Formal Treatment of Certificate Revocation
Under Communal Access Control*

Xuhui Ao Naftaly H. Minsky
{ao,minsky } @cs.rutgers.edu
Department of Computer Science
Rutgers University, Piscataway, NJ 08854

Abstract

The conventional approach to distributed access-control
(AC) tends to be server-centric. Under this approach, each
server establishesits own policy regarding the use of itsre-
sources and services by itsclients. The choice of thispolicy,
and its implementation, are generally considered the pre-
rogative of each individual server.

This approach to access-control may be appropriate for
many current client-server applications, where the server is
an autonomous agent, in complete charge of its resources.
But it is not suitable for the growing class of applications
where a group of servers, and sometimes their clients, be-
longtoasingleenterprise, and are subject to the enterprise-
wide policy governing them all. One may not be able
to entrust such an enterprise-wide policy to the individual
servers, for two reasons: Firgt, it is hard to ensure that
an heterogeneous set of servers implement exactly the same
policy. Second, as we will demonstrate, an AC policy can
have aspects that cannot, in principle, be implemented by
servers alone.

Asargued ina previous paper [11], whatis needed inthis
situationis a concept of communal policy that governs the
inter action between the member s of a distributed community
of agents involved in some common activity, along with a
mechanismthat providesfor the explicit formulation of such
policies, and for their scalable enforcement. This paper fo-
cuses on the communal treatment of expiration and revoca-
tion of the digital certificates used for the authentication of
the identity and roles of members of the community.

*Work supported in part by an “Excellence Award” by the NJ Commis-
sion on Science and Technology, and by NSF grants No. CCR-9710575
and No. CCR-98-03698

TWork supported in part by DIMACS under contract STC-91-19999

Victoria Ungureanu’
ungurean@business.rutgers.edu
Department of MSIS
Rutgers University, Newark, NJ, 07102

1. Introduction

The conventional approach to distributed access-control
(AC) tends to be server-centric. Under this approach, each
server establishes its own policy regarding the use of its re-
sources and services by its clients. The choice of this pol-
icy, and its implementation, are generally considered the
prerogative of each individual server. In fact, the server’s
AC policy is often embedded, completely or partially, in
its code. This is particularly true for those aspects of the
policy that cannot be expressed via the traditional access-
matrix model, such as separation of duty constraints, au-
diting requirements, and other provisions of the so called
“commercial policies” [3]. Another critical aspects of AC
policies, which is generally relegated to the code of individ-
ual servers, is the treatment of stale or revoked certificates,
where certificates are used for the authentication of the iden-
tity of clients or of their roles.

Such a server-centric approach to access-control may
be appropriate for many current client-server applications,
where the server is an autonomous agent in complete charge
of its resources. But this approach is not suitable for the
growing class of applications where a group of servers, and
sometimes their clients, belong to a single enterprise, and are
subject to the enterprise-wide policy governing them all.

Consider, for example, a large geographically distributed
hospital complex, whose patient records are handled by
several heterogeneous R-servers (“R,” for records), main-
tained by various departments, labs, and outpatientunits dis-
tributed throughout the hospital. The hospital is likely to
have a general policy governing the entry, update, and re-
trieval of patient records, independently of the R-server that
happens to maintains them. Such a policy would typically
specify how participants such as doctors, nurses and the R-
servers themselves ought to be authenticated, perhaps via
certain kinds of certificates; it would spell out the privileges
to be granted to each such participant; and it would specify
the effect that the revocation of a certificate should have on
the privileges of the participant previously authenticated by

it.

One cannot entrust such a hospital-wide policy to the in-
dividual servers, for two reasons: First, it is hard to ensure
that an heterogeneous set of servers implement exactly the
same policy, particularly if the policy is to be implicit in the
code of each server. Second, as we shall see later, an AC
policy can have aspects that cannot, in principle, be imple-
mented by servers alone.

It is our thesis that what is needed in this situation is a
concept of communal policy that governs the interaction be-
tween the members of a distributed community of agents in-
volved in some common activity, along with a mechanism
for formulating and enforcing such policies. Such a mecha-
nism needs to satisfy the following requirements:

1. Communal policies should be made explicit, and be en-
forced.

2. The enforcement mechanism for communal policies
should not require central control.

The first of these requirement is critical for any heteroge-
neous community, whose members cannot all be relied on
to observe one overarching policy voluntarily. The second
requirement above is important for large and geographically
distributed systems, where any central enforcer of policies
could become a performance bottleneck, and a dangerous
single point of failure.

This concept of communal AC policy has been originally
introduced in [11], by one of the authors, but without taking
into account the possible revocation of the digital certificates
used for the authentication of the identity and roles of mem-
bers of a community. The subject of communal certificate-
revocation policy is taken up in this paper.

The rest of this paper is organized as follows: We start, in
Section 2, with the nature of communal policies, illustrating
this concept with a patient-records example; Section 2.1 ex-
tends this concept by taking into account the possible expi-
ration and revocation of digital certificates. In Section 3 we
provide an overview of the concept of law-governed inter-
action (LGI), which we use for the implementation of com-
munal policies. In Sections 4 and 5 we discuss the treatment
of expiration and revocation of certificates, respectively, and
we formalize the example-policies introduced in Sections 2
and 2.1. We make some concluding remarks in Section 6.

