
Formal Verification of Medical Device

User Interfaces Using PVS�

Paolo Masci1,��, Yi Zhang2, Paul Jones2,
Paul Curzon1, and Harold Thimbleby3

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, United Kingdom

{paolo.masci,pc}@eecs.qmul.ac.uk
2 Center for Device and Radiological Health,

U.S. Food and Drug Administration, Silver Spring, Maryland, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 FIT Lab, Future Interaction Technology Laboratory
Swansea University, United Kingdom

harold@thimbleby.net

Abstract. We present a formal verification approach for detecting de-
sign issues related to user interaction, with a focus on user interface of
medical devices. The approach makes a novel use of configuration dia-
grams proposed by Rushby to formally verify important human factors
properties of user interface implementation. In particular, it first trans-
lates the software implementation of user interface into an equivalent
formal specification, from which a behavioral model is constructed using
theorem proving; human factors properties are then verified against the
behavioral model; lastly, a comprehensive set of test inputs are produced
by exploring the behavioral model, which can be used to challenge the
real interface implementation and to ensure that the issues detected in
the behavior model do apply to the implementation.

We have prototyped the approach based on the PVS proof system,
and applied it to analyze the user interface of a real medical device. The
analysis detected several interaction design issues in the device, which
may potentially lead to severe consequences.

Keywords: Software verification, Medical devices, User interfaces.

1 Introduction

In many countries, manufacturers of medical devices are required to assure rea-
sonable safety and effectiveness of software in their devices; they have to provide
adequate evidence to support this before their device can be placed on the mar-
ket [1]. When considering the safety of a medical device, human factors issues

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

�� Corresponding author.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 200–214, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Formal Verification of Medical Device User Interfaces Using PVS 201

that include the human-device interface are critical. We refer to the part of a
device that the user receives information from and provides information to as the
user interface. Software in the device that contributes to the behavior of this in-
terface we refer to as user interface software. User interface software defines the
way in which a device supports user actions (e.g., the effect of clicking a

� �

Start
� �

button) and provides feedback (e.g., rendering error messages on the device’s
display) in response to events.

The development of user interface software, or more generally, the interaction
design of medical devices, is not standardized in the industry. Instead, each
device manufacturer crafts its own device interaction design. A number of reports
(such as [27]) have asserted that manufacturers typically address human factors
issues within their user interface software in an ad hoc manner, rather than
using rigorous design and evaluation techniques. Part of the reason lies in the
fact that human factors specialists are usually involved too late in the software
development process, if at all. These specialists typically base their analysis
upon methods like heuristic evaluation [10], which require the availability of a
fairly complete user interface prototype. As a result, it is often too late and too
expensive to find and correct an interaction design flaw. Software engineers, on
the other hand, do not have effective means to identify human factors related
flaws in a software implementation, if such flaws are inherited from system-level
design and defined in software requirements and design specifications.

The reality described above, as well as the fact that many manufactures reuse
legacy code to develop new devices, makes it necessary to verify interaction
design flaws after a user interface is implemented. However, dosing so can be
expensive and time-consuming. It is more desirable and cost-effective if such
flaws can be detected and weeded out early on (e.g. at the design stage). Rigorous
development techniques, such as model-based design [13,22], can help to achieve
this objective, if integrated into the development life-cycle.

In this paper,we focus onuser interface software inmedical devices, andpresent a
formal approach for detecting design issues in such software. The approach
translates the source-code implementation of user interface software into a formal
specification. Theorem proving is then used to generate from this specification a
behavioral model of the software. This model captures the control structure and
behavior of the software related to handling user interactions. During this process,
theorem proving is also used to prove that important human factors principles are
satisfied by (all reachable states of) the model, or otherwise to detect potential
interaction design issues. The behavioral model generated is also exhaustively ex-
plored to derive a suite of test input sequences that can expose the detected inter-
action design issues, if any, in the implementation of the user interface software.

The contributions of the paper are as follows. (i) We present a formal approach
to generate and verify behavioral models of user interface software. The approach
is based on a novel use of configuration diagrams [23]. (ii) We describe a case study
based on a real medical infusion pump. The presented approach is demonstrated
within PVS [20] for a C++ implementation of the device user interface software.
Our approach was successful in detecting multiple interaction design issues from

202 P. Masci et al.

the implementation of the user interface software of the subject pump, many of
which could potentially cause severe consequences.

The reason that we chose infusion pumps as a representative class of medical
devices for study is because many infusion pumps suffer from poor human fac-
tors design. In fact, 87 models of infusion pumps were recalled in the US alone
between 2005 and 2009. Human factors issues were among the primary causes
for these recalls [6].

