2, 2') W(1, 1'; 2, 2')] X1r (1', 2')d (1')d (2') 0 

(7·29) 

or symbolically 

(7•30) 

Using the one-particle Green functions, one can easily rewrite Eq. (7•28) 

in the integral equation 

Xrr(1, 2) =X~)(1, 2) + ~~~~G(1, 1')G(2, 2') W(1', 2'; 3, 4)Xrr(3, 4) 

X d (l')d (2')d (3)d ( 4), (7 • 31) 

where the inhomogeneous term x~) (1, 2) is defined by 

(7·32) 

for some scattering problems, X1 and X2 being the one-particle amplitude, 

and corresponding to propagations of the incident two particles without 

interactions. Eq. (7•32) can be replaced by 

fl 

xW 1 (1, 2) =lim ([t~}=-J \ dt~dt~ \\ d 3 x~d 3 x; [G0 (1; x~, ti)G0 (2; x~, t~) 
to_,.= o JJ JJ 

-ca 

Go(1; x;, tDGo(2; x~, t't)J tpo(x~, x~) 

{ z E t' t~ t 1 } { Xexp h 1 ;+ to ···· •exp (7•33) 

with E= E 1 + E2 • When we are concerned with a bound state in which 

E<O, the integral with respect to time in (7•33) would vanish because 
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46 T. Kato, T. Kobayashi and M. Namiki 

the function [G0 (1; x~, tDG(2; x~, t 2 ) • • ·] contains only positive frequencies. 
Therefore the amplitude for a bound state satisfies the integral equation* 

Xn (1, 2) = ~~~~G(1, 1')G(2, 2') W(1', 2'; 3, 4)Xn (3, 4)d (1')d (2')d (3)d ( 4). 

(7•34) 

The equations of the types, such as (7•29), (7•31) and (7•34), were first 
introduced by Nambu17

) for a special case and developed by Kita/8
) Bethe 

and Salpeter/9
) Gell-Mann and Low,20

) and Schwinger2
n for some general 

cases in quantum field theory. In particular, Eq. (7 • 34) is often called 
the "Bethe-Salpeter" equation. 

7•2 Nuclear optical model 

As is well known, the giant resonances in nuclear reactions are 
observed in the cross sections for the elastic scattering of neutrons at low 
energies by large nuclei, if averaged at each energy point over some 
spread. They can also be expected in observations using incident beams 
with some energy spread. Following Weisskopf et al., the giant resonances 
can be well reproduced by a one-particle Schroedinger equation with a 
complex potential for an incident neutron. Such a complex potential is 
called the optical potential, whose imaginary part is responsible for the 
probability dissipation of the one-particle amplitude due to occurrence of 
other inelastic collisions. Thus the optical model may be accepted by the 
notion of an irreversible process, in which one observes a sort of one­
particle motions as an average or coarse-grained motion of the many-particle 
system in consideration. The above-mentioned average comes from the 
energy spread of incident beams. Hayakawa et al.21

) considered the beam 
to be a short wave packet with time-length to corresponding to the above 
energy spread ("h/t0 ). However, it may hardly be acceptable to con­
sider the short wave packet as the one produced in actual instruments. 
One may rather prefer considering the actual beam like a mixed beam to 
regarding it as a single and short wave packet. The mixed beam consists 
of a random mixture of a number of long wave packets, in which each 
wave packet has a sharply determined energy but its center of energy 
distributes over the range ilEP. In both cases we may expect the same 
aspect of irreversible processes as suggested from discussions given by Van 
Hove22

) and Toda.23
) At any rate, it becomes necessary for derivation of 

the coarse-grained one-particle motion to discard or to average the fine 
interactions within a short time-interval at each time. To discard the 
short interval is equivalent to ignoring the high frequency parts. Therefore 

