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Abstract. The behavior of various kinds of dynamic systems can be
formalized using typed attributed graph transformation systems (GTSs).
The states of these systems are then modelled using graphs and the
evolution of the system from one state to another is described by a finite
set of graph transformation rules. GTSs with small finite state spaces can
be analyzed with ease but analysis is intractable/undecidable for GTSs
inducing large/infinite state spaces due to the inherent expressiveness of
GTSs. Hence, automatic analysis procedures do not terminate or return
indefinite or incorrect results.

We propose an analysis procedure for establishing state-invariants for
GTSs that are given by nested graph conditions (GCs). To this end,
we formalize a symbolic analysis algorithm based on k-induction using
Isabelle, apply it to GTSs and GCs over typed attributed graphs, develop
support to single out some spurious counterexamples, and demonstrate
the feasibility of the approach using our prototypical implementation.

Keywords: Formal static analysis · Symbolic state space abstraction ·
k-induction · Symbolic graphs · Isabelle

1 Introduction

The verification of formal models of complex dynamic systems w.r.t. to formal
specifications is one of the grand challenges of model driven engineering. How-
ever, the expressiveness required to cover the multitude of complex actual and
desired behaviors of such systems renders analysis often undecidable. Indeed, the
formalism of graph transformation systems (GTSs) considered here is known to
be Turing complete. Hence, fully-automatic procedures for establishing mean-
ingful properties on the behavior of such systems are then guaranteed to be
not terminating in general or to produce indefinite or even incorrect results.
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We subsequently focus on GTSs where an analysis using an explicit state space
exploration using tools such as Groove [2] and Henshin [3] is not applicable
due to infinite or intractably large sets of initial or reachable states.

We approach this problem by combining the symbolic static analysis tech-
niques of k-induction and state abstractions to establish state invariants for
dynamic systems with infinite state spaces modelled by GTSs. The idea of k-
induction is to establish a state invariant by iteratively computing all shortest
derivations from an initial state to a violating state. The use of state abstractions,
which preserve and reflect the systems’ behavior w.r.t. the invariant candidate,
permits to handle GTSs with infinite sets of initial or violating states at the
concrete level but finite (and sufficiently small) such sets at the abstract level.

As main contributions, we (a) formalize the principle of k-induction in the
theorem prover Isabelle in the form of an analysis algorithm and (b) instantiate
this analysis algorithm for the setting of (b1) invariant candidates formalized
using the logic of nested graph conditions (GCs) and (b2) a suitable notion
of typed attributed graph transformation. This instantiation based approach
thereby also clearly separates aspects of k-induction from GTS related concepts.

To represent typed attributed graphs, we employ symbolic graphs [18–22],
which are similar to E-Graphs [12]. These symbolic graphs also give rise to an
instantiation of GCs that permits the specification of constraints on attributes
throughout the GCs. We employ a graph transformation step relation on sym-
bolic graphs that deviates from those formalized in [21,22] by being symmetric
(allowing a backwards application used in the k-induction analysis algorithm)
and by allowing for the removal of variables (not requiring that additional vari-
ables and their values must be guessed when computing backward steps).

As closest related work, approaches using k-induction have been used before
without formal foundation in [4] and in [7–11] assuming k = 1, graphs without
attributes, a single initial state, or a subclass of all GCs. Hence, we extend this
line of research by formally treating the more general case of an arbitrary value
of k, graphs with attributes, infinitely many initial states, and all GCs.

In [5,25,27,28], an abstraction of graphs results in shape graphs (which have
limited expressiveness compared to GCs) where multiple nodes in the graph are
represented by so called summary nodes in the shape graph and where multi-
plicity or even first-order logic constraints may further restrict this abstraction
(see also [6]). Moreover, in [15], an abstraction of graphs is given in terms of
consistent compasses (which can be encoded in GCs of depth one) containing a
set of graphs of which one is matchable and a set of non-matchable graphs. Also,
in [29], the tool Alloy is used to establish state invariants for typed graphs.

Further related analysis approaches are as follows. The tool Augur2 [1]
abstracts GTSs to Petri nets but imposes restrictions on graph transformation
rules thereby limiting expressiveness. Lastly, static analysis of programs for GTSs
w.r.t. pre/post conditions has been developed in [23] as well as [24].

In Sect. 2, we formalize the principle of k-induction in the form of an analysis
algorithm. In Sect. 3, we discuss our running example, our notion of attributed
graph transformation, and the logic of GCs. In Sect. 4, we instantiate the
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analysis algorithm for attributed graph transformation and apply our prototyp-
ical implementation of it to our running example demonstrating its feasibility.
In Sect. 5, we provide a conclusion and a discussion of future work.

2 Invariant Verification Using k-Induction

We now introduce our formalization of the technique of k-induction for the ver-
ification of (state) invariants. For this purpose, we introduce labelled transition
systems (LTS) as an abstract framework, which is instantiated later on for graph
transformation. The results of this section have been formalized in the interac-
tive theorem prover Isabelle and we therefore omit all proofs. An LTS consists of
a set S of states, a set L of labels, a relation δ of labelled steps between states,
and initial states identified via a state predicate Z.

Definition 1 (Labelled Transition System (LTS)). If S and L are sets of
states and labels, δ ⊆ S × L × S, Z : S B, and Γ = (S,L, δ, Z), then Γ is a
labelled transition system, written Γ ∈ S lts.

Moreover, a finite path π ∈ paths(Γ, n) of Γ of length n is a sequence of n
states from S interleaved with labels from L where s·l·s′ in π implies (s, l, s′) ∈ δ.
Also, πS and πL map indices to the states and labels of the path π.

In Sect. 4, we restrict the states of an LTS resulting in a sub-LTS as follows.

Definition 2 (Sub-LTS). If Γ = (S,L, δ, Z) ∈ S lts, S′ ⊆ S, and Γ ′ = (S′, L,
δ ∩ (S′ × L × S′), Z ∩ (S′ × B)) ∈ S lts, then Γ ′ is a sub-LTS of Γ .

