
1

Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction1

Miroslav N. Velev*

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

*Department of Electrical and Computer Engineering
‡School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract
We extend the Burch and Dill flushing technique [6] for formal
verification of microprocessors to be applicable to designs where
the functional units and memories have multicycle and possibly
arbitrary latency. We also show ways to incorporate exceptions
and branch prediction by exploiting the properties of the logic of
Positive Equality with Uninterpreted Functions [4][5]. We study
the modeling of the above features in different versions of dual-
issue superscalar processors.

1 Introduction
In order for formal methods to scale for verification of modern
microprocessors, they need to be applicable easily and with a
high degree of automation to designs with multicycle functional
units, multicycle memories, exceptions, and branch prediction.
Burch and Dill’s verification methodology has the potential to be
highly automatic, but has previously been applied only to designs
with single-cycle functional units and memories that produce
their results instantaneously [5][6][7][21]. The approach is very
elegant in using flushing of the processor—feeding it with bub-
bles until all instructions in flight complete their execution—in
order to compute an abstraction function mapping Implementa-
tion states to a Specification state. (The difference between a
bubble and a nop is that a bubble does not modify any user-visi-
ble state, while a nop increments the PC.) The correctness crite-
rion is a commutative diagram, stating that an application of the
transition function of the Implementation followed by flushing
should produce the same user-visible state as first flushing the
Implementation and then using the resultant user-visible state to
apply the transition function of the Specification between 0 and k
times, where k is the issue-width of the Implementation. As
observed and exploited by Burch in his controlled flushing [7],
we can change the logic during flushing, since the only purpose
of that logic is to compute an abstraction function. Having an
improper abstraction function will not compromise the verifica-
tion and can only result in a false negative.

The same correctness criterion has been adopted by the theo-
rem-proving community and applied to an out-of-order design
with exceptions and interrupts by Sawada and Hunt [17] and to
an out-of-order design with only arithmetic instructions by

1. This research was supported in part by the SRC under contract
99-DC-068.

Hosabettu, Srivas and Gopalakrishnan [13]. However, the former
approach requires the user to manually build an intermediate
abstraction of the processor and to define a large number of lem-
mas (Sawada defined nearly 4,000), necessary for the correctness
proof. The latter approach requires the user to manually define a
set of completion functions, one per unfinished instruction in
flight, describing how that instruction will be completed, given
that all the instructions that it has data dependencies on have
already been completed. Furthermore, the user has to manually
define a way to compose these completion functions in order to
form the abstraction function for the processor. Both of these the-
orem-proving methods require months of manual work for com-
plex designs, i.e., they are not automatic.

Not only has the Burch and Dill flushing technique not been
applied to processors with multicycle functional units, but Hosa-
bettu, Srivas and Gopalakrishnan [12] have claimed that it has
the drawback of being hard to use for pipelines with indetermi-
nate latency, particularly where an ALU computation might have
a data-dependent duration or a memory hierarchy of multiple lev-
els might have a non-deterministic delay.

In this work we extend Burch and Dill’s flushing-based meth-
odology to be applicable to microprocessors with functional
units and memories of multicycle and possibly arbitrary latency.
We also model exceptions and branch prediction. Our most com-
plex designs have 10 abstract instruction types. They have two
completely functional pipelines, each consisting of five stages,
for a total of up to 10 instructions in flight. Therefore, exhaustive
binary simulation must consider 1010 instruction sequences of 10
instructions each. Furthermore, accounting for possible data
dependencies, raised exceptions, correctness/incorrectness of the
branch predictions, and multicycle computations will make that
number significantly higher. Even directed simulation will proba-
bly find it very hard, if at all possible, to generate all interesting
instruction sequences for such a design. However, we were able
to formally verify it in less than 44 minutes of CPU time.

2 Background
The key to our success is a very efficient decision procedure [21]
for the logic of Equality with Uninterpreted Functions and Mem-
ories (EUFM) [6], which exploits the properties of Positive
Equality [4][5] and the eij encoding [10] to generate a proposi-
tional formula, which is then evaluated with BDDs [3] or SAT-
checkers. We found BDDs to be unmatched by SAT-checkers and
SVC [18] (a decision procedure for the logic of EUFM that does
not exploit Positive Equality) when verifying correct designs.
However, SAT-checkers outperform BDDs on buggy processors.

