
SURVEY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& TUTORIAL SERIES

Formal
Verification
of Hardware
Correctness:
Introduction and Survey
of Current Research
Paolo Camurati and Paolo Prinetto

Politecnico di Torino

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo verify is to prove the truth of
something by presenting evidence
for it.” To benefit from this

dictionary-like, generic definition, we
must tailor it to the particular domain we
want to consider: the design of hardware.

Every design, no matter how strategic or
complex, requires multifaceted verifica-
tion before marketing. Starting from final
manufacturing and moving back through
previous phases of the process, we might
find many objects for verification. LOW-
level design rules, timing, high-level design
rules, firmware, functional correctness,
and base software might attract our
interest. The domain of verification spans
all phases of design, covering hardware,
firmware, and software. We restrict our
discussion in this article to one particular
item-the verification of functional cor-
rectness through formal techniques.

Let us begin by giving two definitions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
functional correctness, which we will use
throughout. First, at every design step, the
designer specifies what the system under
development should do and how it should
do it. What the system should do is called
its specification, while any one of the pos-
sible devices that realizes the specification
is called an implementation. The design of
a system may reduce to an iteration of

rect i f we can somehob prove that i ts

implementation realizes the specification
(see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1).

Other concepts of correctness exist.
Sometimes it is useful to consider an exist-
ing design and to verifv some of its moper-

To formally verify

hardware correctness,
I

ties. We can group such properties into we need suitable

representation
two main classes:

safety properties and
liveries!; properties.

Safety properties express conditions of
the form “bad things will never occur.”
Within the framework of branching time
temporal logic (with multiple evolutions in
the future, each consisting of a “path”

systems and

automated proofs.

techniques
from software

connecting some “states” and expressing
before/after relations between the events), verification, and

automated synthesis

benefit the process.

an example of a safety property looks as
follows:

“for every path in the future, at every
node on the path, i f the Request sig-
nal is low, it must remain low until
Acknowledge goes low”

Liveness properties express conditions
of the form “good things will occur in the

specification/implementation steps, per- future.” A branching time temporal logic

formed either top-down or bottom-up,
where the implementation at level i “for every path in the future, if there
becomes the specification for level i + 1. has been i i Request signal, then even-
Any piece of hardware is functionally cor- tually there will be an Acknowledge

looks as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 o O l S - Y l 6 2 / S 8 / O 7 o O - O ~ $ O l . ~ ~ l Y B S IEEE COMPUTER

signal in response to the request on at
least one node on the path”

Safety and liveness properties play the
role ofpartial specifications; that is, they
do not describe device behavior globally,
rather they cover limited aspects. We call
a design correct with respect to the proper-
ties if we can demonstrate that the proper-
ties are true. This is our second definition.
Since specifications are partial, we must
take particular care in their selection, try-
ing to cover all or as many good and bad
things as possible.

Obviously, correctness is not an autono-
mous concept, but rather a relation
between two entities: a specification and
an implementation, or a property and a
design. Verification to first principles is
thus impossible-a verified design is only
as good as its specification. Specification
languages fail in being so involved and
detailed that no practitioner would ever
use them. Moreover, the specifications are
as likely to have errors as the implementa-
tion, and it is unlikely that anyone would
ever first write a formal specification and
then implement it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A possible classification of the relations
between a specification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and an imple-
mentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp or a property a and a design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/3 that must be demonstrated in a proof
follows:

equality: a = p,
equivalence: a c* p,
logical implication: a + p,
homomorphism: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM (+(a)) = M(b)

The last item, used in model-based
approaches in first-order predicate calcu-
lus, consists of defining a function (the
homomorphic function +)and a mapping
M that makes possible the comparison
between a model of the specification and
a model of the implementation. Specifica-
tions and implementations often fall at
different levels of abstraction, thus we
must transform them through a + func-
tion: structural abstraction consists of hid-
ing internal lines, data abstraction
transforms a data type into another data
type, and temporal abstraction takes into
account timing models and time’s
granularity.

In this article we analyze formal verifi-
cation techniques focusing on two key
points: suitable representation systems and
mechanizable proofs. But before we look
at current research efforts, we will briefly
discuss related topics to make them under-
standable to novice readers.

First we report on different approaches
to hardware verification. We compare for-

Proof U
4

Specification 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

Proof n
4

0

Implementation 1
Specification 2

Implementation n - 1
Specification n

Implementation n

Figure 1. Correctness.

mal verification and automated synthesis
to show how they cooperate in producing
zero-defect designs. Next we present the
necessities for formal verification tech-
niques: formal representation systems and
the related reasoning facilities. For each
technique we consider some of the main
efforts related to it and evaluate them. A

reading list covers the specific topics for
those interested in exploring further. The
reading list includes all works on which we
based our discussions. Finally, we evalu-
ate the different approaches and show the
promise of research in this field.

Approaches to
hardware verification

We can verify the correctness of hard-
ware in many different ways, such as
through breadboarding, simulation, and
formal proof.

Rising design and fabrication costs,
market demands, circuits moving toward
very-large-scale integration, and growing
system complexity made the use of a pro-
totype for extensive testing almost impos-
sible. Breadboarding has also dwindled
because parasitics, thermal and electrical
characteristics, and component-matching
properties differ for discrete components
and VLSI. Nowadays, breadboarding for
VLSI is restricted to very special applica-
tions, such as systems used in space flights.
Breadboarding’s limits forced the exten-
sive use of simulation in establishing hard-
ware correctness.

Simulation differs from breadboarding

mainly in the presence of a model of the
system under consideration. Although
there are various notations to describe the
models, the ultimate goal of using them is
to allow the operation of a simulation
engine.

Simulation-based design evaluation
steps through the following phases:

(1) Model description in a suitable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) Test input stimuli generation
(3) Simulation
(4) Result extraction from simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5) Extracted and expected data com-

(6) Circuit/system redesign

The last three phases have been success-
fully applied in commercially available
systems. A major drawback of Step 3 as a
means of establishing correctness or com-
puting performances lies in the generation
of input stimuli. If we must prove correct-
ness with certainty and/or evaluate perfor-
mance with accuracy, we should consider
all possible input combinations and their
sequences. This leads to an explosion of
cases, which soon makes the approach
unfeasible.

Thus Step 2 replaces exhaustive simula-
tion. The designer prepares a set of test
cases that he or she considers sufficient to
establish correctness. I f extracted and
expected data differ, something has gone
wrong; otherwise, nothing can be stated
unequivocally. As E.W. Dijkstra has
remarked, “Non-exhaustive testing can be
used to show the presence of bugs, but
never to show their absence.” The degree

language

runs

parison

July 1988 9

tion of correctness because specifications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. i . and implementations can be run concur- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 - .

