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T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo verify is to prove the truth of 
something by presenting evidence 
for it.” To benefit from this 

dictionary-like, generic definition, we 
must tailor it to the particular domain we 
want to consider: the design of hardware. 

Every design, no matter how strategic or 
complex, requires multifaceted verifica- 
tion before marketing. Starting from final 
manufacturing and moving back through 
previous phases of the process, we might 
find many objects for verification. LOW- 
level design rules, timing, high-level design 
rules, firmware, functional correctness, 
and base software might attract our 
interest. The domain of verification spans 
all phases of design, covering hardware, 
firmware, and software. We restrict our 
discussion in this article to one particular 
item-the verification of functional cor- 
rectness through formal techniques. 

Let us begin by giving two definitions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
functional correctness, which we will use 
throughout. First, at every design step, the 
designer specifies what the system under 
development should do and how it should 
do it. What the system should do is called 
its specification, while any one of the pos- 
sible devices that realizes the specification 
is called an implementation. The design of 
a system may reduce to an iteration of 

rect i f  we can somehob prove that i ts 

implementation realizes the specification 
(see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). 

Other concepts of correctness exist. 
Sometimes it is useful to consider an exist- 
ing design and to verifv some of its moper- 

To formally verify 

hardware correctness, 
I 

ties. We can group such properties into we need suitable 

representation 
two main classes: 

safety properties and 
liveries!; properties. 

Safety properties express conditions of 
the form “bad things will never occur.” 
Within the framework of branching time 
temporal logic (with multiple evolutions in 
the future, each consisting of a “path” 

systems and 

automated proofs. 

techniques 
from software 

connecting some “states” and expressing 
before/after relations between the events), verification, and 

automated synthesis 

benefit the process. 

an example of a safety property looks as 
follows: 

“for every path in the future, at every 
node on the path, i f  the Request sig- 
nal is low, it must remain low until 
Acknowledge goes low” 

Liveness properties express conditions 
of the form “good things will occur in the 

specification/implementation steps, per- future.” A branching time temporal logic 

formed either top-down or bottom-up, 
where the implementation at level i “for every path in the future, if there 
becomes the specification for level i + 1. has been i i  Request signal, then even- 
Any piece of hardware is functionally cor- tually there will be an Acknowledge 

looks as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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signal in response to the request on at 
least one node on the path” 

Safety and liveness properties play the 
role ofpartial specifications; that is, they 
do not describe device behavior globally, 
rather they cover limited aspects. We call 
a design correct with respect to the proper- 
ties if we can demonstrate that the proper- 
ties are true. This is our second definition. 
Since specifications are partial, we must 
take particular care in their selection, try- 
ing to cover all or as many good and bad 
things as possible. 

Obviously, correctness is not an autono- 
mous concept, but rather a relation 
between two entities: a specification and 
an implementation, or a property and a 
design. Verification to first principles is 
thus impossible-a verified design is only 
as good as its specification. Specification 
languages fail in being so involved and 
detailed that no practitioner would ever 
use them. Moreover, the specifications are 
as likely to have errors as the implementa- 
tion, and it is unlikely that anyone would 
ever first write a formal specification and 
then implement it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A possible classification of the relations 
between a specification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and an imple- 
mentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp or a property a and a design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/3 that must be demonstrated in a proof 
follows: 

equality: a = p, 
equivalence: a c* p, 
logical implication: a + p,  
homomorphism: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM (+(a)) = M(b) 

The last item, used in model-based 
approaches in first-order predicate calcu- 
lus, consists of defining a function (the 
homomorphic function +)and a mapping 
M that makes possible the comparison 
between a model of the specification and 
a model of the implementation. Specifica- 
tions and implementations often fall at 
different levels of abstraction, thus we 
must transform them through a + func- 
tion: structural abstraction consists of hid- 
ing internal lines, data abstraction 
transforms a data type into another data 
type, and temporal abstraction takes into 
account timing models and time’s 
granularity. 

In this article we analyze formal verifi- 
cation techniques focusing on two key 
points: suitable representation systems and 
mechanizable proofs. But before we look 
at current research efforts, we will briefly 
discuss related topics to make them under- 
standable to novice readers. 

First we report on different approaches 
to hardware verification. We compare for- 
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Figure 1. Correctness. 

mal verification and automated synthesis 
to show how they cooperate in producing 
zero-defect designs. Next we present the 
necessities for formal verification tech- 
niques: formal representation systems and 
the related reasoning facilities. For each 
technique we consider some of the main 
efforts related to it and evaluate them. A 

reading list covers the specific topics for 
those interested in exploring further. The 
reading list includes all works on which we 
based our discussions. Finally, we evalu- 
ate the different approaches and show the 
promise of research in this field. 

Approaches to 
hardware verification 

We can verify the correctness of hard- 
ware in many different ways, such as 
through breadboarding, simulation, and 
formal proof. 

Rising design and fabrication costs, 
market demands, circuits moving toward 
very-large-scale integration, and growing 
system complexity made the use of a pro- 
totype for extensive testing almost impos- 
sible. Breadboarding has also dwindled 
because parasitics, thermal and electrical 
characteristics, and component-matching 
properties differ for discrete components 
and VLSI. Nowadays, breadboarding for 
VLSI is restricted to very special applica- 
tions, such as systems used in space flights. 
Breadboarding’s limits forced the exten- 
sive use of simulation in establishing hard- 
ware correctness. 

Simulation differs from breadboarding 

mainly in the presence of a model of the 
system under consideration. Although 
there are various notations to describe the 
models, the ultimate goal of using them is 
to allow the operation of a simulation 
engine. 

Simulation-based design evaluation 
steps through the following phases: 

(1) Model description in a suitable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 )  Test input stimuli generation 
(3) Simulation 
(4) Result extraction from simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  Extracted and expected data com- 

(6) Circuit/system redesign 

The last three phases have been success- 
fully applied in commercially available 
systems. A major drawback of Step 3 as a 
means of establishing correctness or com- 
puting performances lies in the generation 
of input stimuli. If we must prove correct- 
ness with certainty and/or evaluate perfor- 
mance with accuracy, we should consider 
all possible input combinations and their 
sequences. This leads to an explosion of 
cases, which soon makes the approach 
unfeasible. 

Thus Step 2 replaces exhaustive simula- 
tion. The designer prepares a set of test 
cases that he or she considers sufficient to 
establish correctness. I f  extracted and 
expected data differ, something has gone 
wrong; otherwise, nothing can be stated 
unequivocally. As E.W. Dijkstra has 
remarked, “Non-exhaustive testing can be 
used to show the presence of bugs, but 
never to show their absence.” The degree 
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tion of correctness because specifications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. i . and implementations can be run concur- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 - .  