The syntax of EUFM [6] includes terms and formulas. A
term can be an Uninterpreted Function (UF) applied on a list of
argument terms, a domain variable, or an ITE operator selecting
between two argument terms based on a controlling formula,
such that ITE(formula, term1, term2) will evaluate to term1 when
formula = true and to term2 when formula = false. A formula
can be an Uninterpreted Predicate (UP) applied on a list of argu-

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

2

ment terms, a propositional variable, an ITE operator selecting
between two argument formulas based on a controlling formula,
or an equation (equality comparison) of two terms. Formulas can
be negated and connected by Boolean connectives. We will refer
to both terms and formulas as expressions.

UFs and UPs are used to abstract away the implementation
details of functional units by replacing them with “black boxes”
that satisfy no particular properties other than that of functional
consistency. Namely, that the same combinations of values to the
inputs of the UF (or UP) produce the same output value. Then, it
no longer matters whether the original functional unit is an adder
or a multiplier, etc., as long as the same UF (or UP) is used to
replace it in both the Implementation and the Specification. Note
that in this way we will prove a more general problem—that the
processor is correct for any implementation of its functional
units. However, that more general problem is much easier to
prove (see [20] for the scaling of the correctness proof for a pro-
cessor with an actual bit-level implementation of its ALU).

The syntax for terms can be extended to model memories by
means of the functions read and write, where read takes 2 argu-
ment terms serving as memory and address, while write takes 3
argument terms serving as memory, address, and data. Both func-
tions return a term. Also, they satisfy the forwarding property of
the memory semantics, read(write(mem, waddr, wdata), raddr)
is equivalent to ITE((raddr = waddr), wdata, read(mem, raddr)),
in addition to the property of functional consistency. Versions of
read and write that extend the syntax for formulas can be defined
similarly, such that the former returns a formula, while the latter
takes a formula as its third argument.

Three possible ways to impose the property of functional
consistency of UFs and UPs are Ackermann constraints [1],
nested ITEs [4][5][20], and “pushing-to-the-leaves” [21]. The
Ackermann scheme replaces each UF (UP) application in the
EUFM formula F with a new domain variable (propositional
variable) and then adds external consistency constraints. For
example, the UF application f(a1, b1) will be replaced by a new
domain variable c1, another application of the same UF, f(a2, b2),
will be replaced by a new domain variable c2. Then, the resultant
EUFM formula F’ will be extended as
[(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F’. In the nested ITEs
scheme, the first application of the UF above will still be
replaced by a new domain variable c1. However, the second one
will be replaced by ITE((a2 = a1) ∧ (b2 = b1), c1, c2), where c2 is
a new domain variable. A third one, f(a3, b3), will be replaced by
ITE((a3 = a1) ∧ (b3 = b1), c1, ITE((a3 = a2) ∧ (b3 = b2), c2, c3)),
where c3 is a new domain variable, and so on. Similarly for UPs.
Note that the nested ITEs approach keeps the consistency infor-
mation located in the internal structure of the formula. In the
pushing-to-the-leaves scheme, a UF application is pushed
towards the leaves of its argument nested ITE expressions until
all arguments become domain variables. Then, each UF applica-
tion on a unique list of argument domain variables is replaced
with a new domain variable. For example, f(ITE(d, a1, a2), b) will
be transformed into ITE(d, f(a1, b), f(a2, b)) and then into
ITE(d, c1, c2), where c1 and c2 are new domain variables replac-
ing f(a1, b) and f(a2, b), respectively. Although this scheme has
the potential to result in a term blow up, it has the advantage that
it does not create equations between argument terms, as the pre-
vious two schemes do. Note also that the pushing-to-the-leaves
scheme results in a conservative approximation to functional
consistency in that it satisfies the Ackermann functional consis-
tency constraints only for syntactically identical terms.

Positive Equality allows the identification of two types of
terms in the structure of an EUFM formula—those which appear
only in positive equations and are called p-terms, and those
which can appear in both positive and negative equations and are
called g-terms (for general terms). A negative equation is one
which appears under an odd number of negations or as part of the

controlling formula for an ITE operator. The computational effi-
ciency from exploiting Positive Equality is due to a theorem
which states that the truth of an EUFM formula under a maxi-
mally diverse interpretation of the p-terms implies the truth of the
formula under any interpretation. The classification of p-terms
vs. g-terms is done before UFs and UPs are eliminated by nested
ITEs, such that if an UF is classified as a p-term (g-term), the
new domain variables generated for its elimination are also con-
sidered to be p-terms (g-terms). After the UFs and the UPs are
eliminated, a maximally diverse interpretation is one where the
equality comparison of two syntactically identical (i.e., exactly
the same) domain variables evaluates to true, that of a p-term
domain variable with a syntactically distinct domain variable
evaluates to false, and that of a g-term domain variable with a
syntactically distinct g-term domain variable could evaluate to
either true or false and can be encoded with a dedicated Boolean
variable—an eij variable [10]. An alternative encoding has been
proposed by Pnueli et al. [15].