A predicate I on the states of an LTS is an invariant for the LTS, if all states
that are reachable from an initial state of the LTS satisfy I.

Definition 3 (Invariant). If Γ =(S,L, δ, Z)∈S lts, I :S B, and ∀n∈N.
∀π∈paths(Γ, n). Z(πS(0)) → I(πS(n)), then Γ has invariant I, written
invariant(Γ, I).

Subsequently, we assume an invariant A (e.g. expressing earlier established
invariants) for the LTS to improve applicability of the analysis approach as
explained later on. For characterizing the k-induction algorithm below, we define
shortest violations of a state predicate I as a finite path leading from an initial
state to a state violating I visiting no further initial states and only passing
through states satisfying I as well as A.

Definition 4 (Shortest Violation). If Γ = (S,L, δ, Z) ∈ S lts, I : S B, A :
S B, k ∈ N, π ∈ paths(Γ, k), Z(πS(0)), ¬I(πS(k)), ∀0 < j ≤ k. ¬Z(πS(j)),
and ∀j < k. I(πS(j)) ∧ A(πS(j)), then π is a shortest violation of I by Γ of
length k under A, written π ∈ SVio(Γ,A, I, k).

The analysis algorithm I below checks for such shortest violations by (a) select-
ing all violating states s satisfying ¬I(s) and by (b) computing up to k steps
backwards ensuring that all k additional states s′ visited on each of the paths
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obtained satisfy A(s′) ∧ I(s′). Firstly, when a state s′, which is visited in this
process, satisfies Z(s′), a shortest violation is obtained. Secondly, when no such
path of k steps exists, there cannot be a shortest violation of greater length.
Note that this analysis process benefits from employing the assumed invariant
A, which is used to rule out paths with states that are known to be unreachable
from an initial state by not satisfying A.

The analysis algorithm I returns a value b with three different values where
b = i represents a successful verification of the given state predicate I as an
invariant (when no paths are left that may be extended to shortest violations),
where b = v represents that at least one shortest violation was determined, and
where b = u represents the situation that the analysis was unable to return one
of the two former definite results for the provided value of k that is decremented
in each recursive application of I inner.

Definition 5 (I). If Γ = (S,L, δ, Z) ∈ S lts, A : S B, I : S B, k ∈N, i ∈
N, paths ⊆ paths(Γ, i), then I inner(Γ,A, I, k, i, paths) ⊆ {(b, violations) | b ∈
{i, v, u} ∧ violations ⊆ paths(Γ, k + i)} as follows.

I inner(Γ,A, I, k, i, paths) =

⎧
⎪⎪⎨

⎪⎪⎩

if paths = ∅ then (i, ∅)
elseif vio(paths) 
= ∅ then (v, vio(paths))
elseif k = 0 then (u, paths)
else I inner(Γ,A, I, k − 1, i + 1, ext(paths))

where
vio(paths) = {π ∈ paths | Z(πS(0))}
ext(paths) = {s · � · π | π ∈ paths ∧ (s, �, πS(0)) ∈ δ ∧ A(s) ∧ I(s)}

Moreover, if k ∈ N and paths0 = {π ∈ paths(Γ, 0) | ¬I(πS(0))} is the set of
violating paths of length 0, then I(Γ,A, I, k) = I inner(Γ,A, I, k, 0, paths0 ).

The following theorem states that the analysis algorithm I performs a sound
state invariant analysis as just described above.

Theorem 1 (Soundness of I). If Γ =(S,L, δ, Z)∈S lts, A :S B, I :S B,
invariant(Γ,A), k ∈ N, and I(Γ,A, I, k) = (b, paths), then there is j ≤ k s.t.
paths ⊆ paths(Γ, j) and one of the following items holds.

• b = u, j = k, paths 
= ∅, and
⋃{SVio(Γ,A, I, i) | i ≤ k} = ∅.

• b = i, invariant(Γ, I) and paths = ∅.
• b = v, ¬invariant(Γ, I), paths = SVio(Γ,A, I, j) 
= ∅.
The analysis algorithm I is implementable when the set of paths considered is
finite throughout its computation. This is guaranteed when the LTS has viola-
tions for at most finitely many states (finite initial set of paths handed to I inner)
and when every state has at most finitely many predecessors (each path can only
be extended backwards to finitely many paths in I inner).

Definition 6 (Finitely Backwards Branching LTS). If Γ = (S,L, δ, Z) ∈
S lts, I : S B, finite({s ∈ S | ¬I(s)}), and ∀s′ ∈ S. finite({s | (s, �, s′) ∈ δ}),
then Γ is finitely backwards branching for I.
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The concrete instantiation of LTSs for GTSs in Sect. 4 is not finitely backwards
branching in general because invariant candidates I may be violated by infinitely
many states. Hence, we apply in Sect. 4 an abstraction leading to an abstract
instantiation of LTSs for GTSs where the corresponding invariant candidate I ′

is violated by finitely many states. We then establish a connection between both
instantiations in terms of an LTS abstraction relation (LTSAR), which permits to
analyze the abstract instantiation using I instead of the concrete instantiation.

Intuitively, the paths considered using I for the concrete LTS are symbolically
represented by the finite set of paths considered using I for the abstract LTS.
Formally, an LTSAR consists of two subrelations RS relating states and RL

relating labels of the underlying concrete and abstract LTSs. Note that we state
suitable requirements on the relations RS and RL of an LTSAR in the following
theorem and define only the type of an LTSAR here.

Definition 7 (LTS Abstraction Relation (LTSAR)). If Γ = (S,L, δ, Z) ∈
S lts, Γ ′ = (S′, L′, δ′, Z ′) ∈ S lts, RS ⊆ S × S′, RL ⊆ L × L′, then (RS , RL) is an
LTS Abstraction Relation from Γ to Γ ′, written Γ ≤RS ,RL

Γ ′.

For invariant candidates I and I ′ for Γ and Γ ′, the following theorem states six
requirements on an LTSAR (RS , RL), which guarantee that (a) a violation of
I ′ in Γ ′ implies the existence of a violation of I in Γ and (b) the absence of
violations of I ′ in Γ ′ implies the absence of violations of I in Γ .