The present work builds on our previous research on the verification of medical
device user interfaces [11,14–16,22] and on user interface prototyping [19]. These
previous efforts have demonstrated that formal methods can be used to identify
human factors issues in reverse-engineered models of medical devices. This paper
presents an approach that continues our previous work, and extends rigorous
analysis to source code implementations of real user interfaces.

2 Example Results from Formal Source Code Analysis

To better illustrate the usefulness of our approach, we first explain the results of
applying it to analyze the user interface implementation of a real infusion pump.
In this case study, the details of which are introduced in section 4, our approach
detected four interaction issues listed below. These issues cause the pump to
either overlook user errors or interpret input numbers in an erroneous way. In
either situation, unexpected numbers may be used to configure the pump, which
can potentially cause serious clinical consequences (e.g., a lethal dose of drug is
infused to the patient, because the amount of drug to be infused is mistakenly
configured as an extremely large number).

Valid Input Key Sequences Are Incorrectly Registered without the
User’s Awareness. The pump mistakenly discards the decimal point in input
key sequences for fractional numbers between [100.1, 1200). For example, the

input key sequence
� �

1
� �

� �

0
� �

� �

0
� �

� �

•
� �

� �

1
� �

is registered as 1001 without any warning or
error message. This issue arises because of a constraint imposed in a routine of
the pump’s software: numbers above or equal to 100 cannot have a fractional
part. Due to this constraint, the pump erroneously ignores the decimal point in
the key sequence

� �

1
� �

� �

0
� �

� �

0
� �

� �

•
� �

� �

1
� �

, and registers it as 1001. This issue opens the
possibility that a user commits a missing decimal point error and accidentally
inputs a value ten times larger than the intended one (an out-by-ten error).

Inappropriate Feedback is Given to the User for Error Conditions. The
pump produces an inappropriate error message for fractional numbers between
[120.1, 1200). For example, the pump rejects the input key sequence

� �

2
� �

� �

0
� �

� �

0
� �

� �

•
� �

� �

1
� �

with the error message “HIGH” even if the range of accepted values is
(0, 1200]. The reason for this issue is because the pump erroneously ignores the
decimal point in the key sequence and registers the number as 2001, which is
beyond the permitted range. What the pump should have reported is a message
like “The input value 200.1 should not have a fractional part”. Even though the

Formal Verification of Medical Device User Interfaces Using PVS 203

pump rejects the key sequence for
� �

2
� �

� �

0
� �

� �

0
� �

� �

•
� �

� �

1
� �

, it accepts key sequences for
integers on either side of 200.1. Without appropriate feedback, the user might
not understand why keying a number within the range limits supported by the
device is rejected, and could erroneously reach the conclusion that the device is
malfunctioning.

Ill-Formed Input Key Sequences Are Silently Accepted without the
User’s Awareness. For instance, the sequence

� �

9
� �

� �

•
� �

� �

9
� �

� �

•
� �

� �

1
� �

is accepted and
registered as 9.91 with the second decimal point silently discarded. This invalid
input sequence might be the result of a user error in reality. For example, the user
intends to input the value of 99.1, but due to issues like inattention, he/she presses

an unnecessary
� �

•
� �

between two
� �

9
� �

keys. Accepting such invalid key sequences
could allow user errors to go undetected. The safe and correct way of handling
such invalid sequences is to halt user interaction and return a warning message.

Digits after Decimal Point Silently Discarded without the User’s
Awareness. For instance, the pump mistakenly registers the input key sequence
� �

1
� �

� �

0
� �

� �

•
� �

� �

0
� �

� �

9
� �

as 10, as opposed to the intended 10.09. The reason for this issue
is because the pump software automatically limits the accuracy of numbers to
one decimal digit for values between [10, 100).

Notably, we used input sequences like the above to challenge another infusion
pump from a different manufacturer. Similar design issues were observed for the
same input sequences. This suggests that such design flaws may be common
to different implementations of user interface software. Therefore, fixing defects
presented in this paper can result in significant improvement in the safety of
infusion pumps [29], and possibly other devices that incorporate interactive data
entry software (such as ventilators and radiation therapy systems).

3 The Approach

Our approach, as depicted in figure 1, starts with translating the source code of
user interface software of medical devices into a formal specification acceptable to
the PVS theorem prover. A behavioral model is then extracted, in a mechanized
manner, from the formal specification using PVS and configuration diagrams.
Theorem proving is also applied to the behavioral model to verify its compliance
to human factor design principles. Lastly, the behavioral model is exhaustively
explored to generate a suite of test key sequences that expose interaction design
issues of the original device.