In order to fully exploit the benefits of Positive Equality, the
designer of an abstract processor model has to use a set of suit-
able abstractions and conservative approximations. For example,
an equality comparison of two data operands, as used to deter-
mine the condition to take a branch-on-equal instruction, must be
abstracted with an UP in both the Implementation and the Speci-
fication, so that the data operand terms will not appear in negated
equations but only as arguments to UPs and UFs and will be clas-
sified as p-terms. Similarly, a Finite State Machine (FSM) model
of a memory, which is a conservative approximation of an actual
memory, has to be employed to model the Data Memory, so that
its addresses, which are produced by the ALU and also serve as
data operands, can be classified as p-terms. The result is that data
values produced by the Register File, the ALU, and the Data
Memory, as well as the PC values, can be classified as p-terms.
Only the register identifiers, whose equations control forwarding
and stalling conditions that are negated, are classified as g-terms.
Finally, and this is done automatically [21], the conservative
approximation of pushing-to-the-leaves has to be used for elimi-
nating reads from the initial state of memories addressed by
g-terms, such as the Register File, in order to reduce the number
of distinct equations between g-terms, i.e., to reduce the number
of eij Boolean variables.

3 Modeling Multicycle Functional Units
We replace multicycle functional units with “place holders,”
which are implemented with the constructs of EUFM and exhibit
enough of the timing characteristics of the original functional
units, such that the correctness of the abstract processor with
place holders will imply the correctness of the actual Implemen-
tation processor with the original functional units. For example,
we can model the timing behavior of a functional unit with a
fixed latency of n cycles by a chain of n-1 latches situated
between the two pipeline latches that limit the stage of the func-
tional unit, and a single UF abstracting the functionality of the
unit. The chain of latches will be used to delay the signal that
controls the updating of user-visible state with the result pro-
duced by the functional unit (see [22] for details). However, it
will be cumbersome to use such a model in processors that have
many multicycle instructions, each of a different fixed latency.
Most importantly, this model is not applicable for functional
units where the latency depends on the values of the input oper-
ands or on arbitrary environment factors, e.g., a memory system
with cache-coherence mechanisms [11], where a data value
might be locked in order to be modified by another processor. It
is such functional units and memory systems that other research-
ers [12] have found to make hard the application of the Burch
and Dill method to real processors.

We resolve this problem by using a technique that we call
accelerated flushing. Namely, during the one cycle of regular

3

symbolic simulation of the Implementation, we model the inde-
terminate outcome of possibly completing the computation of a
multicycle functional unit by a new Boolean variable. Then, dur-
ing flushing we force the functional unit to complete its computa-
tions on every clock cycle. That is, if the original computation
was not finished during the single cycle of regular symbolic sim-
ulation of the Implementation, it will be definitely completed on
the first cycle of flushing and a new computation will be com-
pleted on each subsequent cycle of flushing. Such a signal, con-
trolling the completion of multicycle computations, can be
generated with the circuit on Fig. 1.

Figure 1. A generator of new Boolean variables, extended
with an OR-gate in order to produce signal Complete that con-
trols the computation completion for a given multicycle func-
tional unit, according to the accelerated flushing technique.

Observe that the present state of the Finite State Machine
(FSM) above and the output of UF NextState are not used in
equality comparisons in the circuit, so that they will be classified
as p-terms when the EUFM formula is translated to a proposi-
tional formula. Then, UF NextState will map each input p-term
domain variable to a new p-term domain variable for the corre-
sponding output value. Therefore, the state of the FSM will be
updated with a new p-term domain variable on every cycle. Each
of these p-term domain variables will be mapped to a new Bool-
ean variable by UP Choice, so that the FSM will generate a
sequence of new Boolean variables. However, only the first one
will be passed on to signal Complete during the one cycle of reg-
ular simulation when input Flush is set to false. During flushing,
input Flush will be true, and so will be signal Complete. Simi-
larly, we can use an UF that depends on the present state of the
FSM on Fig. 1 in order to generate a sequence of new domain
variables. We call such FSMs generators of arbitrary values.

