Formal Verification of Content Addressable Memories using Symbolic Trajectory
Evaluation®

Manish Pandeéy Richard Raimi Randal E. Bryarit ~ Magdy S. Abadit

1School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213
2Motorola Inc., 6501 William Cannon Drive West, Austin, TX 78735.

Abstract While work on verification of memory arrays has been reported in
r{g], [6], and [3], there has been littieublished on the particular needs
of CAMs. In [2, pp. 102], Bryant comments on the difficulty of CAM

Vetitication as follows: “.Other classes of memory designs can also

work well for large industrial designs. It was shown in [6], that th o : ! . .
e . . : - e verified by simulating a linear, or nearly-linear number of patterns.
formal verification technique of symbolic trajectory evaluation (STE -)
On the other hand, content-addressable memories do not seem to fit

could be usgd successfully on memory arrays. W? have_ exteqd_ed tu'?] 5 this class, since it is not easy to identify where a particular datum
work to verify what are perhaps the most combinatorially difficult . .

. ill be stored
class of memory arrays, CAMs. We use new Boolean encodlngs‘% _ _ o
Verify CAMS, and show that these techniques scale We”’ in that spaceln this paper, we describe how we |eVeraged the formal verification

requirements increase linearly, or sub-linearly, with the various CANgchnique of symbolic trajectory evaluation (STE), along with new
size parameters. Boolean encoding techniques, to verify CAMs. The new encodings

\yere needed to contain the exponential growth in the space require-

PowerPM microprocessor design, a Block Address Translation un| ents with increasing CAM sizes, which could occur with a naive use
(BAT), and a Branch Target Addréss Cache unit (BTAC). The BA‘IOf variables in STE. Our work shows that we were able to solve this

is a complex CAM, with variable length bit masks. The BTAC is aproblem and formally verify these types of circuits, with very modest

64-entry, 64-bits per entry, fully associative CAM and is part of thePace and time requirements.

speculative instruction fetch mechanism of the microprocessor. We In the remainder of this paper we discuss background material on
believe that ours is the first work on formally verifying CAMs, and weSTE and CAMs (Section 2), and we then describe experiments done
believe our techniques make it feasible to efficiently verify the varietpn small, generic CAMs in which we perfected the needed Boolean

In this paper we report on new techniques for verifying conte
addressable memories (CAMs), and demonstrate that these techni

In this paper, we describe the verification of two CAMs from arece

of CAMs found on modern processors. encodings (Section 3). Finally, we describe how we used our tech-
nigues, with success, on two complex CAMs (Sections 4 and 5)
1. Introduction from a recent PowerPC processor. This verification was carried out at

Content Add ble M ies (CAMS) ol . cant rol .the joint Motorola-IBM PowerPC design center, Somerset, located in
onten ressable Memories (S) play an important role "Austin, Texas. In our work, we utilized the Voss STE system [8].
many modern digital systems. CAMs are widely used wherever fast

parallel search operations are required. Some examples of CAMs Background

found on modern processors are translation-lookaside buffers (TLBs),

branch prediction buffers, branch target buffers and cachetags. CAMsl. Symbolic trajectory evaluation

have also been used in such applications as data compression, data-baggg [7] is a temary symbolic simulation based tech-

accelerators, and network routers. nique for verifying behaviors of a system over bounded, fi-
CAMs in microprocessors are usually custom designed at the tramite time intervals. Specifications areajectory assertionsof

sistor level, as these circuits are often in the critical path of a chip anble form [Antecedent =Consequent], where Antecedent and

it is necessary to optimize area and performance. These circuits oftéansequent aretrajectory formulae Intuitively, the antecedent de-

include self timed components and other complex forms of circuitrfines an initial setting and a stimulus pattern for the ciroailes, while

and they typically have complex internal timingor these reasonsit the consequent defines the expected response.