Specification: 
two-bit: box; 

input start; 
output register c(0: 1); 
I c=OAstart I c = l ;  
10 < c < 4 1 c  = c + l ;  

end box; 

Implementation: 
two-bit: box; 

input start; 
output CO, c l ;  
CO = JKFF(tt,cs,tt); 
CI  = JKFF (tt,clock,ts); 
ts = OR2(tt,start); 
tt = OR2(cO,cl); 
cs = OR2(cl,ct); 
ct = AND2(clock,nt); 
nt = NOTl(tt); 
end box; 

rently and the results manipulated and 
compared to establish a proof. As an 
example, let us consider a two-bit 
counter’ with a behavioral specification 
under the form of a state transition 
description and a structural implementa- 
tion under the form of a network diagram 
description (see Figure 2). Note that the 
descriptions resort to different timing 
models and that there is no explicit conver- 
sion function from natural numbers to bit- 
vectors. The correspondence between 
states and output values of the two 
machines is given by a simulation relation 
that must hold at each clock tick: 

Specification Implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. A two-bit counter with a behavioral specification under the form of a 

state transition description (a) and a structural implementation under the form of a 

network diagram description (b). 

start = start 
c(0) = CO 

c(1) = c l  

Starting specification and implementation 
with c = C and start = START, we find and 
manipulate symbolic values to establish 
equivalence as shown in Figure 3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 rivial 
equivalence cases are easily solved. We 

. d I *. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI - 

Case 
C=O A START= 1 
C=O A START=O 
c< > o  

Specification result 
C = l  
c=o 
C = C + I  

Case Implementation result 
CO = 0 A C1= 0 A START = 1 CO= 1 c 1  = o  
CO=OACI=OASTART=O CO=OCI = o  
CO=] V C l = l  CO=CI xor CO 

c 1 =  w c l  A CO 

Figure 3. Given beginning specification and implementation values, we can find 

and manipulate symbolic values to establish equivalance. 

of confidence the designer has in the simu- 
lated system depends on the quality of the 
test cases. 

Another crucial point, common to 
simulation and formal verification, is Step 
1. The model must, in fact, represent the 
real system accurately, otherwise it is not 
only useless, but misleading, too. 

Having established the limits of simula- 
tion, we could continue with an enhanced 
simulation-based approach to verification; 
abandon simulation, resorting to formal 
methods to prove hardware correctness; or 

integrate various approaches, both formal 
and simulation-based. 

As far as the first choice is concerned, 
we could resort to symbolicsimulation, an 
offspring of conventional simulation 
because it uses a model for hardware and 
a simulation engine, but differing from it 
in considering symbols rather than actual 
values for the circuit under consideration. 
In this way we can simulate the response 
to entire classes of values with a notable 
improvement over traditional techniques. 

Symbolic simulation extends to verifica- 

leave nontrivial ones, such as proving that 
some bit-vector operations realize integer 
addition, to theorem provers. 

A novel and promising approach to 
hardware verification is formal verifica- 
tion. The key concept lies in the word “for- 
mal”: it means that the proof is 
mathematical, rather than experimental. 
Mathematical demonstration overcomes 
the limits of test-case simulation, since it 
is valid for all input stimuli under specified 
assumptions. 

Formal verification needs suitable sys- 
tems to represent the objects it considers 
(specifications, implementations, proper- 
ties) and means to perform proofs. Formal 
systems must be mathematically sound 
and tailored to the domain of application, 
that is, to the classes of designs to be 
verified. 

Hybrid approaches use formal tech- 
niques and exhaustive simulation, such as 
enumeration on a restricted set of vari- 
ables, trying to balance proof power and 
computational efficiency. 

We can also use formal techniques to 
transform a design. In this case we talk of 
“correctness-preserving transforma- 
tions.” Such techniques are particularly 
useful when integrating verification and 
automated synthesis in a cooperative 
approach to correct hardware design. A 
correctness-preserving transformation 
takes a correct implementation of a spec- 
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ification and derives another correct 
implementation. We use these transforma- 
tions to generate design alternatives to 
improve the quality of some original solu- 
tion, to explore the design space, and to 
prove the equivalence of two hardware 
descriptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Formal verification versus automated 

synthesis. The goals of automated synthe- 
sis and of verification seem mutually 
exclusive: the former aims at correct-by- 
construction designs, while the latter tar- 
gets the proof of post-factum designs. For- 
mal verification does not consider aspects 
such as area, cost, and performance. We 
can regard formal verification as an ancil- 
lary approach, replaceable by synthesis as 
soon as synthesized designs surpass hand- 
made ones. 

Given the restricted domain of formal 
verification, we can reasonably suppose 
that it will reach its goals sooner than syn- 
thesis, although a circuit 90-percent syn- 
thesized is more useful than a circuit 
90-percent verified-the subtle bugs will 
occupy the unverified 10 percent. More- 
over, formal verification helps in defining 
the concept of correctness and correct-by- 
construction design methodologies. Thus, 
both approaches benefit from the 
advancement of the same theoretical 
studies. 

Formal systems for 
hardware representation 

Since the difference between formal and 
simulation-based verification lies in the 
presence of a mathematical proof, it is 
essential to have a formalism to represent 
hardware systems at all levels of abstrac- 
tion. Such a formalism requires a com- 
plete, precise, and coherent definition of 
the underlying semantics. Consequently, 
we associate with each formal system a set 
of calculation properties allowing mathe- 
matical proofs. 

We can distinguish semantics as opera- 
tional, denotational, or axiomatic.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Operational semantics defines the 
meaning of any term of a formalism in 
terms of the actions performed by an 
abstract state machine that interprets the 
statements written in the formalism. 

Denotational semantics entails an 
abstraction of the interpretation mecha- 
nism, since it introduces a model that views 
a term as a function transforming states 
into other states. Denotational semantics 

Figure 4. A synchronous circuit. 

assigns meaning in terms of set and func- 
tion theories. 

Axiomatic semantics in the theory of 
programming languages means that some 
formulas of predicate calculus are 
associated with a program. From a mathe- 
matical point of view, this is just a trans- 
formation of a formal language not part 
of a formal system into a formal language 
for which a syntactical concept of deriva- 
bility exists. 

The next section presents logic, the most 
widely known and used formal system. 
Subsequently, we will present the use of 
programming languages for hardware rep- 
resentation, although they aren’t formal 
systems. Programming languages are 
widely used in conjunction with logic in 
software verification, and some authors 
extend their use to hardware, too, cross- 
fertilizing some ideas with software verifi- 
cation techniques. 