When designing place holders for multicycle functional units
of arbitrary latency, we assume that the computation semantics
can be expressed with a combinational functional unit abstracted
with UF ALU—see Fig. 2. The FSM on Fig. 2.b is used to
abstract the timing of the functional unit. Conceptually, a multi-
cycle computation can be in one of 3 abstract states—in its first
cycle, in flight (i.e., has already been executed for at least one

NextState

Choice

Flush

Complete
PresentState

Generator of Arbitrary Values

ND_Choice

cycle), or has completed but is stalled by the next pipeline stages
(state DoneButStalled). We latch the output of UF ALU when the
computation is in its first cycle, assuming the data inputs have the
correct values only during that cycle.

The 3 abstract states on Fig. 2.b can be encoded with 2 state
bits that should have arbitrary initial Boolean values, so that the
control FSM could be in any state initially. Signal Stall is used to
stall previous pipeline stages when the computation has not com-
pleted (both Complete and DoneButStalled are false) or the result
cannot be accepted (IsStalled is true). Signal Complete is gener-
ated according to Fig. 1. The control logic of the place holder
generates the signals FirstCycle and DoneButStalled which indi-
cate that the control FSM is in the corresponding state of its state
transition diagram on Fig. 2.b.

In order to model computations that are guaranteed to com-
plete on the clock cycle when they start, the OR gate driving sig-
nal Complete can be extended with extra inputs that account for
such conditions. When the next pipeline stages do not have a
mechanism to stall the multicycle functional unit, the control
logic of the place holder can be simplified by setting IsStalled to
false and removing state DoneButStalled from the state transition
diagram on Fig. 2.b. Furthermore, a raised squash signal that
affects the multicycle functional unit should set signal Complete
to false and cause the state transition diagram on Fig. 2.b to tran-
sition to state FirstCycle.

The correct result ALU_Result will be passed to the output
Result of the place holder only when the stages ahead are ready
to accept the result (IsStalled is false) and the multicycle compu-
tation has completed in either the present cycle (Complete is
true) or previously (DoneButStalled is true). Otherwise, the out-
put of the place holder will get a new domain variable produced
by the generator of arbitrary values at its output ND_Result. The
effect is analogous to using Xs is symbolic ternary simulation in
order to express ambiguity [19]. Therefore, the place holder on
Fig. 2 is a conservative approximation of a multicycle functional
unit of arbitrary latency.

The same functional unit is modeled in the Specification pro-
cessor by UF ALU only, but not the extra logic required to imple-
ment the place holder, as the Specification defines the semantics
of the instructions regardless of their timing. Note that by making
the op-code term Op one of the inputs to UF ALU, we model a
potentially different computation for each instruction. UF ALU
has to be replaced by a memory model, e.g., the FSM-based one
from [4][5][21], when implementing a place holder for a memory
system of arbitrary latency.

The place holder on Fig. 2 is based on the following assump-
tions about the original functional unit that it abstracts: 1) the
functional unit will not deadlock and will eventually complete

Figure 2. (a) Implementation of a place holder for a functional unit of arbitrary latency; (b) State transition diagram for the control
logic of a place holder that can be stalled, as determined by signal IsStalled.

0

1

ALU

Op

Data1

(b)(a)

Control
Logic

Stall
DoneButStalled

FirstCycle

IsStalled

FirstCycle

InFlight

DoneBut
Stalled

IsStalled

¬Complete

Complete ∧ IsStalled

¬ IsStalled

Com
plete ∧ IsStalled

Complete ∧ ¬ IsStalled

¬Com
pl

et
e

Com
pl

et
e

∧
¬ Is

St
al

le
d

ALU_Result

Stall ← IsStalled ∨ ¬ Complete ∧ ¬ DoneButStalled

Control Logic:

0

1

Result

Generator
of Arbitrary
Values

FlushComplete

ND_Choice

ND_Result

Data2

4

every multicycle computation; 2) the functional unit has a mech-
nism to store its input values if they are guaranteed to be avail-
able only on the first cycle of a multicycle computation; 3) the
functional unit has a mechanism to store the result of its compu-
tation, until the stages ahead are ready to accept that result (this
property should hold only for functional units that can be
stalled); and, 4) the functional unit will discard an on-going com-
putation and will be ready to begin a new one on the next clock
cycle if a controlling squash signal is raised on the present clock
cycle (this property should hold only for functional units that can
be affected by a squash signal). The original functional unit has
to be formally verified for satisfying the above properties, e.g.,
by model checking [8].