becomes necessary to verify such designs at the transistor &lfel 1 pasic element of a trajectory formula (TF) is a simple predicate,
the d_e5|gns in this paper have been verified at the transistor level USIG. qode; is 0), which states thaiode; of a circuit contains the value
a switch-level model. 0 at the present time. Using conjunction, case restriction and a next-
* This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, fime operator, trajectory formulas can be constructed from the simple
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARF, ; ; ; : ;
under grant number F33615-93-1-1330 and by a grant from Motorola. 6?ed|cate§. It andG are_ TFs, thentheir (_:onjunCtlm/\Gz is also
0 aTF. IfGisaTF, thenW G is a TF, whereV is the next-time temporal
Permission to make digital/hard copy of all or part of this work for personal or classroomperator, andV'G means thaf? holds in the next time step. Finally, if
use is granted without fee provided that copies are not made or distributed for profit p# ; f ; B
commercial advantage, the copyrightnotice tithe of thepublication and its date appear, Eisa TF, an_CE Isa Bool_ean ex_pr_essmn, th(emhen (E) G) isaTF,
and notice is given that copying is by permission of ACM, Inc. To copy otherwise, tWherewhen is the domain restriction operatdrehen (£) G) means
republish, to post on servers or to redistribute to lists, requires prior specific permissigijat (; must hold whenE is true. This simple logic is sufficient to
and /or a fee.
DAC 97, Anaheim. California verify tr_u_a class_ of systems, such as arrays, fo_r which functionality can
© 1997 ACM 0-89791-920-3/97/06 ..$3.50 be partitioned into a set of operatiogasch of which update the system

Tagin[t-1..0] Din[d-1..0]

t d

state in a deterministic manner. Given an asseftibr=- C7, the

circuit is simulated with ternary symbolic simulation patterns derivedDadr“Qg(n n —
from the antecedent. During simulation, at each time step the ﬁ%n %)
circuit state is checked against the expected response specified in T21%90-1-0 TAGS DATA

logn
The ternary symbolic values generated in the process are representedte 101 Aot olo]
. match(1]
by pairs of Ordered Binary Decision Diagrams (OBDDs). Twrite TH o EE
T[2]

HIT

n

The temporal logic of STE is quite restricted as compared to th@ssoc Read
temporal logics of model checkers like SMV [4]. However, theuseof ., lnwu [T 1] mechln [T [Jowa
suchalogic obviates the needto represent a system’s transition relation pno — = - 81— I p—
and calculate its reachable state set, two very expensive operations. 2 .
Because of this, STE excels in the verification of large, data intensive Match[n-1.0] Dataout[d-1.0]
systems, such as memory arrays, having tens of thousands of state
holding elements. Figure 1: Content Addressable Memory: Tag size = t, Number of

Recently a methodology for application of STE was developed [1§ntries = n, Data size =d

and we have adapted this for verification of CAMs. In this methodoly, o caM with a symbolic ternary functiorfy (i, tag), which returns
ogy, the desired system behavior is specified as a set of assertions Q8 when: = k, andX otherwise (X represents the “unknown” or
abstracted system spadgach abstract assertion, which is of the form‘don’t care” value of switch-level simulation). This technique, called

[A LE%'TO ('] describes how the system operations transform the abymbolic indexings critical to the efficiency of STE on memory-based

stract system space. Intuitively, the abstract assertion’s antecédentircuits[1]. It is responsible for reducing the number of variables in
specifies the current abstract state and inputs, and the conseguentan STE verification to a number logarithmic in the number of array
specifies the abstract state and outputs after a system operation.lotations.

addition to the abstract assertions, the user providémplementa-

tion mapping giving the correspondence of the abstract state to tHi2.3. A CAM design

nodes in the transistor-level circuit, and giving the timing of signal

Fransitions. Gi\{en this mappi_ng, the abstract specification is mappggch tag identifying a particular data entry stored in the array. CAMs
into a set of trajectory assertions, to be checked by the ‘.Q"TE dec's\%‘ry depending upon data and tag size, techniques to read and write
procequre. F_or details on this methodology, the reader is rQferredéf;ntents and mark contents as valid, tag masking fields, etc. In spite
Beatty's thesis [1]. of all this diversity, CAMs all have in common tressociative read

The abstract assertions shown in this paper use a pseudo-codedupalility!. The associative read operation consists of searching, in
tation. The actual assertions were written in the Figiaage, which parallel, all tags in the CAM to determine if there is a match to a
is the functional language front-end to the Voss verifier. particular tag of interest, and then sending the associated data entry to

an appropriate read port of the memory.