Formal logic 

Logic is that branch of knowledge con- 
cerned with truth and inference. It inves- 
tigates the structure of propositions and 
deductions, resorting to a method that 
abstracts from the contents of the propo- 
sitions in question and is related only to 
their form. A proposition is a declarative 
statement to which we can attach a true or 
false value. The meaning of a proposition 
is given by an interpretation in some 
“world,” while syntax is the only key 
available for us to manipulate and reason 
about. Ad hoc formalisms enhance the dis- 
tinction between form and meaning. Logi- 
cians have proposed various formalisms. 

We will briefly outline the most relevant 
ones in the domain we consider: 

First-order predicates 
Higher-order predicates 
Specific calculi 
Temporal logic 

First-order predicates. First-order 
predicates deal with propositions and 
propositional functions, that is, those 
functions where the domain of the 
independent variable ranges over propo- 
sitions. All usual logical connectives are 
defined as well as the existential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  and 
universal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V) quantifiers. Interpretations 
of first-order predicates require a specified 
domain and symbols referring to entities 
within this domain. Different domains 
lead to different interpretations. 

The language of first-order predicates 
consists of terms, atoms, and formulas. 
The traditional approach outlined above 
is purely logical and does not provide the 
common concept of function. Thus, it is 
mainly used by Prolog-oriented 
researchers. Other authors prefer to intro- 
duce truth values in their formal systems 
rather than assigning them by means of an 
interpretation. Hence, they do not deal 
with predicates, rather they use functions 
with truth values as the range. 

Model theory offers another approach 
to first-order  predicate^.^ Model theory 
deals with the relationship between a for- 
mal system and an algebraic structure that 
gives a meaning to it. 

Example. Consider the simple syn- 
chronous circuit4 of Figure 4, consisting 
of a D-type flip-flop with clock input gated 
by a NAND gate. The goal is to show how 
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Design in DDL Assertion 

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 
I 

Assumption 

Axioms 

Errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo 

Verified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5. DDL verifier. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
first-order predicate calculus can describe 
structure and behavior. The device resorts 
to a precise-delay timing model. 

The description in terms of first-order 
predicates expresses behavior as a set of 
time functions, possibly with initial or 
generic conditions. It looks as follows: 

Function re detects the rising edge of a sig- 
nal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdnond is the delay of the NAND gate, 
and dJfis a propagation time through the 
flip-flop. 

Research. T.J. Wagner of Stanford 
University, California, first attempted to 
apply predicate calculus to the verification 
of hardware using an available theorem- 
prover for a number of simple proofs of 
unit-delay descriptions. 

A S .  Wojcik of Illinois Institute of 
Technology, Chicago, presented Aura, the 
Argonne Automated Reasoning Assistant, 
an experimental system for formal verifi- 

cation. The axiom set includes rules for 
Boolean algebra, signal specifications, and 
structure handling. Wojcik described spec- 
ifications and implementations at the 
register-transfer level using a clause form. 

J.C. Barros of Shell Development, 
Houston, Texas, and B.W. Johnson of the 
University of Texas, Dallas, used first- 
order predicates to describe some classes 
of commonly used synchronous circuits, 
such as arbiters, synchronizers, latches, 
and inertial delays. They defined axioms 
in a ternary algebra which, in addition to 
the standard values true and false, has the 
unknown value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. They introduced two 
kinds of axioms, constraining the outputs 
or allowing partial inference of output 
behavior from input behavior. The predi- 
cates included parameters to specify tim- 
ing condit ions. Theorem proving 
demonstrated correctness, but no 
mechanization of this approach has been 
reported. 

N. Suzuki of the University of Tokyo 
explored a hybrid methodology between 
simulation and formal verification. The 
specifications, represented by input/out- 
put assertions in first-order predicates, tie 
the method to formal verification. Instead 
of showing that the implementation for all 
inputs satisfying input assertions satisfies 
output assertions, Suzuki showed that this 

holds only for selected inputs, called test 
data. The main interest of this approach 
lies in the language the author used for 
description: Concurrent Prolog, a logic- 
programming language that allows con- 
currency and efficient backtracking by 
means of guards and commit operators. 
Suzuki’s approach was applied to the 
memory of Dorado, a high-performance 
personal computer designed at Xerox Palo 
Alto Research Center. 

T. Uehara, T. Saito, F. Maruyama, and 
N. Kawato of Fujitsu Laboratories, 
Kawasaki, Japan presented a system called 
the DDL Verifier (see Figure 5 ) ,  applied to 
synchronous systems at the functional 
level. Implementations are described in the 
DDL language and specifications are first- 
order predicates. A translator reduces the 
circuit under consideration to cause/effect 
tables, which show necessary and suffi- 
cient conditions for circuit operations. The 
proof method uses backward reasoning 
and proof by contradiction. First, the 
specification is negated and then traced 
backward using cause/effect tables to 
show that it is always false. The DDL Veri- 
fier takes time into account, exploring 
truth and falsity in present and past states 
of the circuit under consideration. In a 
later paper, the authors abandoned first- 
order predicates as a means of expressing 
specifications and resorted to temporal 
logic. 

H. Eveking of the Technische Hoch- 
schule Darmstadt, Federal Republic of 
Germany, introduced a fundamental dis- 
tinction between vertical and horizontal 
verification. Vertical verification means 
compliance between the specification and 
the implementation of a circuit. When the 
behavior of a device is described, a model 
is created and associated with the real 
object. Such a model is valid only if the 
environment in which it operates satisfies 
a set of constraints; thus, the device 
behaves as specified in the description. 
These constraints, called assertions, may 
refer to any point in the device. When 
devices interconnect in a more complex 
structure, you must extract a set of inter- 
face assertions that have no ties to internal 
points and that guarantee-if satisfied- 
that internal assertions also hold. Eveking 
calls this process of composing assertions 
and propagating them outwards horizon- 
talverification. A support tool for such a 
methodology is Vertico, an expert system 
for generating interface assertions through 
predicate transformation. 

For vertical verification, Eveking con- 
sidered synchronous systems described in 
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SMAX, a nonprocedural hardware 
description language belonging to the 
Conlan family. Eveking considers HDLs 
formal languages but not formal systems. 
Thus, HDL descriptions must be axioma- 
tized and transformed into first-order 
predicates. The predicates associated with 
a description may be classified as logical 
axioms, that is, general-purpose axioms; 
HDL-specific axioms; and description- 
specific axioms. The formal system pro- 
vides a set of inference rules; axioms and 
inference rules form a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. This set of 
entities allows a precise definition of cor- 
rectness: an implementation is correct with 
respect to a specification if the nonlogical 
axioms of the former are theorems in the 
latter’s theory. When specification and 
implementation occupy different abstrac- 
tion levels and/or use different timing 
models, you must introduce an interpreta- 
tion of a language (or a theory) in another 
language (or theory), thus generating a 
suitable mapping. 