Specification:
two-bit: box;

input start;
output register c(0: 1);
I c=OAstart I c = l ;
10 < c < 4 1 c = c + l ;

end box;

Implementation:
two-bit: box;

input start;
output CO, c l ;
CO = JKFF(tt,cs,tt);
CI = JKFF (tt,clock,ts);
ts = OR2(tt,start);
tt = OR2(cO,cl);
cs = OR2(cl,ct);
ct = AND2(clock,nt);
nt = NOTl(tt);
end box;

rently and the results manipulated and
compared to establish a proof. As an
example, let us consider a two-bit
counter’ with a behavioral specification
under the form of a state transition
description and a structural implementa-
tion under the form of a network diagram
description (see Figure 2). Note that the
descriptions resort to different timing
models and that there is no explicit conver-
sion function from natural numbers to bit-
vectors. The correspondence between
states and output values of the two
machines is given by a simulation relation
that must hold at each clock tick:

Specification Implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. A two-bit counter with a behavioral specification under the form of a

state transition description (a) and a structural implementation under the form of a

network diagram description (b).

start = start
c(0) = CO

c(1) = c l

Starting specification and implementation
with c = C and start = START, we find and
manipulate symbolic values to establish
equivalence as shown in Figure 3 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 rivial
equivalence cases are easily solved. We

. d I *. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -

Case
C=O A START= 1
C=O A START=O
c< > o

Specification result
C = l
c=o
C = C + I

Case Implementation result
CO = 0 A C1= 0 A START = 1 CO= 1 c 1 = o
CO=OACI=OASTART=O CO=OCI = o
CO=] V C l = l CO=CI xor CO

c 1 = w c l A CO

Figure 3. Given beginning specification and implementation values, we can find

and manipulate symbolic values to establish equivalance.

of confidence the designer has in the simu-
lated system depends on the quality of the
test cases.

Another crucial point, common to
simulation and formal verification, is Step
1. The model must, in fact, represent the
real system accurately, otherwise it is not
only useless, but misleading, too.

Having established the limits of simula-
tion, we could continue with an enhanced
simulation-based approach to verification;
abandon simulation, resorting to formal
methods to prove hardware correctness; or

integrate various approaches, both formal
and simulation-based.

As far as the first choice is concerned,
we could resort to symbolicsimulation, an
offspring of conventional simulation
because it uses a model for hardware and
a simulation engine, but differing from it
in considering symbols rather than actual
values for the circuit under consideration.
In this way we can simulate the response
to entire classes of values with a notable
improvement over traditional techniques.

Symbolic simulation extends to verifica-

leave nontrivial ones, such as proving that
some bit-vector operations realize integer
addition, to theorem provers.

A novel and promising approach to
hardware verification is formal verifica-
tion. The key concept lies in the word “for-
mal”: it means that the proof is
mathematical, rather than experimental.
Mathematical demonstration overcomes
the limits of test-case simulation, since it
is valid for all input stimuli under specified
assumptions.

Formal verification needs suitable sys-
tems to represent the objects it considers
(specifications, implementations, proper-
ties) and means to perform proofs. Formal
systems must be mathematically sound
and tailored to the domain of application,
that is, to the classes of designs to be
verified.

Hybrid approaches use formal tech-
niques and exhaustive simulation, such as
enumeration on a restricted set of vari-
ables, trying to balance proof power and
computational efficiency.

We can also use formal techniques to
transform a design. In this case we talk of
“correctness-preserving transforma-
tions.” Such techniques are particularly
useful when integrating verification and
automated synthesis in a cooperative
approach to correct hardware design. A
correctness-preserving transformation
takes a correct implementation of a spec-

10 COMPUTER

ification and derives another correct
implementation. We use these transforma-
tions to generate design alternatives to
improve the quality of some original solu-
tion, to explore the design space, and to
prove the equivalence of two hardware
descriptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Formal verification versus automated

synthesis. The goals of automated synthe-
sis and of verification seem mutually
exclusive: the former aims at correct-by-
construction designs, while the latter tar-
gets the proof of post-factum designs. For-
mal verification does not consider aspects
such as area, cost, and performance. We
can regard formal verification as an ancil-
lary approach, replaceable by synthesis as
soon as synthesized designs surpass hand-
made ones.

Given the restricted domain of formal
verification, we can reasonably suppose
that it will reach its goals sooner than syn-
thesis, although a circuit 90-percent syn-
thesized is more useful than a circuit
90-percent verified-the subtle bugs will
occupy the unverified 10 percent. More-
over, formal verification helps in defining
the concept of correctness and correct-by-
construction design methodologies. Thus,
both approaches benefit from the
advancement of the same theoretical
studies.

Formal systems for
hardware representation

Since the difference between formal and
simulation-based verification lies in the
presence of a mathematical proof, it is
essential to have a formalism to represent
hardware systems at all levels of abstrac-
tion. Such a formalism requires a com-
plete, precise, and coherent definition of
the underlying semantics. Consequently,
we associate with each formal system a set
of calculation properties allowing mathe-
matical proofs.

We can distinguish semantics as opera-
tional, denotational, or axiomatic.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Operational semantics defines the
meaning of any term of a formalism in
terms of the actions performed by an
abstract state machine that interprets the
statements written in the formalism.

Denotational semantics entails an
abstraction of the interpretation mecha-
nism, since it introduces a model that views
a term as a function transforming states
into other states. Denotational semantics

Figure 4. A synchronous circuit.

assigns meaning in terms of set and func-
tion theories.

Axiomatic semantics in the theory of
programming languages means that some
formulas of predicate calculus are
associated with a program. From a mathe-
matical point of view, this is just a trans-
formation of a formal language not part
of a formal system into a formal language
for which a syntactical concept of deriva-
bility exists.

The next section presents logic, the most
widely known and used formal system.
Subsequently, we will present the use of
programming languages for hardware rep-
resentation, although they aren’t formal
systems. Programming languages are
widely used in conjunction with logic in
software verification, and some authors
extend their use to hardware, too, cross-
fertilizing some ideas with software verifi-
cation techniques.

Formal logic

Logic is that branch of knowledge con-
cerned with truth and inference. It inves-
tigates the structure of propositions and
deductions, resorting to a method that
abstracts from the contents of the propo-
sitions in question and is related only to
their form. A proposition is a declarative
statement to which we can attach a true or
false value. The meaning of a proposition
is given by an interpretation in some
“world,” while syntax is the only key
available for us to manipulate and reason
about. Ad hoc formalisms enhance the dis-
tinction between form and meaning. Logi-
cians have proposed various formalisms.

We will briefly outline the most relevant
ones in the domain we consider:

First-order predicates
Higher-order predicates
Specific calculi
Temporal logic

First-order predicates. First-order
predicates deal with propositions and
propositional functions, that is, those
functions where the domain of the
independent variable ranges over propo-
sitions. All usual logical connectives are
defined as well as the existential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and
universal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V) quantifiers. Interpretations
of first-order predicates require a specified
domain and symbols referring to entities
within this domain. Different domains
lead to different interpretations.

The language of first-order predicates
consists of terms, atoms, and formulas.
The traditional approach outlined above
is purely logical and does not provide the
common concept of function. Thus, it is
mainly used by Prolog-oriented
researchers. Other authors prefer to intro-
duce truth values in their formal systems
rather than assigning them by means of an
interpretation. Hence, they do not deal
with predicates, rather they use functions
with truth values as the range.

Model theory offers another approach
to first-order predicate^.^ Model theory
deals with the relationship between a for-
mal system and an algebraic structure that
gives a meaning to it.

