
Formal Verification

of a Practical Lock-Free Queue Algorithm

Simon Doherty1, Lindsay Groves1, Victor Luchangco2, and Mark Moir2

1 School of Mathematical and Computing Sciences
Victoria University of Wellington, New Zealand

2 Sun Microsystems Laboratories, 1 Network Drive
Burlington, MA 01803, USA

Abstract. We describe a semi-automated verification of a slightly opti-
mised version of Michael and Scott’s lock-free FIFO queue implementa-
tion. We verify the algorithm with a simulation proof consisting of two
stages: a forward simulation from an automaton modelling the algorithm
to an intermediate automaton, and a backward simulation from the in-
termediate automaton to an automaton that models the behaviour of
a FIFO queue. These automata are encoded in the input language of the
PVS proof system, and the properties needed to show that the algorithm
implements the specification are proved using PVS’s theorem prover.

1 Introduction

Performance and software engineering problems resulting from the use of locks
have motivated researchers to develop lock-free algorithms to implement con-
current data structures. However, these algorithms are significantly more com-
plicated than lock-based algorithms, and thus require careful proofs to ensure
their correctness. Such proofs typically involve long and tedious case analyses,
with few interesting cases. Thus, it is desirable to have a tool that generates and
checks all the cases, requiring human guidance only in the few interesting cases.

In this paper, we discuss the verification of a lock-free queue algorithm based
on the practical and widely used algorithm of Michael and Scott [1]. which to our
knowledge has not been formally verified before. We prove that the algorithm is
linearisable [2], using a simulation proof, which involves constructing a special
kind of relation, called a simulation, between the states of two automata mod-
elling the algorithm and its specification. We use the PVS verification system [3]
to check the proof.

Our verification has three principal points of interest: First, unlike many
practical algorithms, which can be verified using only a forward simulation, this
algorithm also requires a backward simulation, which is trickier to verify. Second,
the way in which we model a dynamic heap, and use an existentially quantified
function to relate objects in the heap with abstract data, avoids many difficulties
associated with reasoning about dynamic data structures. Third, we developed
various techniques to help PVS automatically dispose of most of the cases in the

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 97–114, 2004.
c© IFIP International Federation for Information Processing 2004



98 Simon Doherty et al.

(b)?(a) ?

TailHead Tail Head

a b c

Fig. 1. Basic queue representation

structure pointer t {ptr: pointer to node t, ver: unsigned integer}
structure node t {value: data type, next: pointer t}
structure queue t {Head: pointer t, Tail: pointer t}
Initialise(Q: pointer to queue t)

node = new node(); node→next.ptr = null ;
Q→Head = Q→Tail = [node, 0];

Fig. 2. Global declarations and initialisation

simulation proofs. Using these techniques, we encountered few cases in which we
needed to provide guidance to the prover.

We present the queue algorithm in Sect. 2. In Sect. 3, we introduce I/O
automata and show how to model the queue specification and implementation.
Sect. 4 describes our verification. Sect. 5 discusses our experience using PVS.
We conclude in Sect. 6.

2 The Queue Implementation

Our algorithm implements a queue as a linked list of nodes, each having a value
and a next field, along with Head and Tail pointers. Head points to the first node
in the list, which is a dummy node; the remaining nodes contain the values in
the queue. In quiescent states (i.e., when no operation is in progress), Tail points
to the last node in the list. Fig. 1 shows an empty queue and a queue contain-
ing values a, b and c. The declarations and initialisation are shown in Fig. 2.
Pseudocode for the Enqueue and Dequeue operations is given in Fig. 3.

Shared locations containing pointers (i.e., Head, Tail and next) are updated
using compare-and-swap (CAS) operations.1 CAS takes the address of a memory
location, an “expected” value, and a “new” value. If the location contains the
expected value, the CAS succeeds, atomically storing the new value into the
location and returning true. Otherwise, the CAS fails, returning false and leaving
the memory unchanged.

These shared locations also contain a version number, which is incremented
atomically every time the location is written.2 Thus, if such a location contains
1 The one exception is in the initialisation of a new node (line E3), where a store is

sufficient because no other process can access a node while it is being initialised.
2 In this paper, we treat version numbers as unbounded naturals, so they never “wrap

around”. This simplification is reasonable as long as enough bits are used for the
version number [4].



Formal Verification of a Practical Lock-Free Queue Algorithm 99

Enqueue(Q: pointer to queue t,
value: data type)

E1: node = new node()
E2: node→value= value
E3: node→next.ptr = null
E4: loop
E5: tail = Q→Tail
E6: next = tail.ptr→next
E7: if tail == Q→Tail
E8: if next.ptr == null
E9: if CAS(&tail.ptr→next, next,

[node, next.ver+1])
E10: break
E11: endif
E12: else
E13: CAS(&Q→Tail, tail,

[next.ptr, tail.ver+1])
E14: endif
E15: endif
E16: endloop
E17:CAS(&Q→Tail, tail,

[node, tail.ver+1])

Dequeue(Q: pointer to queue t,
pvalue: pointer to data type): boolean

D1: loop
D2: head = Q→Head
D3: next = head→next
D4: if head == Q→Head
D5: if next.ptr == null
D6: return false
D7: else
D8: *pvalue = next.ptr→value
D9: if CAS(&Q→Head, head,

[next.ptr, head.ver+1])
D10: tail = Q→Tail;
D11: if (head.ptr == tail.ptr)
D12: CAS(&Q→Tail, tail,

[next.ptr, tail.ver+1]);
endif
break

D13: endif
D14: endif
D15: endif
D16: endloop
D17: free node(head.ptr)
D18: return true

Fig. 3. Queue operations

(a) (b)? ? ?

Tail

a b c

Head Tail Head

Fig. 4. Queue representation variations

the same value at two different times, then the location had that value during
the entire interval.