3.1 From C++ Code to PVS Specifications

PVS is a well known industrial-level theorem prover that enables mechanized
verification of potentially infinite-state systems. It is based on a typed higher-
order logic, and its specification language has many features similar to those
of C++. These similarities between the two languages make it possible to de-
vise a set of guidelines for translating (a subset of) C++ programs into PVS
specifications, with the semantics of the original C++ programs preserved.

204 P. Masci et al.

Fig. 1. Overview of our approach for verifying user interface software

Our approach adopts the following guidelines to manually translate C++ pro-
grams into PVS specifications. These guidelines provide a systematic approach
for the translation:

– Conditional and iterative statements in C++ are straightforwardly trans-
lated to their counterparts in the PVS specification language;

– Computation in C++, which is typically defined as instructions modifying
the values of variables of objects, is emulated in PVS with the assistance of a
record type, namely state. In type state, each field is defined to record the
value of a member variable in C++. Thus, computation over C++ variables
can be translated as updating the fields of state accordingly. Type state
is then passed to all PVS functions for reference and update;

– C++ functions are emulated in PVS as higher-order functions with the same
function arguments, while local variables in C++ functions are emulated
using the PVS LET-IN construct that binds expressions to local names;

– Class inheritance in C++ is translated by introducing a field in the structure
that translates (the state variables of) the base class.

Data types in C++, such as float and integer, can be mimicked in PVS
using subtyping [25], a PVS language mechanism that restricts the data do-
main of types. For instance, the subtype {x: real | x >= FLOAT MIN AND
x <= FLOAT MAX} checks if a real-typed variable has value within the range
from FLOAT MIN to FLOAT MAX. In many cases, subtyping is sufficient to check
whether a behavioral model correctly captures all boundary conditions encoun-
tered by the C++ implementation. Furthermore, PVS includes a standard li-
brary that emulates C++ data types such as lists and strings, as well as common
C++ library functions such as strcmp.

It is worth pointing out that, the translation of C++ programs benefits from
the strong type-checking mechanism in PVS. That is, if data types declared in
the PVS specifications are consistent with those in the C++ code, PVS can
assist in detecting type errors in the C++ code. With appropriate subtypes, it
is also possible to conduct more sophisticated type checking using PVS to detect
common coding errors in C++, such as null pointer dereferences, use-before-def
errors, and out-of-bound array accesses.

Currently, the translation of C++ programs in our approach considers only
basic C++ constructs. The translation of complex C++ features, such as passing
function parameters by reference, is left for future work, as it is not needed for
our case study.

Formal Verification of Medical Device User Interfaces Using PVS 205

3.2 Generation of Behavioral Models from PVS Specifications

Safe user interface design for medical devices needs to comply with important
human factors principles, such as consistency of actions, feedback, mode clarity,
and ability to undo. As shown in [12], such principles can be formalized as
properties that must always be satisfied by a device. Our approach formalizes
such principles as invariants that the behavioral model of user interface software
in medical devices must satisfy.

We use in a novel way configuration diagrams, first proposed in [23], to ex-
tract the behavioral model from the PVS specification of user interface software,
and to prove invariants of interest against the model. The intuition of config-
uration diagrams is that, proving an invariant G can be facilitated by using
a strengthening invariant A, where A is given as a disjunction of properties
A = A1 ∨ · · · ∨ Ak. Then, instead of proving G, the proof is done on G ∧ A, or,
equivalently, (G ∧A1) ∨ · · · ∨ (G ∧Ak). Properties Ai need not to be invariants,
which makes them easier to define. Sub-properties Ci = G ∧ Ai are referred to
as configurations.

All configurations encountered during the analysis can be organized as a con-
figuration diagram, which is a labeled graph where each node corresponds to a
configuration, each edge represents a possible transition between configurations,
and the labels marked on the edges denote conditions that enable transitions.

Our approach follows the following mechanized process, also presented in [23],
to construct configuration diagrams for PVS specifications:

1. Invent a configuration C1; Use the theorem prover to verify that C1 is
reachable from the initial state and C1 satisfies the property being verified.

2. Identify the conditions that trigger outgoing transitions from C1, and use
the theorem prover to check if the disjunction of these conditions is true.
This ensures that all possible cases are covered.

3. For each condition identified in (2), use the theorem prover to perform a
symbolic execution for one step from C1. This returns a new configuration
C2, an already existing configuration, or a variant of an existing one. If new
configurations are obtained, check them against the property being verified.

4. Repeat steps (2) and (3) until no new configuration is encountered.

An example of using configuration diagrams to extract and verify behavioral
models can be found in sub-sections 4.3 and 4.4.