Example. Consider the simple syn-
chronous circuit4 of Figure 4, consisting
of a D-type flip-flop with clock input gated
by a NAND gate. The goal is to show how

July 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11

Design in DDL Assertion

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t
I

Assumption

Axioms

Errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo

Verified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5. DDL verifier. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
first-order predicate calculus can describe
structure and behavior. The device resorts
to a precise-delay timing model.

The description in terms of first-order
predicates expresses behavior as a set of
time functions, possibly with initial or
generic conditions. It looks as follows:

Function re detects the rising edge of a sig-
nal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdnond is the delay of the NAND gate,
and dJfis a propagation time through the
flip-flop.

Research. T.J. Wagner of Stanford
University, California, first attempted to
apply predicate calculus to the verification
of hardware using an available theorem-
prover for a number of simple proofs of
unit-delay descriptions.

A S . Wojcik of Illinois Institute of
Technology, Chicago, presented Aura, the
Argonne Automated Reasoning Assistant,
an experimental system for formal verifi-

cation. The axiom set includes rules for
Boolean algebra, signal specifications, and
structure handling. Wojcik described spec-
ifications and implementations at the
register-transfer level using a clause form.

J.C. Barros of Shell Development,
Houston, Texas, and B.W. Johnson of the
University of Texas, Dallas, used first-
order predicates to describe some classes
of commonly used synchronous circuits,
such as arbiters, synchronizers, latches,
and inertial delays. They defined axioms
in a ternary algebra which, in addition to
the standard values true and false, has the
unknown value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. They introduced two
kinds of axioms, constraining the outputs
or allowing partial inference of output
behavior from input behavior. The predi-
cates included parameters to specify tim-
ing condit ions. Theorem proving
demonstrated correctness, but no
mechanization of this approach has been
reported.

N. Suzuki of the University of Tokyo
explored a hybrid methodology between
simulation and formal verification. The
specifications, represented by input/out-
put assertions in first-order predicates, tie
the method to formal verification. Instead
of showing that the implementation for all
inputs satisfying input assertions satisfies
output assertions, Suzuki showed that this

holds only for selected inputs, called test
data. The main interest of this approach
lies in the language the author used for
description: Concurrent Prolog, a logic-
programming language that allows con-
currency and efficient backtracking by
means of guards and commit operators.
Suzuki’s approach was applied to the
memory of Dorado, a high-performance
personal computer designed at Xerox Palo
Alto Research Center.

T. Uehara, T. Saito, F. Maruyama, and
N. Kawato of Fujitsu Laboratories,
Kawasaki, Japan presented a system called
the DDL Verifier (see Figure 5) , applied to
synchronous systems at the functional
level. Implementations are described in the
DDL language and specifications are first-
order predicates. A translator reduces the
circuit under consideration to cause/effect
tables, which show necessary and suffi-
cient conditions for circuit operations. The
proof method uses backward reasoning
and proof by contradiction. First, the
specification is negated and then traced
backward using cause/effect tables to
show that it is always false. The DDL Veri-
fier takes time into account, exploring
truth and falsity in present and past states
of the circuit under consideration. In a
later paper, the authors abandoned first-
order predicates as a means of expressing
specifications and resorted to temporal
logic.

H. Eveking of the Technische Hoch-
schule Darmstadt, Federal Republic of
Germany, introduced a fundamental dis-
tinction between vertical and horizontal
verification. Vertical verification means
compliance between the specification and
the implementation of a circuit. When the
behavior of a device is described, a model
is created and associated with the real
object. Such a model is valid only if the
environment in which it operates satisfies
a set of constraints; thus, the device
behaves as specified in the description.
These constraints, called assertions, may
refer to any point in the device. When
devices interconnect in a more complex
structure, you must extract a set of inter-
face assertions that have no ties to internal
points and that guarantee-if satisfied-
that internal assertions also hold. Eveking
calls this process of composing assertions
and propagating them outwards horizon-
talverification. A support tool for such a
methodology is Vertico, an expert system
for generating interface assertions through
predicate transformation.

For vertical verification, Eveking con-
sidered synchronous systems described in

12 COMPUTER

SMAX, a nonprocedural hardware
description language belonging to the
Conlan family. Eveking considers HDLs
formal languages but not formal systems.
Thus, HDL descriptions must be axioma-
tized and transformed into first-order
predicates. The predicates associated with
a description may be classified as logical
axioms, that is, general-purpose axioms;
HDL-specific axioms; and description-
specific axioms. The formal system pro-
vides a set of inference rules; axioms and
inference rules form a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. This set of
entities allows a precise definition of cor-
rectness: an implementation is correct with
respect to a specification if the nonlogical
axioms of the former are theorems in the
latter’s theory. When specification and
implementation occupy different abstrac-
tion levels and/or use different timing
models, you must introduce an interpreta-
tion of a language (or a theory) in another
language (or theory), thus generating a
suitable mapping.

Mechanization of this approach is under
study, but for efficiency’s sake, instead of
a general-purpose theorem-prover, Evek-
ing uses a set of smaller and specialized
provers whose activation is controlled by
an expert system integrating frames and
production rules.

W.A. Hunt of the Institute for Comput-
ing Science and Computer Applications at
the University of Texas, Austin, used
Boyers-Moore logic to describe and verify
the FM8501 microprocessor. The specifi-
cation is the microprocessor viewed as an
instruction interpreter; that is, for every
possible instruction, a new microprocessor
state is defined. The implementation is a
graph of logic gates. The formalism con-
sists of quantifier-free first-order predi-
cates. Recursive functions provide the
primary means of description for hard-
ware devices. Time is only implicitly
modeled as a stream of values, which con-
stitutes a weakness of this approach. The
objects the author considered are bit-
vectors of arbitrary size, natural numbers,
and integer numbers. Specifications and
implementations are both expressed as
recursive functions. Implementations, or
hardware formulas, can be automatically
expanded to yield structural descriptions.

Evaluation. First-order predicates rep-
resent a substantial share of current
research efforts. They are important both
from methodological and practical points
of view. In particular, studies with first-
order predicates have contributed to the
understanding of their expressive limits

and fostered research on higher-order
predicates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Higher-order predicates. Higher-order
predicates represent an enhancement of
first-order predicates. They extend the
notation of first-order predicates in that
the domain of variables also ranges over
functions and predicates, and functions
can take functions as arguments and
return functions as results. As an example,
consider how we could express a falling
clock signal:

Vclock t . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Fall clock) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= clock(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
-clock(t + 1)

The variable clock has time functions as
domain-that is, functions from time-
modeled as positive integers, to Boolean
values. Fall is a higher-order function
accepting clock as an argument and
returning a predicate on positive integers.

Unrestricted higher-order predicates
suffer from a number of paradoxes,
avoided by resorting to type theory and
type hierarchy. Higher-order predicates
generally contain the axioms of infinity
and choice. The infinity axiom states that
the domain of individuals is infinite; the
choice axiom allows us to introduce new
primitive formulas.