Generally, CAMs employ as an identifier a bit field calletag,

2.2. Anlllustration of the MethOdOIOgy The high-level design shown in Figure 1 is a very basic CAM. We
To illustrate the métodology described above, considerthe abstragtplemented this design as an experimental vehicle for finding better

assertion below. It describes a tag write operation for the CAM circugoolean encodings for CAM verification (see Section 3). This design

in section 2.3. hasn tag entries7’[0], 71], ..., T[n — 1]. Corresponding to each tag

(op = tagwrite) A (Tadr = adr) A (Tagin = newtag) A (T[]] = tag) entry,T7s], there is a data entdp[:]. The most distinctive operation of

LEADSTO this circuit is theassociative readperation. In this operatiohagin

is compared in parallel with all th&T[] tag entries, and if there is

a match on theth tag entry, then I'T rises, andD[:] appears at
The antecederffrom left to right) states that a tag write operation Dataout. If there is no match t@ agin, i.e., amiss HIT remains

is being done to addresslr with valuenewtag, and in the initial low (and, the surrounding circuitry would ignofutaout). We have

state of the verification, thé" tag entry contains the symbolic value implemented this design as a transistor-level netlist using a tool called

tag. The consequent specifies that the addressed tag entry is changed-netlist. Eache-bit tag consists of: tag cells. Each tag cell

to newtag and all other tag entries are unchanged. contains 9 transistors and its design is based on the one in [9, pp.590].

(when(t # adr)(T[i] = tag)) A (when(s = adr)(T[i] = newtag))

The implementation mapping relates the abstract state of eachit is an assumption that, among valid tag entries there woulat be
“phrase” in the abstract assertion to concrete signal timing and vahost ongag that would matci'ag:n. This property, thet most one
uations on actual circuit nodes. It captures implementation detaigg match propertys an important system invariant. However, it is
such as that two phase clocking is used, and thaf#ae:te signal usually not enforced in hardware. Rather, CAMs generally depend
is asserted, and the tag data and addresses provided, with approptigten surrounding circuitry, or the software manipulating the entire
setup and hold times, wheRh1 is high. For an example of such chip, to maintain this invariant. For example inthe PowerPC BAT array
details, see [6, pp. 651]. [5], the responsittity of maintaining the invariant is with the operating

Note that the variablesand in the abstract assertion above areSyStém. In Section 3, we show how we used this invariant to efficiently
used as array indices. The implementation mapping represents each@ffy @ CAM. Even when the circuit design is enhanced to handle
them in binary form as a vector of symbolic Boolean variables. Froffpultiple matcheswe can verify CAMs efficiently using techniques
the phrase(T[z’] = tag), in the antecedent of the abstract assertiori, In some instances CAMs also have associative write capality. The PowerPC
the implementation mapping will initializeach tag storage noden Branch Target Address Cache circuitis one such example and it is described in Section 4.

based on those outlined here. However, due to space limitations, Wehen(matchO A ~matchl A =match2 A (i = 0))((HIT = 1) A
will not discuss that in this paper. (Dataout = data)).

. . Thisencoding needsonfy+1)-¢t+d+ [logon] Booleanvariables.
3. CAM properties and CAM encodings We call this theplain encoding For identical data and tag sizes,

Below we show how awell chosen encoding can dramatically reduf® number of variables goes down by half, as compared tduthe

the number of variables, and therefore the number of OBDD node¥)coding However, as later results will show, with increasing
required for the verification. memory requirements can still grow rapidly with the plain encoding

scheme. So we mustimprove on it.
3.1. CAM Encodings We can reduce the number of variables further, by taking ad-

o _ _ vantage of theat most one tag matctsystem invariant. Let
We will discuss the CAM encoding problem in the context of ver-r, i, pe tin = (ting_1,ting_, ..., ting). In order that the tag

ifying the associative read operation of CAMs. We will refer to Zentry T[0] not matchtin, it should be one of the following

generic CAM modeled after that of Figure 1, in Section 2.3. ternary vectors: (~tini_1, X, ..., X), (X, =tini_s, X, ..., X), ...
The most obvious approach to verifying the associative read operaX; X ..., X, =itino). The position at which the tag #[0] is un-

tion is to introduce a Boolean variable for each bit of state it ~ equal can be encoded hy, a vector of[logzt] variables. So the

andD[i] tag and data entries. We illustrate this below with an exampleondition thafZ[0] is not equal tdsn can be written as

trajectory assertion. Assume the number of CAM entriggquals 3. (when(p = 0)(T[0][0] = —ting)) A

