
Formal Verification of a TDMA Protocol Start-Up Mechanism1

1 This work was sponsored by Volvo Research Foundation, NUTEK (Swedish Board for Technical Development), ASTEC (Advanced Software TECh-
nology) and TFR (Swedish Technical Research Council)

Henrik Lönn
Department of Computer Engineering
Chalmers University of Technology

412 96 Gothenburg, Sweden
hlonn@ce.chalmers.se

Paul Pettersson
Department of Computer Systems

Uppsala University
Box 325, 751 05 Uppsala, Sweden

paupet@docs.uu.se

Abstract

This paper presents a formal verification of the start-up
algorithm of the DACAPO protocol. The protocol uses
TDMA (Time Division Multiple Access) bus arbitration. It
was verified that an ensemble of four communicating sta-
tions becomes synchronized and operational within a
bounded time from an arbitrary initial state. The system
model included a clock drift corresponding to ±10-3. The
protocol was modeled using a network of timed automata,
and verification was performed using the symbolic model
checker UPPAAL.

1. Introduction

Distributed real-time systems are increasingly used in
embedded applications, many of them safety-critical sys-
tems, such as cars, aircraft and industrial robots. The com-
puter architecture of such systems must meet several strin-
gent requirements in terms of cost, reliability, testability,
etc., and has therefore recently been the object of much
research.

One crucial component of the distributed architecture is
the communication system. This is the backbone of the
system and has a large effect on its quality both in terms of
performance and reliability.

Assuming a broadcast bus as the communication media,
TDMA-based protocols have several advantages [5]. They
are particularly suitable for safety-critical architectures
because they facilitate clock synchronization without any
message overhead [2] and support timely fault detection. In
TDMA protocols, each node has a time slot where it has
exclusive access to the bus. Collisions are thus avoided
without the frame overhead incurred when using conten-
tion-based protocols or the token recovery algorithms
needed in token-based protocols.

A characteristic of TDMA protocols is that clocks must
be synchronized to guarantee collision-free broadcasts 
two nodes may otherwise use the same time slot for trans-
mission. On the other hand, messages must be broadcast to
do clock synchronization.

Since we consider a multi-master system in which all
nodes are equals, it is not possible to allow nodes to wait
for initialization messages from a single master. We also
believe that the use of a unique “jam” signal for synchroni-
zation [6] would make it difficult to detect and isolate a
node that erroneously attempts to perform resynchroniza-
tion.

The start-up algorithms of the TTP [4] and DACAPO
[9] TDMA protocols have informal descriptions in their
respective references. The latter paper also presents simu-
lations that give an idea of the worst case duration of the
start-up phase.

In several applications, the reliability of the real-time
system must be better than 10-8 failures per hour [11]. This
failure probability is so low that validating it by means of
simulation is exceedingly time-consuming and yet provides
only a probabilistic measure of correctness. The start-up
algorithm of communication should therefore be verified
using formal methods.

This paper presents a rigorous description of a TDMA
start-up algorithm using timed automata. The algorithm is
then verified for a system consisting of four computers,
using symbolic model checking of a network of timed
automata representing the computer ensemble and the bus.
It is verified that all stations were synchronized within a
certain deadline. The UPPAAL [7] tool was used for this
purpose.

The paper starts with a brief presentation of the
DACAPO protocol and an informal description of how
synchronization is performed. Section 3 presents the notion
of timed automata and a formal model of the protocol.
Section 4 gives details on the verification of the protocol,
and conclusions are presented in section 5.

2. Protocol Description

This section briefly describes the protocol and the real-
time architecture for which it is designed. In particular, the
start-up algorithm is described.

2.1 General

DACAPO, Dependable Architecture for Control of Ap-
plications with Periodic Operation [10], is a conceptual
computer architecture for safety-critical distributed real-
time systems. The concept covers the complete computer
architecture, but we will focus here on the communication
protocol.

The DACAPO protocol is intended for physically small
distributed systems. The bus length is limited to tens of
meters to avoid problems with large propagation delays,
and the number of stations is less than about 40 for reli-
ability reasons. Although the DACAPO concept prescribes
a duplex bus to meet reliability requirements, this paper
considers only operation on a single bus.