Example. This example illustrates the
use of higher-order predicates to represent
parameterized systems such as an n-bit
adder.5 An n-bit adder computes an n-bit
sum and one-bit carry-out from two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn -bit
inputs and a one-bit carry-in. The lines c,,,
and c,,, carry one-bit words and the lines
a, b, and sum carry n -bit words. One-bit
words are modeled as Booleans; n-bit
words are modeled as functions mapping
natural numbers into Booleans. The spec-
ification follows:

Adder (n)(a, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcin,sum, caul)
(2“ + ’ * Bit-Va~(coul) + VaI(n,sum) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Val(n,a) + Val (n ,b) + Bit-VaI(c,,))

The higher-order function Adder applied
to the n-bit number yields a predicate
specifying the corresponding adder. The
function Bit- Val relates the logical values
true and false with numbers 1 and 0; Val
transforms bit-vectors recursively into
numbers,

You can implement an n-bit adder by
connecting n full adders. The inputs are a
single bit-carry in cjn and two n-bit words,

. . . ao, b , - l . . . bo. The outputs
are an n -bit sum, sum,, ~ I . . . sumo, and

a one-bit carry-out, c,,,. The implementa-
tion uses a recursively defined higher-order
function, A d d J m p , which when applied
to a number n yields the predicate specify-
ing the implementation of an n-bit adder.
The recursive part of the function says that
you build an n-bit adder by first building
a n n - I-bit adder and then connecting its
carry-out to the carry-in of a one-bit
adder:

A d d J m p (n)(a, b, c,,,,sum, cOuI) =
3 c. A d d J m p (n)(a, b, c,,,, sum, c) A

Addl(a(n),b(n),c,surn(n),c,,,)

Research. F.K. Hanna and N. Daeche
of the University of Kent, United King-
dom, presented a system called Veritas for
specification and verification of hardware.
Specifications, written in higher-order
logic, are partial and hierarchical, and they
can take into account low-level timing
issues. A designer’s knowledge of digital
systems is structured as a set of theories,
each defined by a theory presentation con-
sisting of a set of symbol declarations and
a set of axioms. Theorems can be deduced
from axioms using inference rules. The
Veritas system is supported by various
software tools for establishing and han-
dling the theory database using a func-
tional programming language, ad hoc
parsers, user-defined inference rules, and
goal-directed theorem-provers. The
Veritas approach is interesting from a
methodological rather than from a prac-
tical point of view, examples being limited
to very simple gates.

M.J.C. Gordon of the University of
Cambridge, United Kingdom, is another
British author who migrated to higher-
order lo jc . We describe his earlier work
in the section “Specific calculi.” His for-
mal system based on higher-order predi-
cates is called HOL, but the same name is
given to the automatic theorem-prover.
HOL as a formal system is polymorphic (it
allows types containing type variables) and
has Hilbert’s operator to build the choice
axiom.

To avoid paradoxes, Gordon imposed
some restrictions on terms (they must be
“well-typed”) and introduced some vari-
ations in terminology:

Asequent is a set of assumptions from
which a conclusion follows.

A theorem either is an axiom or fol-
lows from other theorems by means of
inference rules.

A theory is a set of types, type opera-
tors, constants, definitions, axioms, and
theorems.

July 1988 13

In pure logic, a theory contains all possi-
ble theorems, whereas in HOL it contains
only axioms and already proved theorems.
Gordon gave two theories as primitive:
Booleans and Individuals, introducing for
the latter the axiom of Infinity to generate
infinite sequences.

M. J.C. Gordon, J . Joyce, and G. Birt-
wistle of the University of Calgary,
Canada, with the HOL system verified a
microprocessor originally specified and
verified with LCF-LSM (logic of computa-
ble functions/logic of sequential
machines). D. May and D. Shepherd of
Inmos, Bristol, United Kingdom, are using
HOL to derive correct microcode for the
IMS T800 floating-point transputer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Evaluation. Higher-order predicates
have more expressive power than first-
order predicates, but the trade-off for this
advantage involves more difficulty in per-
forming proofs and mechanizing. The
integration of higher-order predicates with
functional approaches looks like a trend
for future development. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Specific calculi. Many authors, espe-
cially in the domain of hardware verifica-
tion, create their own formal systems
reducible to first-order or higher-order
predicates. We will call these formalisms
“specific calculi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” Such calculi are defined
along the lines of logic by giving legal con-
nectives, terms, and rules for constructing
formulas and performing inferences.

Example. Consider the case of a unit-
delay directional wire,6 shown in Figure
6 . This device operates synchronously
within a discrete model for time according
to the state-transition graph shown in the
figure.

The device is defined by two input ports
(a and t) , an output port @), and two states
(W and W ’) through which the circuit
evolves at every clock tick according to the
events on the input port a . Input to a may
only occur when the timer ticks, so an a
signal only occurs with a t signal. The sig-
nal will propagate through the wire and is
output on the next t signal, either on its
own or simultaneously with a further input
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. The timer may tick without any input
appearing, since it models the passage of
real time (which cannot be halted).

W t t W + (a t) W ‘
W ’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p t) w + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(apt) W ‘

Research. G.J. Milneof the University
of Edinburgh, United Kingdom, presented

Circal, a calculus to describe and analyze
circuit behavior. Circal is based on dot cal-
culus, a descriptive language consisting of
construction operators together with
objects representing primitive concepts.
Objects are composed to yield descriptions
and communicate through labeled ports,
called “sorts.” Circal describes the
behavior of a computing agent by the
actions it wishes to perform with other
agents in the environment. Circal descrip-
tions are based on the notion of event, that
is, a trigger that starts a particular evolu-
tion through time, resulting in a state.

When composing more devices, you
often must reduce their complexity to keep
them manageable. You can do this by hid-
ing internal ports, making them invisible
to an external observer.

The use of Circal is not restricted to a
specific domain: it is both a very special
hardware-description language and a
framework for device analysis, in partic-
ular for formal verification of partial or
total specifications and for “constructive”
simulation. The last concept represents a
variation with respect to standard simula-
tion: instead of simulating a whole device
composed of many elements, Milne simu-
lated the elements one by one and com-
posed the results. A proof demonstrated
the equivalence of the standard and con-
structive approaches.

Circal does not just verify single designs,
but also demonstrates the correctness of
classes of designs generated by the same
simple silicon compiler using NOR expres-
sions as specifications. Circal tools in a
Lisp-based environment and related pro-
totype systems support expression manip-
ulation and Circal simulation, but not
correctness proofs as such.

An interesting library of LSI and VLSI
components has been created and is
reported in Circal.

M.J.C. Gordon produced the LCF-
LSM system. LCF, or logic of computa-
ble functions, is a verification-oriented
programming environment extensible to
the manipulation of specifications. LSM,
or logic of sequential machines, is a spec-
ification language for synchronous sys-
tems, currently used at the register-transfer
and gate levels. The interface between user
and LCF is provided by ML, an inter-
preted metalanguage with side effects simi-
lar to Lisp’s. LSM is tied to OL, a
predicative object language assuming
some concepts from the CCS, or calculus
of communicating systems, proposed by
Milner.

LSM interfaces to LCF through four

types: terms, constants, formulas, and the-
orems. In OL, theorems are derived from
axioms through rules of inference. Rules
allow folding and unfolding, renaming,
combining, pruning, and unwinding equa-
tions. Axioms are grouped in theories, and
theories in taxonomies. For the verifica-
tion process, the user creates separate the-
ories for specifications and implementa-
tions, and generates a proof interactively
by directing the system to use rules. Gor-
don reported some examples of the appli-
cation of his methodology to a simple
computer and to an emitter-coupled-logic
chip used in the Cambridge Fast Ring
hardware.