A process p executing an Enqueue operation acquires and initialises a new
node (E1–E3), and appends the new node to the list by repeatedly determining
the last node in the list, i.e., the node whose next.ptr field is null (E5–E8, E13),
and attempting to make its next.ptr field point to the new node (E9). Then p
attempts to make Tail point to this node (E17).3 Between p appending its new
node and Tail being updated, Tail lags behind the last node in the list (see
Fig. 4).

We cannot determine the last node in the list by just reading Tail, because
another enqueuing process q may cause Tail to lag. Since p cannot wait for q to
update Tail, p attempts to “help” q by doing the update (E13). Thus, Tail can
lag behind the end of the list by at most one node.

Also, another process may change Tail after p reads it at E5, but before p
dereferences (its local copy of) the pointer at E6. To ensure that the value read
at E6 is valid, p checks at E7 that Tail has not changed since p executed E5. If
the test at E8 shows that the node accessed at E6 had no successor at that time,
3 The CAS at E17 can be deleted without affecting the correctness of the algorithm.

However, without this CAS, Tail would not point to the last node of the list in all
quiescent states.



100 Simon Doherty et al.

then we know that the node was the last node in the list at that time. Similarly,
a successful CAS at E9 guarantees that the next field of that node is unchanged
in the interval between p’s executions of E6 and E9.

A process p executing a Dequeue operation checks whether the dummy node
has a successor (D2–D5). If not, then the queue was empty when p executed D3,
so the operation returns false (D6). As in the Enqueue operation, Head is read
twice to ensure that the node accessed at D3 was the dummy node at that time.

If the dummy node has a successor, then p reads the value in the successor
node (D8), expecting that this node is the first non-dummy node in the list.
Then p attempts to swing Head to point to the node whose value p read at D8
(D9). If the attempt succeeds, that node is the new dummy node; its value is
removed from the queue by the successful CAS. If the attempt fails, p retries
the operation from the beginning.

Once p has successfully executed the CAS at D9, it remains to allow the
old dummy node to be reused. This node cannot be freed to the system because
another process may be about to access it; instead, it is placed on a freelist, using
the free node operation (D17). The new node operation (E1) returns a node from
the freelist, if one is available; otherwise, it allocates and returns a new node.

Before passing the old dummy node to free node, a dequeuing process checks
for the special case shown in Fig. 4(b), where the Head and Tail have “crossed”,
because Tail points to the old dummy node (D10-D11). In this case, it attempts
to update Tail (D12) before putting the old dummy node on the freelist.

Our algorithm differs from Michael and Scott’s [1] in that we test whether
Tail points to the dummy node only after Head has been updated, so a de-
queuing process reads Tail only once. The Dequeue in [1] performs this test
before checking whether the next pointer in the dummy node is null, so it reads
Tail every time a dequeuing process loops. Under high load, when operations
retry frequently, this change will reduce the number of accesses to shared mem-
ory.

3 Modelling the Queue Specification and Implementation

This section briefly introduces the input/output automaton (IOA) formalism [5],
and shows how we use IOAs to model the queue specification and implementa-
tion.

An input/output automaton is a labelled transition system, along with a sig-
nature partitioning its actions into external and internal actions. Formally, an
IOA consists of: a set states(A) of states; a nonempty set start(A) ⊆ states(A)
of start states; a set acts(A) of actions; a signature, sig(A) = (external(A),
internal(A)), which partitions acts(A); and a transition relation, trans(A) ⊆
states(A) × acts(A) × states(A).4

We describe the states by a collection of state variables, and the transition
relation by specifying a precondition and effect for each action. A precondition
4 The definition in [5] includes additional structure to support fairness and composi-

tion, which we do not require for this work.



Formal Verification of a Practical Lock-Free Queue Algorithm 101

is a predicate on states, and an effect is a set of assignments showing only
those state variables that change, to be performed as a single atomic action.
For states s and s ′ and action a with precondition prea and effect effa , the
transition (s , a, s ′) is in trans(A), written s a−→ s ′, if and only if prea holds
in s (the pre-state) and s ′ (the post-state) is the result of applying effa to s .
We say that an action a is enabled in s if prea holds in s . These descriptions
are parameterised by process and sometimes by other values, so they actually
describe sets of transitions.

A (finite) execution fragment of A is a sequence of alternating states and
actions of A, π = s0, a1, s1, . . . sn , such that (sk−1, ak , sk ) ∈ trans(A) for k ∈
[1,n]. An execution is an execution fragment with s0 ∈ start(A).5 A trace is the
sequence of external actions in some execution. We say that two executions (not
necessarily of the same automaton) are equivalent if they have the same trace,
and we write traces(A) for the set of all traces of A. We also write trace(α)
to denote the sequence of external actions in a sequence α ∈ acts(A)∗, where
acts(A)∗ is the set of finite sequences over acts(A). For α ∈ acts(A)∗, we write
s α−→ s ′ to mean that there is an execution fragment beginning with s , ending
with s ′, and containing exactly the actions of α.

I/O automata can be use to model both specifications and implementations;
in both cases, the set of traces represents the possible external behaviours of
the automaton. For an “abstract” automaton A, modelling a specification, and
a “concrete” automaton C , modelling an implementation, we say that C imple-
ments A if traces(C ) ⊆ traces(A), that is, if all behaviours of the implementation
are allowed by the specification.

3.1 The Abstract Automaton

The standard correctness condition for shared data structures is linearisabil-
ity [2], which requires that every operation appears to take effect atomically
at some point between its invocation and its response; this point is called the
operation’s linearisation point. We specify the acceptable behaviours for a set
of concurrent processes operating on a shared queue, by defining an abstract
automaton AbsAut which generates their linearizable traces. The transition re-
lation for AbsAut is defined in Fig. 5.