2. The Concept of Communal Policy

We illustrate here the nature of communal policies by fo-
cusing on one aspect of the treatment of patient records in
hospitals: the entering of doctor’s orders into such records.
Doctor’s orders, or simply “orders”, are, arguably, the most
sensitive aspect of patient record, as they may directly affect

the treatment, and thus the health and life, of patients. Sup-
pose, then, that our hospital has the following three-point
policy regarding the entering of doctor’s orders; we call this
the PR policy, for “patient records”.

1. Therole of the various participantsin thisactivity must
be validated via digital certificates issued by specific
certification authorities (CAs), as follows:

(a) Serversthat maintain patient records (R-servers)
must be certified as such by a CA called admin
(for the hospital administration).

(b) Doctors must be certified by two CAs. (1) a CA
we call board (for the medical board of the
state) certifying that the person in question has
an MD degree, and (2) by the CA admin (men-
tioned above), certifying that he or she! has doc-
tor’sprivilegesin this hospital.

2. Orders must be posted only on duly certified R-servers,
and only by duly certified doctors, or by their autho-
rized delegates.

3. Acopy of every posted order must be sent to the desig-
nated audit-trail server.

This is a role-based policy, where the roles of doctors and of
R-servers are to be validated by digital certificates. This by
itself is not new (role-based access control (RBAC) is quite
common now [16, 5], as is the use of certificates for validat-
ingroles[2, 7].) What is new about this policy is its commu-
nal nature. That is, the requirement that this policy should
govern all doctor-orders within the hospital.

A communal policy of this kind cannot be implemented
by the servers alone, even if all servers can be trusted to en-
force the same policy. This is for two reasons. First, R-
servers cannot ensure that orders are sent only to certified
R-servers, as required by Point 2 of this policy. They obvi-
ously cannot prevent a doctor from sending his order else-
where, to some agent that has not been certified as an R-
server. This, clearly, requires a degree of control over the
actions of the doctors. Second, as argued in [11], a com-
munal policy mightbe concerned not only with client/server
interactions, but also with interactions between clients. For
example, one may want to allow doctors to appoint certain
nurses as their surrogates, delegating to them the right to
make orders. Such an appointment may be carried out by an
exchange between a doctor and a nurse, not involving any of
the R-servers—which are, therefore, in no position to regu-
late it.

The concept of communal AC policy is not entirely new.
Policies under the original access-matrix model [8], were

LHenceforth, we will refer to both doctors and nurses as “he,” for sim-
plicity.

implicitly communal—governing all “subjects” and *“ob-
jects” in a given central operating-system. Such a policy
was to be enforced by means of a centralized security ker-
nel that mediates all access requests. A centralized enforce-
ment of this kind is quite effective within a single host, but
not for a large distributed system, where it could become a
bottleneck, and a dangerous single point of failure—as we
already pointed out. (Although, centralized enforcers can
be effective for simple and stateless communal policies, be-
cause such enforcers can be easily replicated—as it is done
by the Tivoli system?.) There is clearly a need for a de-
centralized mechanism for the enforcement of such policies
in distributed systems. Before we get to such a mechanism
we address an important aspect of communal policies: their
treatment of certificate-revocation, which is the focus of this

paper.
2.1. Communal Certificate-Revocation Policies

Public key certification is an essential element of access
control over the Internet [7]. Unfortunately, unlike dia-
monds, certificates are not forever. They tend to get “stale”
in time, so they often contain a time stamp, and an explicit
validity period. Moreover, certificates might be revoked, for
various reasons, even within their validity period.

It is, therefore, not sufficient to specify which privi-
leges to bestow on a principal that presents a given set of
certificates—as we have done in our PR policy above. One
needs to have a policy that deals with the possibility that any
of these certificates will become invalid, after such privi-
leges have been granted. And such a policy must be commu-
nal, just as the other provisions of the PR policy. We outline
here some of the issues involved in formulating such a pol-
icy, and we will amend our example policy PR accordingly,
for the sake of illustration. We start with the case of certifi-
cate expiration, and then deal with the more complex case
of explicit revocation.

Dealingwith certificateexpiration: Suppose that the AC
policy at hand confers a bestows p on any agent x that
presents a set C of certificates. The question is: what should
be done when one of these certificates expires? Here are
some of the possible answers to this question.

e The privilege p bestowed on z is nullified immediately.

e xisgivenagrace period during which it retains its orig-
inal privilege.

e 1 is given a grace period, as above; but his privileges
are reduced in some way during this period.

o If = delegated his privilege p to other agents (say, if
a doctor appointed a nurse as his surrogate®), then the
delegated privileges must be nullified along with p.

To show how some of these options can be applied in
practice we now consider the following amendment of our
example policy PR:

4. Whenthe certificate used to authenticatea given server
asan R-server expires, the server'sabilitytoreceive or-
ders should be immediately nullified.

5. When any one of the certificates used to authenticate a
given agent d as a doctor expires, d should be notified
of this, and be given a grace period of a specified du-
ration, within which he can present a fresh certificate.
If a fresh certificate is not presented by the end of this
grace period, then d should lose his ability to send or-
ders.

Thus amended, our example policy is denoted by PR’. Its
formalization* under the mechanism to be proposed here is
presented in Section 4.

Dealingwith certificaterevocation: When a certificate is
known to have been revoked one faces the same types of
choices presented by the expiration of that certificate. The
new issue here is finding out when a certificate has been re-
voked.

The dissemination of information about revoked certifi-
cates is part of the job of certification authorities, and of
the supporting infrastructure. Various such dissemination
mechanisms have been proposed [18]. The most common
mechanism of this kind, used under the X.509 standard, em-
ploys certificate revocation lists (CRLs), which are pub-
lished periodically. Another mechanism, which can be used
along with CRLs, allows for online checking of the status of
a given certificate.