Gordon’s early work presented a for-
malism to describe synchronous circuits
based on recursive functions and lambda
calculus. Specifications are given
behaviorally, while implementations are
structural connections of modules with
assumed primitive behavior. Elementary
behaviors are composed using catenation,
connection, and hiding operators. Syntac-
tic identity of expressions demonstrates
equivalence of implementation and spec-
ification.

Gordon introduced the concepts of
microcycles and macrocycles to represent
systems that do not work in lockstep, that
is, systems where a single operation at a
higher level is implemented by a sequence
of operations at a lower one. He also intro-
duced the induction principle to take into
account complex cases. The paper
reported some examples of application to
register-transfer systems and NMOS cir-
cuits. Gordon’s early work inspired H.G.
Barrow, D. Weise, and J.L. Paillet.

H.G. Barrow of the Fairchild Labora-
tory for Artificial Intelligence Research,
Palo Alto, California, presented a verifi-
cation system written in Prolog, called
Verify, which stemmed from Gordon’s
early work. Verify can check the correct-
ness of finite-state machines. Behavioral
specifications and structural implementa-
tions are both described in Prolog. The
system extracts from the structure the de-
rived behavior and compares it with the
intended one. To prove the identity of
specification and implementation, Verify
uses symbolic manipulations, such as sim-
plification, expansion, and canonicaliza-
tion. When they become too heavy
computationally, it resorts to evaluation or
enumeration, and thus to exhaustive simu-
lation on selected variables. The interac-
tive system has been applied to verify the
same simple computer presented by Gor-
don, and D74, a module for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

14 COMPUTER

sums of products.
D. Weise of the Massachusetts Institute

of Technology, Boston, Massachusetts,
presented a methodology and a tool, called
Silica Pithecus, to prove functional cor-
rectness for designs at the switch level.
Although it refers to NMOS, this
approach is almost technology-
independent. An ad hoc language
describes specifications, while implemen-
tations are described as schematics. The
system extracts signals from the
schematics, possibly still analog, and
abstracts from these signals their digital
behavior. Specified and intended behavior
are compared to prove syntactic equiva-
lence through symbolic manipulation and
rewrite rules.

J.L. Paillet of the UniversitC de
Provence, Marseille, resorted to operative
expressions to describe specifications and
implementations. He then extracted the
function of an implementation by com-
posing the functions of the submodules
and eliminating the internal variables.
Eventually he compared, specified, and
extracted behaviors to demonstrate
equivalence. Internal variables are elimi-
nated either by substitution or by a “devel-
opment” operation (when looped).
Concerning time, Paillet defined a “past”
functional to allow references to past
values of carriers. This approach focuses
on synchronous circuits described at the
register-transfer level. Mechanization is
under way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Evaluation. Specific calculi are stand-
alone formal systems especially tailored
for hardware verification. From a theoret-
ical point of view, they resemble first- or
higher-order predicates. Some authors
abandoned them, since they considered the
trade-off between ad hoc formalisms and
costs unfavorable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Temporal logic. In the domain of hard-
ware representation, we must cope with a
particular aspect of reality: time and tem-
poral evolutions. Traditional logic is very
powerful when dealing with static situa-
tions, but it fails when dealing with
dynamic ones. To satisfy hardware’s
requirements, two choices seem possible: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(1) an explicit introduction of the time

(2) a generalization of predicate logic to

Following the first path, authors intro-
duce time functions, treating time just as
any variable, with the usual rules for
terms, formulas, and inference. Following

variable t into predicate logic, or

encompass the temporal domain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t
a

Figure 6. A unit-delay directional wire and its state-transition graph.

the second path, authors augment stan-
dard logic to cover temporal evolution.

First-order and higher-order predicates
stand for eternal truths. Modal logic, on
the other hand, introduces the concepts of
possibility and necessity in the future.
Modal logic, although more expressive
than traditional predicate logic, still lacks
the ability to cope with changes, an essen-
tial feature in hardware behavior. To han-
dle changes, we need a formal system that
can reason from past events to what can or
must be true at present and in the future.
Such formal systems are generally grouped
under the label “temporal logic.”

Temporal logic includes all usual con-
nectives and adds some typical operators.
Although there are many variants, the
basic operators are

henceforth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0
eventually o
next 0
until U

We can classify temporal logic systems
according to the way they consider time.
The framework being generally a discrete
model for time, there are different ways of
considering the future. The past is always
linear, while the future may be either a
unique world or a set of possible worlds.
In the first case, time is linear in the future,
too; such logic is called “linear temporal
logic.” In the latter case, time branches in
the future; such a system is called “branch-
ing temporal logic.” In the former case, a
system supposedly has a unique evolution
along time, whereas in the latter case, a
system has a set of possible evolutions.

Linear and branching time are not the
only distinctions in temporal logic.
Another important one is instant-based

versus interval-based logic. Temporal logic
is instant-based when propositions are
asserted on single states (that is, instants
in discrete time) only. Temporal logic is
interval-based when propositions are
asserted on sequences of states (that is, on
intervals in discrete time). “Interval tem-
poral logic” may be either global or local.
It is global when the truth of propositions
is determined over an entire interval, that
is, on all its states. It is local when truth is
determined on the first state of an interval
and holds unchanged on the rest.

Linear temporal logic example. Con-
sider part of the handshaking protocol’ in
Figure 7 . Explanations appear between
quotes.

0 (Q Hear -. o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACall)

“if Hear is low, then sooner or later
Call will rise”

U(Call-. Call U Hear)

“if Call is high, it will stay high until
Hear is high”

U (Call + o Hear)

“if Call is high, then sooner or later
Hear will rise”

O(Q Cal l - . o Q H e a r)

“if Call is low, then sooner or later
Hear will fall”

Research. G.V. Bochmann of the Uni-
versity of Montreal, Canada, presented
one of the first attempts to use temporal
logic as a formalism to describe and rea-
son about hardware. In his approach, time
is linear and discrete. He presented some

July 1988 15

. ‘ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and using external specifications. The
authors used this approach for automatic
synthesis of state diagrams starting from
temporal logic specifications.

thesystem’sefficiency, including filtering
of descristions. >toring state transitions,

”for ewry path in the future, at e\cry
node on the path, if the light is red zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Branching temporal logic example.
Consider the expression of some safety
and liveness properties for a traffic-light
controller’ (see Figure 8). The traffic-light

-

and there is an eastbound car request-
ing to cross, then for every path there
will be at least a node on the path
where the E-Go signal will be high”

3 F(N-Go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA S-Go)

“for some path there is a state on the
path where both the N-Go and the S-
Go signals will be high”

controller is stationed at the intersection of
a two-way highway going north and south Research. E.M. Clarke, B. Mishra, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure 7. A handshaking protocol.

’
and a one-way road going east. No turns
are permitted. At the north, south, and
east of this intersection, a sensor goes high
for at least one clock cycle when a car
arrives. When the intersection is clear of
cross traffic, the controller raises a signal
indicating that the car may cross the inter-
section. Once the car has crossed, the sen-
sor that indicated the arrival will go low.
The sensors are named N, S, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE; the
output signals for each end of the intersec-
tion are N-Go, S-Go, and E-Go.