Theorem 2 (Preservation/Reflection of Invariants using LTS Abstrac-
tion Relations). If Γ = (S,L, δ, Z) ∈ S lts, Γ ′ = (S′, L′, δ′, Z ′) ∈ S lts,
A : S B, invariant(Γ,A), I : S B, I ′ : S′ B, and Γ ≤RS ,RL

Γ ′, then
both of the following items hold.

• Part1: R1, R2, R3, R4, R5, and not invariant(Γ ′, I ′) imply not invariant(Γ, I).
• Part2: R1, R2, R3, R4, R6, and invariant(Γ ′, I ′) imply invariant(Γ, I).

The requirements R1–R6 used in these items are as follows.

• R1: ∀(s, s′) ∈ RS . I(s) ↔ I ′(s′) (RS is compatible with invariant satisfaction)
• R2: ∀(s, s′) ∈ RS . Z(s) ↔ Z ′(s′) (RS is compatible with initial states)
• R3: ∀s′ ∈ S′. ∃s ∈ S. (s, s′) ∈ RS

(RS relates a concrete state s ∈ S to each abstract state s′ ∈ S′)
• R4: ∀s ∈ S. (∃k∈N. ∃π∈SVio(Γ,A, I, k). πS(k)=s) → (∃s′ ∈S′. (s, s′)∈RS)

(RS relates an abstract state s′ ∈ S′ to each concrete state s ∈ S for which a
shortest violation of I exists)

• R5: ∀(s, s′) ∈ RS . ∀(s′, l′, s̄′) ∈ δ′. ∃(s, l, s̄) ∈ δ. (l, l′) ∈ RL ∧ (s̄, s̄′) ∈ RS

(every forward step of the abstract LTS Γ ′ can be mimicked (forwards) by
the concrete LTS Γ for two related source states (s, s′) to allow for the con-
cretization of a violating path)

• R6: ∀(s̄, s̄′)∈RS . ¬Z(s̄) → ∀(s, l, s̄)∈δ. ∃(s′, l′, s̄′)∈δ′. (l, l′)∈RL ∧ (s, s′)∈RS

(every backward step of the concrete LTS Γ (except for those leading to initial
states) can be mimicked (backwards) by the abstract LTS Γ ′ for two related
target states (s̄, s̄′) to allow for the abstraction of a violating path)
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3 Modelling and Specifying Graph Transformation

As a running example, we consider a single shuttle travelling on a network of
tracks (see Fig. 1a for the type graph used) where subsequent tracks are con-
nected using next edges. The graph attribution stores the velocity v and accel-
eration a of the shuttle and, moreover, the constants for minimal, maximal, and
safe velocities as well as the constant track length s in a System node. The rules
refer to the attributes to describe the velocity v′ of a shuttle after travelling over
a track based on its current velocity v, acceleration a, and the constant track
length s using the standard equation v′2 = v2 + 2as. The velocity of the shuttle
should be below the safe velocity on tracks with flag signal, the velocity of the
shuttle should be constant on tracks with flag const, and the flag warning on a
track indicates that a track with flag signal is to be expected ahead. Analysis
should establish the fact that the shuttle never violates signal and const flags
as an invariant, which is formalized in Fig. 1c using graph conditions explained
below. Note that tracks with flag const between tracks with flag warning and
tracks with flag signal may prevent timely deceleration. We employ an assumed
invariant to (a) specify the constant attribute values of the system node, (b) to
rule out track networks with dead ends and loops, and (c) to ensure warnings n
tracks ahead of signals for a parameter n ∈ N in all considered track networks.

We now recall attribute conditions (ACs) used by symbolic graphs and then
revisit GTSs and GCs over symbolic graphs for describing actual and desired
behavior in terms of a concrete LTS and state predicates from before.

(a) The typegraph TG (acc and vel abbreviate acceleration and velocity).

(b) Graphs G1and G2 with monomorphism m : G1     G2,which maps nodes, edges,
and variables ase xpected. All variable valuations that satisfy theat tribute constraint
of G1 also satisfy theat tribute constraint of G1 translatedvia m,that is, xa =  −2  
xa  = 0 is tautological./

(c) The invariant candidate φI stating that shuttles cannot accelerate on tracks with
const flag and that shuttles cannot exceed the safe velocity on tracks with signal flag.

Fig. 1. Type graph and invariant candidate for the shuttle scenario.
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The attribute logic AL contains ACs γ ∈ SAC
X of first-order logic (FOL)

ranging over a set X of variables. The satisfaction of γ by a valuation α : X V
is denoted by α |=AC γ. The SMT solver Z3 [17] supports ACs constructed
using a restricted set of operators for the sorts bool, int, real, and string. When
Z3 is unable to determine an answer to the satisfiability problem (note that AL
satisfaction is undecidable), which does not occur for the examples considered
here, we would notify the user in our prototypical implementation.

Symbolic graphs (called graphs subsequently) [18] are an adaptation of E-
Graphs [12]. A finite graph G (such as those depicted in Fig. 1b) contains
nodes, edges, variables G.X, and an AC G.ac ranging over G.X. Moreover,
nodes and edges are equipped with node and edge attributes, which are con-
nected to variables for which values are specified in the AC G.ac. A morphism
m : G1 G2 from graph G1 to G2 (see e.g. Fig. 1b) maps nodes, edges, variables,
node attributes, and edge attributes of G1 to those of G2. The mappings of m
must be compatible with the source and target functions of G1 and G2 as usual
and G2.ac must imply the translation m(G1.ac) of G1.ac for all variable valua-
tions to ensure that m characterizes a restriction of attributes (cf. Fig. 1b where
this implication is discussed). Moreover, the class of all finite graphs typed (as
usual using a typing morphism) over a given type graph TG is given by Sgraphs

fin,TG

or simply Sgraphs
fin when TG is known. In the remainder, we only employ mono-

morphisms, written m : G1 G2, with only injective mappings. The unique
monomorphism from the empty graph ∅ to a graph G is denoted i(G) : ∅ G.
Finally, the special monomorphism a(G) : G′ G describes that G′ is obtained
from G by setting the AC G.ac to true (i.e., G′ equals G except that G′.ac = ).