Itis up to the policy that governs the use of certificates to
determine their desired recency [14], and thus the frequency
in which their validity is to be verified with respect to the
available revocation information. For example, one may re-
quire that the validity of a given type of certificates be veri-
fied when it is first presented, and periodically, with a given
frequency, thereafter. Alternatively, one may require that
the validity of a certificate be verified whenever the privi-
lege implied by it is employed.

There is another issue to consider. The checking of the
validity of a certificate involves communication with a CA,

3The policy governing such a delegation should also be communal, as
shown in [11].

4Note, however, that due to space limitations we will not support here
the ability of a doctor to delegate his right to make orders to anybody else

2See http://www.tivoli.com/products/index/secureway policy dir/index.html (see, however, [11])

or with a CRL repository. Such communication may be de-
layed indefinitely due to network congestion, or due to some
denial of service attack. Consequently the revocation pol-
icy should deal with the case when the state of a certificate
is simply unknown. To illustrate these issues we now intro-
duce the following amendment of our example policy PR’:

6. Oncea submitted certificateisverified, itsvalidityisto
be monitored as follows: certificatesissued by admin
are to be checked for validity every day, while certifi-
cates issued by board should be checked every 30
days. (This difference in frequencies reflects different
expectation about the stability of the certificatesissued
by the two authorities.)

7. Whenever a certificate is revoked, its corresponding
privileges must be nullified immediately. (Note that
we have chosen here, somewhat arbitrarily, a harsher
measure than the one employed, under Point 5 above,
for expiration of certificates.)

8. When the status of a certificate becomes unknown, the
privileges corresponding to it should be retained, tem-
porarily, for aspecified uncertainty period. If thestatus
of this certificate remains unknown by the end of this
period, then the corresponding privilegesareto be nul-
lified.

Thus amended, this policy is denoted by PR”. Its formaliza-
tion under the mechanism to be proposed here is presented
in Section 5.

A note about related work is appropriate here. Revoca-
tion policies of comparable sophistication to the above can
probably be implemented under the Oasis system [6]. But
while providing a very powerful certification infrastructure,
Oasis does not support communal policies. That is, it pro-
vides no assurances that a given community of agents is gov-
erned by a designated AC policy.

3. Law-Governed
Overview

Interaction (LGIl)—an

Broadly speaking, LGI is a message-exchange mecha-
nism that allows an open group of distributed agents to en-
gage in amode of interaction governed by an explicitly spec-
ified policy, called the law of the group. The messages thus
exchanged under a given law L are called £-messages, and
the group of agents interacting via £-messages is called a
community C, or, more specifically, an £-community C..

By the phrase “open group” we mean (a) that the mem-
bership of this group (or, community) can change dynami-
cally, and can be very large; and (b) that the members of a
given community can be heterogeneous. In fact, we make
here no assumptions about the structure and behavior of the

agents® that are members of a given community C., which
might be software processes, written in an arbitrary lan-
guages, or human beings. All such members are treated
as black boxes by LGI, which deals only with the inter-
action between them via £-messages, making sure it con-
forms to the law of the community. (Note that members of
a community are not prohibited from non-LGI communica-
tion across the Internet, or from participation in other LGI-
communities.)

For each agent x in a given community C., LGl main-
tains, what is called, the control-state CS, of this agent.
These control-states, which can change dynamically, sub-
ject to law L, enable the law to make distinctions between
agents, and to be sensitive to dynamic changes in their state.
The semantics of control-states for a given community is de-
fined by its law, could represent such things as the role of
an agent in this community, and privileges and tokens it car-
ries. For example, under law PR’ to be introduced in Sec-
tion 4, as a formalization of our example PR’ policy, the term
role (doctor) in the control-state of an agent denotes
that this agent has been certified as a doctor employed in the
hospital in question.

We now elaborate on several aspects of LGI, focusing on
(a) its concept of law, (b) its mechanism for law enforce-
ment, and (c) its treatment of digital certificates. Due to lack
of space, we do not discuss here several important aspects of
LGlI, including the interoperability between communities,
and the treatment of exceptions. Nor do we discuss here the
expressive power of LGI, its implementation, and its effi-
ciency. For these issues, and for a more complete presen-
tation of the rest of LGl, the reader is referred to [13, 19, 1].

3.1. The Concept of Law

Generally speaking, the law of a community C is de-
fined over a certain types of events occuring at members of
C, mandating the effect that any such event should have—
this mandate is called the ruling of the law for a given
event. The events subject to laws, called regulated events,
include (among others): the sending and the arrival of an
L-message; the coming due of an obligation previously im-
posed on a given object; and the submission of a digital cer-
tificate (more about the latter two kinds of events, later). The
operations that can be included in the ruling of the law for a
given regulated event are called primitive operations. They
include, operations on the control-state of the agent where
the event occured (called, the “home agent™); operations on
messages, such as forward and deliver; and the impo-
sition of an obligation on the home agent.

5Given the popular usages of the term “agent,” it is important to point
out that we do not imply by it either “intelligence” nor mobility, although
neither of these is being ruled out by this model.

Thus, a law L can regulate the exchange of messages be-
tween members of an £-community, based on the control-
state of the participants; and it can mandate various side ef-
fects of the message-exchange, such as modification of the
control states of the sender and/or receiver of a message, and
the emission of extra messages, for monitoring purposes,
say.