Mechanization of this approach is under 
study, but for efficiency’s sake, instead of 
a general-purpose theorem-prover, Evek- 
ing uses a set of smaller and specialized 
provers whose activation is controlled by 
an expert system integrating frames and 
production rules. 

W.A. Hunt of the Institute for Comput- 
ing Science and Computer Applications at 
the University of Texas, Austin, used 
Boyers-Moore logic to describe and verify 
the FM8501 microprocessor. The specifi- 
cation is the microprocessor viewed as an 
instruction interpreter; that is, for every 
possible instruction, a new microprocessor 
state is defined. The implementation is a 
graph of logic gates. The formalism con- 
sists of quantifier-free first-order predi- 
cates. Recursive functions provide the 
primary means of description for hard- 
ware devices. Time is only implicitly 
modeled as a stream of values, which con- 
stitutes a weakness of this approach. The 
objects the author considered are bit- 
vectors of arbitrary size, natural numbers, 
and integer numbers. Specifications and 
implementations are both expressed as 
recursive functions. Implementations, or 
hardware formulas, can be automatically 
expanded to yield structural descriptions. 

Evaluation. First-order predicates rep- 
resent a substantial share of current 
research efforts. They are important both 
from methodological and practical points 
of view. In particular, studies with first- 
order predicates have contributed to the 
understanding of their expressive limits 

and fostered research on higher-order 
predicates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Higher-order predicates. Higher-order 
predicates represent an enhancement of 
first-order predicates. They extend the 
notation of first-order predicates in that 
the domain of variables also ranges over 
functions and predicates, and functions 
can take functions as arguments and 
return functions as results. As an example, 
consider how we could express a falling 
clock signal: 

Vclock t .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Fall clock) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= clock(t)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
-clock(t + 1) 

The variable clock has time functions as 
domain-that is, functions from time- 
modeled as positive integers, to Boolean 
values. Fall is a higher-order function 
accepting clock as an argument and 
returning a predicate on positive integers. 

Unrestricted higher-order predicates 
suffer from a number of paradoxes, 
avoided by resorting to type theory and 
type hierarchy. Higher-order predicates 
generally contain the axioms of infinity 
and choice. The infinity axiom states that 
the domain of individuals is infinite; the 
choice axiom allows us to introduce new 
primitive formulas. 

Example. This example illustrates the 
use of higher-order predicates to represent 
parameterized systems such as an n-bit 
adder.5 An n-bit adder computes an n-bit 
sum and one-bit carry-out from two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn -bit 
inputs and a one-bit carry-in. The lines c,,, 
and c,,, carry one-bit words and the lines 
a, b, and sum carry n -bit words. One-bit 
words are modeled as Booleans; n-bit 
words are modeled as functions mapping 
natural numbers into Booleans. The spec- 
ification follows: 

Adder (n )(a, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcin,sum, caul) 
(2“ + ’ * Bit-Va~(coul)  + VaI(n,sum ) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Val(n,a) + Val (n ,b )  + Bit-VaI(c,,)) 

The higher-order function Adder applied 
to the n-bit number yields a predicate 
specifying the corresponding adder. The 
function Bit- Val relates the logical values 
true and false with numbers 1 and 0; Val 
transforms bit-vectors recursively into 
numbers, 

You can implement an n-bit adder by 
connecting n full adders. The inputs are a 
single bit-carry in cjn and two n-bit words, 

. . . ao, b , - l  . . . bo. The outputs 
are an n -bit sum, sum,, ~ I . . . sumo, and 

a one-bit carry-out, c,,,. The implementa- 
tion uses a recursively defined higher-order 
function, A d d J m p ,  which when applied 
to a number n yields the predicate specify- 
ing the implementation of an n-bit adder. 
The recursive part of the function says that 
you build an n-bit adder by first building 
a n n  - I-bit adder and then connecting its 
carry-out to the carry-in of a one-bit 
adder: 

A d d J m p  (n  )(a, b, c,,,,sum, cOuI ) = 
3 c. A d d J m p  (n )(a, b, c,,,, sum, c ) A 

Addl(a(n),b(n),c,surn(n),c,,,) 

Research. F.K. Hanna and N. Daeche 
of the University of Kent, United King- 
dom, presented a system called Veritas for 
specification and verification of hardware. 
Specifications, written in higher-order 
logic, are partial and hierarchical, and they 
can take into account low-level timing 
issues. A designer’s knowledge of digital 
systems is structured as a set of theories, 
each defined by a theory presentation con- 
sisting of a set of symbol declarations and 
a set of axioms. Theorems can be deduced 
from axioms using inference rules. The 
Veritas system is supported by various 
software tools for establishing and han- 
dling the theory database using a func- 
tional programming language, ad hoc 
parsers, user-defined inference rules, and 
goal-directed theorem-provers. The 
Veritas approach is interesting from a 
methodological rather than from a prac- 
tical point of view, examples being limited 
to very simple gates. 

M.J.C. Gordon of the University of 
Cambridge, United Kingdom, is another 
British author who migrated to higher- 
order lo jc .  We describe his earlier work 
in the section “Specific calculi.” His for- 
mal system based on higher-order predi- 
cates is called HOL, but the same name is 
given to the automatic theorem-prover. 
HOL as a formal system is polymorphic (it 
allows types containing type variables) and 
has Hilbert’s operator to build the choice 
axiom. 

To avoid paradoxes, Gordon imposed 
some restrictions on terms (they must be 
“well-typed”) and introduced some vari- 
ations in terminology: 

Asequent is a set of assumptions from 
which a conclusion follows. 

A theorem either is an axiom or fol- 
lows from other theorems by means of 
inference rules. 

A theory is a set of types, type opera- 
tors, constants, definitions, axioms, and 
theorems. 
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In pure logic, a theory contains all possi- 
ble theorems, whereas in HOL it contains 
only axioms and already proved theorems. 
Gordon gave two theories as primitive: 
Booleans and Individuals, introducing for 
the latter the axiom of Infinity to generate 
infinite sequences. 