The graph logic GL [14,26] supports the specification of the (non)existence
of certain subgraphs in a given host graph G. Besides propositional operators
for (finite) conjunction and negation, GL features the exists operator ∃, which
specifies for a given match m : H G of a (context) graph H into the host graph
G that m can be extended to a match m′ : H ′ G by using a monomorphism
f : H H ′ that explains how H is extended to the (context) graph H ′.

The graph G2 from Fig. 1b does not satisfy φI because the initial monomor-
phism i(G2) : ∅ G2 can be extended to m from Fig. 1b, which is forbidden by
the left part ∃(i(G1),) of φI .

Definition 8 (Graph Logic (GL)). If H ∈ Sgraphs
fin is a finite graph, m :

H G is a monomorphism, then φ′ is a graph condition over H, written φ′ ∈
SGC

H , which is satisfied by m, written m |= φ′, if an item applies.

• φ′ = ∧S, S ⊆fin SGC
H , and (for satisfaction) ∀φ ∈ S.m |= φ.

• φ′ = ¬φ, φ ∈ SGC
H , and (for satisfaction) m 
|= φ.

• φ′ = ∃(f : H H ′, φ), φ ∈ SGC
H′ is a GC over the extended graph H ′, and

(for satisfaction) there is m′ : H ′ G s.t. m = m′ ◦ f and m′ |= φ.



264 S. Schneider et al.

Moreover, we define the following notions.

• Derived operators: (true) , (false) ⊥, (disjunction) ∨S, and (for all) ∀(f, φ).
• Graph Satisfaction: If φ ∈ SGC

∅ is a GC over the empty graph satisfied by
the initial morphism i(G) (i.e., i(G) |= φ) then φ is satisfied by G, written
G |= φ′.

• Satisfying morphisms: If φ ∈ SGC
H is a GC, then �φ� = {m : H G | m |= φ}.

Moreover, we define that two GCs φ1 and φ2 are consistent, when φ1 only
describes elements also described by φ2 or none of them.

Definition 9 (Consistent GCs). If {φ1, φ2} ⊆ SGC
∅ and �φ1� ∩ �φ2� 
= ∅

implies �φ1� ⊆ �φ2�, then φ1 is consistent with φ2, written cons(φ1, φ2).

To check satisfiability of a GC and consistency of two GCs, we employ the
automated reasoning technique for GL in the form of the algorithm A for which
tool support is available in AutoGraph as introduced in [26]. The algorithm
A takes a GC φ as input, is known to terminate for unsatisfiable GCs (i.e., it is
refutationally complete), and incrementally generates the set of minimal graphs
satisfying φ (this set is empty for unsatisfiable GCs). As for the case of AL and
Z3, we carefully handle cases where A does not terminate and also generates no
minimal graph as discussed later on.

Fact 1 (Algorithm A). If φ ∈ SGC
∅ is a GC over the empty graph and A

terminates for φ, it returns the finite set of all minimal graphs satisfying φ.

The standard operation shift from [13] is also applicable to symbolic graphs [26].
It defines an adaptation of a GC φ with context graph H for a monomorphism
m : H H ′ resulting in an equivalent GC with context graph H ′ in the sense
of the following fact (by considering how additional elements of H ′ may be used
in a satisfaction proof for the given GC φ).

Fact 2 (Operation shift). If m1 : H H ′, m2 : H ′ H ′′, and φ ∈ SGC
H , then

m2 ◦ m1 |= φ iff m2 |= shift(m1, φ).

Graph transformation steps are defined using rules specifying structural and
attribute transformations. A rule ρ contains for the structural part (as in the
DPO approach) two monomorphisms ρ.del : K L and ρ.add : K R where
K, L − ρ.del(K), and R − ρ.add(K) contain the preserved/deleted/added ele-
ments. For the attribute part, L, K, and R have the trivial ACs  and a rule ρ
contains an AC ρ.ac instead, which is defined over the disjoint union V (i.e., the
coproduct, written � where ρ.lX and ρ.rX map variables to the disjoint union
V ) of the variables of L and R. Intuitively, variables originating from L are used
as unprimed variables and variables originating from R are used as primed vari-
ables. Finally, a rule contains left and right hand side application conditions ρ.lC
and ρ.rC defined over the graphs L and R and checked during the transformation
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as in the DPO approach. See Fig. 3 for two simple rules1 and, for our running
example, Fig. 2 for two of the total nine rules (see [8, Section C.1.6, p. 336] for a
full description of the assumed invariants and rules of the considered GTS).

Definition 10 (Graph Transformation Rules). If ρ.del : K L, ρ.add :
K R are to monomorphisms, �(ρ.lX : L.X V, ρ.rX : R.X V ) is a coprod-
uct, ρ.ac ∈ SAC

V , ρ.lC ∈ SGC
L , ρ.rC ∈ SGC

R , and L.ac = K.ac = R.ac = , then
ρ = (ρ.del, ρ.add, ρ.lX, ρ.rX, ρ.ac, ρ.lC, ρ.rC) is a rule, written ρ ∈ Srules.
Moreover, we define the following abbreviations.

• ρ.lG = L and ρ.rG = R are the left and right hand side graphs of the rule ρ.
• Srules

fin is the set of all rules where L, K, and R are finite.

Graph transformations systems then contain a finite set of finite rules (used for
graph transformation steps) and initial states described by a GC.

(a) The rule1ρtoDec describes that a  shut-
tle moves to the nex track and sets the
acceleration to −2 when the current track
has no warning or signal flag and the next
track has no const flag.

(b) The rule1ρtoSteady-Const-Warning describ-
es that a shuttle moves to the next
track and sets the acceleration to 0 when
the current track has no signal flag and
the next track has a const flag.

(c) A graph transformation sequence where a shuttle fails to decelerate sufficiently
before moving to a track with a signal flag due to the track with the const flag
prohibiting deceleration in between.