3.3 Generation of Test Input Sequences

In many modern medical devices user interaction is carried out by clicking but-
tons. Test cases to (the user interface of) these devices can therefore be given
in the form of a sequence of key presses that the user performs to operate the
devices. The effectiveness of using input key sequences to analyze the user in-
terface of medical devices has been demonstrated in [5], where key sequences
reflecting arbitrary user strategies were generated to assess the sensitivity of
infusion pumps to unnoticed key slip errors.

206 P. Masci et al.

In our approach, however, key sequences are generated from configuration
diagrams, and used as test cases to challenge the real implementation of user
interface software. That is, an analyst can watch the execution of the implemen-
tation based on the generated key sequences, so as to confirm whether or not it
actually possesses the design issues detected in its behavioral model.

To generate key sequences from a configuration diagram, our approach tra-
verses the diagram and identifies user actions associated with its transitions.
Formally, a walk in a configuration diagram is a sequence n0

e01−→ n1
e12−→ n2 . . .,

where ni is a node in the diagram, and eij is an edge connecting node ni to nj .
By collecting user actions (key presses in our case) marked on each edge eij in a
walk, one can produce a sequence of key presses that can be used as a test case.

3.4 Discussion

Most of the model construction and proof tasks in our approach are automated
by PVS and grind, a powerful decision procedure included in PVS, which re-
peatedly applies definition expansion, propositional simplification, and decision
support to assist the analysis [26]. Human intervention is required only for two
purposes: 1) guide PVS to prune irrelevant details away from the analysis, in
order to avoid case-explosion and keep the generated configuration diagram com-
pact; and 2) guide PVS to decompose theorems into sub-theorems. More specif-
ically, the analyst needs to select or modify control conditions of the behavioral
model suggested by PVS. PVS then checks if the selected or modified ones cover
all possible model execution paths.

It should be noted that, even though human intervention demands skills and
expertise with PVS, the level of human involvement required by our approach
does promote active thinking for the analyst, giving her/him deep insights into
the software’s control structure and behavior. Because of this active involvement,
it is possible to identify (the root cause of) issues and their fixes before the
analysis is complete [23].

Lastly, the key point of generating useful key sequences, as in traditional
software test generation, is to ensure that the key sequences derived from the
configuration diagram achieve full coverage of the diagram. This ensures that
the generated key sequences represent all possible user interactions that user
interface software may encounter. Our approach currently realizes the generation
of test sequences based on manual browsing of configuration diagrams. But it
can certainly be extended with effective model based test generation techniques
(e.g. [28]), to automate the exploration of (large-scale) configuration diagrams
and the generation of comprehensive test key sequences from them.

4 Case Study: Analyzing a Real-World Infusion Pump

To evaluate the effectiveness of our approach, we applied it to the user interface
implementation of a real infusion pump1. It should be noted that, in the study

1 The identity of the pump is concealed for confidentiality reasons, even though it is no
longer marketed in US. Also, the information presented in this section is obfuscated.

Formal Verification of Medical Device User Interfaces Using PVS 207

Fig. 2. Layout of the infusion pump user interface under study

we had access to the source code of the user interface software, but we did not
have access to the design documentation of the pump, nor the library objects its
implementation referenced. Admittedly, the absence of library code may cause
inaccuracy of verification (e.g., design issues are falsely detected or omitted).
Fortunately, the design issues detected in this study, as reported in section 2,
were confirmed as genuine and caused by the subject implementation.

4.1 Overview of the User Interface under Study

Figure 2 illustrates the general layout of the user interface considered in the
study. Keys relating to the data entry system are labeled, while the others are
left blank for simplicity. By understanding the pump implementation, we com-
prehended its behavior, which is summarized as follows.

Digit Keys. During data entry, the software accepts one key press at a time and
calculates new values to be rendered on the display according to the following
rules: (i) if a decimal point key has not been registered, then the new value is
obtained by adding ten times the current displayed value and the value associated
with the digit key clicked. For instance, if the display is 1 and a click on

� �

7
� �

is
registered, then the new value is 10 × 1 + 7 = 17; (ii) if a decimal point key
has been registered, the value is obtained by adding the current displayed value

and the value associated with the clicked digit times 10−(decimalDigits + 1),
where decimalDigits is the current number of decimals of the displayed value.
Thus if the display is 17. and a click on

� �

2
� �

is registered, the new value is
17+ 2× 10−1 = 17.2; (iii) the display is updated to the calculated value only if:

– The new value is in the range 0–1200;
– The maximum decimal precision of the new value does not exceed

• 2 decimal digits if the new value is less than 10; or
• 1 decimal digit if the new value is within [10, 100); or
• 0 decimal digits if the new value is equal to or greater than 100.