M. J.C. Gordon, J .  Joyce, and G. Birt- 
wistle of the University of Calgary, 
Canada, with the HOL system verified a 
microprocessor originally specified and 
verified with LCF-LSM (logic of computa- 
ble functions/logic of sequential 
machines). D. May and D. Shepherd of 
Inmos, Bristol, United Kingdom, are using 
HOL to derive correct microcode for the 
IMS T800 floating-point transputer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Evaluation. Higher-order predicates 
have more expressive power than first- 
order predicates, but the trade-off for this 
advantage involves more difficulty in per- 
forming proofs and mechanizing. The 
integration of higher-order predicates with 
functional approaches looks like a trend 
for future development. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Specific calculi. Many authors, espe- 
cially in the domain of hardware verifica- 
tion, create their own formal systems 
reducible to first-order or higher-order 
predicates. We will call these formalisms 
“specific calculi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” Such calculi are defined 
along the lines of logic by giving legal con- 
nectives, terms, and rules for constructing 
formulas and performing inferences. 

Example. Consider the case of a unit- 
delay directional wire,6 shown in Figure 
6 .  This device operates synchronously 
within a discrete model for time according 
to the state-transition graph shown in the 
figure. 

The device is defined by two input ports 
(a  and t ) ,  an output port @), and two states 
( W  and W ’ )  through which the circuit 
evolves at every clock tick according to the 
events on the input port a .  Input to a may 
only occur when the timer ticks, so an a 
signal only occurs with a t signal. The sig- 
nal will propagate through the wire and is 
output on the next t signal, either on its 
own or simultaneously with a further input 
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. The timer may tick without any input 
appearing, since it models the passage of 
real time (which cannot be halted). 

W t t W  + ( a t ) W ‘  
W ’  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p t )  w + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(apt) W ‘  

Research. G.J. Milneof the University 
of Edinburgh, United Kingdom, presented 

Circal, a calculus to describe and analyze 
circuit behavior. Circal is based on dot cal- 
culus, a descriptive language consisting of 
construction operators together with 
objects representing primitive concepts. 
Objects are composed to yield descriptions 
and communicate through labeled ports, 
called “sorts.” Circal describes the 
behavior of a computing agent by the 
actions it wishes to perform with other 
agents in the environment. Circal descrip- 
tions are based on the notion of event, that 
is, a trigger that starts a particular evolu- 
tion through time, resulting in a state. 

When composing more devices, you 
often must reduce their complexity to keep 
them manageable. You can do this by hid- 
ing internal ports, making them invisible 
to an external observer. 

The use of Circal is not restricted to a 
specific domain: it is both a very special 
hardware-description language and a 
framework for device analysis, in partic- 
ular for formal verification of partial or 
total specifications and for “constructive” 
simulation. The last concept represents a 
variation with respect to standard simula- 
tion: instead of simulating a whole device 
composed of many elements, Milne simu- 
lated the elements one by one and com- 
posed the results. A proof demonstrated 
the equivalence of the standard and con- 
structive approaches. 

Circal does not just verify single designs, 
but also demonstrates the correctness of 
classes of designs generated by the same 
simple silicon compiler using NOR expres- 
sions as specifications. Circal tools in a 
Lisp-based environment and related pro- 
totype systems support expression manip- 
ulation and Circal simulation, but not 
correctness proofs as such. 

An interesting library of LSI and VLSI 
components has been created and is 
reported in Circal. 

M.J.C. Gordon produced the LCF- 
LSM system. LCF, or logic of computa- 
ble functions, is a verification-oriented 
programming environment extensible to 
the manipulation of specifications. LSM, 
or logic of sequential machines, is a spec- 
ification language for synchronous sys- 
tems, currently used at the register-transfer 
and gate levels. The interface between user 
and LCF is provided by ML, an inter- 
preted metalanguage with side effects simi- 
lar to Lisp’s. LSM is tied to OL, a 
predicative object language assuming 
some concepts from the CCS, or calculus 
of communicating systems, proposed by 
Milner. 

LSM interfaces to LCF through four 

types: terms, constants, formulas, and the- 
orems. In OL, theorems are derived from 
axioms through rules of inference. Rules 
allow folding and unfolding, renaming, 
combining, pruning, and unwinding equa- 
tions. Axioms are grouped in theories, and 
theories in taxonomies. For the verifica- 
tion process, the user creates separate the- 
ories for specifications and implementa- 
tions, and generates a proof interactively 
by directing the system to use rules. Gor- 
don reported some examples of the appli- 
cation of his methodology to a simple 
computer and to an emitter-coupled-logic 
chip used in the Cambridge Fast Ring 
hardware. 

Gordon’s early work presented a for- 
malism to describe synchronous circuits 
based on recursive functions and lambda 
calculus. Specifications are given 
behaviorally, while implementations are 
structural connections of modules with 
assumed primitive behavior. Elementary 
behaviors are composed using catenation, 
connection, and hiding operators. Syntac- 
tic identity of expressions demonstrates 
equivalence of implementation and spec- 
ification. 

Gordon introduced the concepts of 
microcycles and macrocycles to represent 
systems that do not work in lockstep, that 
is, systems where a single operation at a 
higher level is implemented by a sequence 
of operations at a lower one. He also intro- 
duced the induction principle to take into 
account complex cases. The paper 
reported some examples of application to 
register-transfer systems and NMOS cir- 
cuits. Gordon’s early work inspired H.G. 
Barrow, D. Weise, and J.L. Paillet. 

H.G. Barrow of the Fairchild Labora- 
tory for Artificial Intelligence Research, 
Palo Alto, California, presented a verifi- 
cation system written in Prolog, called 
Verify, which stemmed from Gordon’s 
early work. Verify can check the correct- 
ness of finite-state machines. Behavioral 
specifications and structural implementa- 
tions are both described in Prolog. The 
system extracts from the structure the de- 
rived behavior and compares it with the 
intended one. To prove the identity of 
specification and implementation, Verify 
uses symbolic manipulations, such as sim- 
plification, expansion, and canonicaliza- 
tion. When they become too heavy 
computationally, it resorts to evaluation or 
enumeration, and thus to exhaustive simu- 
lation on selected variables. The interac- 
tive system has been applied to verify the 
same simple computer presented by Gor- 
don, and D74, a module for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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sums of products. 
D. Weise of the Massachusetts Institute 

of Technology, Boston, Massachusetts, 
presented a methodology and a tool, called 
Silica Pithecus, to prove functional cor- 
rectness for designs at the switch level. 
Although it refers to  NMOS, this 
approach is almost technology- 
independent. An ad hoc language 
describes specifications, while implemen- 
tations are described as schematics. The 
system extracts signals from the 
schematics, possibly still analog, and 
abstracts from these signals their digital 
behavior. Specified and intended behavior 
are compared to prove syntactic equiva- 
lence through symbolic manipulation and 
rewrite rules. 