On TheL ocal Enforceability of Laws: Although the law
L of a community C is global in that it governs the interac-
tion between all members of C, it is enforceable locally at
each member of C. This is due to the following properties
of LGI laws:

e L only regulates local events at individual agents,

o the ruling of £ for an event e at agent x depends only
on e and the local control-state CS . of x.

e The ruling of £ at x can mandate only local operations
to be carried out at x, such as an update of CS,, the
forwarding of a message from x to some other agent,
and the imposition of an obligation on x.

The fact that the same law is enforced at all agents of a com-
munity gives LGI its necessary global scope, establishing a
common set of ground rules for all members of C and pro-
viding them with the ability to trust each other, in spite of
the heterogeneity of the community. And the locality of law
enforcement enables LGI to scale with community size.

On the Structure and Formulation of Laws: Abstractly
speaking, the law of a community is a function that returns
a ruling for any possible regulated event that might occur at
any one of its members. The ruling returned by the law is a
possibly empty sequence of primitive operations, which isto
be carried out locally at the location of the event from which
the ruling was derived (called the home of the event). (By
default, an empty ruling implies that the event in question
has no consequences—such an event is effectively ignored.)

Concretely, the law is defined by means of a Prolog-like
program® L which, when presented with a goal e, represent-
ing a regulated-event at a given agent x, is evaluated in the
context of the control-state of this agent, producing the list
of primitive-operations representing the ruling of the law for
this event. In addition to the standard types of Prolog goals,
the body of a rule may contain two distinguished types of
goals that have special roles to play in the interpretation of
the law. These are the sensor-goals, which allow the law
to “sense” the control-state of the home agent, and the do-
goalsthat contribute to the ruling of the law. A sensor-goal

6Note, however, that Prolog is incidental to this model, and can, in prin-
ciple, be replaced by a different, possibly weaker, language; arestricted ver-
sion of Prolog is being used here.

Operations on the control-state

tecs returns true if term t is present
in the control state, and fails
otherwise

+t adds term t to the control state;

-t removes term t from the

control state;

Operations on messages

forward(x,m,y) sends message m from x to y;
triggersat y an
arrived(x,m,y) event

deliver(x,m,y) delivers the message m from

xtoy

Miscellaneous

teL returns true if term t is
present in list L, and fails
otherwise

imposeObligation(oType,dt) causes the triggering of an
obligationDue (oType)

event after time interval dt.

Figure 1. Some primitive operations in LGI.

has the form t@cCs, where t is any Prolog term. It attempts
to unify t with each term in the control-state of the home
agent. A do-goal has the form do (p) , where p is one of the
above mentioned primitive-operations. It appends the term
p to the ruling of the law. A sample of primitive operations
is presented in Figure 1.

The Concept of Enforced Obligation: Informally speak-
ing, an obligation under LGl is a kind of motiveforce. Once
an obligation is imposed on an agent—generally, as part of
the ruling of the law for some event at it—it ensures that a
certain action (called sanction) is carried out at this agent, at
a specified time in the future, when the obligation is said to
come due, and provided that certain conditions on the con-
trol state of the agent are satisfied at that time. The circum-
stances under which an agent may incur an obligation, the
treatment of pending obligations, and the nature of the sanc-
tions, are all governed by the law of the group.

Specifically, an obligation can be imposed on a given
agent x at time t 0 by the execution at x of a primitive op-
eration

imposeObligation (oType,dt),

where dt is the time period, after which the obligation is to
come due (dt is specified as a pair [n,u], wheren is an
integer and u is a unit of time, such as “second” or “hour”),

and oType—the obligation type—is a term that identifies
this obligation (not necessarily in a unique way). The main

effect of this operation is that unless the specified obligation .X
is repealed before its due time t=ty+dt, the regulated event sent

communication
netwark

arrived deliver

agent agent

obligationDue (oType)

. . controller Tx controller Ty
would occur at agent x at time t. The occurrence of this
event would cause the controller to carry out the ruling of tesend:
the law for this event; this ruling is, thus, the sanction for 2regulated event >

this obligation. Note that a pending obligation incurred by @ primitive operation ------ ------

agent x can be repealed before its due time by means of the
primitive operation

repealObligation (oType)

carried out at x, as part of a ruling of some event. (This
operation actually repeals all pending obligations of type
oType).

For example, under law PR’, when an agent d sub-
mits a certificate authenticating it as a doctor, an obligation
expired (doctor,valid) is imposed on d, to come
due at the expiration time of this certificate. When this obli-
gation comes due, it will cause 4 to enter his grace period.

Note that there is a significant difference between this
concept, and the concept of obligation under deontic logic
[9], used for the specification of normative systems. The
obligations of deontic logic allow one to reason about what
an agent must do, but they provide no means for ensuring
that what needs to be done will actually be done [15].

3.2. The L aw-Enforcement M echanism

We start with an observations about the term “enforce-
ment,” as used here. We do not propose to coerce any agent
to exchange £-messages under any given law L, just as
we cannot coerce doctors to issue their orders via a com-
puter rather than via pen and paper. The role of enforcement
here is merely to ensure that any exchange of £-messages,
once undertaken, conformsto law £. More specifically, our
enforcement mechanism is designed to ensure the follow-
ing properties: (a) the sending and receiving of £-messages
conforms to law £; and (b) a message received under law £
has been sent under the same law (i.e., it is not possible to
forge £-messages).