Lettin, éo, {1 andi; be vectors of Boolean variables of sizéhe width (when(p = 1)(T0)[1] = ~tin1)) A
of theT'[¢] entries. Letly, d1 andd; be vectors of Boolean variables of
sized, the width of theD[:] entries. The following assertion specifies
the associative read operation under these iiong’.
(op = assocread) A (Tagin = ti_;z) A
(T[0] = f0) A (T[1 = i) A(T[2 = f2) A

A
(when(p = (¢ = D)(T(O)[t — 1] = ~tin_1)

We abbreviate this a33.7'[0][p] = —ting, i.e. there exists Asuch
that at thep!” bit position there is a mismatch betweén and the tag

(D[0] = do) A (D[1] = dy) A (D[2] = da) entry 70).
LEADSTO We now verify the associative read operation in two parts. First, we

N verify the case where no CAM entries match the input tag, and then
we verify the case where thé" entry does match the input tag. For

A the case where no hit occurs the new assertion is:

A (op = assocread) A (Tagin = ti_;z) A

(when(nomatch)((HIT = 0)))
(when(matchonlyO)((HIT = 1) A (Dataout = d_E)))

-

(when(matchonlyl)((HIT = 1) A (Dataout = d1)))
(when(matchonly2)((HIT = 1) A (Dataout = d_é))) (Fp1.T[O][pa] = —tinp,) A
(Fp2.T[1[p2] = —ting,) A

The first line of the antecedent specifies that an associative :
(Fpa. T[2[p3] = —ting,)

read is being done and the input datatis. The second line

specifies that the three tag registers initially contajn é1, and LEADSTO

ta.]’he threg data re_gistt_ars are specified as initially containing (HIT = 0)

do, d1, andd,. To simplify the consequent, we use the fol- _ o
lowing Boolean functions,match0 = (tfn = fo), matchl = whereps, p2 andps are encoded byvgctors of variables, indicating the
(tfn = tﬁ), match? = (tfn = FZ), nomatch = =(matchQ v position at which the m_ismatch within occurs. For the case where
matchl V match2), matchonly0 = matchO A —matchl A ON€ entry matches the input tag, we erte: - ' .
—match2, matchonlyl = —matchO A matchl A ~match2, and (op = assocread) A (datain = tin) A (D[i] = data) A

matchonly?2 = ~matchO A ~matchl A match2. Thefirstline in (when(i = 0)(T[0] = tin)) A (when(s # 0)(3p1.T[0][p1] = —ting,)) A
the consequentchecks that there are no matching entries in the CAMyen (i = 1)(T[1] = tin)) A (when(i # 1)(Fp2.T[A][pa] = —ting,)) A
The second line checks fdd I'T and Dataout when only the first . - . .
i .) h =2)(T[2]=t h 2)(3ps.T[2)[p3] = -t
entry matches. Note that we do not check for conditions |ncon5|stent(w enli = 2(T[2] = tin)) A (when(i # 2)(3pa T[Alpd in73))
. . . LEADSTO
with the at most one tag matctystem invariant. For example, we do =
not check for what happens(ifin = to) and(¢in = t1) are both true. (HIT = 1) A (mateh[k] = (k = ©)) A (output = data)
Atotal of (¢t + d)n + ¢t Boolean variables are needed for this assertion.

: ; L) . This encoding requires onlfogzn + n - logzt + ¢ + d) Boolean
We callthis gncodlng, where every circuit state bithas a Corresloond'\r}griables, a substantial savings over the two earlier encodings. We
Boolean variable, th&ull encoding

refer to this encoding as tf@AM encodingAs will be seen in section
We can reduce the variable count, however, by using symbolg:3, verification of even moderate sized CAMs would be intractable
indexing. At this point we will use it just for the data entries. To effectyithout an encoding at least as efficient as the CAM encoding.
_th's’ the antecedenj should be chgnged to cor(téh[ﬂ ida,ta) It is instructive to compare the number of Boolean variables re-
instead of(D[0] = do) A (D[1] = di) A (D[2] = d2). datais @ gired for the three different encodings, with the number required for
vector of Boolean variables bits wide, and is a vector of Boolean yenresenting a transition relation. For a 16 entry CAM, with 16 bit tag
variables[logzn] bl_ts wide. The consequentis also changed._ Ll_ne 2nd data sizes, the number of Boolean variables required for the full,
of the consequentis changedto (lines 3 and 4 are changed S|m|IarI}géin and CAM encodings are 528, 292, and 100 respectively. For the
2Some parts of the assertion necessary for verification thoroughness, e.g. that thet{ﬁﬁsmon_ rel?tlon the reqUIred number of Boolean variables is over
and data bits are unchanged on a read, have been omitted. 1024, which is double the number of state elements.