* Note that Gell-Mahn and Low devised the so··called "L-operation" for the purpose of 
omission of the inhomogeneous term. Our derivation of (7 •34) never necessitates such an 
ambiguous manipulation. 
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Formal Theory of Green Functions 47 

deviations from the coarse-grained motion come to be of random fluctuations 

on such a time scale. For the usage of a single wave packet, however, 

one may pay close attention to the randomness. If the wave packet has 

a long time-length enough to discriminate the average spacing of fine­

structure levels of the whole system, we could observe a new type of 

systematic motions of the system, for example, the compound nucleus. In 

order that we can observe the coarse-grained one-particle motions, or in 

other words, the optical model in. nuclear reactions, the packet should be so 

designed as to have a length much shorter than the time corresponding to 

the average spacing of the fine-structure levels. Otherwise, we would 

observe the many-particle motions themselves, as the systematic ones. 

Here we shall briefly explain the nuclear optical model, in particular, 

the derivation of the optical potential from the fundamental many-particle 

equation. For simplicity, we suppose that the beam is a single wave 

packet with time-length to and energy spread L1EP:=:::::(fi/t0 ) around its center 

Ep. For a mixed beam, the discussions giwm below will not be essentially 

modified; see Van Hove22
) and Toda,23

) and Namiki.24
) The scattering state 

caused by such an incident wave packet is written as 

(7•35) 

where a(E, a) is a smooth function having non-zero values only in the 

range L1EP around its center EP. The state I Et> can also be represented 

by 

(7•36) 

where <p(x) is a function corresponding to the initial wave packet. Here 

I A> stands for the vector representing the ground state of the target 

nucleus. If I A> is an eigenvector of the total momentum operator, the 

system is uniform and then we cannot observe the optical (or effective) 

potential located at a point with a nuclear size. Consequently we should 

prepare the vector I A>, by which the localized center-of-mass of the target 

nucleus is represented. In the same way as (7•2), one can easily prove 

that 

(Ep 1!) I Et> O(L1Ep), 

iii d~ 1 I Et>= (E--H) I Et>=O(L1Ep), 

I E~)-> (fi/to) I > t 0( "E ). 
' i(H -- EP) +· (fi/t

0
) <pp .- ~ r) ' 

(7•37) 

as expected. Thus I Et> is regarded as an approximate eigenvector of H 

belonging to an eigenvalue Ep, so that the amplitude 
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48 T. Kato, T. Kobayashi and M. Namiki 

Xp(x, t) =<A J,Y(x, t) I Et> (7·38) 

oscillates in a nearly harmonic way during the packet passes. Consequently 
the amplitude Xp obeys the one-particle Schroedinger equation 

(7·39) 

where CV p is nothing but the so-called "optical potential" and defined by 

or 

(7·40) 

WE being a smooth function* with non-zero values only in the range /JE 
around its center EP. Here C(JB is the effective potential defined in the 
previous subsection. The static part of CVP is exactly equal to that of 
CV B. To obtain the explicit formula for the fluctuation part of CV P, we 
have only to replace the delta-function and the principal part of the 
expressions such as (7s20) and (7•21) of CVE with the smooth functions 
corresponding to them as follows: 

a(a) 

1 

a 

1 CA/fo) 
n ~a 2 +(ii/to) 2 ' 

2 • (7•41) 

The deviations of one-particle amplitude from the average become 
random on a rough time scale, if the systematic motion of the system is 
of the one-particle motion. It will be proved that such random deviations 
are subject to the fluctuation-dissipation theorem, if the system is excited 
in quasi-equilibrium. For details, see Namiki's paper.24

) 

7 ~3 One electron in insulators and semi-conductors 

The many-particle approach developed in this article has various fields 
of its application not only to nuclear many-body problem but also to pro­
blems in solid state physics. We shall give here another typical example 
.of our formalism in solid state physics. Consider a motion of one electron 
in insulators and semi-conductors. This problem has long been familiar 
but difficult subject. When we want to take into account the effect of all 
other electrons properly, we are inevitably forced to treat with many-body 

* w (E) must be so normalized that I:, w (E) 1. 
E 
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Formal Theory of Green Functions 49 

problems. That is, electrically and magnetically susceptible media should 

be described from the many-particle point of view. Then the situation is 

just analogous to that encountered in the nuclear many-body problem, 

where one incident nucleon plus target nucleus was successfully described 

in terms of the nuclear optical potential as discussed in great detail in 

the previous section. 