J.L. Paillet of the UniversitC de 
Provence, Marseille, resorted to operative 
expressions to describe specifications and 
implementations. He then extracted the 
function of an implementation by com- 
posing the functions of the submodules 
and eliminating the internal variables. 
Eventually he compared, specified, and 
extracted behaviors to demonstrate 
equivalence. Internal variables are elimi- 
nated either by substitution or by a “devel- 
opment” operation (when looped). 
Concerning time, Paillet defined a “past” 
functional to allow references to past 
values of carriers. This approach focuses 
on synchronous circuits described at the 
register-transfer level. Mechanization is 
under way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Evaluation. Specific calculi are stand- 
alone formal systems especially tailored 
for hardware verification. From a theoret- 
ical point of view, they resemble first- or 
higher-order predicates. Some authors 
abandoned them, since they considered the 
trade-off between ad hoc formalisms and 
costs unfavorable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Temporal logic. In the domain of hard- 
ware representation, we must cope with a 
particular aspect of reality: time and tem- 
poral evolutions. Traditional logic is very 
powerful when dealing with static situa- 
tions, but it fails when dealing with 
dynamic ones. To satisfy hardware’s 
requirements, two choices seem possible: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(1) an explicit introduction of the time 

(2) a generalization of predicate logic to 

Following the first path, authors intro- 
duce time functions, treating time just as 
any variable, with the usual rules for 
terms, formulas, and inference. Following 

variable t into predicate logic, or 

encompass the temporal domain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 
a 

Figure 6. A unit-delay directional wire and its state-transition graph. 

the second path, authors augment stan- 
dard logic to cover temporal evolution. 

First-order and higher-order predicates 
stand for eternal truths. Modal logic, on 
the other hand, introduces the concepts of 
possibility and necessity in the future. 
Modal logic, although more expressive 
than traditional predicate logic, still lacks 
the ability to cope with changes, an essen- 
tial feature in hardware behavior. To  han- 
dle changes, we need a formal system that 
can reason from past events to what can or 
must be true at present and in the future. 
Such formal systems are generally grouped 
under the label “temporal logic.” 

Temporal logic includes all usual con- 
nectives and adds some typical operators. 
Although there are many variants, the 
basic operators are 

henceforth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
eventually o 
next 0 
until U 

We can classify temporal logic systems 
according to the way they consider time. 
The framework being generally a discrete 
model for time, there are different ways of 
considering the future. The past is always 
linear, while the future may be either a 
unique world or a set of possible worlds. 
In the first case, time is linear in the future, 
too; such logic is called “linear temporal 
logic.” In the latter case, time branches in 
the future; such a system is called “branch- 
ing temporal logic.” In the former case, a 
system supposedly has a unique evolution 
along time, whereas in the latter case, a 
system has a set of possible evolutions. 

Linear and branching time are not the 
only distinctions in temporal logic. 
Another important one is instant-based 

versus interval-based logic. Temporal logic 
is instant-based when propositions are 
asserted on single states (that is, instants 
in discrete time) only. Temporal logic is 
interval-based when propositions are 
asserted on sequences of states (that is, on 
intervals in discrete time). “Interval tem- 
poral logic” may be either global or local. 
It is global when the truth of propositions 
is determined over an entire interval, that 
is, on all its states. It is local when truth is 
determined on the first state of an interval 
and holds unchanged on the rest. 

Linear temporal logic example. Con- 
sider part of the handshaking protocol’ in 
Figure 7 .  Explanations appear between 
quotes. 

0 (Q Hear -. o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACall) 

“if Hear is low, then sooner or later 
Call will rise” 

U(Call-. Call U Hear) 

“if Call is high, it will stay high until 
Hear is high” 

U (Call + o Hear ) 

“if Call is high, then sooner or later 
Hear will rise” 

O(Q Cal l - .  o Q H e a r )  

“if Call is low, then sooner or later 
Hear will fall” 

Research. G.V. Bochmann of the Uni- 
versity of Montreal, Canada, presented 
one of the first attempts to use temporal 
logic as a formalism to describe and rea- 
son about hardware. In his approach, time 
is linear and discrete. He presented some 
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. ‘  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and using external specifications. The 
authors used this approach for automatic 
synthesis of state diagrams starting from 
temporal logic specifications. 

thesystem’sefficiency, including filtering 
of descristions. >toring state transitions, 

”for ewry path in the future, at e\cry 
node on the path, if the light is red zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Branching temporal logic example. 
Consider the expression of some safety 
and liveness properties for a traffic-light 
controller’ (see Figure 8). The traffic-light 

- 

and there is an eastbound car request- 
ing to cross, then for every path there 
will be at least a node on the path 
where the E-Go signal will be high” 

3 F(N-Go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA S-Go) 

“for some path there is a state on the 
path where both the N-Go and the S- 
Go signals will be high” 

controller is stationed at the intersection of 
a two-way highway going north and south Research. E.M. Clarke, B. Mishra, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure 7. A handshaking protocol. 

’ 
and a one-way road going east. No turns 
are permitted. At the north, south, and 
east of this intersection, a sensor goes high 
for at least one clock cycle when a car 
arrives. When the intersection is clear of 
cross traffic, the controller raises a signal 
indicating that the car may cross the inter- 
section. Once the car has crossed, the sen- 
sor that indicated the arrival will go low. 
The sensors are named N,  S, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;  the 
output signals for each end of the intersec- 
tion are N-Go, S-Go, and E-Go. 

A description in branching temporal 
logic follows: 

Figure 8. A traffic-light controller. 

of the axioms bound to the modalities he 
used, then described and verified an 
arbiter. Verification relies upon a kind of 
reachability analysis, in which possible 
states and transitions are generated and 
symbolically executed. 

M. Fujita, H. Tinker, T. Moto-oka, and 
S. Nishiyama of the University of Tokyo, 
Japan, presented an approach to formal 
verification based on linear temporal logic 
and Prolog. The domain of application is 
currently restricted to finite-state machines 
used to implement the synchronization 
part of a complex system. Implementa- 
tions are described in standard HDLs, 
such as HSL or a subset of DDL, at the 
gate or register-transfer level. Specifica- 
tions are expressed in temporal logic with 
weak and strong until (U) operators. 
Implementations are automatically trans- 
lated into C-Prolog clauses, while specifi- 
cations are transformed into state 
diagrams using temporal logic’s decision 
procedure. This state diagram and the 
implementation are simultaneously 
traversed to look for a counterexample, 
where negated specifications satisfy the 
implementation. Some features expedite 

VG (E-GO A (N-GO V S-GO))  
“for every path in the future, at every 
node on the path, there will never be 
green signs in both directions” 

This formula is a safety property that is 
true if the controller does not permit col- 
lisions. 