_ =

5000 T T T T T T

CAM encoding -— 5000 T T T T T T
Plain encoding -&—

IN
S
=3
S
T

w
S
=3
S
T
IN
S
=3
S
T
0
E4
®
=1
5]
o
=3
=
@
!

1 Plain encoding -&—

N

=}

s}

=}

T
w
S
=3
S
T

N
=}
s}
=}
T

Memory BDD (KB)
o ~
(=] (=]
o o
L s e o e
L
Memory BDD (KB)
a ~
(=] (=]
o o
L s e o e
L

2t A i :
80 1
60 |- B 70k]
50 I I I I I I 60 | |
2 4 8 16 32 64 128 256 50 L L ! ! L I
Number of CAM entries (tag size=4, data size = 4) 2 4 128 256

8 16 32 64
Tag size in bits (CAM entries = 4, data size = 4)
Figure 2: CAM: number of tag entries vs. OBDD sizes

Figure 3: OBDD trends with varying tag size.

3.2. Experimental Results and Discussion _ N h .
between the input tafgigin and the*" tag entrytag,. After the com-

In Figures 2 and 3 we have plotted the results from verification qfare, the Boolean function associated withitch[s] is Fmaten] =
different size CAMs, using the CAM encoding and the plain encodings((tagin[k — 1] @ tag;[k — 1]} V ... V (tagin[0] ® tag:[0])) The
The full encoding is not included here, as it usually performs mucialue on each dataout lin®ataout[5], is a function of all the func-
worse than the other two encodings. We have plotted the memory takfshs on all the match lines, bi[;] (used in the associative read
by the OBDDs generated when verifying the associative read operatie@sertion), and. So, potentially there are interactions among all the
All other verified CAM operations take less space, and have not begaolean variables associated with the tag and data entries and the tag
included here. The OBDD variable ordering for the experiments wagput.
carefully chosen, so that, as much as possible, we would avoid unfair _
comparisons betweenthe two encodings. For each encoding, we chgs hen the CAM encoding is use_d, t_he antecedgnt fragment (Sec-
an initial variable ordering that, from ounderstanding of the circuit 10" 3-1) specifying the Oth tag entryis given(oyhen(: = 0)(Z10] =
function, would result in small OBDDs. Upon running STE with the"?)) /A (when(1 # 0)(3p1. T{0][p1] = ~tiny,). When the tag input
initial variable ordering, the OBDD packagynamically reordered 'S (¥ then the Oth tag entry matches only:it= i1io = 0. This
some of the variables. We used this reordering information to imprO\}? the information conleygd by the Boole_an function mntCh[O].'
our understanding of the variable interaction and further tuned th@erefore,fmatch[o] = 11+ d0. SO, the functions on the dataout lines

variable ordering to minimize the OBDD sizes before running STilepend only on the Boolean variablesdinand:. Thus, the use of -
again. CAM encoding minimizes the variable interaction and this results in

) .) substantial space savings, especially when the number of entries is
Figure 2 shows how the OBDD sizes for the plain and CAM €346 - We have not shown the running times of the assertions here,

coding vary for CAMs with varying associativities (tag and data sizeg,qst of which finish in a few seconds on a RS/68b@nodel 250
are constant). As the graph shows, there is a dramatic difference,jpkstation.

the space taken by the two encoding approaches. As the number of
tag entries increases, the plain encoding requires substantially m%re
memory than the CAM encoding. Many TLBs are highly associative,”

and for such circuit_s the plain encoding approachwillc_:learly not work. The Branch Target Address Cache (BTAC) array is part of the
These results motivated us to use CAM encodings in all our furthere o ative instruction fetch mechanism on some PowerPC processors.
CAM verifications (Sections 4 and 5). The particular BTAC we verified, from a recent PowerPC processor,
In Figure 3, we have shown the OBDD size trends for the twawas a 64 entry content addressable memory, where each entry consists
encodings when the tag size changes (others parameters remainifig 30-bit tag and a 32-bit data part (Figure 4). The branch address
constant). The space savings with the CAM encoding are similar s used to access the BTAC array, which contains the target address of
that in Figure 3. Although these results are not as dramatic as thgyeviously executed branch instructions that are predicted to be taken.
of Figure 2, they show that use of the CAM encoding still results in T
at least an order of magnitude space savings, as compared to the pbq\i;é
encoding.