Fig. 2. Two rules and a graph transformation sequence for our shuttle scenario.
1 Here, L, K, and R are given in a single graph and preserved/deleted/added elements

are colored black/red/green and deleted/added elements are marked with �/⊕.
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(a)The rule ρ1 .It is not applicable to graphs that contain a C node with E2 loop. It
adds a B node, adds loop on a, and changes the value of the id attribute (given by
variable x) of node a using an AC that uses the if-then-else operation ite.

(b) The rule ρ2. It is not applicable to graphs where the matched A node has an 
E4 loop or an id attribute of at most 6. It adds a C node c′, adds an edge from the
matched A node to c′,and increases the id attribute (given by variable x) of node a.

(c)The initial states φZ

have a C node with E2 
loop.

(d)The assumed invariant
φA states that no A node
may have an id of 0.

(e)The invariant candi-
date φI states reachable
graph contain no B node.

(f)The analysis using I starts with the path π0 = X0 of length 0 where X0=(∅,¬φI).
Using Ext, a path π1 = X1·(k1, ρ1, k2)· X2 of length 1 is constructed by extending
π0. Using Ext, a path π2 = X3 · (k3, ρ2, k4) · X4 · (k5 ◦ k1, ρ1, k6 ◦ k2 ) · X5 of length 2 is
constructed by extending π1where the second step of π2 is obtained by refinement
of π1 via Ref.

(g) The abstract states Xi = (Gi, φi) from Figure 3f. To ease presentation, we use
GCs such as ρ1. lC on graphs different from L1. The ACs of Gi are obtained according
to the step relation considering the AC of the given source/target graph. (G1) G1.ac ≡
∃x′ . ρ1.ac ≡ 5 < x ∨ 2 < x ≡ 2 < x. (G2) G2.ac ≡ ∃ x.ρ1. ac ∧ 2 < x ≡ x′ = 0∨6 < x′. 
(G3) G3.ac ≡ ∃x′. ρ2.ac ∧ 2 < x′ ≡ 6 < x. (G4) G4.ac ≡ ∃x. ρ2.ac ∧ 6 < x ≡ 7 <x′.
(G5) G5.ac ≡ ∃x. ρ1.ac ∧ 7 < x ≡ x′ = 0.

Fig. 3. Example of invariant analysis for abstract LTS.
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Definition 11 (Graph Transformation System (GTS)). If P ⊆fin Srules
fin

and φZ ∈ SGC
∅ , then (P, φZ) is a graph transformation system.

Deviating from [22], we now introduce a notion of graph transformation steps in
which structural and attribute transformations are decoupled. The defined step
relation is symmetric and supports the removal as well as addition of variables,
which is also relevant when attribute values are to be modified.

Definition 12 (Steps). There is a step G1
σ G2 with label σ, whenever

• there is a rule ρ ∈ Srules
fin with ρ.lG = L and ρ.rG = R as depicted below,

• the graph L can be matched to G1 using m1 : L G1 that satisfies the left-
hand side application condition ρ.lC,

• the graph Ḡ1 is obtained from G1 by setting the AC of G1 to  inducing the
morphisms c1 and a(G1) compatible with m1,

• the graphs D and Ḡ2 are constructed according to the double pushout approach
as pushout complement and pushout from left to right,

• the graph G2 is obtained from Ḡ2 by setting the AC of G2 according to the
AC ρ.ac of the rule inducing morphisms m2 and a(G2) compatible with c2,
and

• the morphism m2 satisfies the right-hand side application condition ρ.rC.

L K R

D

�

ρ.lC

�

ρ.rC

Ḡ2Ḡ1G1 G2
a(G1) a(G2)

PO PO
m1 c1 c2d

ρ.del ρ.add

b1 b2

m2

For this construction, σ = (σ.rule, σ.drule, σ.match, σ.comatch) = (ρ, ρ̄,m1,m2)
is the used label where ρ̄ is the derived rule (cf. [13]) with ρ̄.del = b1, ρ̄.add = b2,
ρ̄.lC = shift(c1, ρ.lC), ρ̄.rC = shift(c2, ρ.lC), and where the AC ρ̄.ac is adapted
from ρ.ac according to the renamings of c1 and c2.

For our running example, see Fig. 2c for a graph transformation sequence apply-
ing the two rules from Fig. 2a and Fig. 2b. Note that the last graph of this
sequence violates the invariant candidate from Fig. 1c as the shuttle exceeds the
permitted velocity on a track with signal flag.

The steps defined by this construction immediately induce a concrete LTS
(see Definition 1) for a given GTS where the initial states are given by all graphs
satisfying the GC characterizing initial graphs of the GTS.

Definition 13 (Concrete LTS of Graph Transformation). If (P, φZ) is a
GTS then cLTS((P, φZ)) = Γ = (S,L, δ, Z) is the concrete LTS of (P, φZ) with

• S = Sgraphs
fin is the set of all finite graphs,

• L = Ssteps is the set of all step labels,
• δ = {(G, σ,H) | G σ H} is given by graph transformation steps of (P, φZ),
• Z(Ḡ) = Ḡ |= φZ uses the GC satisfaction relation,
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Moreover, a state G of Γ (i.e., a finite graph) satisfies a state predicate (cf. the
last item above) given by a GC φ defined over the empty graph ∅ iff G |= φ.

Finally, the operations left and the reverse operation right introduced in [13] can
be adapted to symbolic graphs. The operation left inductively propagates a GC φ
over the right hand side graph ρ.rG = R (such as the application condition ρ.lC)
of a rule ρ to the left hand side graph ρ.lG = L of ρ by applying the renaming
of graph elements according to ρ.del and ρ.add to the graphs in the GC φ. The
two operations ensure the following compatibility with steps (cf. [13]).

Fact 3 (Operations left and right). If ρ ∈ Srules
fin is a finite rule with the left

and right hand side graphs L and R, φL ∈ SGC
L and φR ∈ SGC

R are GCs over
L and R, and G

(ρ,ρ̄,m,m̄)
H is a graph transformation step, then m̄ |= φR iff

m |= left(ρ, φR) and m |= φL iff m̄ |= right(ρ, φL).