The DACAPO protocol is controlled by time only.
Time is divided into equally sized time slots, called TDMA
slots, that are long enough for one message. An operational
node broadcasts one message in its own TDMA slot. To
minimize hardware complexity and allow simple error
detection, time slot i belongs to node i, i. e. the first time
slot belongs to node 0, the next to node 1, etc. up to the
highest node id. When all nodes have broadcast a message,
a so called communication cycle is completed. The com-
munication cycle is repeated continuously during system
operation, see Figure 1. The node sending order is the same
in each communication cycle, but the data contents of a
node’s message usually change.

Each node thus needs a clock that indicates the duration
of each TDMA slot and controls the transmission and re-
ception of bits. We call this the Bit Clock, since it is syn-
chronous with the bit stream broadcast on the bus. The Bit
Clock will require relatively frequent adjustment owing to
clock drift between nodes.

Bits are NRZ encoded (non return to zero), i. e. each bit
is transmitted as either a high or low signal. NRZ encoding
reduces both bandwidth requirements and noise emission
as compared with encoding techniques with guaranteed
transitions (such as Manchester encoding). There is no

continuous clock adjustment during the reception of a mes-
sage. Since the messages exchanged in a control applica-
tion are short – a requirement to limit control delays and
allow a sufficiently high sampling frequency of the control
loops – adjustments during frame reception can be
avoided.

A Node ID Counter in each node is used to keep track
of the owner of each TDMA slot. The Node ID Counter is
incremented each time the bit clock completes one TDMA
slot interval.

A minimum requirement of the clock in a TDMA sys-
tem is shown in Figure 2. The non-shaded communication
cycle count is not used for the initialization of communica-
tion and is not considered further.

2.2 Bit Synchronization

With TDMA communication, the arrival time of a mes-
sage can be used as a clock reading. Since communication
is pre-scheduled, the local time of the sending node is im-
plicitly known [2]. DACAPO uses the Daisy-Chain syn-
chronization method [8]. With Daisy-Chain synchroniza-
tion, the local clock is adjusted on each message arrival.
Since nodes broadcast consecutively according to the
TDMA schedule, they take turns in synchronizing the sys-
tem in a Daisy-Chain manner. To avoid partitioning of the
system into unsynchronized cliques, only nodes that are
synchronized with at least half of the ensemble may trans-
mit messages. Correct synchronization is decided on the
basis of successful reception of a message.

To achieve fault tolerance, a reception window is used.
Only messages whose start of frame field, SOF, arrives
within a narrow interval are accepted (Figure 3). The size
of the reception window equals the length of the SOF field.

CC: 0 1 ... CCmax 0 1

Message
from node: 0 1 ... max 0 1

Communication Cycle, CC

t

t

Figure 1. The Cyclic operation of DACAPO

Minimum clock requirement for TDMA communication

Node Id Count
Counts TDMA
slots
(0.. nodemax)

Bit Clock Count
Counts bits
(0..frametime)

Communication
Cycle Count
Counts CC:s
(0.. CCmax)

Figure 2. Time representation in each station

Data frame
sent

Message
arrival

Message
arrival

Broadcast bus

Nodes

Expected arrival

Deviation=Clock Reading

Actual arrival
time

Reception window

t

Disturbances outside
reception window are
discarded

Figure 3. Exchange of clock readings.

2.3 TDMA Time Slot Synchronization

Synchronizing the TDMA time slots is equivalent to
synchronizing the Node ID Count part of the local clocks.
To do this, messages with the sender’s Node ID Count
must be broadcast, which is a problem if bus synchroniza-
tion has not yet been established. A carefully designed
procedure for initial synchronization of the TDMA time
slots is thus necessary.

We use a state vector to describe the components of the
internal state of the node that are relevant for the bus syn-
chronization:

{Bitclock count, Node ID count, Frame Error count, Mode}

The first two items correspond to the local opinion on
system time. The Error Count is increased each time an
erroneous frame or an empty time slot is detected. It is
decreased every time a message is received correctly.
Mode is one of three protocol modes local to each node:
Normal, Resynchronization or Recover.

Node operation in the different internal Modes is as
follows:

1. Normal Mode:
A. Broadcast frames according to the TDMA schedule.
B. Assign the Node Id Count of each correctly re-

ceived frame to the Node Id Count of the node.
C. Increment Node Id Count by one in case of empty

TDMA slot or erroneous frame reception
D. Enter Resynchronization mode if messages from

less than half of the nodes (n/2 out of n) have
been received correctly.