A key that causes the calculated value to violate the above constraints puts the
software into an error mode, in which user interaction is halted, and a warning
message is displayed.

Decimal Point Key. The pump registers decimal points only when the current
displayed value is less than 100 and a decimal point has not been previously
registered. Otherwise, the decimal point key click is discarded.

208 P. Masci et al.

Clear Key. If the software is not in the error mode, the initial state is restored
(i.e., the displayed value is reset to 0); otherwise, the error mode is cleared and
the most recent valid state is restored.

4.2 Translation of the C++ Implementation

The portion of the implementation under study was a C++ class, the body
of which consists of approximately 2,000 lines of code. This class defines the
pump’s behavior of handling key presses on the number pad, and managing
feedback rendered on its display.

The first step of analysis was to translate the C++ class into PVS specifica-
tions, in which the guidelines given in section 3.2 were followed.

Listing 1.1. PVS specification of the software’s state variables

1 state: TYPE = [# display: {s: string | s‘length < DISP_BUFF_SIZE},
2 dispval: float,
3 pointRegistered: bool,
4 decimalDigits : {i: int | i >= 0 AND i <= 2}
5 errorMode : bool #]

State Variables. A record type, state, is defined to correspond to (the structure
of) the C++ class in the implementation. Listing 1.1 illustrates the definition of
state, in which every field is defined for one member variable of the C++ class.
In particular, the display field stores the string to be rendered on the display;
the dispval field is a float number that stores the current legal value registered
by the pump; pointRegistered is a Boolean field that indicates whether or not the
decimal point has been registered; the decimalDigits field records the number
of decimal digits of the currently registered value; and errorMode is a Boolean
that is set to true when the software is in the error mode. The predicate subtype
associated with the display field is used to restrict the string length, while the
subtype for decimalDigits is to enforce constraints on the number of decimal
digits. Both of these subtypes are consistent with the constraints imposed by
the original code.

Listing 1.2. PVS specification of decimal point

1 pointClicked(st: state): state =
2 if(NOT errorMode(st) & NOT pointRegistered(st) & dispval(st) < 100)
3 then st WITH [pointRegistered := TRUE,
4 display := strcat(display(st), ".")] else st endif

Decimal Point. Function pointClicked, as shown in listing 1.2, translates the
code that handles decimal point clicks. It takes the software’s current state (st)
as parameter, and updates the device’s display by invoking strcat (a simulation
of the counterpart C++ function) to concatenate the pieces to be displayed. A
PVS’s WITH construct is used to update two fields of st when it is not in the
error mode; or leave st unchanged otherwise.

Formal Verification of Medical Device User Interfaces Using PVS 209

Digit Keys. Function digitClicked translates the code that handles digit keys.
The parameter key of type KEY CODE specifies the identifier of the key (each
key is given a unique identifier whose value corresponds to the key label). Listing
1.3 provides the definition of digitClicked, where a LET-IN construct is used to
create local bindings to simulate local variables used in the implementation.
When a digit key is clicked, the new display value is computed and stored in
variable tmp (line 3 in Listing 1.3). If the new value meets the range and precision
constraints, the display and other relevant state variables are updated with this
value (lines 5-12 and 16-18); otherwise a warning message is displayed (lines 14-
15). Function sprintf is called to reproduce the behavior of the corresponding
C++ function, which outputs the string to be displayed.

Listing 1.3. PVS specification of digit keys

1 digitClicked(key: KEY_CODE)(st: state): state =
2 if(NOT errorMode(st)) then LET
3 tmp: double = dispval(st),
4 (tmp, st) = if(dotRegistered(st)) then
5 if(decimalDigits(st) < MAX_DECIMAL_DIGITS
6 & ((tmp < 100 & decimalDigits(st) = 0)
7 OR (tmp < 10 & decimalDigits(st) = 1))) then LET
8 PPdecimalDigits = decimalDigits(st) + 1,
9 tmp = tmp + key * pow10(-1 * PPdecimalDigits) IN

10 (tmp, st WITH [decimalDigits := PPdecimalDigits])
11 else (tmp, st) endif
12 else (tmp * 10 + key, st) endif IN
13 if(tmp > MAX_VALUE)
14 then st WITH [errorMode := true,
15 display := strcpy(display(st),message(TOO_HIGH))]
16 else st WITH [dispval := tmp,
17 display := sprintf(display(st), "%*.*f", 0,
18 decimalDigits(st),tmp)] endif else st endif

Clear Key. Function clearClicked, shown in Listing 1.4, translates the code
segment that handles the Clear key clicks. When a click on the Clear key is
detected and the software is not in the error mode, clearClicked restores the
initial state. Otherwise, it clears the error by setting errorMode to false, and
updates the display with the last legal value stored in dispval.