AbsAut has external actions enq invp(v) and deq invp , representing opera-
tion invocations, and enq respp , representing the response from an Enqueue,
for all processes p and values v . For simplicity, we assume that queue values are
pointers, and model Dequeue as always returning a pointer, which is null when
the queue is empty. Thus, AbsAut has external actions deq respp(r), where p
is any process and r is any value (i.e., non-null pointer) or null. AbsAut also
has internal actions do enqp and do deqp , for all processes p, representing the
operations’ linearisation points.
5 The full theory of I/O automata also allows infinite executions, which are necessary

to reason about liveness, which we do not consider in this paper.



102 Simon Doherty et al.

enq invp(v):
pre: pcp = idle

eff: pcp := enq(v)

do enqp :
pre: pcp = enq(v)

eff: pcp := enq resp
Q := enq(Q , v)

enq resp:
pre: pcp = enq resp

eff: pcp := idle

deq invp :
pre: pcp = idle

eff: pcp := deq

do deqp :
pre: pcp = deq

eff: pcp := deq resp(deq(Q).v)
Q := deq(Q).q

deq respp(r):
pre: pcp = deq resp(r)

eff: pcp := idle

Fig. 5. Abstract transitions for process p; v may be any value, and r may be any
value or null

Each process p has a “program counter” pcp that controls the order in which
actions can occur by determining which actions are enabled, and sometimes
also encodes the value being enqueued or dequeued. For example, when p is
not in the midst of any operation, pcp = idle, so enq invp(v) and deq invp are
both enabled; if an enq invp(v) action occurs, pcp is set to enq(v), so then only
do enqp is enabled.

AbsAut has a global variable Q , which holds the abstract queue. The abstract
queue is modelled as a function seq from naturals to values, along with Head and
Tail counters that delimit the range corresponding to queue elements. The queue
consists of seq(Head+1) through seq(Tail), inclusive; it is empty if Head = Tail.
The effects of do enqp and do deqp actions are defined in terms of functions
enq and deq: enq(Q , v) returns the queue obtained by incrementing Q .Tail and
placing v at the new Tail index. When Q is not empty, deq(Q) returns a pair
(deq(Q).q, deq(Q).v) consisting of the queue obtained by incrementing Q .Head
and the element at the new Head index. When Q is empty, deq(Q) = (Q ,null).

Each process repeatedly performs either an Enqueue or Dequeue opera-
tion, and each such operation consists of an invocation, a single internal action
that atomically updates the abstract queue, and a response. Thus, the trace
of any execution of AbsAut is consistent with a set of processes operating on
a linearisable queue.

3.2 The Concrete Automaton

The concrete automaton ConcAut models the queue implementation described
in Sect. 2. ConcAut has the same external actions as AbsAut, and has one internal
action for each line of code shown in Fig. 3 that contains a read or a write, and
two internal actions for each line of code containing a conditional or a CAS. For
example, action e 1p models a process p executing line E1 of Enqueue, and
d 4 yesp and d 4 nop model p executing D4 when the condition evaluates to
true and false, respectively.

Each process p has a “program counter” pcp , ranging over a type that con-
tains one value for each line of code containing a read, write, conditional or



Formal Verification of a Practical Lock-Free Queue Algorithm 103

CAS, and special values idle, enq resp and deq resp that play the same roles as
in AbsAut.

We model a heap in which every object is a node with two fields value and
next, each of which contains a pointer/version-number pair, whose components
are denoted by pair .ptr and pair .ver. We write P for the set of pointers, H for
the set of heaps, and F for the set of field names (either value or next). A heap
h ∈ H is a pair (h.eval, h.unalloc): the function h.eval:P × F → P × N takes
a pointer to a node and a field, and returns the pointer value and version number
associated with that field of that node in h; and h.unalloc is the set of pointers
that are not allocated in h. Generalising this model to allow multiple object
types is straightforward, but this simple model suffices for our purposes.

ConcAut has variables h ∈ H, Head, Tail ∈ P × N, and freelist ⊆ P , which
model the heap, Head, Tail and the freelist. For each process p, there are variables
headp , tailp , nextp ∈ P × N, and nodep ∈ P , which model the local variables in
the code, and a local variable resultp ∈ P to hold the value that p returns from
Dequeue.

An assignment pt→fd := (pt ′, i), which updates field fd in the node pointed
to by pt , is modelled using a function update:H×P ×F × P × N → H defined
by:6

update(h, pt , fd , pt ′, i) = (h.eval ⊕ {(pt , fd) �→ (pt ′, i)}, h.unalloc)

Allocation of a new node is modelled with the function new:H → H × P
satisfying the following properties:7

new(h) = (h′,null) ⇒ h.unalloc = ∅ ∧ h′ = h
new(h) = (h′, p) ∧ p = null ⇒

p ∈ h.unalloc ∧ h′.eval = h.eval ∧ h′.unalloc = h.unalloc \ {p}
The preconditions and effects of some representative actions of the concrete

automaton are shown in Fig. 6. Transitions for the other actions are defined
similarly.

In subsequent sections, we write pt cs→fd for cs .h.eval(pt , fd), and cs .free?(pt)
for pt ∈ cs .unalloc ∪ cs .freelist, where cs is a state of ConcAut.

4 Verification

To verify our queue implementation, we use a simulation proof [6], which shows
how to construct, from any execution of the concrete automaton, an equivalent
execution of the abstract automaton, proving that ConcAut implements AbsAut.

Simulation proofs can often be done using a forward simulation (see Fig. 7),
in which the abstract execution is constructed by starting at the beginning of
6 f ⊕ {x �→ y} yields a function f ′ such that f ′(x) = y and f ′(z) = f (z), for z �= x .
7 Michael and Scott do not specify what happens if Enqueue is unable to allocate

a new node. In our model, if new returns a null pointer, ConcAut loops until space
becomes available. A practical implementation would trap this error.