The following liveness properties state 
that every request to enter the intersection 
is eventually answered, so the controller is 
starvation-free. I f  all three of these for- 
mulas are true, the controller is deadlock- 
free as well. 

VG(m N-Go A N - ,  V F N - G o )  
“for every path in the future, at every 
node on the path, i f  the light is red 
and there is a northbound car 
requesting to cross, then for every 
path there will be at least a node on 
the path where the N-Go signal will 
be high” 

VG (* S-GO A S -, V F S-GO) 
“for every path in the future, at every 
node on the path, if the light is red 
and there is a southbound car 
requesting to cross, then for every 
path there will be at least a node on 
the path where the S-Go signal will be 
high” 

VG(m E-GO A E +  VFE-GO) 

D.L. Dill, M. Browne, E.A. Emerson, and 
A.P. Sistla of Carnegie Mellon University, 
Pittsburgh, presented an approach and the 
supporting tool for formal verification of 
synchronous and asynchronous control 
parts of digital systems. Implementations 
are described by either structural HDLs or 
an ad hoc language called SML, for state- 
machine language. Specifications are 
expressed in the temporal domain using 
computation tree logic, or CTL, a branch- 
ing time propositional temporal logic. 
CTL extends all temporal logic operators 
to take into account the introduction of 
possibility in the future: a circuit may 
evolve along many possible paths. 
Implementations expressed in structural 
form are automatically transformed into 
a state-transition graph (a finite Kripke 
structure) by means of simulation. If the 
implementation is already expressed as a 
finite-state machine, the state-transition 
graph generation process is almost 
immediate. Verification relies upon state- 
graph transition, possibly exhaustive, 
looking for a counterexample of the spec- 
ification. 

The tool supporting this approach, 
called MC for model checker, comes in a 
C-language version and a Franz-Lisp ver- 
sion. Since state-graph complexity 
increases exponentially with &he size of 
designs, the authors proposed multilevel 
verification to keep the task manageable. 
Lower-level modules are composed to 
yield complex ones, thereby shrinking 
complexity by restriction. In a later ver- 
sion, called EMC for extended model 
checker, the updated tool deals with a 
more expressive branching time temporal 
logic called CTLF. The authors have 
applied their approach to a FIFO cell and 
to an asynchronous communication inter- 
face adapter. 

Interval time temporal logic example. 
Consider the expression of a positive pulse 
signal’ with quantitative timing informa- 
tion (see Figure 9). 
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The corresponding interval temporal 
logic formula looks as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t$l,ni,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 

[ (x  = 0 A minlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I)); skip; 
[ ( x  = 1 A minlen (m)) ;  skip; 
[ ( x  =: 0 A minlen ( n ) ) ]  

The construct minlen(n) is true for an 
interval at least n units long. Skip is a con- 
struct to test for intervals having length 
one. 

Research. B. Moszkowski of the Uni- 
versity of Cambridge, United Kingdom, 
presented a general-purpose formalism to 
specify hardware behavior, called ITL for 
interval temporal logic. ITL is general- 
purpose because you can use it to describe 
register-transfer operations, as well as flow 
graphs and transition tables. ITL's syntax 
allows variables, expressions, and for- 
mulas. Each formula is associated with a 
sequence of states (points in discrete time). 
A function maps variables, formulas, and 
states into data values. Through this map- 
ping function, it is possible to define when 
a sequence of states satisfies a formula. 
ITL is local in that truth or falsity of a for- 
mula depends only on the value the map- 
ping function returns on the first state of 
the interval. Some operators have an 
interval-dependent meaning, which distin- 
guishes ITL from all other temporal logic 
formalisms. 

Moszkowski presented Tempura, a 
logic programming language with imper- 
ative constructs for assignment, as a logi- 
cal consequence of his work. Tempura 
functions as a conventional programming 
language or as an HDL for structural 
descriptions. A ring network and a mul- 
tiplier exemplify its use in the hardware 
description domain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a logic program- 
ming language, Tempura resembles Pro- 
log, but has no incorporated unification 
and backtracking facilities. It is supported 
by a software tool implementing its inter- 
preter. This evaluates formulas, splitting 
them recursively into values at present and 
next state, in a way similar to temporal 
logic's decision procedure. 

Moszkowski did not present evidence 
for the utility of his approach in the 
domain of formal verification of hard- 
ware; rather, he claimed that such an 
extension would not be difficult. 

Within the major framework intro- 
duced by Moszkowski, T. Aoyagi, M. Fuj- 
ita, T. Moto-oka, S. Kono, and H. Tinker 
of the University of Tokyo presented 
Tokio, a concurrent logic programming 

language. Although based on Prolog, it 
extends it by incorporating local ITL con- 
cepts. Since Prolog lacks the concept of 
time, assignment occurs as a tricky side- 
effect. This is Prolog's main disadvantage 
with respect to conventional programming 
languages. Tokio introduces a discrete 
time model, with intervals defined by their 
starting and final events. ITL operators 
have been added to Prolog, and the inter- 
preter can be directed to execute goals in 
specified intervals. The authors presented 
no examples of Tokio's application to for- 
mal verification, but we expect them in the 
near future. 

Evaluation. Temporal logic substan- 
tially advances traditional logic because it 
can capture time and dynamic 
behaviors-essential features in hardware 
descriptions-with concise and clear nota- 
tion. For example, it avoids the introduc- 
tion of explicit time functions and time 
variables. Moreover, temporal logic is use- 
ful in different environments, such as pro- 
gramming, although within the domain of 
hardware verification no one has yet 
exploited its full power. Timing anoma- 
lies, races, and hazards could be described 
easily, but we are not aware of similar 
research efforts. 

A lively debate among temporal logi- 
cians focuses on the relative merits of lin- 
ear and branching time temporal logic. 
The common opinion is that linear time 
temporal logic has more expressive power 
and branching time temporal logic has 
more powerful decision procedures. The 
choice between the two strongly depends 
on the applications. 

Cross-fertilization with 
software verification 
techniques 

Since software verification is older than 
its hardware counterpart, one of the first 
approaches for hardware adapted some 
software verification techniques to the 
particular domain under consideration. 

Programming languages constitute 
immediately available description formal- 
isms. Although not, strictly speaking, for- 
mal systems, they have been extended for 
hardware description and verification in 
conjunction with logic. Most descriptions 
of hardware are procedural; that is, a locus 
of control governs the evaluation. This 
heavily restricts the application domain of 
such formalisms. In fact, they are used 

> = , i"l > = " zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

Figure 9. A pulse with timing details. 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 7  

a 

Figure 10. A Muller C-element. 

only at very high levels of design, namely 
those in which behavior is described 
algorithmically. Procedural descriptions 
allow the expression of some useful fea- 
tures typical of a software verification 
environment, such as termination proper- 
ties, preconditions, and postconditions. 
Normally, you would resort to predicative 
forms to express these features, which play 
the role of specifications or properties, 
while procedural descriptions represent 
implementations. 