PowerPC Branch Target Address Cache Array

he primary task of this unit is an associative read operation, i.e.,
n a branch instruction address presented atdBedadr input,
to determine if there is a matching tag entry, and if so give out the
We can explain the trends in these results in terms of circuit strucerresponding data entry, which is the branch target address. The
ture, and the interactions of the circuit Boolean functions. Consideerification of this operation is similar to that of the CAM associative
the 3-entry CAM described in Section 3.1, and let the tag sizk.be read operation of Section 3. There are also a number of other operations
In this design the®™ match line,match[s] contains the result of a this unit performs, including reset, and initialization of sind-robin
match between the tag input and tH& tag entry. When the plain register. Our discussion, however, will focus on teplace or CAM
encoding is used, th#" match line contains the result of the matchwrite operation.

WR_FADR BTAC_DATA_IN SCAN_OUT ~ SCAN_IN EA(0:19)

2 a2 EA(15:19)
TAGIO] DATA[0] EAQL4
TAG[Y DATA[Y]
TAG[2) DATA[2] PHIL UPPER BAT REGISTERS LOWER BAT REGISTERS
2 » PHIZ_| | BEPI [0000 BL Vo | BRPN [x0 ywimdird
RDCLK
HIT WRITE | ROWND | Pl [BEPT Jo00g _BL e [__BRPN | 00 Ywmddem
bETecTOR| REGISTER | ROBIN g
DRVER | REGISTER RID(0) \ BEPI [0000 BL vep | BRPN [o0 fimddPd
FETCH ADDRESS TARGET ADDRESS PR ‘ BEPI 0000 BL Ve | BRPN ‘ 0 imdden
SPRQP
—
TAGIE2] DATA[62]
TAG[63] DATA[63] EA(19) TLBRPN(19) oo |
SPROP,
JA(“ %31 ?z ¢ ¢ T L | ? <1 0/ EACAQ9) L 0/
FLUSH RDOFADR RDLFADR BTACDATA OUT HITO HITL WRITE_EN SHIFT_RR TRANSLATE
D—1 0/
Figure 4: Branch Target Address Cache unit. SPROF HIT RPN_STAT(19) STATUS(0:5) DOUT(0:31) RPN(0:14) RPN_LS(0:19)

4.1. BTAC Replace operation _ o
Figure 5: DBAT organization

In the replace operation, a TAG-DATA pair is updated with new
values. The selection of an entry for updating is not necessarily bas%oz' Results
on the address of the entry, rather, it can also be based on a roundThe most complex BTAC assertion takes 40MB of memory and 5
robin replacement policy. This operation is essentially a CAM writeninutes to run, on a RS/6000 model 350 workstation. Of this 40MB,
operation. 24 MB is taken up by the OBDDs, and the remaining space is taken up

The first step in this operation is to select the entry to be replace[aY other run-time data structures. The total run time for all assertions

An associative read is done on a tag value presented at read portVfS 20 minutes. All the BTAC assertions passed, and no bugs were
i.e., rdlfadr. This input tag is compared to all the stored tags ifincovered in this circuit. If a more naive Boolean encoding had been
parallel, and if there is a matChltl rises and the matching entl’y is used for the BTAC Verification, the OBDD grOWth trends of Flgures 2

updated with the new valuesiat_fadr (the new tag) anbtacdatain ~ @nd 3 predict thata memory of several GB, and a 32-bit address space,
(the new data). If there is no match, then a round-robin replaceméipt!d not have been sufficient for this verification!