4 Invariant Analysis for Graph Transformation Systems

Based on the preliminaries from the previous section on graph transformation
and graph specification using GCs, we now apply our theory on k-induction from
Sect. 2. Note that the instantiation presented here is specific to the step relation
for graph transformation presented in the previous section due to the decoupling
of transformation of structure and ACs. For this instantiation, we construct an
LTS that is finitely backwards branching (see Definition 6) and that is related
to the concrete LTS Γ from the previous section via a suitable LTSAR (see
Definition 7) to permit an application of Theorem 2 for enabling the analysis
of the GTS using I according to Theorem 1. For this purpose, we assume a
fixed GTS (P, φZ), the induced LTS cLTS((P, φZ)) = Γ (see Definition 13), an
assumed invariant φA ∈ SGC

∅ , and an invariant candidate φI ∈ SGC
∅ .

For demonstration purposes, we consider the GTS ({ρ1, ρ2}, φZ) with
assumed invariant φA and invariant candidate φI from Fig. 3.

As an initial candidate for the LTS to be constructed, we define the LTS Γ ′

in which each state (Ḡ, φ̄) is given by a GC φ̄ and the graph Ḡ over which φ̄ is
defined for improved readability. The LTS Γ ′ induces an LTSAR in which the
relation RS contains pairs (G, (Ḡ, φ̄)) for which some monomorphism m : Ḡ G
with m |= φ̄ exists. The steps of Γ ′ adapt states (G1, φ1) to states (G2, φ2) using
a rule ρ of the GTS (P, φZ) for matches k1 : ρ.lG G1 and k2 : ρ.rG G2 at
the abstract level by considering all concrete steps of graphs H1 and H2 that
are related to G1 and G2 via RS (by means of instantiation morphisms m1 and
m2). That is, the same rule ρ can be applied to each graph covered by (G1, φ1)
and, vice versa, (G2, φ2) covers only the graphs reachable using such steps.

Definition 14 (Abstract LTS of GC Transformation). If (P, φZ) is a GTS
then aLTS((P, φZ)) = Γ ′ = (S′, L′, δ′, Z ′) is the abstract LTS of (P, φZ) with

• S′ = {(Ḡ, φ̄) | Ḡ ∈ Sgraphs
fin ∧ φ̄ ∈ SGC

Ḡ
},

• L′ = {(k1 : ρ.lG G1, ρ, k2 : ρ.rG G2) | ρ ∈ P, {G1, G2} ⊆ Sgraphs
fin },
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• ((G1, φ1), (k1, ρ, k2), (G2, φ2)) ∈ δ′ iff ρ ∈ P , k1 : L G1, k2 : R G2,
– ∀m1 ∈ �φ1�.∃m2 ∈ �φ2�. P (m1 ◦ k1,m2 ◦ k2, ρ) and
– ∀m2 ∈ �φ2�.∃m1 ∈ �φ1�. P (m1 ◦ k1,m2 ◦ k2, ρ) using the abbreviation P :
– P (n1, n2, ρ)=(∃σ.H1

σ H2 ∧σ.rule=ρ∧σ.match=n1 ∧σ.comatch=n2),

K

D

L RG1 G2

�

ρ.lC

�

ρ.rC

�

φ1

�

φ2

H̄2H̄1H1 H2
a(H1) a(H2)

m1

ρ.del ρ.add

m2

k1 k2

n1 n2

• Z ′((Ḡ, φ̄)) = �∃(i(Ḡ), φ̄) ∧ φZ� 
= ∅.
Moreover, a state (Ḡ, φ̄) of Γ ′ satisfies a state predicate (cf. the last item above)
given by a GC φ defined over the empty graph ∅ iff �∃(i(Ḡ), φ̄) ∧ φ� 
= ∅.2

We state that each sub-LTS Γ ′′ of Γ ′ induces a certain LTSAR for the LTS Γ .

Lemma 1 (LTSAR for GTS). If (P, φZ) is a GTS, Γ =cLTS((P, φZ)), Γ ′′ is
a sub-LTS of Γ ′=aLTS((P, φZ)), RS ={(G, (Ḡ, φ̄)) | ∃m : Ḡ G.m |= φ̄}, and
RL = {(σ, (k1, ρ, k2)) | σ.rule = ρ ∈ P}, then Γ ≤RS ,RL

Γ ′′ by Definition 7. ��
Selecting the entire LTS Γ ′′ = Γ ′ results in an LTSAR, which does not satisfy
the requirements of Theorem 2 in general. Instead, we obtain a suitable sub-LTS
Γ ′′ of Γ ′ in an on-the-fly manner during an application of I (see Definition 5): Γ ′′

then describes precisely the paths maintained by I inner in its parameter paths
at any point in the computation. Hence, the initial candidate is the sub-LTS
Γ ′′
0 that contains the single state (∅,¬φI) violating φI . Note that Γ ′′

0 induces an
LTSAR satisfying the requirements R1–R5 already. See Fig. 3f where node X0

represents this initial state inducing the path π0 of length 0.
Inside an application of I inner(Γ ′, φA, φI , k, i, paths) (see Definition 5), we

extend paths in paths w.r.t. Γ ′ and thereby adapt Γ ′′
i to Γ ′′

i+1 such that the
LTSAR for Γ ′′

i+1 (see Lemma 1) also satisfies the requirements R1–R5 of The-
orem2. The satisfaction of requirement R6 for the backwards simulation may
require that further path extensions are computed in subsequent iterations of
I inner. In Fig. 3f, the path π0 is extended to paths π1 and π2 where the last nodes
X2 and X5 are then incrementally more specific than X0 (w.r.t. the monomor-
phisms that satisfy their GCs).