Since we do not compel anybody to operate under any
particular law, or to use LGI, for that matter, how can we be
sure that all doctor orders in a given hospital are entered un-
der law PR’? The answer is that an agent may be effectively
compelled to exchange £-messages, if he needs to use ser-
vices provided only under this law, or to interact with agents
operating under it. For instance, if the servers for patient
records accept only PR’-messages, then anybody needing
their services would be compelled to send PR’-messages

Figure 2. Enforcement of the law.

to them. Conversely, if doctors make their orders via PR’-
messages, servers would be compelled to accept such mes-
sages, if they are to receive any orders.

This is not an absoluteassurance for universal use of law
PR’ for doctor orders in a given hospital. Indeed a group
of doctors may decide to use some rogue server, not operat-
ing under PR’, for making their orders. But this would be
a blatant defiance of the probably explicit hospital rule that
doctor’s orders must be made only under law PR’. This is
far less likely to happen than some subtle (or even not sub-
tle) change in the policy adopted by some server, under the
server-centric approach to AC.

Distributed Law-Enforcement: Broadly speaking, the
law £ of community C is enforced by a set of trusted agents
called controllers, that mediate the exchange of £-messages
between members of C. Every member x of C has a con-
troller 7, assigned to it (7 here stands for “trusted agent”)
which maintains the control-state CS . of its client x. And
all these controllers, which are logically placed between the
members of C and the communications medium (as illus-
trated in Figure 2) carry the same law £. Every exchange
between a pair of agents x and y is thus mediated by their
controllers 7, and 7, so that this enforcement is inherently
decentralized. Although several agents can share a single
controller, if such sharing is desired. (The efficiency of this
mechanism, and its scalability, are discussed in [13].)

Controllersare generic, and can interpretand enforce any
well formed law. A controller operates as an independent
process, and it may be placed on any machine, anywhere
in the network. We have implemented a controller-service,
which maintains a set of active controllers. To be effec-
tive in a widely distributed enterprise, this set of controllers
need to be well dispersed geographically, so that it would be
possible to find controllers that are reasonably close to their
prospective clients.

On the basis for trust between members of a commu-
nity: For a members of an £-community to trust its inter-

locutors to observe the same law, one needs the following
assurances: (a) that the exchange of £-messages is medi-
ated by controllers interpreting the same law £; and (b) that
all these controllers are correctly implemented. If these two
conditions are satisfied, then it follows that if v receives an
L-message from some x, this message must have been sent
as an £-message; in other words, that £-messages cannot be
forged.

To ensure that a message forwarded by a controller 7, un-
der law £ would be handled by another controller 7, oper-
ating under the same law, 7, appends a one-way hash [17] H
of law L to the message it forwards to 7,,. 7, would accept
thisas a valid £-message under £ if and only if H is identical
to the hash of its own law.

With respect to the correctness of the controllers, if an
agent is not concerned with malicious violations, then it can
trust a controller provided by our controller-naming service,
or a controller provided by the operating system — just like
we often trust various standard services on the Internet, such
as TCP/IP protocols. When malicious violations are a con-
cern, however, the validity of controllers and of the host
on which they operate needs to be certified. In this case,
the controller-naming service needs to operate as a certifica-
tion authority for controllers. Furthermore, messages sent
across the network must be digitally signed by the send-
ing controller, and the signature must be verified by the re-
ceiving controller, allowing the two controllers to trust each
other. Such secure inter-controller interaction has been im-
plemented in Moses ([12]).

3.3. The Treatment of Certificatesunder LGl

Under LGI, all agents are made equal at the time they
joinan £-community. This is because the control-state of all
new members is identical—and control-states provide the
only means for a law to make distinctions between agents.
We now explain how an agent can acquire extra privileges,
thus becoming more equal than others (with apologies to
George Orwell), by submitting appropriate certificates.

The submission by an agent x, operating under law L,
of a certificate Cert to its controller, has the following ef-
fect: An attempt is made to confirm that Cert is a valid
certificate, duly signed by an authority that is acceptable to
law L, i.e., an authority that is represented by one of the
authority-clauses in the preamble to the law (See
Figure 3 for an example). If this attempt is successful’, then
a certified-event is triggered. This event, which is one of the
regulated-events under LGlI, has as its argument the follow-
ing representation of the submitted certificate:

[issuer(I), subject(Ss),
attributes(A)].

7If the the certificate is found invalid then an exception-event is trig-
gered.

Here I and s are internal representations of the public-
keys of the CA that issued this certificate, and of its sub-
ject, respectively; and A is what is being certified about the
subject. Structurally, A is a list of attribute (value)
terms. For example, the attributes of a certificate might be
the list [name (johnDoe) , role (doctor)], assert-
ing that the name of the subject in question is JohnDoe and
his role in this community is a doctor. Additional compo-
nents of the attributes field include the expiration time of the
certificate, the URL of the server that maintains CRLs for
this type of certificates, a certificate id (used to identify it in
CRLs), etc. (Currently we support SPKI format of certifi-
cates [4]).

What happens when the certified event is triggered
depends, of course, on the law. In the case of law PR’ of
Figure 3, for example, the following would happen when a
doctor-certificate is presented, triggering the certified event:
(a) the term role (doctor) is set in the control-state of
the agent in question, and (b) an obligation is imposed to
deal with the eventual expiration of this certificate.