Klein25
) has already developed the discussion on this subject along the 

line mentioned above. His guiding image was the analogy between the 

system, impurity plus electron imbedded in the crystal, and the hydrogen 

atom, proton plus electron imbedded in the vacuum. Being originated in 

the nuclear reaction because of the close connection with previous argu­

ment, our idea is essentially the same as that of Klein's. 

Considering the case of a perfect insulator which contains N electrons, 

with a single extra electron (or hole) and a small external charge q 

imbedded in it, Kohn26
) has shown that the (N ± 1)-particle Schroedinger 

equation could be reduced-for the low lying states-to a single particle 

equation of the form 

[ ~fJ ..... Jx(r) 
K*r 

Ex(r). (7•42) 

Here m* is the effective mass of an electron in the conduction band, 

and K* the effective dielectric constant of the medium. This equation was 

derived on the basis of the single-particle model. Kohn27
), further in his 

succeeding paper, was able to show that K* K indeed, where K is the 

conventionally defined static dielectric constant of the solid. Our purpose 

is to provide a foundation to such an approach as the reduction to the 

single-particle equation. 

Let Eo and E(N + 1, k, a) be energy of the ground state of the insu­

lator and perfect insulator plus one electron, respectively. Here k denotes 

the momentum of an electron in the crystal and a represents other relevant 

quantum mumbers. Then 

E(N+1,k,O)-E0 =E(k) (7•43) 

where 

Eo= E(N + 1, 0, 0) --Eo the binding energy of the extra electron 

and 

E1 m/m*, the ratio of actual to effective electron mass. 

We are interested in the lowest band, states characterized by (7•43). In 

our insulator, they are distinguished from all other states E(N + 1, k, a) by 

the condition 
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50 T. Kato, T. Kobayashi and M. Namiki 

E(N+1, k, a) Eo>Eo+ilE a=\=0, (7·44) 

where ilE plays the role of energy gap against excitation of an "electron" 

in the system of N +·1 electrons. Because of relations of the above type, 

we can safely introduce a distinction between single-particle and collective 

states. As explained in great detail at the beginning of this section, it is 

very useful to introduce a suitable amplitude or one-particle wave function, 

which makes possible to describe many of the properties of the single 

particle states. 

Analogous to (7•38) we shall introduce the function defined by 

xk(x, t) = <o I t'(x, t) 1 E (N + 1, k, 0) >, (7·45)* 

where IE(N+1,k,O)> and IO> stand for a wave packet of N+1 particle 

eigenstates of the "one-particle" variety and the ground state of the perfect 

crystal, respectively. Xk(x, t) may be interpreted as the amplitude for 

finding the ground state of the perfect crystal, if we remove an "electron" 

at the point (x, t) from the state I E(N + 1; k, 0) >· 
One can prove that Xk(x, t) should satisfy the one-particle Schroedinger 

equation 

(7•46) 

Taking into account the harmonically oscillating behavior of Xk(x, t), in 

time, we can rewrite the last term of (7•46) in the following way, 

(7•47) 

where 

<xI q)k I x'> ~dt'27(x, t; x', t')e<i/AlE<kl<t-t'l. (7•48) 

Then (7•46) turns out to be 

* If our system is described by the Hamiltonian 

Ho =--h~~ \ d 3xf7,P* (x)/71/J (x) + -~
2

- \ d 3xd3x' 1/1* (x) 1/J* (x') 
2m J · 2 J 

X I 1 
, \1/J(x)'I/J(x') +e\ d 3xd3x''I/J*(x)1fJ(x) I 1 

-11 pz(x'), 
x-x J x-x 

where pz(x) represents a fixed lattice charge density, 

How(N, k, a) =Eo(N, k, a)w(N, k, a), 

here N and k being the number of electrons and the crystal momentum, respectively. 