A description in branching temporal
logic follows:

Figure 8. A traffic-light controller.

of the axioms bound to the modalities he
used, then described and verified an
arbiter. Verification relies upon a kind of
reachability analysis, in which possible
states and transitions are generated and
symbolically executed.

M. Fujita, H. Tinker, T. Moto-oka, and
S. Nishiyama of the University of Tokyo,
Japan, presented an approach to formal
verification based on linear temporal logic
and Prolog. The domain of application is
currently restricted to finite-state machines
used to implement the synchronization
part of a complex system. Implementa-
tions are described in standard HDLs,
such as HSL or a subset of DDL, at the
gate or register-transfer level. Specifica-
tions are expressed in temporal logic with
weak and strong until (U) operators.
Implementations are automatically trans-
lated into C-Prolog clauses, while specifi-
cations are transformed into state
diagrams using temporal logic’s decision
procedure. This state diagram and the
implementation are simultaneously
traversed to look for a counterexample,
where negated specifications satisfy the
implementation. Some features expedite

VG (E-GO A (N-GO V S-GO))
“for every path in the future, at every
node on the path, there will never be
green signs in both directions”

This formula is a safety property that is
true if the controller does not permit col-
lisions.

The following liveness properties state
that every request to enter the intersection
is eventually answered, so the controller is
starvation-free. I f all three of these for-
mulas are true, the controller is deadlock-
free as well.

VG(m N-Go A N - , V F N - G o)
“for every path in the future, at every
node on the path, i f the light is red
and there is a northbound car
requesting to cross, then for every
path there will be at least a node on
the path where the N-Go signal will
be high”

VG (* S-GO A S -, V F S-GO)
“for every path in the future, at every
node on the path, if the light is red
and there is a southbound car
requesting to cross, then for every
path there will be at least a node on
the path where the S-Go signal will be
high”

VG(m E-GO A E + VFE-GO)

D.L. Dill, M. Browne, E.A. Emerson, and
A.P. Sistla of Carnegie Mellon University,
Pittsburgh, presented an approach and the
supporting tool for formal verification of
synchronous and asynchronous control
parts of digital systems. Implementations
are described by either structural HDLs or
an ad hoc language called SML, for state-
machine language. Specifications are
expressed in the temporal domain using
computation tree logic, or CTL, a branch-
ing time propositional temporal logic.
CTL extends all temporal logic operators
to take into account the introduction of
possibility in the future: a circuit may
evolve along many possible paths.
Implementations expressed in structural
form are automatically transformed into
a state-transition graph (a finite Kripke
structure) by means of simulation. If the
implementation is already expressed as a
finite-state machine, the state-transition
graph generation process is almost
immediate. Verification relies upon state-
graph transition, possibly exhaustive,
looking for a counterexample of the spec-
ification.

The tool supporting this approach,
called MC for model checker, comes in a
C-language version and a Franz-Lisp ver-
sion. Since state-graph complexity
increases exponentially with &he size of
designs, the authors proposed multilevel
verification to keep the task manageable.
Lower-level modules are composed to
yield complex ones, thereby shrinking
complexity by restriction. In a later ver-
sion, called EMC for extended model
checker, the updated tool deals with a
more expressive branching time temporal
logic called CTLF. The authors have
applied their approach to a FIFO cell and
to an asynchronous communication inter-
face adapter.

Interval time temporal logic example.
Consider the expression of a positive pulse
signal’ with quantitative timing informa-
tion (see Figure 9).

16 COMPUTER

The corresponding interval temporal
logic formula looks as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t$l,ni,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~

[(x = 0 A minlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I)); skip;
[(x = 1 A minlen (m)) ; skip;
[(x =: 0 A minlen (n))]

The construct minlen(n) is true for an
interval at least n units long. Skip is a con-
struct to test for intervals having length
one.

Research. B. Moszkowski of the Uni-
versity of Cambridge, United Kingdom,
presented a general-purpose formalism to
specify hardware behavior, called ITL for
interval temporal logic. ITL is general-
purpose because you can use it to describe
register-transfer operations, as well as flow
graphs and transition tables. ITL's syntax
allows variables, expressions, and for-
mulas. Each formula is associated with a
sequence of states (points in discrete time).
A function maps variables, formulas, and
states into data values. Through this map-
ping function, it is possible to define when
a sequence of states satisfies a formula.
ITL is local in that truth or falsity of a for-
mula depends only on the value the map-
ping function returns on the first state of
the interval. Some operators have an
interval-dependent meaning, which distin-
guishes ITL from all other temporal logic
formalisms.

Moszkowski presented Tempura, a
logic programming language with imper-
ative constructs for assignment, as a logi-
cal consequence of his work. Tempura
functions as a conventional programming
language or as an HDL for structural
descriptions. A ring network and a mul-
tiplier exemplify its use in the hardware
description domain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a logic program-
ming language, Tempura resembles Pro-
log, but has no incorporated unification
and backtracking facilities. It is supported
by a software tool implementing its inter-
preter. This evaluates formulas, splitting
them recursively into values at present and
next state, in a way similar to temporal
logic's decision procedure.

Moszkowski did not present evidence
for the utility of his approach in the
domain of formal verification of hard-
ware; rather, he claimed that such an
extension would not be difficult.

Within the major framework intro-
duced by Moszkowski, T. Aoyagi, M. Fuj-
ita, T. Moto-oka, S. Kono, and H. Tinker
of the University of Tokyo presented
Tokio, a concurrent logic programming

language. Although based on Prolog, it
extends it by incorporating local ITL con-
cepts. Since Prolog lacks the concept of
time, assignment occurs as a tricky side-
effect. This is Prolog's main disadvantage
with respect to conventional programming
languages. Tokio introduces a discrete
time model, with intervals defined by their
starting and final events. ITL operators
have been added to Prolog, and the inter-
preter can be directed to execute goals in
specified intervals. The authors presented
no examples of Tokio's application to for-
mal verification, but we expect them in the
near future.

Evaluation. Temporal logic substan-
tially advances traditional logic because it
can capture time and dynamic
behaviors-essential features in hardware
descriptions-with concise and clear nota-
tion. For example, it avoids the introduc-
tion of explicit time functions and time
variables. Moreover, temporal logic is use-
ful in different environments, such as pro-
gramming, although within the domain of
hardware verification no one has yet
exploited its full power. Timing anoma-
lies, races, and hazards could be described
easily, but we are not aware of similar
research efforts.

A lively debate among temporal logi-
cians focuses on the relative merits of lin-
ear and branching time temporal logic.
The common opinion is that linear time
temporal logic has more expressive power
and branching time temporal logic has
more powerful decision procedures. The
choice between the two strongly depends
on the applications.

Cross-fertilization with
software verification
techniques

Since software verification is older than
its hardware counterpart, one of the first
approaches for hardware adapted some
software verification techniques to the
particular domain under consideration.

Programming languages constitute
immediately available description formal-
isms. Although not, strictly speaking, for-
mal systems, they have been extended for
hardware description and verification in
conjunction with logic. Most descriptions
of hardware are procedural; that is, a locus
of control governs the evaluation. This
heavily restricts the application domain of
such formalisms. In fact, they are used

> = , i"l > = " zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX

Figure 9. A pulse with timing details.