2. Resynchronization Mode:
A. Be Silent.
B. Assign the Node Id Count of each correctly re-

ceived frame to the Node Id Count of the node.
C. Increment Node Id Count by one in case of empty

TDMA slot or erroneous frame reception
D. Enter Normal Mode as soon as messages from half

of the nodes (≥n/2 out of n) have been received
correctly.

E. When bus has been completely silent for one Com-
munication Cycle: Enter Recovery Mode

3. Recovery Mode:
A. Wait for the node’s own TDMA slot and broadcast

one frame if the node is part of the recovery set. If
the broadcast would occur in the first slot in Recov-
ery Mode, it is postponed until the next TDMA slot
belonging to the node.

B. Assign the Node Id Count of each correctly re-
ceived frame to the Node Id Count of the node.

C. Increment Node Id Count by one in case of empty
TDMA slot or erroneous frame reception

D. Enter Normal Mode when messages from half of
the nodes (≥ n/2 out of n) have been received cor-
rectly.

E. When one frame has been sent: Enter Resynchroni-
zation Mode. If a collision was detected: reset the
local Node Id Count.

In all modes, Node ID Count is set to the ID of the
sending node on successful reception of a message. This is
reasonable, since it was possible to transmit the message
without collisions, and the sending node is thus likely to
have the correct time.

The condition in 3A that a node may not broadcast in
the first TDMA slot of recovery mode prevents a situation
in which a fast node breaks bus silence before all nodes
have seen a full Communication Cycle without bus activ-
ity. This would prevent the transition from Resynchroniza-
tion Mode to Recovery Mode in these nodes. Only the first
node would broadcast a message, and no node would re-
ceive enough messages to enter normal mode.

The broadcast in 3A may result in an infinite series of
collisions for certain system sizes if all nodes broadcast in
recover mode. To avoid this, only members of the recovery
set, a subset of all nodes, may send a message. The nodes
that will be members of the recovery set are selected be-
fore run-time.

In 3E, the Node Id Count is reset if a collision occurred
to avoid a collision between the same stations if the start-
up fails and a second transmission in recovery mode is
necessary. Together with the recovery set limitation, this
makes possible the completion of the start-up procedure
without repeated collisions.

3. Formal Description of the Protocol

Our formal description of the protocol is written in the
model of timed automata [1]. As the UPPAAL verification
tool will be used to verify the protocol, we use the ex-
tended model of timed automata with data variables
adopted in the tool.

The following gives a brief explanation of the model.
We refer the reader to [7] for a thorough explanation of the
model.

3.1 The Model

A timed automaton is a (non-deterministic) finite state
automaton composed of edges and vertexes and extended
with real-valued clocks and integer variables. Clocks pro-
ceed at the same rate and measure the time since they were
reset. Integer variables are finite domain variables with
rate zero.

In a timed automaton, the unconditional transition of a
finite state automaton is extended to a triple consisting of a
guard, a synchronization label and an assignment. The
guard is a conjunction of simple constraints on the form: v
~ n where v is a variable, n is a natural number (or zero),
and ~ is one of <,≤ , =,≥ , >. An edge is said to be enabled
if its guard is satisfied by the current clock values. An as-
signment is in the form: x := n or i := i + k where x is a
clock, i is an integer variable and k is an integer constant.
A transition’s synchronization label is either omitted or in
the form a! or a? where a is the name of a channel and a!
is the complement to a?.

A network of timed automata is a collection of timed
automata connected with synchronization channels. The
state of the network is described by a continuous part rep-
resenting the clock values and a discrete part representing
the location of the automata and the values of the integer
variables. The continuous part of the state changes as
model time progresses. The discrete part may change if a
transition is enabled and does not have a synchronization
label. Alternatively, a hand-shaking synchronization be-
tween a pair of automata may take place if their transitions
are enabled simultaneously and they have complementary
synchronization labels.

Various ways of enforcing discrete transitions in the
network are provided. Automata locations may be labeled
with invariants (in e. g. Figure 6, the name of the location
is marked with a simple clock constraint enclosed within
parentheses) that require discrete transitions to be taken
within a certain time bound. Locations may also be labeled
as committed (marked with the prefix c: in the location
name), requiring a discrete transition involving the
automaton to be taken immediately [3]. Finally, channels
may be declared as urgent, requiring processes to synchro-
nize as soon as possible, i. e. when the relevant transitions
are enabled [7].