{w(N, k, a)} forms the complete set of eigenstates. 
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Formal Theory of Green Functions 51 

(7·49) 

This form of the equation permits us to interpret the function <xI q;" I x'> 
as the effective potential for the one-particle motion. Thus the (N + 1)-

particle Schroedinger equation could be reduced to a single-particle equation. 

It should be, however, emphasized that, contrary to the nuclear optical 

potential, the effective paten tial < x I CV k I x'> defined here has not anti­

hermitian part because all the real excitations are discarded for the medium 

particles. With the aid of the renormalization technique like those in 

quantum field theory, one may prove that the above equation is reducible 

to ( 7 • 42) with interpretation of the effective mass and the dielectric con­

stant. For details, see Klein's original paper.25
) 

Appendix I 

Functional differentiation 

As a quantity taking a complex number depending on the functional 

form of a function (say <P(x) ), we can consider a functional which is 

usually denoted by F[<P]. For example, the typical forms may be conceived 

by an integral containing <P in its integrand, the value of rp at a fixed 

point, and so on. If the functional is continuous in some sense for vari­

ations of its argument function, we can define the functional differentiation 

of the functional with respect to its argument function. A natural way 

to define the functional derivative, denoted by oF[q.:>] joq.:>(X), is the following: 

\_oF[<P] f(x)dx=lim--_! {F[q.:>+sf] 
J oq.:>(X) c-l>O e 

where f(x) is an arbitrary but smooth and integrable function. From the 

definition it is quite easy to see that the functional differentiation has the 

properties satisfied by the differential operation, namely, that 

0 ------- - a 0 
o<!J(X) ' 

-----0 -- {aF [<PJ + bG [<PJ } =a of[p]_ + b- aq [p] 
o<!J(X) . oq.:>(X) oq.:>(X) ' 

_o_ F [<PJ G I <PJ = oF [<P]G [<PJ -+- F [<PJ aG l'p]_ 
oq.:>(x) - oq.:>(x) - - - oq.:>(x) ' 

where F and G are functionals of q.:>, and a and b arbitrary functions 

independent of <P· 

Now consider some simple examples. For the functional F[<P] 
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52 T. Kato, T. Kobayashi and M. Namiki 

= ~u(X)qJ(X)dx, the above definition integral becomes 

~· ::c~] f(x)dx 1~~~~~ {~u(x) {qJ(X) + sf(x)} dx ~u(x)qJ(x)dx} 

~u(x)f(x)dx. 

Since the relation holds for an arbitrary f, one gets 

-· __ § ____ \ u(x')<p(x')dx' u(x). 
oqJ(X) J 

For the functional F[qJ] =qJ(a), we have 

\ oFJq;Jf(x)dx lim ! [qJ(a) +sf(a) -<p(a)] = f(a), 
J OqJ (X) e-?>O e 

which yields the well-known formula 

0 
-----qJ(a) o(x a). 
oqJ(X) 

(A·3) 

(A•4) 

The above examples illustrate the linear functionals of qJ, so that 

their derivatives are no longer dependent of qJ. However, we will often 

encounter with the functionals non-linearlly depending on qJ. For them we 

can define the higher-order derivatives in a way analogous to ordinary 

derivatives. The second-order derivative is defined by 

\ ~--~F_[qJ]_~~- f(x)g(x')dxdx' 
J oqJ(X)oqJ(X') 

lim--\-{F[qJ+e/ +e'g]. F[qJ+·s/] F[qJ+e'g] +F[qJ] }. (A•5) 
e-?>O ee 

e' ..,.o 

For F[qJ] {qJ(a)} 2 the definition immedeiately gives us 

(32 
·-- .... --------- ·-{qJ(a)} 2 = 2o(x- a)o(x'- a). 
oqJ(X)oqJ(X') 

It is true to define the n-th order derivative of a functional by the form 

analogous to the ordinary one. Therefore we may make use of the Taylor 

type of series as written in § 1. 