Listing 1.4. PVS specification of clear key

1 clearClicked(st: state): state =
2 if(NOT errorMode(st))
3 then st WITH [dispval := 0, display := "0",
4 pointRegistered := false, decimalDigits := 0]
5 else st WITH [errorMode := false,
6 display := sprintf(display(st), "%*.*f", 0,
7 decimalDigits(st),dispval(st))] endif

4.3 Verification Using Configuration Diagrams

The human factors principles that we attempted to verify against the pump
implementation included: consistency, asserting that the same user actions

210 P. Masci et al.

Fig. 3. Configuration diagram regarding the consistency of decimal point clicks

(in this case, key clicks) should produce the same results in logically equivalent
situations; and feedback, which ensures that the user is provided with sufficient
information on what actions have been done and what result has been achieved.

Given different aspects of the pump’s behavior, these two principles can be
instantiated differently. Take the handling of decimal point clicks for example. We
instantiated these two principles, for this specific aspect of the pump’s behavior,
as predicate decimal point pred (see Listing 1.5)2. This predicate essentially
asserts that, no matter what current state (st) the pump has, when the decimal
point key is clicked, the pump should enter into a new state st prime, in which
either the decimal point is registered (variable pointRegistered is set true), or
the error mode is triggered (errorMode is true).

Listing 1.5. Predicate decimal point pred in PVS

1 decimal_point_pred(st: state): bool =
2 LET st_prime = pointClicked(st)
3 IN (pointRegistered(st_prime) OR errorMode(st_prime))

Predicate decimal point pred defines a safe way to manipulate decimal
point clicks. Based on this predicate, a behavioral model was constructed for
the infusion pump under study, by applying the procedure presented in section
3.2 to the PVS translation of its implementation. Simultaneously, the proof that
the pump satisfies decimal point pred was accomplished within the PVS
theorem prover by checking this predicate against all reachable states of the
behavioral model under all possible input key sequences.

The behavioral model illustrated in figure 3, in the form of a configuration di-
agram, was constructed as the result of our analysis effort. After proving twenty

2 Instantiation of the principles with respect to other aspects of the pump’s behavior
can be carried out similarly.

Formal Verification of Medical Device User Interfaces Using PVS 211

theorems during the model construction process, we verified that the infusion
pump violates predicate decimal point pred (an example of such violation
is shown in section 4.4). Please refer to section 2 for an explanation of the verifi-
cation results, and to [17] for more details on the generation of the configuration
diagram and the proof process.

4.4 Generation of Test Input Sequences

As discussed in section 3.3, a comprehensive set of key sequences can be gen-
erated as test cases to the device implementation by exploring all walks in its
configuration diagram.

Consider generating test cases from the configuration diagram in figure 3. At
the beginning, the pump satisfies C1: the decimal point is not registered; its user
interface is not in the error mode; the display value is less than 100. This is
visualized in the diagram as an edge from a default node Initiality to C1.

Outgoing edges from C1 are labeled with the combination of conditions and
user actions that can lead the pump into a new configuration. Note that only
conditions and user actions related to the verification of desired properties are
considered. For example, only the following combinations can trigger the pump
to exit from configuration C1: a decimal point is pressed (E12 in figure 3); or, a
digit key is pressed when COND1 holds (E13 in figure 3), where COND1 asserts
that the new display value is greater than or equal to 100.

The trace C1
E13−→ C3

E33−→ C3
E33−→ C3 represents a walk in this configuration

diagram. This walk stands for a class of possible user interaction scenarios, one
of which can be: start from C1 when the display value is 10; key

� �

0
� �

is pressed,
and the model moves to C3 as a digit key is pressed and COND1 is satisfied; key
� �

•
� �

is pressed, and the model stays in C3. Lastly, key
� �

1
� �

is pressed.
An example of sequence of key presses that can be extracted from the above

example walk is
� �

1
� �

� �

0
� �

� �

0
� �

� �

•
� �

� �

1
� �

, which exposes an interaction design flaw: the
pump silently discards the decimal point. In particular, when the prefix

� �

1
� �

� �

0
� �

� �

0
� �

� �

•
� �

of this sequence is fed to the pump, the model will stay in configuration C3,
in which predicate pointRegistered is false indicating that the decimal point is
not registered, and predicate errorMode is also false indicating that no warning
message is provided to the user.

Following the above process, we generated test cases that exposed the inter-
action design flaws presented in section 2. These test cases were used to check
the infusion pump under study, and confirmed that the detected design flaws
did exist in its implementation.