104 Simon Doherty et al.

e 3p :
pre: pcp = e 3

eff: nodep→next.ptr := null
pcp := e 5

e 9 yesp :
pre: pcp = e 9 ∧ nextp = tailp .ptr→next

eff: tailp .ptr→next := (nodep , nextp .ver + 1)
pcp := e 17

d 2p :
pre: pcp = d 2

eff: headp := Head
pcp := d 3

e 9 nop :
pre: pcp = e 9 ∧ nextp �= tailp .ptr→next

eff: pcp := e 5

Fig. 6. Part of the transition relation of ConcAut

the concrete execution and working forwards. However, forward simulation is
not sufficient to prove that ConcAut implements AbsAut. The only point during
a Dequeue operation at which the queue is guaranteed to be empty is when the
operation executes D3, loading null into next. A forward simulation would need
to determine at this point whether the operation will return null. This is not
possible, however, since the operation will retry if Head is changed between the
operation’s execution of D2 and D4. Therefore, we need to use a backward sim-
ulation (see Fig. 8), showing how to construct an abstract execution by working
from the last step of a concrete execution back to the beginning.

Since only this one aspect requires backward simulation, we define an inter-
mediate automaton IntAut, which captures the behaviour of the implementation
that defies forward simulation, namely the handling of Dequeue on an empty
queue, and is otherwise identical to AbsAut. We then prove a backward sim-
ulation from IntAut to AbsAut (see Sect. 4.2), and a forward simulation from
ConcAut to IntAut (see Sect. 4.3).

4.1 The Intermediate Automaton

The intermediate automaton IntAut is identical to the abstract automaton, ex-
cept that in IntAut, a process executing a Dequeue operation may “observe”
whether or not the queue is empty at any time before it decides what value to
return. In addition to the queue and counter variables that are in AbsAut, each
state of IntAut has a variable empty okp , to record whether p has observed an
empty queue during the current Dequeue operation.

IntAut has the same external actions as AbsAut, and the same internal action
do enqp ; the only difference for these transitions is that deq invp sets empty okp

to false. IntAut has a new internal action observe emptyp that sets empty okp

to record whether or not the queue Q is empty, which p may perform whenever
its program counter value is deq. Also, in place of the do deqp action in AbsAut,
IntAut has two actions, deq emptyp and deq nonemptyp , allowing these cases
to be treated separately. The deq nonemptyp action is the same as the abstract
automaton’s do deqp action except that its precondition additionally requires
that the queue is nonempty. The deq emptyp action simply changes p’s program
counter from deq to deq resp(null). The precondition for this action requires that



Formal Verification of a Practical Lock-Free Queue Algorithm 105

(∀ cs0 • (∃ as0 • R(cs, as))) (1)

(∀ cs, cs ′, as, a •
R(cs, as) ∧ cs

a−→ cs ′ ⇒
(∃ as ′, b •

R(cs ′, as ′) ∧ as
b−→ as ′ ∧

trace(a) = trace(b))) (2)

Fig. 7. A relation R ⊆ states(C ) ×
states(A) is a forward simulation from C
to A if C and A have the same ex-
ternal actions and these conditions
hold, where cs0: start(C ), as0: start(A)
cs, cs ′: states(C ), as, as ′: states(A),
a: acts(C ), b: acts(C )

(∀ cs • (∃ as • R(cs, as))) (3)

(∀ cs0: start(C ), as • R(cs, as) ⇒
as ∈ start(A)) (4)

(∀ cs, cs ′, as ′, a •
R(cs ′, as ′) ∧ cs

a−→ cs ′ ⇒
(∃ as, b •

(cs, as) ∧ as
b−→ as ′ ∧

trace(a) = trace(b))) (5)

Fig. 8. A relation R ⊆ states(C ) ×
states(A) is a forward simulation from C
to A if C and A have the same external
actions and these conditions hold

empty okp is true, indicating that p has observed that the queue was empty at
some point during its execution; the Dequeue operation is linearised to one
such point.

Splitting Dequeue operations that return null into one or more observations
that the queue is empty, followed by a decision to return null based on the
knowledge that we have observed the queue to be empty at some point during
the operation, makes it possible to prove a forward simulation from the concrete
automaton to the intermediate one, as we show in Sect. 4.3.

It is easy to see that IntAut captures the behaviour of a set of processes
accessing a linearisable FIFO queue; we describe a formal proof in the following
section.

4.2 Backward Simulation Proof

In this section we define a relation BSR (see Fig. 9), and show that it is a back-
ward simulation from IntAut to AbsAut. Given states as of AbsAut and is of
IntAut, the third conjunct of BSR requires that the queues represented by the
two states are the same. The first two conjuncts require that each process is
roughly speaking “at the same stage” of the same operation in both states, or is
not executing any operation in either state. For example, if p is idle in is (i.e.,
is .pcp = idle) then p is also idle in as . The first conjunct (basic ok) covers the
simple cases; the second conjunct (dequeuer ok) covers the only interesting case,
in which a process can be at slightly different stages in the two automata because
Dequeue operations can take two or more steps. Specifically, if in is , p has in-
voked Dequeue but has not yet executed either deq emptyp or deq nonemptyp



106 Simon Doherty et al.

BSR(as, is)
def
= basic ok(as, is) ∧ dequeuer ok(as, is) ∧ is.Q = as.Q

basic ok(is, as)
def
=

∀ p • is.pcp �= deq ⇒ is.pcp = as.pcp

dequeuer ok(as, is)
def
=

∀ p • is.pcp = deq ⇒ (as.pcp = deq ∨ (as.pcp = deq resp(null) ∧ is.empty okp))

Fig. 9. The backward simulation relation BSR

(i.e., is .pcp = deq), then in as , either pcp is also deq, or pcp = deq resp(null), indi-
cating that p has already executed deq emptyp . In the latter case, is .empty okp

must also be true, showing that p has observed that the queue was empty at
some point during its Dequeue operation.