Finally we remark on the Fourier transformation of functionals and 

functional derivatives. First we write the Fourier transformation of the 

argument function, namely 
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(A•6) 

The Fourier transform F of a functional F may be defined by 

(A·7) 

For example, the Fourier transforms of F1 [~] ~u(x)~(x)dx and F2 [~] 
=~(a) are given from the integrals 

F1 [<P-J 
2
1
n: ~u(x)(~e-ikx<P( k)dk )dx, 

F2 [(/J_] in: ~e-ikx<P( k )dk, 

which yields ~.= (1/2n:)u(k) and F2 = (1/2n:)e-ika as expected. Now we 

can define the Fourier transform of the functional derivative by 

which can be derived from (A·l) and (A•7). (A•7) and (A•6) yield the 

formulas 

aF [<P--J 
---8~(k). 

aF [~ J 
a~Cx5·· 

\ e-ikx ~f]pl dx 
~ IJ~(x) ' 

1 r eikx E..EI<t_ld k 
~ IJ<P(k) . 

Appendix II 

Schwinger's dynamical principle 

(A·9) 

Schwinger2
) formulated the most fundamental principle of quantum 

mechanics in a variational form. His dynamical principle says that, if 

one takes small variations of initial and final conditions and the Lagrangian 

function, then the corresponding variation of the transition probability ampli­

tude should obey the variational equation 

(A·lO) 

where L is the Lagrangian density of the system. This dynamical principle 

unifies all the fundamental equations and relations in quantum mechanics, 

that is, the Schroedinger equation, the Heisenberg equation, the commutation 
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54 T. Kato, T. Kobayashi and M. Namiki 

relations, the conservation laws, and so on. In practice the principle is 

useful for calculating the functional derivatives of amplitudes or matrix 

elements with respect to external sources or fields. 

The Schwinger's principle may easily be accepted if one considers it 

from Feynman's point of view using the path integral. Feynman presented 

the amplitude in the form of the so-called path integral: 

where summation is over all possible forms of functions describing the field. 

From this expression we have 

whose right member is nothing but the right member of (A•lO) because 

of the correspondence rule between the path-integral formalism and the 

usual operator formalism. 

Now let us calculate the functional derivatives of the amplitudes and 

the matrix elements with respect to the external sources, f(x) and r;(x), 

introduced in §2. For a small variation ef(x) in the source function of 

bosons (e being a small number), we have the variation of the action function 

Then the Schwinger's principle becomes 

On the other hand, the right member can be written as 

Thus we immediately obtain the formula 

0 1 
~-- - <FII> ~ 7 * <FI ¢(x) I I>. 
of(x) ~-rv 

(A•ll) 

Similarly one gets 

---~----<FII>=---;-1_-<Fi~*(x) II>, 
or;(x) zfi 

·a;;-lrxy<FI I> - 1 ~-<Fi "fr(x) I I>, (A•l2) 
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for the spinor field. Next we differentiate the matrix element <FI Q(x) I I> 
of an operator Q(x) with respect to f(x') and YJ(X'). For t>t' the deri­
vative is written as 

where t1 is a time taken between t and t', while one has 

---~- <FJQ(x) II>= ~-b B<fJrnt1>--<mtliQ(x) II> 
B](x') zn m B](x') 