5 Related Work

The work presented in the paper is based on configuration diagrams, originally
introduced by Rushby to verify safety properties of potentially infinite-state sys-
tems [23]. For such systems, formal verification requires either a direct proof
through deductive mechanized methods (e.g., theorem proving), or justification
of an abstraction that downscales the system so that it can be verified through

212 P. Masci et al.

exhaustive state exploration (using model checking for example). In contrast,
our approach uses configuration diagrams in a novel way to identify interaction
design issues in software. In particular, we use configuration diagrams to ex-
tract and verify a behavioral model of the software specifying how the software
manages the interactions with the user.

Several approaches have been proposed to use model checking to verify user
interface implementations3. For example, Rushby [24] used model checkers Murφ
and SAL to verify mode confusion in a cockpit; Rukšėnas et al [21] used SAL to
identify post-completion errors in infusion pumps; Campos and Harrison used
IVY/NuSMV to analyze infusion pumps against properties such as consistency,
visibility, and feedback [4, 11]; and in our own work, we used SAL and Event-
B/Rodin to analyze the data entry system of infusion pumps for their predictabil-
ity [15, 16] and other safety properties identified by FDA [22].

The main limitation of using model checking to analyze user interface de-
sign/implementations lies in that, one has to wisely balance the complexity of
the models constructed for user interface and the fidelity of these models to the
original design/implementation. On one hand, the constructed models cannot
be too complex to be analyzable (within reasonable time cost) [3, 9, 12]. This
is why abstraction has to be used to eliminate irrelevant details away from the
models. On the other hand, it is often difficult to find appropriate types of ab-
straction, so as to preserve necessary details of the user interface for verification.
Therefore, model checkers often use too coarse abstraction to extract models
from the real design/implementation, resulting in excessive spurious counterex-
amples (i.e., counterexamples representing behaviors that do not exist in the real
design/implementation) to be reported.

Even though counterexample guided techniques, such as [2,7,8], can be used to
guide model checkers to refine and optimize the abstraction, such techniques still
demand significant effort from the analysts to first decide if a counterexample
is genuine or spurious. Unfortunately, with respect to analyzing user interface
software for its human factors properties, no general solution has been proposed
to assist analysts in making such decisions.

In contrast to model checking driven approaches, our approach defines a gen-
eral method for model construction based on theorem proving and configuration
diagrams. It avoids the difficulty of finding an appropriate level of abstraction
that ensures the accuracy and fidelity of the constructed behavioral models. How-
ever, the behavioral models constructed by our approach can also be verified by
model checkers for their human factors properties.

6 Conclusions

A rigorous and effective approach for formally verifying the source code im-
plementation of user interface software in medical devices has been presented.

3 It is worth noting that model-checking can be used in the design phase as a “high-
level debugger” of designs. However, this requires a different approach to modeling,
such as that illustrated in [22].

Formal Verification of Medical Device User Interfaces Using PVS 213

The case study shows that this approach can detect interaction design issues
in real implementations that might lead to critical safety consequences. These
issues exist because of a combination of design features in user interface soft-
ware, each of which is not problematic individually. Interestingly, we fed the test
cases generated by the approach to another infusion pump made by a different
manufacturer, and observed similar design issues.

The case study presented only formally analyzed a portion of the software
implementation of the subject infusion pump. As a result, only part of the con-
figuration diagram was developed, and only part of the proofs generated by PVS
were formally proved. However, even with this partially completed formal analy-
sis, real issues were identified. This suggests that our approach has the potential
to assess and improve the quality and safety of user interface software in medical
devices even before their complete implementation is available.

Once human factors properties are assured using PVS, the specification can
be used to rapidly prototype a new user interface design in which the identified
interaction design issues have been addressed. In fact, PVS provides a compo-
nent called PVSio-web [19] that helps developers to define the layout of a user
interface; and a component called PVSio [18] that enables interactive execu-
tion of specifications defining the behavior of the user interface, and a ground
evaluator that automatically compiles these specifications into executable code.

Acknowledgments. We thank Michael Harrison for his invaluable suggestions
and comments on the paper and the support of CHI+MED (Computer-Human
Interaction for Medical Devices, EPSRC research grant [EP/G059063/1]).