3.2 Assumptions

Our model is based on the following assumptions re-
garding the bus communication:

• Clock precision among the station clocks is +/- 10-3

The DACAPO protocol is intended for systems with
low precision oscillators, and the model must there-
fore contain a certain clock drift.

• A message is always received correctly if it arrives
within the reception window and no collision oc-
curs.
We have assumed a clock drift that is sufficiently
low to prevent a sender and receiver from drifting
apart during message reception.

• There is no propagation delay on the bus
In a TDMA system that is scheduled before run-
time, the propagation delay for each message can be
calculated before runtime. Since the sender is
known, compensation can be made for the propaga-
tion delay before the local clock is adjusted.

• Broadcast messages are never corrupted unless two
or more messages collide
We do not assume any transient or permanent
communication faults. Disturbances on the bus, for
example, may have caused the initial loss of syn-
chronization, but we assume that there are no fur-
ther faults during the execution of our model.

3.3 The system model

Start of transmission:
FTOBUS! (Sending station → bus)

Transmission completed:
FFROMBUS! (Sending station → bus)

tReception started:
SOF! (Bus → receiving stations)

1 TDMA slot
(#frameperiod)

1 frame
(#framelength)

Figure 4. Successful transmission and reception.

During system operation, messages are sent and re-
ceived over a broadcast bus. The main components of the
system model are a bus automaton and several station
automata. The stations represent computer nodes in the
distributed system.

When a message is broadcast, the sender synchronizes
with the bus automaton (see Figure 6) over the channel
FTOBUS (see Figure 4). This puts the bus automaton in a
state in which it permits synchronization with any receiver
through the SOF channel to model the reception of the start
of frame field.

If collisions occur, the transmitters following the first
one synchronize with the bus over the JAMTOBUS chan-
nel (See Figure 5).

The JAM channel is used to model reception of cor-
rupted messages, either as the result of a collision or be-
cause the start of frame was missed.

Start of transmission:
FTOBUS! (Sending station → bus)

Transmission with collision completed:
JAMFROMBUS!
Sending stations → bus

tReception started:
SOF! (Bus → receiving stations)

Collision:
JAMTOBUS! (Second sending station → bus)

Reception of corrupted frame started:
JAM! (Bus → receiving stations)

Figure 5. Message transmission with collision

The presence of a message on the communications bus
is indicated by the variable busid. It takes the value #noid
if the bus is idle or if a collision has occurred, or #0, #1, ...
#nodemax depending on which node sent the message. A
receiver must see a valid busid at the end of a message
reception; otherwise, the message is considered corrupted.

The bus automaton is depicted in Figure 6. The Appen-
dix (Table 2) gives a key to variables and constants used.

bus

collision2a
send
(busclock<1)

idle busy

collision2b

collision4collision3

JAMTOBUS?

JAMFROMBUS?
busclock:=0

JAM!

JAMTOBUS?, busid:=99

FFROMBUS?
busid:=99
busclock:=0

SOF!

busclock>0
FTOBUS?
busclock:=0

JAM!
JAMTOBUS?
busid:=99

FFROMBUS?
busid:=99
busclock:=0

JAMFROMBUS?
busclock:=0

JAMFROMBUS?

JAM!

JAMFROMBUS?

JAMTOBUS?

JAM!

Figure 6 Timed Automaton describing the bus

3.4 The station automaton

The station automaton models the protocol behavior in
each computer node. Figure 9 contains the complete
automaton annotated with labels on the important transi-
tions described in Section 2.3. Figure 9 contains the com-
plete automaton.

The automaton is divided in three areas, belonging to
Normal, reSynchronization and Recover mode, respec-
tively. Location names in these modes are identical where
applicable, but end with N, S, and R to distinguish between
them. Clock variables, integer variables, and constants
used in the automaton are listed in Table 2. In the descrip-
tion below, identifiers are indicated according to state,
variable, and #constant depending on type.

To model clock drift, each guard containing a clock
variable is transformed to an interval corresponding to the
size of clock drift. This is done automatically by the tool.
Because the model checker investigates all possible sce-
narios, a transition may be taken both early (fast clock) and
late (slow clock) in the interval.