4 Modeling Exceptions
For every functional unit (abstracted with either an UF or an UP)
that can generate an exception we introduce an UP that depends
on the same inputs as the functional unit and produces a Boolean
signal indicating whether an exception was raised. If the func-
tional unit can be a source of several kinds of exceptions, we can
introduce an UF that again depends on the same inputs and pro-
duces a term that indicates the type of the raised exception. Pro-
cessors with exceptions have user-visible state elements that
contain exception status and recovery information. Our architec-
ture has 3 exception status registers—indication whether an
exception was raised by each of the Instruction Memory, the
ALU, and the Data Memory—as well as an ExceptionPC latch,
containing the PC of the excepting instruction.

Exceptions result in squashing of subsequent instructions in
flight and branching to an exception handler, whose address
depends on the exception type in our architecture. The exception-
handlers are implemented in software and are assumed to be cor-
rect. A return-from-exception instruction has the effect of jump-
ing to the ExceptionPC and clearing the exception status
registers. Exceptions are modeled in both the Implementation
and the Specification processors, since the instruction semantics
depends on exceptions and the exception status registers are user-
visible state elements.

5 Modeling Branch Prediction
We use a generator of arbitrary values in order to abstract the
Branch Predictor in the implementation processor—see Fig. 3.
Every clock cycle, this generator produces: 1) a new Boolean

variable at the output of UP PredictTakenBranch, serving as a
prediction for the taken/not-taken direction of a newly fetched
branch (jumps are always taken in our architecture); and,
2) a new domain variable at the output of UF PredictedTarget,
serving as a prediction for the target of a branch or a jump. What
is verified is that if the Implementation updates speculatively the
PC according to a prediction made in the Fetch stage of the pipe-
line and the prediction is incorrect as determined when the actual
direction and target become available after the Execution stage,
then the processor has a mechanism to correct the misprediction.
The Specification does not include a Branch Predictor, which is
not part of the user-visible state and is irrelevant for defining the
correct instruction semantics. Note that if an Implementation
processor is verified with completely arbitrary predictions for the
direction of a branch and for the target of a branch or a jump,
then that processor will be correct for any actual implementation
of the Branch Predictor.

Correcting branch mispredictions requires a negated equality
comparison of the actual and predicted targets, so that they will
be classified as g-terms. These terms will update the PC and will
address the Instruction Memory (IMem). That will result in
dependencies of the newly fetched instructions on eij variables,
encoding equality comparisons of such g-term domain variables,
when the nested ITEs scheme is used to enforce consistent initial
state of memories addressed by g-terms. These dependencies will
affect the entire final formula and will increase the complexity of
the evaluation. Alternatively, we could use the pushing-to-the-
leaves strategy in order to enforce a consistent initial state for the
IMem. That would avoid the eij variables, but will result in a term
blow up, especially for wide processors.

Our solution is to introduce a “translation box” for the
address terms of the IMem (see Fig. 3), i.e., an UF that will trans-
late its input terms to output p-terms. Indeed, the output terms of
that UF are not be used in any equations, so that they will be clas-
sified as p-terms. Note that such a translation box has to be used
in both the Implementation and the Specification. An UF serving
as a translation box is a conservative approximation—if a proces-
sor is verified with such UFs, the processor will be correct for
any implementation of these UFs, including the identity function
that connects the input to the output. However, the translation
boxes help us to better exploit the computational efficiency of
Positive Equality in modeling Branch Prediction. Note that
incorporating Branch Prediction does not require any changes to

Figure 3. Branch Prediction in a single-issue 5-stage pipelined DLX. The logic not directly related with updating the PC is omitted.

IMem

EX/MEMIF/ID ID/EX

=
EqualTargets

TakeBranch

...

... MEM_TakenBranch

M1_3

M1_2

M1_1MEM_Jump

MEM_Branch

MEM_PredictedTakenBranch

Misprediction2

M
is

pr
ed

ic
tio

n1

0
1

PC

+4
0
1

0
1

MEM_SequentialPC

Flush

SequentialPC

squash

Branch

Jump

PredictedTarget

PredictTakenBranch

NextPredictionState

...

PredictTaken

Generator of Arbitrary Values

...

Translation
Box

TargetPC

MEM_PredictedTarget

MEM_ActualTarget

5

the Specification processor other than a translation box for the
address terms of the Instruction Memory, i.e., the implementa-
tion details of Branch Prediction remain invisible to the Specifi-
cation. An alternative way to incorporate branch prediction in an
abstract processor is studied in [22].