When the application of I terminates with a definite result b ∈ {i, v}, the
obtained sub-LTS Γ ′′

i constructed up to this point induces an LTSAR, which
meets the relevant requirements listed in Theorem 2. In particular (see also The-
orem3 later on), (a) for the result (v, paths) meaning that the invariant candidate
φI is violated by Γ ′, we can apply Part1 of Theorem 2 because R1–R5 are sat-
isfied and (b) for the result (i, ∅) meaning that φI is established as an invariant
for Γ ′, we can apply Part2 of Theorem 2 because there are no further backward

2 Definition 16 resolves cases where ∃(i(Ḡ), φ̄) and φ are not consistent (Definition 8).
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steps that require consideration since all paths constructed so far were discarded
for not having any further relevant step implying also R6 as required.

In the remainder, we discuss the backwards construction of paths of Γ ′ for
a GTS using the operation Ext. This extension operation (see Definition 16)
entails a refining operation Ref (see Definition 15) used to adapt paths in line
with the operation ext(paths) used in I to ensure that the requirements R1–R5
are satisfied by the corresponding sub-LTS Γ ′′

i+1 constructed so far.
Extending a path π of Γ ′ starting in a state (Ḡ, φ̄) adding a backwards step for

a rule ρ may result in a refinement due to (a) additional graph elements when the
comatch of the step does not only match elements of Ḡ, (b) additional restrictions
originating from the application conditions of ρ, and (c) fewer variable valuations
satisfying the AC of the start graph of the path.

For example, in Fig. 3f, the path π1 = X1 · (k1, ρ1, k2) · X2 (in the second
line) is refined to X4 · (k5 ◦ k1, ρ1, k6 ◦ k2) · X5 according to the monomorphism
k5 : G1 G4 for the application of ρ2 in Extension-Step 2. Considering the
elements X1 and X4 given in more detail in Fig. 3g, we see that X4 is much more
specific than X2 due to the additional GC originating from ρ2, the inclusion of
node c and edge e, and a more restrictive AC.

The following operation Ref refines the path π starting in (Ḡ, φ̄G) to a path
π′ starting in (X̄, φ̄X) for a monomorphism m : Ḡ X̄ and a GC φ̄X defined on
X̄, which describe the effect of the backwards step on π. It does so by adapting
the monomorphisms contained in the labels of the steps in π, performs a step
leading to a graph Ȳ to propagate attribute restrictions given by the AC of X̄,
and propagates the additional GC φ̄X to the resulting graph Ȳ .

Definition 15 (Refinement of Abstract Paths). If Γ ′ = (S′, L′, δ′, Z ′) ∈
S lts, π ∈ paths(Γ ′, n), m : Ḡ X̄, φ̄X ∈ SGC

X̄
, π′ ∈ paths(Γ ′, n), then π′ is the

refinement of π via m and φ̄X , written π′ = Ref(π,m, φ̄X), if an item applies.

• n = 0, π = (Ḡ, φ̄G), and π′ = (X̄, φ̄X ∧ shift(m, φ̄G)).
• n > 0, π = (Ḡ, φ̄G) · (k1, ρ, k2) · π̃, πS(1) = (H̄, φ̄H), X̄

(ρ,ρ̄,m◦k1,m̄◦k2) Ȳ ,
φ̄Y = shift(a(Ȳ ), right(ρ̄,∃(a(X̄), φ̄X))), and π′ = (X̄, φ̄X ∧ shift(m, φ̄G)) · (m◦
k1, ρ, m̄ ◦ k2) · Ref(π̃, m̄, φ̄Y ).

Ḡ L K R H̄

X̄ X D Y Ȳ

k1 ρ.del ρ.add k2

a(X̄) a(Ȳ )m m̄

�φ̄G

�φ̄X

�φ̄H

�φ̄Y

Concrete violating paths of Γ (such as in Fig. 2c for our running example) can
be constructed from symbolic violating paths of Γ ′ starting in (Ḡ, φ̄G) by (a)
running the algorithm A from Fact 1 to obtain some monomorphism m : Ḡ X̄
satisfying φ̄G, (b) employing Z3 to determine a variable valuation satisfying
the AC of X̄ resulting in some monomorphism m′ : Ḡ Ȳ , and (c) applying
the operation Ref for m′ and φ̄Y = . Besides such concrete violating paths, we
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return all symbolic violating paths to the user for which A or Z3 fail to determine
definite results (which does not occur in the examples considered here).

We now introduce the operation Ext for extending a path of Γ ′ by adding
a further backwards step. To ensure that we construct all paths, we follow the
definition of E-concurrent rules from [13] to generate all minimal overlaps for
each successive rule application and to adjust GCs to the application conditions
of the rules. Moreover, in item (8), we employ the operation Ref to adapt the
given path of Γ ′ to the additional step. Finally, in item (9), item (10), and item
(11), we further split and filter the constructed paths to ensure that the state
predicate satisfaction is compatible with RS (see Theorem 3).

Definition 16 (Extension of Abstract Paths). If (P, φZ) is a GTS, Γ ′ =
aLTS((P, φZ)), π ∈ paths(Γ ′, n), then Ext(π) computes the possibly empty set of
all path extensions π′ ∈ paths(Γ ′, n + 1) of π using the following procedure.

(1) (Ḡ, φ̄G) is the first state of π.
(2) ρ ∈ P is some rule of the GTS with ρ.lG = L and ρ.rG = R.
(3) (e1 :R E, e2 :Ḡ E) ∈ E ′ is a minimal overlapping of R and Ḡ (cf.

[13]).3

(4) E
(rev(ρ),ρ̃,e1,m)

X̄ is a step of the GTS where ρ is reversed using rev and
applied forwards to E using match e1 to obtain the required backwards step.

(5) φ̄X = shift(a(X̄), ρ̄.lC ∧ left(ρ̄, ρ̄.rC ∧ ∃(a(E), shift(e2, φ̄G)))) is the GC for
X̄ obtained using GC propagation as in [13].

(6) X̄
(ρ,ρ̄,m,m̄◦e1) Ȳ is a step of the GTS using the rule ρ possibly further

restricting the AC from E to Ȳ .
(7) φ̄Y = shift(a(Ȳ ), ρ̄.rC ∧ right(ρ̄, ρ̄.lC)) ∧ shift(m̄ ◦ e2, φ̄G) is the GC for Ȳ

obtained using GC propagation as in [13].
(8) π̃0 = (X̄, φ̄X)·(m, ρ, n = m̄◦e1)·Ref(π, m̄◦e2, φ̄Y ) is obtained by prepending

the new step to the path refinement of π according to m̄ ◦ e2 and φ̄Y .