Before the protocol begins to execute, bitclock and id-
count are initialized to random values. Bitclock is initial-
ized by allowing the automaton to take its first transition at
any time in the interval [0..#frameper]. idcount is initial-
ized by an external initialization automaton.

A station waits for any bus activity in location Open. It
waits for #winsize time units in Normal mode and for the
duration of the entire TDMA slot in the two other modes.
When a synchronization with the bus is done, the bitclock
is reset to agree with the arrival time of the bus activity,
and the counter silence is reset.

If a SOF synchronization is done, the station enters Re-
ceiving for #framesize time units. If no collision has

occurred after this time, the busid equals the id of the
sending node and idcount is assigned this value. If a JAM
synchronization occurs or an initiated message reception
fails, idcount is temporarily left unchanged.

If it is not possible to receive a message, bitclock is re-
set and idcount is incremented at the end of the TDMA
slot. The error counter errcount is also incremented and, if
no bus activity has occurred, silence is incremented.

When the various counters have been incremented at the
end of a TDMA slot, the station may change mode. Mode
changes to Normal mode are made when errcount falls to
#errmax. In Resynchronization mode, a mode change to
Recover mode is done when silence reaches
#silencetime. Unless it was possible to reach normal
mode, the station goes back to reSynchronization mode
after the transmission of one frame.

At the end of the TDMA slot, a decision on message
transmission is made as well. In Normal mode, a station
enters send if idcount indicates that it owns the next
TDMA slot. In Recover mode, send is entered only if
silence is zero as well. This guarantees that a message is
not sent in the first TDMA slot in Recover mode, since
silence is not reset until after the first slot.

4. Verification

A system consisting of four stations connected to a
communication bus was modeled to verify the correctness
of the start-up protocol. Each station was modeled as an
instance of the station automaton (i.e. gci_0, gci_1, etc).
Station 3 was not permitted to broadcast in recover mode
(it was not part of the recovery set), since this would cause
repeated collisions. The bus automaton was used to model
the communication bus. In addition, a test automaton was
included to support verification.

The protocol was validated and verified using the
UPPAAL tool-box [7]. The model checker in UPPAAL
allows for verifications of invariant and bounded-liveness
properties of networks of timed automata. An invariant
property is in the form “p is always true” and may be used
to verify that certain unexpected situations never occur,
e.g. “automaton A will never reach location bad”. A
bounded-liveness property of the form “p is guaranteed to
hold within time t” may be used to verify that an expected
situation occurs within a specified time bound. This prop-
erty can be verified by including the state of a test
automaton in the invariant expression. For example, if
automaton test transits from state initial to expired at
time t, the bounded-liveness property would be “automaton
test in location expired implies that automaton A is in
location ready” .

4.1 Correctness Properties

The main correctness property of the start-up protocol
requires all stations to enter normal mode within a bounded
time (#deadline time units). To conveniently express this
property, an auxiliary integer variable n was used. n is
incremented when a station enters normal mode (i.e. on
edges 2D and 3D in Figure 9) and decremented when it
exits (i.e. on edge 1D). A test automaton that transits from
start to normal at time #deadline was also included, see
Figure 7.

Formula 1 requires all stations to be in normal mode
when test has left start, i. e. at time #deadline:

Inv ((not test.start) → (n==4)) (1)

We must also verify that the protocol operates correctly
in Normal mode. To do this, the test automaton has a state
error that is entered unless there is a bus transmission
once every TDMA slot, and the broadcast order is 0, 1, 2,
3, 0, 1, 2, 3, etc. Formula 2 expresses the correctness prop-
erty that test never reaches error.

Inv (not test.error) (2)

Both these formulas were verified to hold. Moreover,
the tool verified that the system never reached a deadlock,
a check that is necessary to make Formula 2 meaningful.
Otherwise, it could have been the deadlock, rather than
correct operation of the protocol, that prevented the test

automaton from reaching test.error.
The verification consumed a great amount of time and

memory. Table 1 summarizes the resource requirements on
a SUN UltraSparc II 250MHz. With 5 stations, 2 Gb of
memory was not sufficient, even when no clock drift was
included.