Conditions (3) and (4) of Fig. 8 are trivial, because related states of AbsAut
and IntAut are almost identical. Condition (5) requires that, for every transition
is a−→ is ′ of IntAut, if BSR(is ′, as ′) holds, then there is some abstract state as
and some sequence b of abstract actions, containing exactly the same external
actions as a, such that executing each action b, starting from as , takes the
abstract automaton into state as ′.

To aid in the automation of our proof, we define a function that calculates as
given is , is ′, as ′ and a. Similarly, we define a step-correspondence function [7],
that determines the action sequence to choose for the abstract automaton given
an action of the intermediate automaton (in our proof, this sequence always
consists of either zero or one action). Specifying these functions allows us to avoid
manually instantiating the existentially quantified abstract state and abstract
action required by the proof obligation: instead we simply use the two functions
to calculate them directly.

These functions are defined as follows. For every intermediate action a except
observe empty, deq empty and deq nonempty, we choose the same action a for
AbsAut; for deq nonempty, we choose do deq; and for deq empty, we choose the
empty action sequence. Recall that a Dequeue operation on an empty queue
is linearised to a point at which it executes observe empty, and not when it
executes deq empty. We reflect this choice of linearisation point by choosing
do deq for exactly one execution of observe empty within that operation.

Given the abstract action chosen for a particular intermediate transition, it is
generally easy to construct a pre-state as from the post-state as ′. In many cases,
we simply replace the program counter of the process p whose action is being
executed in the intermediate transition with the value required by the precondi-
tion of the abstract action. The only nontrivial case arises for the do enq action,
because to construct the program counter before the action, we must determine
what value the Enqueue operation is enqueuing. This is achieved by taking the
value from the queue position that is updated by the do enq action.

Having chosen an abstract action b, it is usually straightforward to prove
as b−→ as ′, since the construction of as ensures that the precondition for b holds



Formal Verification of a Practical Lock-Free Queue Algorithm 107

and applying the effect of b to as yields as ′. It is slightly trickier in one case,
where the intermediate transition is an observe empty action. Not every execu-
tion of observe empty corresponds to a linearisation point for a Dequeue oper-
ation that returns null (IntAut can execute observe empty multiple times within
a single Dequeue operation, while in AbsAut there is exactly one do deq action
per Dequeue operation). Therefore, for each Dequeue operation that returns
null, we must choose do deq for exactly one occurrence of observe empty, and
choose the empty action sequence for the others.

We can only linearise a Dequeue operation by process p to an execution
of the observe emptyp action if the Dequeue operation returns null. This is
true if pcp in as ′ is deq resp(null), in which case we can infer that empty okp in
is ′ is true, from the dequeuer ok conjunct of BSR. Because observe emptyp sets
empty okp to true if and only if the queue is empty in state is , and does not
modify the queue, it follows that the queue is empty in state is ′, and therefore by
BSR, the queue is empty in state as ′. Therefore, we can construct the state as

with an empty queue, which is needed to show that as
do deqp−→ as ′ is a transition

of the abstract automaton. Thus, we show that we can choose do deqp when a
is observe emptyp and as ′.pcp is deq resp(null). In all other cases, we choose the
empty sequence for the abstract automaton when a is observe emptyp . It is easy
to see that BSR(is , as ′) holds in these cases because the only possible difference
between states is and is ′ is that empty okp is true; the value of this variable
affects the truth of BSR(is , as ′) only if pcp in as ′ is deq resp(null).

4.3 Forward Simulation Proof

In this section we describe a relation FSR, which is a forward simulation from
ConcAut to IntAut. Because the concrete and intermediate automata are very
different, the simulation relation and the proof are both substantially more com-
plicated than the relation and proof described in Sect. 4.2. We do not have
space here to describe the whole simulation relation or the whole proof; instead
we present a detailed overview of the most interesting parts.

The forward simulation relation over intermediate state is and concrete state
cs is

FSR(cs , is)
def
= ∃ f : rel(is , cs , f )

where f is a function from naturals to pointers called the representation function;
we explain the purpose of f below. Fig. 10 defines rel. Fig. 11 defines obj ok, and
Fig. 12 defines some of the other predicates used in defining rel.

The most important part of rel is the predicate obj ok, which expresses the re-
lationship between the concrete data structure, represented by nodes and point-
ers in ConcAut, and the queue variable of IntAut. To express this relationship,
obj ok uses the representation function f as follows. Recall that a state is of
IntAut contains a queue variable Q , represented by a sequence and Head and
Tail variables indicating which indexes are relevant in the current queue state. If
obj ok(is , cs , f ) holds, then f indicates which node corresponds to each relevant



108 Simon Doherty et al.

rel(is, cs, f )
def
= enqueue ok(is, cs, f ) ∧ dequeue ok(is, cs, f ) ∧ obj ok(is, cs, f ) ∧

nds ok(is, cs, f ) ∧ distinctness ok(is, cs, f ) ∧ procs ok(is, cs, f ) ∧
injective ok(is, cs, f ) ∧ access safety ok(is, cs, f )

Fig. 10. The rel predicate

obj ok(is, cs, f )
def
=

f (is.Q .Head) = cs.Head.ptr ∧ (1)

f (is.Q .Tail)
cs→next.ptr = null ∧ (2)

(f (is.Q .Tail) = cs.Tail.ptr ∨ (3a)