= i~<FI ~(x')Q(x) I I> 

for t<t'. For spinor field we must pay attention on the anti-commutativity 
of the spinor sources with the other spinors. The variation of the matrix 
element must be written as 

or 

-it<Fl ~'o/*(x')8YJ(x')d 4 x'Q(x) I I>, 

according as the non-zero point of BYJ(X') is earlier or later than t. The 
right member for t'>t becomes 

where the sign + is caused from exchange between Q(x) and oYJ(X'). Thus 
we can obtain 

a](x'f<FI Q(x) I I> ~i1-<FI T(Q(x)~(x')) 1 I>, 

----~ 0 ~---<FI Q(x) I I>= ~1:-<Fl T(Q(x)'o/*(x')) I I> OYJ(X') in ' 

-
8

YJ,l-(i.?.) <FI Q(x) I I> -z~-<FI T(Q(x),Y(x')) I I>, (A·13) 

where T stands for the well-known time-ordering symbol. From (A•12) 
and (A·13) it is easy to derive the formulas 

of(x') -<QCx)> - 1 \-{<TCQ(x)~(x') )> <Q(x)><~Cx')>}, 
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56 T. Kato, T. Kobayashi and M. Namiki 

__ _1 __ ~- <Q(x) > = -~-- { <TC Q(x)y* (x')) > -- <Q(x) >< 't* (x') >} 
on(x') ift ' 

--~ ~-- < Q (X)>=--~~- { <T ( Q (X) 1y ( x')) > < Q (X)>< 'fr ( x') >} , 
on*(x') zft 

(A•14) 

where the symbols < .. ·> are defined by (1·11a') or (1•11b'). 

In § 3 the real scalar external field cp(X) is introduced by adding 

't*(x)'t(x)cp(X) to the Lagrangian density. The functional derivative 

with respect to cp(X) is similarly derived from the Schwinger's principle, 

namely, one gets 

---~- <Q(x)> 
1 

{<TCQ(x)'t*(x')y(x'))> 
ocp(x') 

- <Q(x)><+*(x')'t(x')>}. 

Appendix III 

Polaron problem 

(A•15) 

To illustrate the Green function method, we shall deal with another 

example, the polaron problem, in which an electron moves in a polar crystal. 

The system is governed by the Hamiltonian 

H = ~'t*(x)[ - 2 ~-P
2 ]'tfr(x)d 3 x+ ~ r~ { [P(x)] 2 +(1)

2 [P(x)] 2}dsx 

+ e\ P(x) • p\_ o(t- t']_'t*(x')'t(x')d4x' d 3x, 
J J lx x'l 

(A•16) 

where 't is the electron field and P the polarization field in the crystal. 

The constant r is given by 

(1)

2 
( 1 1 ) r ---· ------ ' 

4n eco e 

e being the dielectric constant and e= the optical one. The commutation 

relations are formulated as 

[Pz(x, t), P m(x', t)] 0, (A·17) 

for the polarization field, besides usual ones for the electron field. As is 

easily seen, the polarization field can be described by the scalar phonon 

field (}) defined by 
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Formal Theory of Green Functions 

P=J~r(j) 
4n ' 

or (J)(x, t) = 

In terms of (J) we write the Hamiltonian as 

H = ~'f'*(x)[- 2 ~ 172 +em(x) J-rcx)d3x 

-~~r~- f [(P'rD(x) ) 2 +(1)2 (P'm(x) ) 2] d 3x 
2(4n) 2 ~ -

and the commutation relations as 

[rD(x, t), (J)(x', t)] = _i?E_(ifi}l·---l,-
1
-, 

r X X 

[a>(x, t), (J)(x', t)] = 0. 

57 

(A•18) 

(A•19) 

(A•20) 

It must be noted that the commutator between (J) and m is not proportional 
to o(x x') but to I x x' l-1

• The fact shows that, in contrast with cases 

of o(x-x'), the components of (J) with high momenta are reduced by the 
factor I k l-2

, and that the theory does not contain any divergence. 