Memory usage Execution Time
3 stations, no clock drift 5 Mb 50s
3 stations, clock drift 10 Mb 190s
4 stations, no clock drift 83 Mb 640 min
4 stations, clock drift 541 Mb 8900 min

Table 1. Resource usage for verification

4.2 Duration of Start-Up

The lowest upper bound on #deadline was established
by iterating the verification with increasing #deadline
until (1) and (2) were satisfied. The worst case scenario
(the largest #deadline where (1) did not hold) occurred
when there was a collision between two nodes during the
first transmission attempt, see Figure 8. After the collision,
the duration of the TDMA slot was longer than nominal for
nodes 2 and 3. This is because, in the worst case, a bit
clock synchronization may occur at the end of the nominal
TDMA slot when a corrupted message is present. Time
was thus set back an entire TDMA slot, and the node ids of
these stations were not incremented at the normal time.

The total delay until all nodes were in Normal Mode
was found to correspond to about 21 TDMA slots.

5. Conclusions

We have described the start-up algorithm of a TDMA
protocol for distributed systems with a broadcast bus. The
start-up algorithm was verified for a system with four sta-
tions using symbolic model checking of a network of timed
automata. Maximum duration of the start-up phase corre-
sponded to 21 TDMA time slots and occurred if there was
a collision on the first transmission attempt.

test

start

(realtime<=#deadline)
normal
(realtime<=#frameper+#halfwin)

waiting
(realtime<=#frameper+#halfwin)

error
received
(realtime<=#halfwin)

realtime==#deadline
realtime:=0

realtime==#frameper+#halfwin

SOF?
expected:=busid
realtime:=0

realtime==#frameper+#halfwin

SOF?
realtime:=0

SOF?
realtime:=0

busid!=expected

realtime==#halfwin
busid==expected
expected:=busid+1

Figure 7. Test automaton used to ex-
press correctness properties.

0120 0000 1111 2222 3333 0000 2222 3333 0000 1111

Silence, Collision Broadcast Silence Broadcast
5 TDMA slots 1-2 0 5 TDMA slots 2 - 0 1

 Node Id count, of station 0, 1 2 and 3 (At beginning of slot)

 Activity

t
(A fictive global time
with time slot lengths
marked)

Figure 8. Worst case scenario.

The verification presented in this paper applies to four
stations. Since any real system will contain more stations,
this work will have to be extended. However, even the four
station system is large compared with other examples veri-
fied using symbolic model checking with real-time sup-
port. Consequently, an extension to five or more nodes will
be very challenging.

As regards the protocol functionality, the DACAPO
protocol uses ordinary messages in the start-up phase and
distributes data during this period. Although it may take
several TDMA slots before all nodes have reached Normal
Mode, this therefore does not mean that the communica-
tion service is unavailable for the duration of that period.

This can be compared to the Time Triggered Protocol
(TTP), where a Blackout monitoring mode is entered when
synchronization is lost [4]. In Blackout monitoring mode,
special frames containing current time and system status
are sent, but user data is not distributed. Also, if a node
loses synchronization while the rest of the ensemble con-
tinues normal operation, it must wait for a reintegration
frame to be broadcast. These are only sent periodically, as
defined by the applications programmer.

Including system time in each frame as in DACAPO
does cause some overhead, but single-node recovery can
be done very rapidly and re-integration frames can be
avoided altogether.

References

[1] Alur, R. and D. Dill: Automata for Modelling Real-Time
Systems. In: Proc.of International Colloquium on Automata,
Languages and Programming ‘90, lecture Notes in Com-
puter Science, vol 443, Springer-Verlag, 1990

[2] Babaglou, Ö. and R. Drummond: “(Almost) no cost clock
synchronization”, Proc. 17th IEEE International Sympo-
sium on Fault-Tolerant Computing, FTCS-17, Pittsburgh,
PA, USA, 1987.

[3] Bengtsson, J., W. O. D. Griffioen, K. J. Kristoffersen, K. G.
Larsen, F. Larsson, P. Pettersson and W. Yi.: “Verification
of an Audio Protocol with Bus Collision Using UPPAAL”
In: Proc. 8th Int. Conference on Computer-Aided Verifica-
tion. New Brunswick, New Jersey, USA, 1996. LNCS
1102, pages 244-256, R. Alur and T. A. Henzinger (Eds.).