6 Experimental Results
We started with three base abstract processor models: 1×DLX-C,
a single-issue pipelined DLX [11] with one complete pipeline,
that can execute the 7 abstract instruction types—register-regis-
ter, register-immediate, load, store, branch, jump, and nop;
2×DLX-CA, a dual-issue superscalar DLX with one complete
pipeline and another capable of executing only arithmetic (regis-
ter-register and register-immediate) instructions, such that
between 0 and 2 instructions can be fetched per cycle—this
design is comparable to Burch’s [7] and is inspired by the Intel
Pentium processor; 2×DLX-CC, a dual-issue superscalar DLX
with two complete pipelines, i.e., it has no structural hazards but
4 load interlocks, so that again between 0 and 2 instructions can
be fetched per cycle.

These models were extended with versions that implement:
1) branch prediction, designated with “-BP”; 2) multicycle func-
tional units, marked with “-MC,” where the Instruction Memory,
the ALU in the Execution stage, and the Data Memory were
modeled as having an arbitrary latency, such that two new
abstract instruction types were introduced—multicycle register-
register and multicycle register-immediate (all other computa-
tions that use the ALU were modeled to complete in the clock
cycle when they start)—such that the 2 new instructions could be

executed only by the complete pipeline in 2×DLX-CA-MC; and,
3) exceptions, “-EX,” where the Instruction Memory, the ALUs,
and the Data Memory could generate exceptions and the new
instruction return-from-exception (executed only by the com-
plete pipeline in 2×DLX-CA-EX) was implemented to clear the
3 Exception Status bits and jump to the Exception-PC. Then, we
created hybrid versions, “-MC-EX” and “-MC-EX-BP,” which
combine several of the above features. Since the second pipeline
in 2×DLX-CA could execute only arithmetic instructions, it had
a vacuous Memory stage, so that “-EX” versions of that proces-
sor could have Data Memory exceptions generated only by the
first pipeline. Similarly, “-MC” versions of the same processor
could have stalling of the pipeline stages before the Memory
stage only due to Data Memory accesses of arbitrary latency of
the first pipeline. In “-BP” versions of the dual-issue processors,
branch predictions were made for the two newly fetched instruc-
tions; in “-EX” versions of these models, either of the two new
instruction fetches could generate an Instruction Memory excep-
tion; and, in “-MC” versions, either of the two instruction fetches
could be invalid, due to an unfinished Instruction Memory access
of arbitrary latency. All processors were modeled in the style
described in [21].

The results are presented in Table 1. The experiments were
performed on a 336 MHz Sun4 with 1.2 GB of memory. The
Colorado University BDD package [9] and the sifting dynamic
BDD variable reordering heuristic [16] were used to evaluate the
final propositional formula. Burch’s controlled flushing [7] was
employed for all of the designs. As the table shows, our verifica-
tion times range from less than a second for the single-issue case,

Processor Final
Vp

Final Vg BDD Variables
Max.
BDD
Nodes

Memory
 [MB]