policy is enforced. This replacement policy is implemented with
64-bit round-robin register (right side of Figure 4) which is a one-h

encoded ring counter. The bit ptien in the ring ounter whichis 1 The powerPC architecture includes a block address translation
points to the BTAC entry to be replaced in the case of a miss on thgAT) mechanism which maps ranges of effective addresses larger
address a1 fadr. Irrespective of the value dmitl, all entries which than a single page into contiguous areas of physical memory [5]. Such
are not replaced remain unchanged. areas are used for data not subject to normal virtual memory handling.
Verification of the replace operation, required verifying a number oftch as a memory-mapped display buffer. This translation mechanism
different cases, many of these similar to the memory write operatiol§.implemented as an array consisting of software controlled registers.
One of the more interesting cases is that outlined above, when thereThe DBAT array implements the BAT translation mechanism for
is no hit onrd1 fadr, and the TAG-DATA entry pointed to by the data memory references. It is a CAM containing 4 tag entries and 4
round-robin register is vitten to (and all other TAG-DATA entries are data entries. Each tag-data entry pair is organized as a pair of registers
unchanged). This case is discussed below. called the Upper DBAT Register and the Lower DBAT register (Figure
To verify this case, we encoded the TAG value to be unequal @) The two operations _thiS array performs are the _SPR (“special
the symbolic valugag. In order to do this, we could use a CAM PUrpose register”) operation, and the non-SPR operation. In the SPR
encoding where th&" bit position of a TAG[] entry equalsig[i], and operation, this array be_haves like a register ﬂle. where in a angle
all other bit positions of the TAG[] entry are X. The problem with thisC/0ck cycle reads and writes are done on the Special Purpose Registers
is that if we have to show that TAG[] remains unchanged, then it is népF RS) constituting thepper and lower DBAT registers.
sufficient to show that it still has its earlier value which is of the form In the non-SPR mode of operation, the DBAT array behaves like a
<X X X,...tag[t],...X>. The bit positions which are X can change,CAM and it translates the 9 to 15 most significant bits of the logical
and we would not be able to detect it, since X denotes an abseraxddress (bit 0 is the MSB) into the physicaladdress. The remaining bits
of information. Therefore, in the assertion below, we have a vect@ass unchanged. In Figure 5, the incoming logical address (top 15 bits,
of symbolic values calledal, which we use to encode a value of thei.e. EA(0:14)) is compared to the block effective page index (BEPI)
form <val[0],val[1],...,val[i-1]fag[:] val[i+1],...,val[n-1p. Thisvalue entry. The block length field (BL) contains a 11-bit mask, used to
is unequal tdag; but, we can also detect whether the value of TAG[lJdetermine which bits are to be compared. If the mask is all 0’s, then
remains unchanged in an operation, since none of the bitigus all 15 bits are compared, and the corresponding 15-bit data entry, the
contain X. In this manner, we verified that only the tag entry pointeBlock Real Page Number (BRPN), is sent out as the upper 15 bits of
to by the round-robin register was updated, and the rest remainte physicaladdress. If the mask entry is all 1's, then only the top most
unchanged. 4 bits are compared, and on a match only the top most 4 bits of the

0%. PowerPC Block Address Translation array

BRPN are put out, as bits 0 to 3 of the physical address. In this casenning a huge number of (non-symbolic) simulation vectors, often
bits 4 to 14 of the physical address are copied from the logical addrefs. days, with no certainty that such corner cases will be brought out.
The mask has a unary-style encoding. The 12 possible legal values for]

the mask for each tag-data entry are 00000000000, 000000000016. Conclusion

011111112121 and 11111111111, The lower 11 bits of the BEPI andWe have reported on new techniques to verify CAMs. It is based

BRPN entries should be 0 in pdens where the mask value is 1. on symbolic trajectory evaluation and new Boolean encoding tech-

Every register pair has a valid bit, Vsp. This bit, when 0, indicates th%ques. We have shown that our techniques avoid the OBDD space

the BEPI-BRPN-BL entry is invalid, and there can be no match on th"é“xplosion problem for CAMs, and the OBDD space scales linearly or

ezf/?r/' n?en?r/nstim 'In \éazla?;;%iﬂfg :)nn;hgg :_I_N s;fcsﬂgglﬁlmzt?#b-linearly with increasing in various CAM parameters. Using these
environme anual [5]is ry echniques we have verified complex CAMs from a recent PowerPC

the incoming logical address. More details on this complex unit ca. . - e
. . o) icropr r. This work ns the way to the efficient verification
be found in [5]. While we have verified all the DBAT operations, here Croprocesso S work ope y

. e - . 0f numerous on-chip CAMs such as TLBs, cache tags and branch
we describe only the verification of some aspects of the mterestlng
“ " . target buffers.
non-SPR” mode of operation.