[4] Kopetz, H. and G. Grünsteidl: “TTP–A Protocol for Fault-
Tolerant Real-Time Systems”, IEEE Computer, January
1994, pp. 14-23.

[5] Kopetz, H.: “Should Responsive Systems be Event-
Triggered or Time Triggered?”, IEICE Trans. on Informa-
tion and systems, Vol. E76-D No. 11, Nov 1993, pp. 1325-
32.

[6] Koopman, P. J. and B. P. Upender: “ Time Division Multi-
ple Access Without a Bus Master“, United Technologies
Research Center Technical Report RR-9500470, 1995.

[7] Larsen, K. G., P. Pettersson and , Y. Wang: “UPPAAL in a
nutshell”. To appear: International Journal on Software
Tools for Technology Transfer, Springer Verlag, September
1997.

[8] Lönn, H. and R. Snedsböl: “Synchronization in Safety-
Critical Distributed Control Systems”, Proc., IEEE Inter-
national Conference on Architectures and Algorithms for
Parallel Processing 1995, Brisbane, Australia, 1995.

[9] Lönn, H. and R. Snedsböl: “Efficient synchronization,
atomic broadcast and membership agreement in a TDMA
protocol”. Proc. ISCA International Conference.on Parallel
and Distributed Computing Systems, Dijon, France, 1996.

[10] Rostamzadeh, B., H. Lönn, R. Snedsböl and J. Torin:
“DACAPO: “A Distributed Computer Architecture for
Safety-Critical Control Applications” Proc. IEEE Interna-
tional Symposium on Intelligent Vehicles, Detroit, MI,
USA, 1995.

[11] Torin, J: Dependability in Complex Automotive Systems.
Requirement Directions and Drivers. In: Proc. Workshop on
Safety and Reliability Engineering of Future Prometheus
System, Nürtingen, Germany, 1992.

6. Appendix
gci_i

send N
(b itclock_i<=#fram eper)

receivin gN
(b itclock_i<=#fram etim e)

op enN
(bitclock_i<=#w insize)

c:updateR

closedN
(bitclock_i<=#fram eper-#h alfwin)

send ingR
(bitclock_i<=#fram etim e+#halfw in)

sendR
(bitclock_i<=0)

c:chooseR
openR
(bitclock_i<=#fram ep er)

openS
(bitclock_i<=#fram ep er)

c:chooseS

start
(bitclock_i<=#fram ep er)

receivingS
(b itclock_i<=#fram etim e)

receivingR
(bitclock_i<=#fram etim e)

sentN
(bitclock_i<=#fram etim e+#h alfw in)

sentR
(bitclock_i<=#fram ep er-#halfw in)

received R
(bitclock_i<=#fram eper-#h alfw in)

receivedS
(bitclock_i<=#fram eper-#halfw in)

c:recfailedN

jam S
(b itclock_i<=#fram etim e)

jam R
(bitclock_i<=#fram etim e)

c:u pdateS

bitclo ck_i==#frameper-#halfw in
idcount_i==#i

S OF?, silence_i:=0
bitclock_i:=0

errco unt_i==#nodemax

errco unt_i<#nodemax
idcount_i!=#i+1
errco unt_i:=errco unt_i+1

errco unt_i<=#errmax, n:=n+1

errco unt_i<=#errmax, n:=n+1

FT O BU S!
busid:=#i

bitclock_i==#frameper
idco unt_i==#i-1
silence_i==0
bitclock_i:=0

bitclock_i==#frameper
silence_i>=#silenttime

bitclock_i==#frameper-#halfw in
idco unt_i!=#i, bitclo ck_i:=0

bitclo ck_i<=#frameper
bitclo ck_i:=0
errco unt_i:=#no demax

bitclock_i==#frametime, busid!=#no id, idco unt_i:=busid+1, errco unt_i:=0

bitclo ck_i==#frametime
busid!=#no id, idco unt_i:=busid+1
errcount_i:=errcount_i-1

bitclo ck_i==#frametime
busid!=#no id, idcount_i:=busid+1
errco unt_i:=errco unt_i-1SO F?, bitclo ck_i:=0, silence_i:=0

S OF?, bitclo ck_i:=0
silence_i:=0

JAM T OB U S!