CPU
Time

[s]Src
Regs

Dest
Regs Other Total eij Other Total

1×DLX-C 52 7 6 0 13 27 36 63 2,127 5.7 0.24

1×DLX-C-BP 49 7 6 10 23 49 41 90 4,004 5.9 0.50

1×DLX-C-MC 55 9 6 0 15 36 47 83 4,650 5.9 0.86

1×DLX-C-EX 69 7 6 0 13 27 64 91 7,482 6.5 1.78

1×DLX-C-MC-EX 72 9 6 0 15 36 77 113 20,624 7.4 6

1×DLX-C-MC-EX-BP 62 9 6 10 25 62 81 143 22,270 8.3 6

2×DLX-CA 87 13 12 0 25 116 46 162 24,227 11 6

2×DLX-CA-BP 83 13 12 15 40 170 68 238 48,076 15 20

2×DLX-CA-MC 92 17 12 0 29 146 76 222 83,106 15 46

2×DLX-CA-EX 112 15 12 0 27 139 89 228 345,786 17 410

2×DLX-CA-MC-EX 120 17 12 0 29 146 125 271 546,502 20 814

2×DLX-CA-MC-EX-BP 102 17 12 15 44 211 131 342 779,495 23 979

2×DLX-CC 100 13 12 0 25 116 57 173 51,826 16 20

2×DLX-CC-BP 96 13 12 20 45 209 82 291 113,330 16 81

2×DLX-CC-MC 115 17 12 0 29 146 94 240 182,257 17 164

2×DLX-CC-EX 131 13 12 0 25 122 103 225 430,613 19 581

2×DLX-CC-MC-EX 137 17 12 0 29 146 150 296 1,394,618 37 3,221

2×DLX-CC-MC-EX-BP 121 17 12 20 49 260 158 418 986,740 31 2,635

Table 1. Statistics for the number of domain variables and the resources needed for the BDD evaluation of the final propositional
formula. The memory and CPU time are reported for the sequence of symbolic simulation, translation of the EUFM formula to a
propositional one, and the evaluation of the latter by BDDs. Vp designates the set of p-term domain variables, while Vg the set of
g-term domain variables. “Src Regs” stands for source registers, while “Dest Regs” for destination registers. The category “Other”
of the final Vg consists of the predicted and actual targets of branch and jump instructions.

6

up to a little less than 54 minutes for one of the most complex
dual-issue superscalar designs. The memory requirement varies
between 5.7 and 37 MB. The number of propositional variables
ranges from 63 to 418, with between 27 and 260 comprising the
eij variables encoding the equality comparisons of g-term domain
variables. The number of the p-term domain variables is between
2 and 5 times greater than that of the g-term domain variables.

Analyzing the results from the benchmarks where a base
model is extended with a single feature, we can see that adding
exceptions leads to the greatest increase in complexity. This can
be explained with several characteristics of these designs. First,
their user-visible state contains 4 extra latches—an Exception-
PC, and 3 Exception Status bits—so that extra equality compari-
sons for the final states of these latches are added to the EUFM
formula for the correctness criterion. Second, these designs
require more Boolean variables as either part of the initial state
of their pipeline latches or as outputs of the UPs, indicating that a
certain type of exception has been raised for a particular instruc-
tion in flight. Indeed, if we compare the category of “Other BDD
Variables” in Table 1 for the “-EX” models vs. their correspond-
ing base model, and for the “-MC-EX” models vs. their corre-
sponding “-MC” model, we will see that the number of such
Boolean variables increases significantly, approaching the dou-
ble of the original number. Third, the models with exceptions
exhibit the greatest increase in the branching behavior of the pro-
gram execution. Namely, each raised exception results in squash-
ing of all subsequent instructions in flight, jumping to the address
of the corresponding exception-handler, and conditional modifi-
cation of all user-visible state elements. Hence, the term blow up
in the correctness criterion formula.

Modeling multicycle functional units—an Instruction Mem-
ory, an ALU, and a Data memory of arbitrary latency, as
explained in Sect. 3—results in a slight increase in the number of
“Other BDD Variables.” This can be attributed to the Boolean
variables used as outputs of UPs that produce the non-determin-
istic choice for completing ALU computations or memory
accesses of arbitrary latency. The slightly more eij BDD vari-
ables are due to the increased ambiguity of the instruction flow in
the processor.

Incorporating Branch Prediction results in the least increase
in evaluation complexity, compared to “-MC” and “-EX” exten-
sions. Between 10 and 20 extra g-term domain variables are cre-
ated (relative to the model that was extended), serving as
predicted and actual targets for branch/jump instructions. This
decreases the number of p-term domain variables, as the actual
targets are no longer classified as p-terms. Potentially, each of
the extra g-term domain variables can be compared for equality
against all other extra g-term domain variables (unless simplifi-
cations take effect), when the equality comparisons for the final
state of the PC are formed as part of the correctness criterion.
That explains the significant increase in the number of eij Bool-
ean variables. However, most of these eij variables do not affect
the instruction flow but only the final equality comparisons, so
that their effect is relatively limited and our BDD variable order-
ing heuristic [21], combined with sifting [16], worked very well.

Although 2×DLX-CC-MC-EX requires 122 fewer BDD vari-
ables than 2×DLX-CC-MC-EX-BP, the verification of the
former takes more CPU time because of variations in the perfor-
mance of the sifting heuristic when used on different Boolean
formulas. However, neither benchmark can be formally verified
without the sifting heuristic—the experiments ran out of memory
after more than 24 hours of CPU time.

Additional details of this research and techniques for acceler-
ating the verification are presented in [22].

7 Conclusions
We were able to formally verify a dual-issue superscalar DLX
processor with two complete pipelines, where the Instruction

Memory, the ALUs, and the Data Memory could each have an
arbitrary latency and possibly generate an exception, as well as
with branch prediction of the two newly fetched instructions, in
less than 44 minutes of CPU time. We believe that the success of
our approach in the extremely efficient formal verification of a
single-issue pipelined DLX with multicycle functional units,
exceptions, and branch prediction (1×DLX-C-MC-EX-BP)—
requiring 6 seconds of CPU time and 8.3 MB of memory—will
enable the formal verification of real pipelined processors with
the same features, e.g., the ARM [2] and the M•CORE [14].