(f (is.Q .Tail) = cs.Tail.ptr
cs→next.ptr ∧ ¬cs.free(cs.Tail.ptr) ∧

cs.Tail.ptr �= null)) ∧ (3b)
∀ i : N • is.Q .Head ≤ i ≤ is.Q .Tail ⇒

(i �= is.Q .Tail ⇒ (f (i)
cs→next).ptr = f (i + 1)) ∧ (4a)

is.Q .seq(i) = (f (i)
cs→val).ptr ∧ (4b)

¬cs.free(f (i)) ∧ (4c)
f (i) �= null (4d)

Fig. 11. The obj ok predicate

position in is .Q .seq; i.e., for each i ∈ [is .Q .Head + 1 · · · is .Q .Tail], f (i) is the
queue node in cs containing the value is .Q .seq[i ], and f (is .Q .Head) indicates
which queue node in cs is the dummy node pointed to by cs .Head.ptr. The latter
is stated by Conjunct (1) of obj ok. Conjunct (2) states that the last node in the
queue has a null next pointer. Conjunct (3) captures the fact that Tail can “lag”
behind the real tail of the queue: either Tail is accurate (3a), or Tail.ptr points
to the next-to-last node in the queue, and several other properties that help the
proof to go through hold (3b). Conjunct (4) expresses the properties of the nodes
in the concrete queue: the pointer value of the next field of each node points to
the node corresponding to the next index (4a); the value in each relevant node
is the value in the corresponding position in is .Q .seq (4b); none of the relevant
nodes is unallocated or in the freelist (4c); and none of the relevant nodes is
null (4d).

Predicates enqueue ok and dequeue ok (Fig. 12) play the same role as
basic ok and dequeuer ok in the backward simulation. The other predicates
capture properties needed to support the proof of the other properties.
nds ok(is , cs , f ) expresses properties of a node as it gets initialised (Fig. 12).
The distinctness ok predicate expresses that various values are distinct, for ex-
ample, that nodes being initialised by two different processes are different. The
procs ok predicate expresses several properties about the private variables of pro-
cesses. Some of its subpredicates are shown in Fig. 12. For example, procs ok 15
says that if a process p is executing Enqueue and pcp is e 9, then the pointer
component of nextp is null. The injective ok predicate ensures that each node
corresponds to only one index (in the relevant range), so that modifications to



Formal Verification of a Practical Lock-Free Queue Algorithm 109

enqueue ok(is, cs, f )
def
=

∀p • (cs.pcp = idle ⇒ is.pcp = idle) ∧
(pc e 1 9(cs,p) ∨ cs.pcp = e 13 ⇒ is.pcp = enqueuing(cs.valuep)) ∧
(cs.pcp = e 17 ∨ cs.pcp = enq resp ⇒ is.pcp = enq resp)

nds ok(is, cs, f )
def
= ∀ p • (pc e 2 13(cs, p) ⇒ ¬cs.free?(cs.nodep) ∧ cs.nodep �= null) ∧

(pc e 3 13(cs, p) ⇒ cs.nodep
cs→value.ptr = cs.valuep) ∧

(pc e 4 13(cs, p) ⇒ cs.nodep
cs→next.ptr = null)

procs ok 5(is, cs, f )
def
=

∀p • pc e 8 9(cs,p) ∧ cs.nextp .ptr = null ⇒
cs.nextp .ver < cs.tailp .ptr

cs→next.ver ∨ (cs.nextp = cs.tailp .ptr
cs→next ∧

cs.tailp = cs.Tail ∧ cs.tailp .ptr = f (is.Q.Tail))

procs ok 15(is, cs, f )
def
= ∀ p • cs.pcp = e 9 ⇒ cs.nextp .ptr = null

procs ok 16(is, cs, f )
def
= ∀ p • pc e 6 13(cs, p) ⇒ cs.nodep .ptr �= cs.tailp .ptr

injective ok(is, cs, f )
def
=

∀ i, j • is.Tail ≤ i ≤ is.Head ∧ is.Tail ≤ j ≤ is.Head ∧ f (i) = f (j) ⇒ i = j

Fig. 12. Some predicates used in FSR. A predicate of the form pc e m n(cs, p), where
m,n are integers, holds when cs.pcp = e i for some i ∈ [m,n]

a node corresponding to one index do not destroy properties required of nodes
corresponding to other indexes. The access safety ok predicate says that the im-
plementation never dereferences null or accesses a node that is in unalloc, which
is important for correct interaction with a memory allocator.

As in the backward simulation proof, we use a step-correspondence function
to determine the intermediate action sequence to choose given a particular tran-
sition of the concrete automaton. (Again, we always choose either a single action,
or the empty action sequence.) As before, this function maps each external ac-
tion to itself, and maps all internal actions to the empty action sequence, with
the following exceptions: e 9 yesp , which models a successful CAS at line E9, is
mapped to do enqp ; d 9 yesp is mapped to deq nonemptyp ; d 3p is mapped to
observe emptyp ; and d 5 yesp is mapped to deq emptyp .

In contrast to the backward simulation, we do not need to specify a function
to calculate the intermediate state, because this is uniquely determined by the
intermediate pre-state and the action (if any) chosen. However, we specify a wit-
ness function that shows how to choose the new f so that FSR holds between
the concrete and intermediate post-states. For a representation function f , con-
crete action a, concrete state cs and intermediate state is , the witness function
returns the function f ′ = f ⊕ {is .Q .Tail + 1 �→ cs .nodep}.

We now present a careful manual proof that obj ok is preserved across tran-
sitions that represent the execution of line E9 by some process, where the CAS
is successful. This is intended to illustrate the use of the representation func-



110 Simon Doherty et al.

tion, and the style of reasoning we use to verify algorithms that employ dynamic
memory.