4. Establishing Communal Certificate-

Expiration Policies

We demonstrate here the communal treatment of
certificate-expiration by formalizing our example PR’
policy into a law PR’ under LGI, which is displayed, in its
entirety, in Figure 3. This figure has two parts, specifying
the preamble to the law, and its rules. Each rule is followed
by a comment (in italic), which, together with the following
discussion® should be understandable even for a reader not
well versed in the LGI language for writing laws.

The preamble to this law has several clauses: First, there
are two authority clauses, which define the certifica-
tion authorities acceptable to this community. Each author-
ity clause provides the public-key of a certification author-
ity, and assign it a local name—"admin” and “board”, in this
case—to be used within this law. Second, an initialCs
clause that defines the initial control-state of all agents in
this community, which is empty in this case. Finally, there
isa directory clause defining the address of the specific
agent. auditor@bellevue.com, and assigns it a local
name—"auditor”. As we will see later, this agent would be
used as a server that maintains the audit trail for doctor or-
ders for the hospital at hand (assumed here to be Bellevue).

Our discussion of this law is organized as follows: We
start with how an agent that adopted this law can claim a
role—ofan MD, a doctor, or a server—by presenting a spec-
ified type of certificate, signed by a specified authority; and
how this role is recorded in the CS of the agent via a role

8Due to space limitations, our discussion of this and the following law
is perhaps more terse than it should be.

Preamble:

R1.

R2.

R3.

RA.

RS.

R6.

RT.

R8.

authority(admin,publicKey1).
authority(board,publicKey2).

initial CS([]).

directory(auditor, “auditor@bellevue.com”).

certified([issuer(I), subject (Self) ,attributes(p)]) :-
role(R)@A, (I==board,R==md) |(I==admin, (R==doctor|R==server)),
name (N) @A, expirationTime(Tl)@A, clock(T)@cCs,
T2=T1-T, T2 >0, setRole(R,N,T2).

Claiming or reclaiming the role of MD, doctor or server via certificate issued by CAs(called board and admin).

setRole(R,N,T) :-
if (role(R)@CS)
then do(repealObligation (expired(R,S)))
else (do(+role(R)), do(+name (N))),
do (imposeObligation (expired(R,valid) ,T)) .

When setting a role, an obligation is imposed to deal with its expiration, if there is already an obligation associated with the role, it
is repealed.
sent (D, order (text (O) ,myName (N)) ,S) :-
role (doctor)@CS, role(md)@CS, name (N)@CS, do(forward).
Only an agent that has role (doctor) androle (md) in its control-state can issue the orders.
arrived(X,M,S) :- M=order(-,-),
if role(server)@CSs

then (do(deliver), do(deliver(S,audit (M) ,auditor)))
else do(forward(S,uncertifiedServer (M), X)) .

The arrival of a message carrying a doctor’s order.

arrived(S,uncertifiedServer (M), X) :- do(deliver).

A “uncertifiedServer” message is delivered without further ado.

obligationDue (expired (server,valid)) :-
do(-role(server)), name (N)@CS, do(-name(N)),
do(deliver (Self,warning (serverCertExpired) ,h Self)).

A warning will be sent to the server and its server privilege will be removed when the server certificate expires.

obligationDue (expired(R,valid)) :- (R==md) | (R==doctor),
do (imposeObligation (expired (R, grace), [1, dayl)),
do(deliver(Self,warning (certExpired(R)), Self)).

When the doctor-certificate or MD-certificate expires, the law will degrade the agent to be in its one day long grace period.
The agent will also receive a warning message.

obligationDue (expired(R,grace)) :- (R==md) | (R==doctor),
do(-role(R)), name(N)@CS, do(-name(N)),
do(deliver (Self,warning (graceExpired(R)),bSelf)).

If the grace period of the privilege expires, we will remove corresponding role (md) or role (doctor) term from its
control-state, and thus remove the corresponding privilege.

Figure 3. Law PR'.

term such as role (server). Such terms serve as a kind
of seal that authenticate the role of an agent for its interac-
tions with other members of the PR’-community. For ex-
ample, the term role (server) serves, under this law,
as a seal of a valid R-server, which allows agents with this
term to receive orders. Second, we show how orders are sent
by qualified doctors and how they are received by qualified
servers. Finally, we discuss what happens if the certificate
previously used to authenticate the role of an agent expires.

By Rule R1 and R2, an agent that presents a certificate
issued by board, with the attribute role (md), or a cer-
tificate issued by admin, with attribute role (doctor)
or role (server), would get the corresponding term
role (md), role (doctor) or role (server) inits
CS. The name N of the agent in question is authenticated in
a similar manner, and is recorded via a term name (N) .

By Rule R2, whenever a certificate is presented, an obli-
gation will also be imposed to deal with its expiration. Fur-
thermore, if the privilege associated with this certificate is
in its grace period, then the corresponding obligation is re-
pealed.

By Rule R3, an agent can issue orders only if he has
both role (md) and role (doctor) terms in its con-
trol state. Such an order must be included in a message
of the form order (text (0) , myName (N)), where O
is the order itself, and N is the name of the doctor send-
ing this message, as certified previously and recorded in
the control-state of the doctor. If the receiver of an order
message is a valid R-server, then by Rule R4 a message
audit (M), where M is the text of the order, is sent to an
agent whose address is auditorebellevue.com—as
defined by the directory clause before. Otherwise an
uncertifiedServer message will be sent back to the
sender of the order(Rule R5).