5.1. DBAT non-SPR operation References
In section 3.1 we described a way of encoding that a regi
ter 7[0] was not equal to a valuein. We abbreviated this by
Ap.T[0][p] = —tin,. This encoding does not work directly for ex-
pressing a mismatch on an upper DBAT register because comparison
can be disabled on some selected register bits by the mask field. F
thermore, the bits masked out can be different for all four of the upper * gyitch-Level Simulation”IEEE Transactions on Computer-
DBAT registers. In order to express that a register contains adatavalue - ajged Design of Integrated Circuits and Systea.10, no.1,
that doesiotmatch the incoming data, we needed to take into account Jan. 1991; pp. 94-102.
the (12) legal values the mask bits can hold.

Using 4 symbolic Booleanvariable®, = mamamimo, we created [3] N. Ganguly, M. Abadir, M. Pandey “PowerPC Array Verification
a symbolic vector}, to encode the 12 legal mask values. Given a ~ Methodology using Formal Techniques,” froceedings of the
vector of symbolic Boolean variable#[0 — 14], all legal BEPI entries International Test Conferenc@996.
may be expressed symbolically @@ — 3] || @[4 — 14]&— M, where
|| is the bitvector concatenation operator. The position of 1's in &
mask indicates the BEPI bit positions which are not compared to
an incoming tagin. Therefore, if the mask is 00000000111, the
comparison is done over bits 0 through 11, and the mismatch can bg] “PowerPC™ Microprocessor Family: The Programming Envi-
over any of these 12 bit positions. This mismatch is expressed as ronments,” Motorola Inc., 1994.
dp.(0 < p < 11) AT[O][p] = —¢tin, Combining such information for
allthe 12 legal mask values covers all possible cases of atag mismatcl] M. Pandey, R. Raimi, D. Beatty, R. Bryant, “Formal verification
Since every register pair can have a different mask, we need a separate of PowerPC(TM) arrays using symbolic trajectory evaluation,”
set of Boolean variables}, for encoding the mask value for each pair. Proc. 33rd ACM/IEEE DAC1996.
Also, for each register pair we need a distinct Boolean variahlz
indicate whether this entry is valid. Using this encoding, verification [7]
of the associative read can be done in a manner similar to that described

Sjl] D. L. Beatty,A Methodology for Formal Hardware Verification
with Application to Microprocessor®h.D. Thesis, published as
Technical report CMU-CS-93-190, School of Computer Sci-
ence, Carnegie Mellon University, August 1993.

1 R. E. Bryant, “Formal Verification of Memory Circuits by

[4] K. L. McMillan. “Symbolic model checking - an approach to
the state explosion problem,” PhD thesis, SCS, Carnegie Mellon
University, 1992.

C. J. H. Seger, R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectoriesfirmal Methods in
System Desigf:147-189 (1995).

earlier.

52 Results [8] C. J. H. Seger, “Voss—a formal hardware verification system:
e user’s guide,” Technical Report 93-45, Department of Computer
We wrote two assertions for verifying the DBAT circuit, one for Science, University of British Columbid993.

SPR operation, and the other for non-SPR operation. On a RS/6000

model 350 workstation, peak memory requirements for running all®] N. Weste, K. EshraghiarRrinciples of CMOS VLSI design, A
the assertions was 16.1 MB, and the total time was 15 minutes. We Systems Perspectiv@econd Edition, Addison Wesley, 1994.

also wrote an assertion for the non-SPR operation using the plain

encoding, to compare against these results. This encoding did notPowerPC and RS/6000 are trademarks of the International Business Ma-
work well. Even with many control signals setto non-symbolic valueshines Corporation used under license therefrom.

the memory required was over 100 MB!

We discovered two bugs in this circuit, both in the SPR mode
of operation. The first bug was that the signal, tpnshould have
been all O’s, and was not. The second bug involved an incorrect
implementation of the signal, rpstatus19. It is significant that these
bugs were discovered by running just one assertion specifying the SPR
operation. This is in contrast to the commonly accepted practice of