Consider a concrete transition cs a−→ cs ′, where a = e 9 yesp for some p,
intermediate state is and representation function f , and let as ′ and f ′ be respec-
tively the intermediate state and function determined by the step-correspondence
and witness functions. When we say that part of the simulation relation holds
in the pre-state (resp. holds in the post-state), we mean that it is true for cs , is
and f (resp. cs ′, is ′, f ′).

The step-correspondence associates e 9 yesp with do enqp(cs .valuep), so we
need to show that if the precondition of e 9 yesp holds in the pre-state (see
Fig. 6) and rel(is , cs , f ) then obj ok(is ′, cs ′, f ′).

First, we make some observations about the transition:

cs .Tail.ptr = cs .tailp .ptr = f (is .Q .Tail) (i)
f ′(is ′.Q .Tail) = cs .nodep (ii)

Claim (i) is shown using procs ok 15 to yield that cs .nextp .ptr = null, and then
using procs ok 5 to yield that cs .Tail.ptr = cs .tailp .ptr = f (is .Q .Tail). Claim
(ii) follows immediately from the construction of f ′ and the effect of do enqp .

(1) of obj ok is preserved because is ′.Q .Head = is .Q .Head, but is .Q .Head <
is .Q .Tail + 1 (this is a simple invariant of IntAut). Therefore is ′.Q .Head =
is .Q .Tail + 1, so by construction of f ′ and because obj ok holds in the pre-state,
f ′(as ′.Q .Head) = f (is .Q .Head) = cs .Head.ptr = cs ′.Head.ptr.

For (2), by construction of f ′ and the effect of do enqp , f ′(is ′.Q .Tail) =
f ′(is .Q .Tail + 1) = cs .nodep . Moreover, by nds ok, cs .nodep

cs→next.ptr = null.

By procs ok 16, cs .tailp .ptr = cs .nodep , so cs .nodep
cs′→next.ptr = null, and thus

f ′(is ′.Q .Tail)cs
′→next.ptr = cs .nodep

cs′→next.ptr = null.
We show that (3b) holds in the post-state, arguing each sub-conjunct in turn.

f ′(is ′.Q .Tail) = cs.nodep by (ii) above

= cs.tailp .ptr
cs′→next.ptr by construction of cs ′

= cs.Tail.ptr
cs′→next.ptr by (i) above

= cs ′.Tail.ptr
cs′→next.ptr because cs ′.Tail = cs.Tail

cs ′.free?(cs ′.Tail.ptr) = cs.free?(cs ′.Tail.ptr) because cs ′.free? = cs.free?
= cs.free?(cs.Tail.ptr) because cs ′.Tail = cs.Tail
= cs.free?(f (is.Q .Tail)) by (i) above
= false conjunct 4c with

i = is.Q .Tail

Now by claim (i), cs .Tail.ptr = f (is .Q .Tail), so by Conjunct (4d) applied to
is .Q .Tail, cs .Tail.ptr = null. Therefore, cs ′.Tail.ptr = null by the effect of the
e 9 yes transition, so the third conjunct is preserved. For the last conjunct of
(3b) we have



Formal Verification of a Practical Lock-Free Queue Algorithm 111

f ′(is ′.Q .Tail) = cs.nodep by (ii) above
�= cs.tailp .ptr by procs ok 16
= cs.Tail.ptr by (i) above
= cs ′.Tail.ptr

We prove (4) by cases. For any i such that is ′.Q .Head ≤ i ≤ is ′.Q .Tail,
either i = is .Q .Tail + 1 or is .Q .Head ≤ i ≤ is .Q .Tail. We treat the case in
which i = is .Q .Tail + 1 first. is .Q .Tail + 1 = is ′.Q .Tail so there is nothing to
prove for (4a). For (4b) we have

is ′.Q .seq(i) = cs.valuep by effect of do enqp

and enqueue ok

= cs.nodep
cs→value.ptr by nds ok

= cs.nodep
cs′→value.ptr by effect of e 9 yeswp

= f ′(i)cs
′→value.ptr by (ii) above

4c and 4d follow from nds ok and (ii) above.
It remains to consider the case in which is .Q .Head ≤ i ≤ is .Q .Tail. For 4a,

we further distinguish the cases in which i = is .Q .Tail and is .Q .Head ≤ i <
is .Q .Tail. For the first case, we have

f ′(i)cs
′→next.ptr = f (i)

cs′→next.ptr because i �= is.Q .Tail + 1

= cs.tailp .ptr
cs′→next.ptr by (i) above

= cs.nodep by effect of e 9 yesp

= f ′(is ′.Q .Tail) by (ii) above
= f ′(i + 1) by effect of do enqp

If is .Q .Head ≤ i < is .Q .Tail, (4a) follows directly if we can show that
f (i) = cs .tailp .ptr. This is because i = is .Q .Tail and so (4a) holds for i in the
pre-state and

(f (i)
cs→next).ptr = f (i + 1) ⇒ (f (i)

cs′→next).ptr = f (i + 1) given
f (i) �= cs.tailp .ptr

⇒ (f ′(i)cs
′→next).ptr = f ′(i + 1) i < is.Q .Tail so

f ′(i) = f (i)
and
f ′(i + 1) = f (i + 1)

But if f (i) = cs .tailp .ptr then by injective ok and (i) above, we have i =
is .Q .Tail, contradicting the hypothesis that i < is .Q .Tail.

(4b), (4c) and (4d) all follow for i from the fact that these conjuncts held in
the pre-state and that because i = is .Q .Tail + 1, is ′.Q .seq(i) = is .Q .seq(i) and
f ′(i) = f (i). Moreover, no value fields, nor free? are modified by the transition.



112 Simon Doherty et al.

5 Experience with PVS

In this section we describe our experience using PVS to prove that the relations
presented in the previous sections are in fact simulations. We focus on the for-
ward simulation from ConcAut to IntAut because of its greater complexity. The
techniques used to verify the backward simulation are similar.