Rule R6 deals with the expiration of server-certificates.
Whenever the server-certificate expires, the term
role (server) will be removed from the control-state
of that agent, thus ensuring that this agent can no longer
receive any orders. By Rule R7, once an MD-certificate
or a doctor-certificate expires, the agent in question gets a
grace period of one day, along with a warning message.

Finally, by Rule R1, while in its grace period, an agent
can introduce a new and fresher certificate, which will get
him out of the grace period and into a normal operating
mode. But if he fails to present such a certificate in time,
he will have his privileges removed when the grace period
expires (by Rule R8).

5. Establishing Communal Certificate-
Revocation Policies

To support the formulation of certificate-revocation poli-
cies via laws we introduce the concept of certification au-

N

revoked

Figure 4. The certificate state-transition dia-
gram.

thority proxy (CAP), which serves as an interface between
communities under LGI and the certification infrastructure
they use. A CAP is designed to respond to two kinds of re-
quests, represented by the following £-messages (for any
law L):

e checkStatus (Cert)—a request to check the cur-
rent status of the certificate Cert, given inits LGI for-
mat introduced in Section 3.3.

e monitorStatus (Cert,Freq)—a request to
check the current status of Cert, and to monitor any
status changes in the future, according to the specified
frequency. (The monitoring will continue until the
certificate is not longer valid, or until the CAP is
instructed, in a manner not spelled out here, to stop the
monitoring.)

The CAP is trusted to perform the requested checking us-
ing the most recent information available (either via an on-
line server or by examining the CRL), and to respond via an
L-message

status (S, Cert) ,

where S is the status of certificate Cert that can have
the followingvalues: valid, revoked orunknown. The
unknown status occurs when the CAP cannot get to the
appropriate server, due to communication problems, or be-
cause the server is unavailable at the time.

In the case of monitorStatus (Cert,Freq) re-
quest: after its first status report, the CAP will monitor the
status of Cert, with the specified frequency. A CAP is
trusted to report immediately to the issuer of this request any
change of the status of the monitored certificate (The certifi-
cate transition diagram is presented in Figure 4). The effect
of such a report is, of course, determined by the law under
which the requester operates, as we shall see in the example
below.

RY.

R9.

IR 10.

R11.

R12.

R13.

R14.

IR15.

Preamble:

directory(cap, “cap@bellevue.com”).

certified([issuer (board), subject (Self) ,attributes(A)]) :-
role (md) @A,
do (forward (Self,monitorStatus (Cert, [30,day]),cap)) .

After receiving MD certificate signed by board, the cap is asked to check the status of the certificate presented, and to monitor its
status every 30 days.

certified([issuer (admin) ,h subject (Self) ,attributes(A)]) :-
role(R)@A, (R==doctor|R==server),
do (forward(Self,monitorStatus(Cert, [1,day]),cap)) .

After receiving a certificate from admin, the cap is asked to check the status of the certificate presented, and to monitor its status
every day.

arrived (X, monitorStatus (C,F),cap) :- do(deliver).

Only the cap can receive monitorStatus messages.

sent (cap, status(S,C) ,X) :- do(forward) .
Only the cap can send status messages.

arrived (cap, status(valid,C) ,X) :-
attributes (A)@C, role(R)@A,
name (N) @A, expirationTime (T1l)@A,
clock (T)@CsS, T2=T1-T, T2 >0,
if (obligation (expired(R,uncertain))@CS) then
(do(-role(R)),do(-name(N)),
do (repealObligation (expired (R, uncertain)))),
setRole(R,N,T2) .

If the certificate is valid, the privileges implied by it are granted. Furthermore, if the status of that certificate changes into valid
from the previous unknown status, then the corresponding obligation is repealed.

arrived (cap, status (revoked,C) ,X) :-
attributes (A)@C, role(R)@A, do(-role(R)),
do(deliver (Self,warning (certRevoked (R)), Self)).

If the certificate is revoked, then the privileges emanating from it are removed immediately.
arrived (cap, status (unknown,C) ,X) :-

attributes (A)@C, role(R)@A,
do (imposeObligation (expired (R, uncertain), [6,hour])) .

If the status of the certificate changes into unknown from previous valid status, then the agent is given an
uncertainty period of six hours.

obligationDue (expired (R,uncertain)) :-
role(R)@CS, do(-role(R)),
do(deliver (Self,warning (uncertainExpired(R)), Self)).

When the uncertainty period expires, the corresponding role, and thus privilege, is removed.

Figure 5. PR"—a revision of the patient record law PR'.

Finally, we note that a single community may use several
different CAPs, which may be geographically dispersed,
and may be built to handle different types of certification in-
frastructure that use different revocation mechanisms.

Dealing with Certificate Revocation Under the PR” Pol-
icy: To illustrate how revocation policies can be imple-
mented under LGI, we revise here our previous law, creat-
ing law PR" that represents policy PR” introduced in Sec-
tion 2.1. This revision is presented in Figure 5, which re-
places Rule R1 from Figure 3 with Rule R1’, and adds
Rules R9-R15. Also, this revision containsa directory
clause that defines cap@bellevue . comas the address of
the CAP to be used by this law—its internal name is to be
cap.

Under this law, when an agent x presents a certifi-
cate Cert?, a monitorStatus request is sent to cap
(Rules R1’ and R9). The privileges implied by this certifi-
cate are conferred on x only after it gets a status report from
cap, asserting that this certificate is valid (see Rule R12).

The rest of the law deals with the case when the status
of a certificate changes after an agent x has been granted
privileges—i.e. after a term role (R) has been added to
x’s control state. As mentioned above, such changes are
monitored by the cap and reported as soon as they occur.