bitclo ck_i==#frameper, FTO B U S!
idcount_i:=#i, busid:=#i, bitclo ck_i:=0

bitclo ck_i==#frametime+#halfwin
FFRO M B U S!
idcount_i:=idco unt_i+1

bitclock_i==#frametime+#halfw in
FFR O M BU S !
idco unt_i:=#i+1

bitclo ck_i==#frameper-#halfw in, bitclo ck_i:=0

errco unt_i>#errmax

bitclock_i==#jamtime
JAM FRO M BU S!
idcount_i:=#0

bitclo ck_i==#frametime, busid==#noid

bitclo ck_i==#frametime
busid==#noid, silence_i:= -1

errcount_i>#errmax

bitclock_i==#frameper-#halfw in
bitclock_i:=0

bitclo ck_i==#frameper, JAM T OB U S!
bitclo ck_i:=0

bitclock_i==#jamtime
JAM FRO M BU S!
idco unt_i:=#0 bitclock_i==#w insize

errcount_i:=errcount_i+1

JA M ?, bitclock_i:=0
errco unt_i:=errco unt_i+1 errco unt_i<=#errmax

idco unt_i==#nodemax
idco unt_i:=0

errco unt_i<=#errmax
idcount_i<#no demax
idcount_i:=idcount_i+1

errcount_i>#errmax, n:=n-1, errco unt_i:=#errmax

bitclock_i==#frametime
busid==#no id
errcount_i:=errcount_i+1

JAM ?
bitclock_i:=0 bitclo ck_i==#frametime

silence_i:=-1

JAM ?
bitclo ck_i:=0

bitclo ck_i==#frametime

bitclock_i==#frameper
idco unt_i==#i-1
silence_i>0
bitclo ck_i:=0
silence_i:=0
idco unt_i:=idco unt_i+1

bitclock_i==#frameper
silence_i<#silenttime
bitclock_i:=0
idco unt_i:=idco unt_i+1
silence_i:=silence_i+1

idco unt_i!=#i+1
errco unt_i<#no demax
errco unt_i:=errco unt_i+1

idco unt_i==#i+1errcount_i==#no demax

bitclock_i==#frameper-#halfw in, idcount_i==#i, idcount_i:=#i-1

bitclock_i==#frameper-#halfw in, idco unt_i!=#i, bitclock_i:=0

idco unt_i==#i+1

bitclock_i==#frameper
idcount_i!=#i-1
bitclock_i:=0
silence_i:=0
idco unt_i:=idco unt_i+1

1D

1C

1B

1A

2D

2C

2B

2E

3A
3C

3D

3E

Note: Calculations involving idcount_i are made modulo #nodeant.

Figure 9. Timed Automaton describing the station.
Clocks
bitclock_i The local clock source for station #i
Busclock The bus clock source. Used to enforce immediate delivery of messages
Channels
SOF Start Of Frame indication. Used to synchronise bit clock and start message reception
JAM Bus activity indication. Used to synchronise bit clock.
FTOBUS Indicates that a frame is broadcast to the bus
FFROMBUS Indicates that a frame is removed from the bus
JAMTOBUS Indicates that a frame is broadcast to the bus while it is busy (Resulting in a corrupted frame)
JAMFROMBUS Indicates that a corrupted frame is removed from the bus
Integer variables
idcount_i node id of the owner of the current TDMA time slot
silence_i number of TDMA time slots without bus activity
errcount_i number of empty or erroneous messages. Increased on TDMA slots with empty or erroneous messages
busid node id in the message on the bus
n Number of stations in normal mode. Used for invariant expressions during verification.
Constants
#frameper Time between start of a TDMA slot, 224
#frametime Length of a message frame, 218
#jamtime Maximum duration of a tranmission of a corrupted message, 219
#nodeant Number of nodes in the system, 4
#nodemax The largest node id used (#nodeant-1) 3
#winsize The size of the reception window, 2
#halfwin The midpoint of the reception window (#winsize/2), 1
#noid Bus id used to indicate an idle bus, 99
#errmax Maximum number of errors tolerated in Normal mode ((#nodeant-1)/2), 1
#silenttime Number of silent TDMA slots before entering Recover Mode -1 (#nodeant-1), 3
#i Local node id, in the interval [0..#nodemax].

Table 2. Clock variables, integer variables and constants used in the automata.