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 7

a

Figure 10. A Muller C-element.

only at very high levels of design, namely
those in which behavior is described
algorithmically. Procedural descriptions
allow the expression of some useful fea-
tures typical of a software verification
environment, such as termination proper-
ties, preconditions, and postconditions.
Normally, you would resort to predicative
forms to express these features, which play
the role of specifications or properties,
while procedural descriptions represent
implementations.

Examples. One example of the applica-
tion of Floyd's inductive assertion method
considers the expression of preconditions,
postconditions, and loop assertions on a
Muller C-element" (see Figure 10). We
can easily state the operation of the C-
element. The device has two binary input
signals, a and 6 , and a binary output sig-
nal, c. The output becomes 1 whenever
both inputs become I ; it becomes 0 when-
ever both inputs become 0. Otherwise, it
stays the same. Since no particular
assumptions are made about the input sig-
nals a and b, the corresponding assertion

July 1988 17

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis true at every time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt . Because the circuit
has only one cycle, a single loop assertion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y suffices and is coincident with the out-
put assertion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. The proof employs the
STP theorem prover.

4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= true zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w,+2 = Vt+2 =

if (a, = 6 ,) then a, else zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,

Research. R.E. Shostak of SRI Interna-
tional, Menlo Park, California, modeled
hardware as a graph with circuit elements
for nodes and signals for arcs. Each circuit
element is characterized by a transfer
predicate, which expresses how the ele-
ment transforms its inputs to yield its out-
puts. Assertions are placed on inputs,
outputs, and loops. As in Floyd’s method,
verification conditions are generated by
tracing back output assertions to the
inputs and comparing them with input
assertions using the STP theorem-prover.
To ease the task, acyclic subgraphs are
extracted from the complete graph and
verified one by one. Shostak’s examples
concerned some analog and asynchronous
circuits, without explicitly considering
time or reporting any automation.

A very similar approach taken by V.
Pitchumani, E.P. Stabler, and Z.D. Umri-
gar of Syracuse University, Syracuse, New
York, featured assertions, preconditions,
postconditions, and a theorem-prover.
The authors used a register-transfer lan-
guage similar to Pascal and AHPL to
describe hardware. This language allows
concurrent constructs, and the authors
described proof methods for parallel con-
trol sequences. The domain of application
of such a method is limited to synchronous
circuits. The authors reported no mechani-
zation.

An approach based on Floyd’s inductive
assertion method but with interesting var-
iations comes from M.C. McFarland and
A.C. Parker of Carnegie Mellon Univer-
sity, Pittsburgh. Instead of verifying that
a design implementation complies with its
specification, they considered a more
general case. They demonstrated that cer-
tain transformations used to optimize
designs are correct, so that the behaviors
of original and transformed designs are
equivalent.

McFarland and Parker used the descrip-
tion language called ISPB, a subset of
ISPS. ISPB is axiomatized and has a set of
rules used to manipulate expressions. Like
ISPS, it is procedural but allows concur-
rent statements. The way hardware

behaves is captured by its interactions with
the environment, which the authors called
events. Sequences of events represent his-
tories, used to give meaning to descrip-
tions. Specifications are expressed as
behavior expressions, that is, regular
expressions augmented by predicates. The
system was developed within the Carnegie
Mellon University Design Automation, or
CMUDA, project.

Evaluation. Applying software verifica-
tion techniques to hardware suffers from
some drawbacks. First, devices are
described in a procedural fashion and only
at very high levels of abstraction (algorith-
mic and behavioral). Moreover, this
approach follows closely the evolution of
its software counterpart, including its dif-
ficulties. Thus, such research represents a
minority of the current efforts in this area.

imulation has evident theoretical
limits, but thanks to the efficiency
of its tools, it is widely used in com-

mercially available systems. Although they
overcome simulation’s nonexhaustivity,
formal techniques introduce additional
concerns: they need formal description
and proof systems.

Formal techniques are now mainly aca-
demic efforts, with the majority of
research efforts located in Europe. US and
Japanese researchers seem to concentrate
more on automated synthesis.

Let us now analyze current work. It
looks like a big research effort is under
way: a lot of projects are already under
development and new ones are continually
being started. Nevertheless, it proves very
diff icult to benchmark different
approaches, and not just because of the
vast amount of material to take into con-
sideration. We deliberately avoided
presenting comparisons or figures lacking
merit from a theoretical or practical point
of view. The domains to which the authors
applied their methodologies differ
markedly, ranging from the switch to the
system level. Each author tailored the for-
mal system and proof method to his
domain, sometimes losing generality and
applicability. For example, formal systems
especially intended to model synchronous
circuits are not easily extendible to asyn-
chronous ones, and vice versa.

Another observation concerns the
domain of application: many authors
restricted their examples to “special” cir-
cuits, that is, either circuits already well-
suited for verification or old-fashioned
gate-level designs, bound more to

MSI/LSI than to VLSI technology. More-
over, the authors seldom considered gate
arrays and programmable logic devices
despite their growing importance in the
world of application-specific IC design,
nor did they take into account low-level
timing issues, such as races and hazards.

From a practical point of view, formal
techniques face a major limitation: the
majority of approaches are purely the-
oretic. Even when some software tool is
implemented, it is in general a prototype,
its performance is hard to evaluate, and it
cannot be easily incorporated in commer-
cial systems.

Although formal verification tech-
niques suffer from evident limits, we
believe that they are important not only
from a theoretical, but also from a prac-
tical, point of view. The ability to verify a
design implies understanding of its pro-
found semantic meaning; this helps both
manual design and automated synthesis.
Tools are becoming more efficient as we
gain in expertise and take advantage of
recent developments in parallel processing
and innovative architectures. Within a few
years, perhaps five or six, we can hope to
see commercial systems including formal
techniques, although it is hard to believe
that they will be general-purpose.

Industry, abandoning its initial skepti-
cism, is becoming more and more
interested in formal verification, since it
can guarantee correct designs and shave
costly development time. Some major
European manufacturers plan to include
in their private CAD systems some of the
formal verification tools currently under
development.

If formal verification keeps in touch
with the latest developments in VLSI, so
computer-aided design does not lag behind
design, both fields will benefit and contrib-
ute significantly to the advancement of
computer science. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Acknowledgments

We are grateful to all those people who kindly
provided us with the papers, reports, and mate-
rial used throughout this article. In particular,
we would like to thank Dominique Borrione,
Mario Barbacci, Hans Eveking, and the referees
for their help in reviewing the article, their sug-
gestions, and their valuable cooperation.

18 COMPUTER

References

1 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.A. Darringer, “The Application of Pro-
gram Verification Techniques to Hardware
Verification,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. ACM IEEE 16th
Design Automation Conf., June 1979, pp.
375-381.

2. J.E. Donahue, Complementary Definitions
of Programming Language Semantics,
Springer-Verlag, Berlin, 1976.

3. J. Barwise, Handbook of Mathematical
Logic, North-Holland Publishing, Amster-
dam, 1977.

4. H. Eveking, “Formal Verification of Syn-
chronous Systems,” Formal Aspects of
VLSIDesign: Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1985 Edinburgh Conf.
VLSI, G.J. Milne and P.A. Subrah-
manyam, eds., North-Holland Publishing,
Amsterdam, 1986, pp. 137-151.