References

1. AAMI Medical Device Software Committee. Medical device software risk manage-
ment. AAMI Tech. Rep. TIR32:2004 (2004)

2. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software
predicate abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 388–403. Springer, Heidelberg (2004)

3. Bolton, M.L., Bass, E.J.: Formally verifying human-automation interaction as part
of a system model: Limitations and tradeoffs. Innovations in Systems and Software
Engineering 6(3), 219–231 (2010)

4. Campos, J.C., Harrison, M.D.: Modelling and analysing the interactive behaviour
of an infusion pump. Electronic Communications of the EASST (2011)

5. Cauchi, A., Gimblett, A., Thimbleby, H., Curzon, P., Masci, P.: Safer 5-key number
entry user interfaces using differential formal analysis. In: BCS-HCI (2012)

6. Center for Devices and Radiological Health, US Food and Drug Administration.
White Paper: Infusion Pump Improvement Initiative (2010)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

8. Dwyer, M.B., Tkachuk, O., Visser, W., et al.: Analyzing interaction orderings with
model checking. In: ASE 2004, pp. 154–163. IEEE Computer Society (2004)

9. Gelman, G.E., Feigh, K.M., Rushby, J.: Example of a complementary use of model
checking and agent-based simulation. In: SMC 2013. IEEE (2013)

214 P. Masci et al.

10. Ginsburg, G.: Human factors engineering: A tool for medical device evaluation in
hospital procurement decision-making. Journal of Bio. Informatics 38(3) (2005)

11. Harrison, M.D., Campos, J.C., Masci, P.: Reusing models and properties in the
analysis of similar interactive devices. Innovations in Systems and Software Engi-
neering, 1–17 (2013)

12. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Automated theorem proving
for the systematic analysis of interactive systems. In: FMIS 2013 (2013)

13. Jetley, R., Purushothaman Iyer, S., Jones, P.L.: A formal methods approach to
medical device review. Computer 39(4), 61–67 (2006)

14. Masci, P., Curzon, P., Harrison, M.D., Ayoub, A., Lee, I., Thimbleby, H.: Verifi-
cation of interactive software for medical devices: PCA infusion pumps and FDA
regulation as an example. In: EICS 2013. ACM Digital Library (2013)

15. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: On formalising interactive number entry on infusion pumps.
Electronic Communications of the EASST 45 (2011)

16. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon,
P., Thimbleby, H.: The benefits of formalising design guidelines: a case study on
the predictability of drug infusion pumps. Innovations in Systems and Software
Engineering, 1–21 (2013)

17. Masci, P., Zhang, Y., Curzon, P., Harrison, M.D., Jones, P., Thimbleby, H.: Veri-
fication of software for medical devices in PVS. CHI+MED Tech. Rep. (2013),
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=656

18. Munoz, C.: Rapid prototyping in PVS. National Institute of Aerospace, Hampton,
VA, USA, Tech. Rep. NIA, 3 (2003)

19. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: A tool for rapid
prototyping device user interfaces in PVS. In: FMIS 2013 (2013)

20. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

21. Rukšėnas, R., Curzon, P., Blandford, A.E., Back, J.: Combining human error ver-
ification and timing analysis: A case study on an infusion pump. Formal Aspects
of Computing (2013) (in press)

22. Rukšėnas, R., Masci, P., Harrison, M.D., Curzon, P.: Developing and verifying user
interface requirements for infusion pumps: A refinement approach. In: FMIS 2013
(2013)

23. Rushby, J.: Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 508–520. Springer, Heidelberg (2000)

24. Rushby, J.: Using model checking to help discover mode confusions and other au-
tomation surprises. Reliability Engineering & System Safety 75(2), 167–177 (2002)

25. Shankar, N., Owre, S.: Principles and pragmatics of subtyping in PVS. In: Bert,
D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52.
Springer, Heidelberg (2000)

26. Shankar, N., Owre, S., Rushby, J., Stringer-Calvert, D.: PVS prover guide. Com-
puter Science Laboratory, vol. 1, pp. 11–12. SRI International, Menlo Park (2001)

27. Story, M.F.: The FDA perspective on human factors in medical device software
Development. In: IQPC Software Design for Medical Devices Europe (2012)

28. Thimbleby, H.: Press on: Principles of Interaction Programming. Mit Press (2007)
29. Thimbleby, H., Cairns, P.: Reducing number entry errors: solving a widespread,

serious problem. Journal of the Royal Society Interface 7(51), 1429–1439 (2010)

http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=656

	Formal Verification of Medical Device
User Interfaces Using PVS�

	1 Introduction
	2 Example Results from Formal Source Code Analysis
	3 The Approach
	3.1 From C++ Code to PVS Specifications
	3.2 Generation of Behavioral Models from PVS Specifications
	3.3 Generation of Test Input Sequences
	3.4 Discussion

	4 Case Study: Analyzing a Real-World Infusion Pump
	4.1 Overview of the User Interface under Study
	4.2 Translation of the C++ Implementation
	4.3 Verification Using Configuration Diagrams
	4.4 Generation of Test Input Sequences

	5 Related Work
	6 Conclusions
	References