Examples. One example of the applica- 
tion of Floyd's inductive assertion method 
considers the expression of preconditions, 
postconditions, and loop assertions on a 
Muller C-element" (see Figure 10). We 
can easily state the operation of the C- 
element. The device has two binary input 
signals, a and 6 ,  and a binary output sig- 
nal, c. The output becomes 1 whenever 
both inputs become I ;  it becomes 0 when- 
ever both inputs become 0. Otherwise, it 
stays the same. Since no particular 
assumptions are made about the input sig- 
nals a and b, the corresponding assertion 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis true at every time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt .  Because the circuit 
has only one cycle, a single loop assertion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y suffices and is coincident with the out- 
put assertion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. The proof employs the 
STP theorem prover. 

4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= true zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w,+2 = Vt+2 = 

if (a, = 6 , )  then a, else zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  

Research. R.E. Shostak of SRI Interna- 
tional, Menlo Park, California, modeled 
hardware as a graph with circuit elements 
for nodes and signals for arcs. Each circuit 
element is characterized by a transfer 
predicate, which expresses how the ele- 
ment transforms its inputs to yield its out- 
puts. Assertions are placed on inputs, 
outputs, and loops. As in Floyd’s method, 
verification conditions are generated by 
tracing back output assertions to the 
inputs and comparing them with input 
assertions using the STP theorem-prover. 
To ease the task, acyclic subgraphs are 
extracted from the complete graph and 
verified one by one. Shostak’s examples 
concerned some analog and asynchronous 
circuits, without explicitly considering 
time or reporting any automation. 

A very similar approach taken by V. 
Pitchumani, E.P. Stabler, and Z.D. Umri- 
gar of Syracuse University, Syracuse, New 
York, featured assertions, preconditions, 
postconditions, and a theorem-prover. 
The authors used a register-transfer lan- 
guage similar to Pascal and AHPL to 
describe hardware. This language allows 
concurrent constructs, and the authors 
described proof methods for parallel con- 
trol sequences. The domain of application 
of such a method is limited to synchronous 
circuits. The authors reported no mechani- 
zation. 

An approach based on Floyd’s inductive 
assertion method but with interesting var- 
iations comes from M.C. McFarland and 
A.C. Parker of Carnegie Mellon Univer- 
sity, Pittsburgh. Instead of verifying that 
a design implementation complies with its 
specification, they considered a more 
general case. They demonstrated that cer- 
tain transformations used to optimize 
designs are correct, so that the behaviors 
of original and transformed designs are 
equivalent. 

McFarland and Parker used the descrip- 
tion language called ISPB, a subset of 
ISPS. ISPB is axiomatized and has a set of 
rules used to manipulate expressions. Like 
ISPS, it is procedural but allows concur- 
rent statements. The way hardware 

behaves is captured by its interactions with 
the environment, which the authors called 
events. Sequences of events represent his- 
tories, used to give meaning to descrip- 
tions. Specifications are expressed as 
behavior expressions, that is, regular 
expressions augmented by predicates. The 
system was developed within the Carnegie 
Mellon University Design Automation, or 
CMUDA, project. 

Evaluation. Applying software verifica- 
tion techniques to hardware suffers from 
some drawbacks. First, devices are 
described in a procedural fashion and only 
at very high levels of abstraction (algorith- 
mic and behavioral). Moreover, this 
approach follows closely the evolution of 
its software counterpart, including its dif- 
ficulties. Thus, such research represents a 
minority of the current efforts in this area. 

imulation has evident theoretical 
limits, but thanks to the efficiency 
of its tools, it is widely used in com- 

mercially available systems. Although they 
overcome simulation’s nonexhaustivity, 
formal techniques introduce additional 
concerns: they need formal description 
and proof systems. 

Formal techniques are now mainly aca- 
demic efforts, with the majority of 
research efforts located in Europe. US and 
Japanese researchers seem to concentrate 
more on automated synthesis. 

Let us now analyze current work. It 
looks like a big research effort is under 
way: a lot of projects are already under 
development and new ones are continually 
being started. Nevertheless, it proves very 
diff icult to  benchmark different 
approaches, and not just because of the 
vast amount of material to take into con- 
sideration. We deliberately avoided 
presenting comparisons or figures lacking 
merit from a theoretical or practical point 
of view. The domains to which the authors 
applied their methodologies differ 
markedly, ranging from the switch to the 
system level. Each author tailored the for- 
mal system and proof method to his 
domain, sometimes losing generality and 
applicability. For example, formal systems 
especially intended to model synchronous 
circuits are not easily extendible to asyn- 
chronous ones, and vice versa. 

Another observation concerns the 
domain of application: many authors 
restricted their examples to “special” cir- 
cuits, that is, either circuits already well- 
suited for verification or old-fashioned 
gate-level designs, bound more to 

MSI/LSI than to VLSI technology. More- 
over, the authors seldom considered gate 
arrays and programmable logic devices 
despite their growing importance in the 
world of application-specific IC design, 
nor did they take into account low-level 
timing issues, such as races and hazards. 

From a practical point of view, formal 
techniques face a major limitation: the 
majority of approaches are purely the- 
oretic. Even when some software tool is 
implemented, it is in general a prototype, 
its performance is hard to evaluate, and it 
cannot be easily incorporated in commer- 
cial systems. 

Although formal verification tech- 
niques suffer from evident limits, we 
believe that they are important not only 
from a theoretical, but also from a prac- 
tical, point of view. The ability to verify a 
design implies understanding of its pro- 
found semantic meaning; this helps both 
manual design and automated synthesis. 
Tools are becoming more efficient as we 
gain in expertise and take advantage of 
recent developments in parallel processing 
and innovative architectures. Within a few 
years, perhaps five or six, we can hope to 
see commercial systems including formal 
techniques, although it is hard to believe 
that they will be general-purpose. 

Industry, abandoning its initial skepti- 
cism, is becoming more and more 
interested in formal verification, since it 
can guarantee correct designs and shave 
costly development time. Some major 
European manufacturers plan to include 
in their private CAD systems some of the 
formal verification tools currently under 
development. 

If formal verification keeps in touch 
with the latest developments in VLSI, so 
computer-aided design does not lag behind 
design, both fields will benefit and contrib- 
ute significantly to the advancement of 
computer science. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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