References
[1] W. Ackermann, Solvable Cases of the Decision Problem, North-Holland,

Amsterdam, 1954.
[2] ARM Technical Reference Manuals & Data Sheets,

http://www.arm.com.
[3] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-

Decision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3 (Septem-
ber 1992), pp. 293-318.

[4] R.E. Bryant, S. German, and M.N. Velev, “Exploiting Positive Equality in
a Logic of Equality with Uninterpreted Functions,”2 Computer-Aided Ver-
ification (CAV’99), N. Halbwachs and D. Peled, eds., LNCS 1633,
Springer-Verlag, June 1999, pp. 470-482.

[5] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using
Efficient Reductions of the Logic of Uninterpreted Functions to Proposi-
tional Logic,”2 Technical Report CMU-CS-99-115, Carnegie Mellon Uni-
versity, 1999.

[6] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Micro-
processor Control,” Computer-Aided Verification (CAV‘94), D.L. Dill,
ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[7] J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,”
33rd Design Automation Conference (DAC’96), June 1996, pp. 552-557.

[8] E.M. Clarke, Jr., O. Grumberg, and D.A. Peled, Model Checking, MIT
Press, Cambridge, MA, 2000.

[9] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[10] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Proce-

dures for a Theory of Equality with Uninterpreted Functions,” Computer-
Aided Verification (CAV‘98), A.J. Hu and M.Y. Vardi, eds., LNCS 1427,
Springer-Verlag, June 1998, pp. 244-255.

[11] J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantita-
tive Approach, 2nd edition, Morgan Kaufmann Publishers, San Francisco,
CA, 1996.

[12] R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Decomposing the
Proof of Correctness of Pipelined Microprocessors,” Computer-Aided
Verification (CAV‘98), A.J. Hu and M.Y. Vardi, eds., LNCS 1427,
Springer-Verlag, June 1998, pp. 122-134.

[13] R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Proof of Correctness of
a Processor with Reorder Buffer Using the Completion Functions
Approach,” Computer-Aided Verification (CAV’99), N. Halbwachs and
D. Peled, eds., LNCS 1633, Springer-Verlag, June 1999, pp. 45-59.

[14] M•CORE: microRISC Engine Programmer’s Manual,
http://www.motorola.com/SPS/MCORE.

[15] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equality
Formulas by Small-Domain Instantiations,” Computer-Aided Verification
(CAV’99), LNCS, Springer-Verlag, June 1999, pp. 455-469.

[16] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Dia-
grams,” International Conference on Computer-Aided Design
(ICCAD’93), November 1993, pp. 42-47.

[17] J. Sawada, and W.A. Hunt, Jr., “Processor Verification with Precise
Exceptions and Speculative Execution,” Computer-Aided Verification
(CAV‘98), A.J. Hu and M.Y. Vardi, eds., LNCS 1427, Springer-Verlag,
June 1998, pp. 135-146.

[18] Stanford Validity Checker, http://sprout.stanford.edu.
[19] M.N. Velev, and R.E. Bryant, “Incorporating Timing Constraints in the

Efficient Memory Model for Symbolic Ternary Simulation,”2 Interna-
tional Conference on Computer Design (ICCD ‘98), October 1998, pp.
400-406.

[20] M.N. Velev, and R.E. Bryant, “Bit-Level Abstraction in the Verification of
Pipelined Microprocessors by Correspondence Checking,”2 Formal
Methods in Computer-Aided Design (FMCAD’98), G. Gopalakrishnan
and P. Windley, eds., LNCS 1522, Springer-Verlag, November 1998, pp.
18-35.

[21] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using
Efficient Reductions of the Logic of Equality with Uninterpreted Func-
tions to Propositional Logic,”2 Correct Hardware Design and Verification
Methods (CHARME ‘99), L. Pierre and T. Kropf, eds., LNCS 1703,
Springer-Verlag, September 1999, pp. 37-53.

[22] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Micro-
processors with Multicycle Functional Units, Exceptions, and Branch
Prediction,”2 Technical Report CMU-CS-00-116, Carnegie Mellon Uni-
versity, 2000.

2. Available from: http://www.ece.cmu.edu/~mvelev