If the certificate is revoked, then, by Rule R13 the corre-
sponding role term is removed from the control state of x
immediately, thus effectively preventing x from exercising
privileges in this community. A warning is also sent to the
affected agent.

The last requirement of this policy stipulates that x
should maintain its role R, for a given uncertainty period
(six hours, in this case say) if the status of the correspond-
ing certificate Cert, becomes unknown. This is achieved
in the following manner: First, by Rule R14, when cap
reports that the status of Cert has become unknown an
obligation expired (R, uncertain) is set to fire at x
after six hours—the duration of the uncertainty period. If
during this time frame, cap reports that the status of Cert
changed to valid, then the expired obligation is re-
pealed (Rule R12). Otherwise, when the obligation fires,
the term role (R) is removed from the control state of x,
thus nullifying its privileges (Rule R15).

6. Conclusion

A communal access-control policy is a policy that gov-
erns both client-server and peer-to-peer interactions be-
tween members of a community of agents, generally belong-
ing to a given enterprise. A mechanism for the specification

9Variable cert is automatically bound to the internal translated form
of the certificate presented by the agent.

of a wide range of such policies, and for their scalable en-
forcement, has been introduced in [11]. Butthis mechanism
presents several challenges. One such challenge, addressed
in this paper, is the treatment of the inevitable expiration and
revocation of the digital certificates used for the authentica-
tion of the roles played by the various members of a com-
munity.

Two additional challenges presented by our concept of
communal policies will be addressed in forthcoming papers.
The first is the effect of revocation of certificates on the dele-
gation of privileges withina community, such as the delega-
tion, by a doctor to a nurse, of the right to make orders. The
second challenge is the on-line change of a communal pol-
icy itself, to be handled according to the protocol outlined in
[10].

References

[1] X. Ao, N. Minsky, T. Nguyen, and V. Ungureanu. Law-
governed communities Over the internet. In Proc.
of Fourth International Conference on Coordination
Models and Languages; Limassol, Cyprus; LNCS se-
rie, September 2000.

[2] M. Blaze, J. Feigenbaum, J. loannidis, and
A. Keromytis. The role of trust management in
distributed systems security. Secure Internet Pro-
gramming: Issues in Distributed and Mobile Object

Systems, 1603, 1999.

[3] D.D. Clark and D.R. Wilson. A comparison of
commercial and military computer security policies.
In Proceedings of the IEEE Symposium in Security
and Privacy, pages 184-194. IEEE Computer Society,
1987.

[4] C. Ellison. The nature of a usable pki. Computer Net-
works, (31):823-830, November 1999.

[5] D. Ferraiolo, J. Barkley, and R. Kuhn. A role
based access control model and refernce implementa-
tionwithina corporate intranets. ACM Transactionson
Informationand System Security, 2(1), February 1999.

[6] R.J. Hayton, J.M. Bacon, and K. Moody. Access con-
trol in an open distributed enviroment. In Proceedings
of the 1998 | EEE Symposiumon Security and Privacy,
1998.

[7]1 A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and
Y. Ravid. Access control meets public key infrastruc-
ture, or: Assigning roles to strangers. In Proceedings
of the 2000 | EEE Symposiumon Security and Privacy,
2000.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B.W. Lampson. Protection. In Proceedings of 5th
Princeton Symposium on Information Sciences and
Systems, pages 437-443, March 1971. Reprinted in
ACM Operating Sysytems Revue, Vol 8(1), pp 18-24
(Jan. 1974).

J. J. Ch. Meyer, R. J. Wieringa, and Dignum F.P.M.
The role of deontic logic in the specification of infor-
mation systems. In J. Chomicki and G. Saake, ed-
itors, Logic for Databases and Information Systems.
Kluwer, 1998.

N.H. Minsky. The imposition of protocols over open
distributed systems. |EEE Transactions on Software
Engineering, February 1991.

N.H. Minsky. A scalable mechanism for communal ac-
cess control in distributed systems. Technical report,
Rutgers University, October 2000.

N.H. Minsky and V. Ungureanu. A mechanism for es-
tablishing policies for electronic commerce. In The
18th I nternational Conference on Distributed Comput-
ing Systems (ICDCS), pages 322-331, May 1998.

N.H. Minsky and V. Ungureanu. Law-governed in-
teraction: a coordination and control mechanism for
heterogeneous distributed systems. TOSEM, ACM
Transactions on Software Engineering and Methodol-
ogy, 9(3):273-305, July 2000.

R.L. Rivest. Can we eliminate revocation lists? In
Proceedings of Financial Cryptography., 1998.

M. Roscheisen and T. Winograd. A communication
agreement framework for access/action control. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1996.

R.S. Sandhu, D. Ferraiolo, and R. Kuhn. The nist
model for role-based access control: Towards a unified
standard. In Proceedings of ACM Workshop on Role-
Based Access Control. ACM, July 2000.

B. Schneier. Applied Cryptography. John Wiley and
Sons, 1996.

S. Stubblebine. Recent-secure authentication: Enforc-
ing revocation in distributed systems. In Proceedings
of the 1995 |EEE Symposium on Research in Security
and Privacy, Oakland, pages 224-234, May 1995.

V. Ungureanu and N.H. Minsky. Establishing busi-
ness rules for inter-enterprise electronic commerce.
In Proc. of the 14th International Symposium on
DISributed Computing (DI1SC 2000); Toledo, Spain;
LNCSserie, October 2000.