5. M.J.C. Gordon, “Why High-Order Logic
Is a Good Formalism for Specifying and
Verifying Hardware,” Formal Aspects of
VLSIDesign: Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI985 Edinburgh Con$
VLSI, G.J. Milne and P.A. Subrah-
manyam, eds., North-Holland Publishing,
Amsterdam, 1986, pp. 153-177.

6 . G.J. Milne, “Circal: A Calculus for Circuit
Description,” Integration, the VLSI J.,

7. M. Fujita, H . Tinker, and T. Moto-oka,
“Verification with Prolog and Temporal
Logic,” Proc. CHDL ‘83: IFIP 6th Int’l
Symp. Computer Hardware Description
Languages and their Applications, Pitts-
burgh, May 1983, pp. 105-114.

8. M. Browne et al., “Automatic Verification
of Sequential Circuits Using Temporal
Logic,” IEEE Trans. Computers, Dec.

9. B. Moszkowski, “A Temporal Logic for
Multilevel Reasoning about Hardware,”
Computer, Feb. 1985, pp. 10-19.

10. R.E. Shostak, “Formal Verification of Cir-
cuit Designs,” Proc. CHDL ‘83: IFIP 6th
Int ’1 Symp. Computer Hardware Descrip-
tion Languages and their Applications,
Pittsburgh, May 1983, pp. 13-30.

July 1983, pp. 121-160.

1986, pp. 1035-1044.

Further reading

This section presents some additional read-
ing for those who want a deeper understanding
of some of the approaches discussed in the arti-
cle. References are grouped according to topic.
They represent a summary of each of the
research efforts covered here.

Symbolic simulation

Carter, W.J., W.H. Joyner, and D. Brand,
“Symbolic Simulation for Correct Machine
Design,” ACM IEEE 16th Design Automation
Conf., June 1979, pp. 280-286.

Cory, W.E., “Symbolic Simulation for Func-
tional Verification with Adlib and SDL,” ACM
IEEE 18th Design Automation Conf., June
1981, pp. 82-89.

First-order predicate calculus

Barros, J.C., and B.W. Johnson, “Equivalence
of the Arbiter, the Synchronizer, theLatch, and
the Inertial Delay,” IEEE Trans. Computers,

Hunt , W.A. , “FM8501: A Verified
Microprocessor,” IFIP WG 10.2 Workshop,
From HDL Descriptions to Guaranteed Correct
Circuit Designs, North-Holland Publishing,
Amsterdam, Sept. 1986, pp. 85-114.

Suzuki, N., “Concurrent Prolog as an Efficient
VLSI Design Language,” Computer, Feb.

Uehara, T., et al., “DDL Verifier andTemporal
Logic,” CHDL ‘83: IFIP6th Int’lSymp. Com-
puter Hardware Description Languages and
their Applications, May 1983, pp. 91-102.

Wagner, T.J., “Verification of Hardware
Designs Through Symbolic Manipulation,”
Int ’ l Symp. Design Automat ion and
Microprocessors, Feb. 1977, pp. 50-53.

Wojcik, A.S., “A Formal Design Verification
System Based on an Automated Reasoning Sys-
tem,” ACM IEEE 21st Design Automation
Conf., July 1984, pp. 641-647.

Higher-order predicates

Hanna, F.K., and N. Daeche, “Specification
and Verification of Digital Systems using
Higher-Order Logic,” IEE Proc., Vol. 133, Pt.
E, No. 5 , Sept. 1986, pp. 242-254.

Specific calculi

Barrow, H.G., “Verify: A Program for Prov-
ing Correctness of Digital Hardware Designs,”
Artificial Intelligence, Vol. 24, 1984, pp.

Gordon, M.J.C., “LCF-LSM,” Tech. Report zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No. 41, Computer Laboratory, Univ. of Cam-
bridge, Cambridge, United Kingdom, 1983.

Paillet, J.L., “A Functional Model for Descrip-
tions and Specifications of Digital Devices,”
IFIP WG 10.2 Workship: From HDL Descrip-
tions to Guaranteed Correct Circuit Designs,
Sept. 1986, Grenoble, France, pp. 19-40.

Weise, D.W., “Automatic Formal Verification
of Synchronous MOS VLSI Designs,” verbal
presentation to IFIP WG 10.2 Workshop on
Formal Verification, Darmstadt, West Ger-
many, Nov. 1984.

July 1983, pp. 603-614.

1985, pp. 33-40.

437-491.

Temporal logic

Bochmann, G.V., “Hardware Specification
with Temporal Logic: An Example,” IEEE
Trans. Computers, Mar. 1982, pp. 223-23 1 .

Fujita, M., H . Tinker, and T. Moto-oka,
“Logic Design Assistance with Temporal
Logic,” CHDL ‘85: IFIP 7th Int’lSymp. Com-
puter Hardware Description Languages and
their Applications, Aug. 1985, pp. 129-137.

Software verification techniques

Floyd, R.W., “Assigning Meanings to Pro-
grams, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” Int ’I Symp. Applied Mathematics, Vol.
19, Mathematical Society, 1967, pp. 19-32.

McFarland, M.C., and A. Parker, “An
Abstract Model of Behavior for Hardware
Description,” IEEE Trans. Computers, July
1983, pp. 621-637.

Pitchumani, V., and E.P. Stabler, “Verification
of Register Transfer Level Parallel Control
Sequences,” IEEE Trans. Computers, Aug.

Shostak, R.E., “Formal Verification of Circuit
Designs,” CHDL ‘83: IFIP 6th Int’l Symp.
Computer Hardware Description Languages
and their Applications, May 1983, pp. 13-30.

1985, pp. 161-765. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

Paolo Camurati is currently a PhD student in
the Dept. of Computer Science and Automation
at the Politecnico di Torino. He received the MS
degree in electronic engineering from that insti-
tute in 1984.

Camurati’s interests include CAD for VLSI,
including hardware description languages,
design for testability, testing and ATPG, and
formal verification; and application of AI tech-
niques to CAD, CAT, and CAR.

Paolo Prinetto has since 1978 been assistant
professor and since 1982 researcher at the Dept.
of Computer Science and Automation at the
Politecnico di Torino. Also, he is currently a full
professor at the University of Udine. In 1980 he
joined the EEC Study Team on CAD for VLSI:
Languages and Data Structures. In July 1983 he
joined IFIP Working Group 10.2. He has been
the leader of the ART’ simulation system
project.

Prinetto’s interests include CAD for VLSI,
including hardware description languages,
design for testability, testing and ATPG, and
formal verification; application of AI tech-
niques to CAD, CAT, and CAR; and micropro-
gramming, including microinstruct ion
modeling and simulation, integrated CAD sys-
tems for microprogrammable architecture
development, and automated microprogram
synthesis.

Prinetto received the MS degree in electronic
engineering from the Politecnico di Torino in
1976.

Readers may write to the authors at the
Dipartimento di Automatica e Informatica,
Politecnico di Torino, Corso Duca degli
Abruzzi 24, 1-10129 Turin, Italy. Their elec-
tronic mail address is cao@itopoli.bitnet.

July 1988 19