For the sake of mathematical convenience, let us artificially introduce 
the external source of the phonon field by adding 

(A·21) 

to the Hamiltonian. In the same way as in Appendix II, we can derive 
the formula 

(A•22) 

for the expectation value of an operator Q. Now we consider the Green 
functions 

G(x, x') (ifi)- 1<TC 'fr(x)'fr* (x')) > 

K(x, x') = - 0 -<J~;/{- = (ifi)- 1 
{ <T((J)(X)(J)(x')) > 

- <(J)(x) ><mCx') >}, (A•23) 

for the electron and the phonon fields, respectively. At the limit 0, 

the term <(J)(x)> must vanish. In the presence of f the field equations 
become 

e(J)(x) )-rex) o, 
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58 T~ Kato, T. Kobayashi and M. Namiki 

c:;2 -J---m2 )m(x) = - ~~" ~ U(x- x') [j(x') + e'/r* (x')'fr(x')] d4x', 

(A·24) 

where U(x-x')-lx---x'l- 1o(t-t'). The second equation is rewritten as 

(A·25) 

because of the formula f:72 U(x-x') =- (4n)o<4l(x-x'). From (A·23) and 

(A·24) or (A·25), it follows that 

(in:{ " 2 ~17 2 )ccx, x') e(in)- 1<T(@(x)'f!'(x)t·*(x')) > = ow(x- x'), 

( ~- +m2)J72K(x x')- _i 4 3)
2

-e--_§~~--<'fr*(x)'/r(x)>= i~n):_o(x-x') 
8t2 ' r o](x') r · 

By virtue of (A•22), we immediately obtain 

e<T((f)(x)'/r(x)'fr* (x')) > = e~~-- --<TC ~r(x)'fr* (x')) > 
o](x) 

+e(in)-1<(J)(x) >< T( 'fr(x)'fr* (x')) > 

= ~27(x, C)G(C, x')d4C +e<(])(x)>GCx, x') 

e o]tx') <+*(x)'/r(x)>=- ~ll(x, x")K(x", x')d4x", 

where 

27(x, C) ine 2 ~~G(x, ~)K(x", x)r(~, c; x")d 4 ~d 4 x", 

ll(x, x") =ine 2 ~~G(x, ~)T(~, C; x")G(C, x)d 4 ~d 4 C, 

being defined by 

r( ~ r. ") _ oG- 1 (~, C) 
r;;,~.,, x =--eo<(J)(x")> · 

(A·26) 

(A·27) 

Therefore the equations of G and K are symbolically written in the form 

[in--f!_ + _ _!i,:_ 172 - e<(J)>- 1:]G = 1 
8t 2m ' 

[(---:;2 +m 2 )J72+_ii\~)
2

ll ]K=-(~~).
2

_•1, (A•28) 

where 
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Formal Theory of Green Functions 

II i'lie 2GTG, 

;rs 
T=l+-~-- - o<([J> . 

59 

(A·29) 

Hence we have five equations among the five unknowns, G, K, II, .SandT. 

At the limit f=O (or <([J>=O), the "self-energy" part .S gives us 

the effective mass of a polaron. 

Note added in proof: The authors have recently found A. Klein's and M. Yasuno's 

unpublished works. Klein derived the Hugenholtz-Van Hove theorem on single-particle 

energies and the Landau theory of Fermi liquids by means of extensive use of the Green 

function method. Y asuno formulated, in the framework of the Green function method, the 

single-particle energies and the effective potentials for the single-particle motion in the nucle­

ar matter. There Yasuno presented an interesting method in which the hierarchy of the 

equations of Green functions is stopped at the two-particle Green function and then the 

three-particle Green function is replaced by a sum of appropriate products of the one-and 

two-particle Green functions. In particular, his discussions are given for the relations be­

tween the single-particle behaviors and the Brueckner's reaction matrix, and the plasma­

type excitation terms. Conserning discussions in § 3, readers may find the more-refined 

from of the theory in Yasuno's paper which will be published in near future in Progress 

of Theoretical Physics. 
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