ḠL K R
ρ.del ρ.add

E
e1 e2

Y
a(E)

DX
b1 b2
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a(Ȳ )

m̄

�

φ̄G

�φ̄X �φ̄Y

�

ρ.lC

�

ρ.rC

�

ρ̄.lC

�

ρ̄.rC

(9) (Disambiguation of Abstraction for φI) If ∃(i(X̄), φ̄X) is consistent with
φI (see Definition 8), which can be checked using A, we know that (X̄, φ̄X)
either only covers graphs satisfying φI or no such graphs. In this case,
π̃1 is Ref(π̃, id(X̄), φI) or Ref(π̃, id(X̄),¬φI) (where id(X̄) is the identity
morphism on X̄) and π̃1 = π̃ otherwise.

(10) (Disambiguation of Abstraction for φZ) Analogous to item (9) for the GC
φZ representing the initial state of the GTS at hand obtaining π̃2 from π̃1.

3 E ′ denotes the set of pairs of monomorphisms that are jointly epimorphic, that is,
two monomorphisms that map to each graph element of their common target graph.
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Table 1. Results of invariant analysis for the abstract LTS for shuttle scenario.

Outcome (b, paths) of analysis algorithm I
Lookahead n Path length k Duration Element b Size of element paths

2 2 1 s u 6
3 3 2 s u 12
4 4 12 s u 8
5 5 63 s i 0

(11) (Nonemptyness of Abstraction) If A and Z3 determine that π̃2 represents
at least one concrete violation (as discussed subsequent to Definition 15)
compatible with φA, then π′ is equal to π̃2 (otherwise π̃2 results in no path
extension).

Figure 3f depicts two applications of Ext both requiring applications of Ref (the
first refinement regarding the empty path π0 is trivial and the second has been
discussed above). The first extension uses ρ1 from Fig. 3a, constructs the over-
lapping E0 where the two B nodes are identified (not explicitly depicted), applies
the reversal of rule ρ1 using the match e01 to obtain X1, and then applies ρ1
to obtain the AC refinement X2 = (G2, φ2) of E0 depicted in Fig. 3g. Note that
X2 = (G2, φ2) still violates the invariant candidate φI (for all monomorphisms
m : G2 H). The further extension using ρ2 then results in path π2 ending in
X5 = (G5, φ5), which does not need to be considered further as X5 violates the
assumed invariant φA (for all monomorphisms m : G5 H).

Finally, I from Definition 5 can be used to check a GTS against an invariant
candidate φI by applying I using the described instantiation.

Theorem 3 (Instantiation of k-Induction for GTSs). If (P, φZ) is a GTS,
φA ∈ SGC

∅ is an assumed invariant, φI ∈ SGC
∅ is an invariant candidate, k ∈ N,

and the application of the algorithm I using the described instantiation Γ ′ for
Γ , Ext (from Definition 16) for ext, and {(∅,¬φI)} for paths0 terminates with
(b, paths), then Theorem1 and Theorem2 are applicable and (b, paths) is a sound
judgement on whether φI is an invariant for (P, φZ).

Proof. The used operation Ext for path extension ensures that the last computed
sub-LTS Γ ′′ of Γ ′ results in an LTSAR (see Lemma 1) meeting the requirements
R1–R5 from Theorem 2 as follows (by induction on the parameter k for R4).

• Requirements R1 and R2 (preservation of invariant and initial state):
Ensured by item (9) and item (10) in Definition 16.

• Requirement R3 (RS is right total): Ensured by item (11) in Definition 16.
• Requirement R4 (RS is left total on violating states): R4 means that each

state G that violates φI in Γ via some shortest violation is covered by some
state (Ḡ, φ̄G) of Γ ′′. R4 is obviously satisfied by the initial LTS candidate
that has the only state (∅,¬φI). Moreover, every extension (entailing the
described refinement) of the set of paths in each iteration preserves this prop-
erty because the refinement only excludes paths that are known to be only
covering paths not representing shortest violations.
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• Requirement R5 (forward steps of Γ ′ are simulated by Γ ): Ensured by apply-
ing the path refinement operation Ref in the operation Ref.

Lastly, the requirement R6 is satisfied for all states that are not at the beginning
of a path in Γ ′′ since Ext considers all possible backward steps. ��
For our running example, we applied our prototypical implementation of the
analysis algorithm I. For k = 2, we obtained the indefinite result (u, paths)
where the sequence from Fig. 2c is a concretization of a path in paths that could
not be ruled out. As stated in Table 1, a path length of k = 5 (i.e., 5-induction)
was required to establish that φI is an invariant. While the time required for
invariant analysis increases exponentially with longer values of k due to the
exponentially increasing number of paths of that length, we believe that the
analysis times required for the running example already demonstrate feasibility
albeit a potential for further optimizations of our prototypical implementation.
Also note that the number of path extensions in each step grows exponentially
with the size of the rules.

5 Conclusion and Future Work

We formalized the static analysis approach of k-induction using Isabelle for the
abstract setting of LTSs establishing sufficient conditions for the preservation/re-
flection of invariants by means of an abstraction relation. We then applied this
analysis approach to typed attributed GTSs by abstracting graphs by nested
graph conditions (GCs) and by applying k-induction on these GCs. Our results
extend the state of the art by permitting attributes as well as nested GCs for
the specification of initial states, assumed invariants, and invariant candidates.

In the future, we want to develop support for probabilistic/timed GTSs such
as [16]. Moreover, we strive to develop further abstractions to improve support
for GTSs with multiple active components such as shuttles. Finally, heuristics
guiding the computation of paths in the analysis procedure using parameteriza-
tions may improve performance by e.g. prioritizing path extension over checking
for violations of attribute constraints of assumed invariants.
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