The PVS system [3] provides a specification language, which we used to
define the notions of backward and forward simulation. Using techniques adapted
from [8], we also encoded the three automata, AbsAut, IntAut and ConcAut, as
well as the simulation relations, BSR and FSR.

One of the goals of our verification effort was to construct the proof without
requiring the human prover to attend to the tedious and uninformative aspects.
We achieved this using two techniques: using the step-correspondence and wit-
ness functions, and dividing the forward simulation proof into many small, man-
ageable parts. As noted in Sect. 4.2, using predefined functions to instantiate
existentially quantified variables relieves the user of needing to manually instan-
tiate these variables during proofs. Also, as described below, dividing the proof
into many small parts allowed us to quickly isolate the parts of the proof that
required human insight.

We divided the forward simulation verification condition into over 1000 lem-
mas. One lemma covers condition 1 of Fig. 7; for each concrete action associated
by the step-correspondence with a nonempty intermediate action sequence, there
is a lemma stating that if the concrete precondition holds, then the intermediate
precondition holds in all related states; and finally, more than 900 preservation
lemmas, each asserting that a part of the simulation relation is preserved across
some transition. We used the mechanical proof facilities of PVS to prove a large
proportion of these lemmas automatically.

Constructing proofs for the preservation lemmas constituted by far the bulk
of the proof effort, and so we describe the techniques used to achieve this here.
The conjuncts of the simulation relation can be divided into a small number of
classes, depending on the presence and structure of the top level quantification:
for example, enqueue ok and all the subpredicates of procs ok are universally
quantified over a single process, so fall into the same class. For each of these
classes, we developed a simple strategy that set up a proof, to be continued
by a user or automated strategy. All these strategies begin by executing a strat-
egy called Begin-Simstep, which evaluates the step-correspondence and witness
functions, and expands the definition of rel and the definitions on which it de-
pends, resulting in a set of subformulae each making assertions about is , cs
and f . Begin-SimStep then labels each subformulae, allowing strategies applied
later to refer to each subformula by name. Because rel is too complex to be
analysed by PVS’s automated strategies, Begin-SimStep hides the subformulae
of rel. In PVS, each subgoal of a proof is associated with a set of formulae that
are hidden; that is, they are not visible to any strategies, unless they are first
revealed.

After Begin-SimStep has completed, one or more strategies are applied, each
of which applies proof steps that are always needed to prove a conjunct of a par-



Formal Verification of a Practical Lock-Free Queue Algorithm 113

ticular form. For example, the SimStep-obj-ok strategy, which is applied at the
beginning of preservation proofs involving obj ok (which has no top-level quan-
tifier), expands obj ok in the consequent, and generates a set of new subgoals,
where each conjunct must be shown to hold in the post-state. Once this strategy
is completed, either an automatic strategy is applied to attempt to complete the
proof without user intervention, if possible, or PVS waits for a command to be
invoked interactively.

Now we have a situation in which the user is presented with a set of subgoals.
Using primitive PVS proof commands and the labels defined by Begin-SimStep,
the user reveals antecedent formulae that assert facts about the pre-state that
are relevant to the subgoal at hand and instantiates any universally quantified
variables. Once the relevant formulae have been revealed and instantiated, it
remains to invoke the PVS automated strategies on the subgoal. These strate-
gies apply boolean decision procedures, rewrite rules, and sometimes heuristic
instantiations to attempt to complete the goal.

The limited form of interaction with the theorem prover not only reduces
user-effort, but also improves the robustness of the proof. As the project pro-
gressed, we often made small modifications to the simulation relation and even
the automata. Because we used proof commands that did not depend on fine
aspects of the formulae being proved, we were able to successfully re-run most
proofs after a modification, without changing the proofs themselves.

6 Concluding Remarks

We have presented a variation on the practical lock-free FIFO queue algorithm
of Michael and Scott, and described a semi-automated proof of its linearisability
we developed using the PVS system. The algorithm and specification are both
modelled using I/O automata, and the proof is based on a combination of for-
ward and backward simulation proofs. Our work illustrates some techniques for
modelling and reasoning about dynamically allocated memory, and also some
techniques for fully automating the easy parts of proofs, allowing the human
prover to focus on aspects of the proof that require human insight. Future work
includes refining our techniques to increase automation and applicability, as well
as applying them to other problems. We expect that our efforts to automate
the easy parts of the proof will enable us to tackle larger and more complicated
problems in the future.

References

[1] Michael, M., Scott, M.: Nonblocking algorithms and preemption safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and
Distributed Computing 51 (1998) 1–26 97, 100

[2] Herlihy, M. P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12 (1990) 463–492 97, 101



114 Simon Doherty et al.

[3] Crow, J., Owre, S., Rushby, J., Shankar, N., Srivas, M.: A tutorial introduction
to PVS. In: Workshop on Industrial-Strength Formal Specification Techniques,
Boca Raton, Florida (1995) 97, 112

[4] Moir, M.: Practical implementations of non-blocking synchronization primitives.
In: Proceedings of the 15th Annual ACM Symposium on the Principles of Dis-
tributed Computing, Santa Barbara, CA. (1997) 98

[5] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996) 100
[6] Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations – Part I:

Untimed systems. Information and Computation 121 (1995) 214–233 103
[7] Ramı́rez-Robredo, J.A.: Paired simulation of I/O automata. Master’s thesis,

Massachusetts Institute of Technology (2000) 106
[8] Devillers, M.: Translating IOA automata to PVS. Technical Report CSI-R9903,

Computing Science Institute, University of Nijmegen, the Netherlands (1999) 112


	Formal Verification of a~Practical Lock-Free Queue Algorithm

