
Formal Verification of the VAMP Floating Point Unit

Christoph Berg and Christian Jacobi

Saarland University
Computer Science Department

D-66123 Saarbrücken, Germany
Fax: +49/681/302-4290

{cb,cj}@cs.uni-sb.de

Abstract. We report on the formal verification of the floating point unit used in
the VAMP processor. The FPU is fully IEEE compliant, and supports denormals
and exceptions in hardware. The supported operations are addition, subtraction,
multiplication, division, comparison, and conversions. The hardware is verified
on the gate level against a formal description of the IEEE standard by means of
the theorem prover PVS.

1 Introduction

Our institute at Saarland University is currently working on the formal verification of
a complete microprocessor called VAMP. Part of this microprocessor is a fully IEEE
compliant floating point unit (FPU). This paper describes the verification of the FPU in
the theorem prover PVS [19].

The FPU we have verified is developed in the textbook on computer architecture
by Müller and Paul [17]. The designs go down to the level of single gates. Along with
the complete designs come paper proofs for the correctness of the circuits. These paper
proofs served as guidelines for the formal proofs. We have specified and verified these
designs on the gate level in PVS. Only small changes to the designs were necessary –
some due to errors in [17], some to slightly simplify the proofs – with negligible impact
on hardware cost and cycle time.

We have verified the designs with respect to a formalization of the IEEE standard
754 [10] (hereafter called “the standard”). We have partly used the formalization of the
standard and the theory of rounding from [6,17], particularly the notion of factorings,
round decomposition, and α-equivalence. Other parts of our IEEE formalization are in-
fluenced by Miner’s formalization of the standard in PVS [14], particularly the definition
of the rounding function.

The FPU we have verified supports both single and double precision. It can perform
floating point addition, subtraction, multiplication, division, comparison, conversion
between both floating point formats, and conversion between floating point numbers and
integers. Denormal numbers are handled entirely in hardware. Exceptions and wrapped
exponents are computed as mandated by the standard.

The verified VAMP processor will be implemented on a Xilinx FPGA.

Project Status. As mentioned above, the FPU we have verified is embedded in theVAMP
microprocessor, which is currently being verified at our institute [12]. The VAMP is a

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 325–339, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

326 C. Berg and C. Jacobi

variant of the DLX [9,17], a 32 bit RISC processor based on the MIPS instruction set.
The VAMP processor features a Tomasulo scheduler, delayed branch, a cache memory
interface, precise interrupts, and the FPU described in this paper.

The verification of an in-order CPU core is complete, the verification of the Tomasulo
out-of-order core will be completed in a few weeks [13]. The verification of the cache
has just begun. The verification of the combinatorial floating point circuits and the FPU
pipeline control is complete.

Our group has developed a translation tool to automatically convert the PVS spec-
ifications to Verilog HDL. This tool is already capable of translating the combinatorial
floating point adder and rounding hardware to Verilog. We have used the Xilinx software
to synthesize and simulate the Verilog code. In the end, we are going to implement the
complete verified VAMP processor on a Xilinx FPGA Board.

All PVS specifications and proofs as well as the Verilog files are available at our web
site.1

Paper Outline. In Sect. 2, we sketch the formalization of the IEEE standard. The
implementation and verification of the combinatorial FPU is described in Sect. 3. We
describe the errors that we have encountered during the verification at the end of Sect. 3.
The pipelining of the combinatorial FPU is briefly discussed in Sect. 4. We conclude in
Sect. 5.

Related Work. The verification of floating point algorithms and hardware using formal
methods has received considerable attention over the last years.

As mentioned above, the formalization of the IEEE standard that we use is based on
[6,14,17]. The notion of factorings, round decomposition, and α-equivalence is taken
from [6,17]. We have formally verified this theory in [11]. Since the definition of the
rounding function is informal in [6,17], we use a formal definition of rounding, which
is based on Miners formalization of the standard [14].

Harrison has formalized the IEEE standard in the theorem prover HOL Light [8].
Both Miner and Harrison have no direct counterpart to the decomposition theorem and
α-equivalence (cf. Sect. 2). They do not cover the actual implementation of operations
or rounding.

Aagaard and Seger combine BDD based methods and theorem proving techniques to
verify a floating point multiplier [1]. Chen and Bryant [3] use word-level SMV to verify
a floating point adder. Exceptions and denormals are not handled in both verification
projects.

Verkest et al. verify a binary non-restoring integer division algorithm [24]. Clarke
et al. [5] and Ruess et al. [20] verify SRT division algorithms. Miner and Leathrum
[15] verify a general class of subtractive division algorithms with respect to the IEEE
standard.

Cornea-Hasegan describes the computation of division and square root by Newton-
Raphson iteration in the Intel FPUs [4]. The verification is done using Mathematica.

1 http://www-wjp.cs.uni-sb.de/projects/verification/

http://www-wjp.cs.uni-sb.de/projects/verification/

Formal Verification of the VAMP Floating Point Unit 327

O’Leary et al. report on the verification of the gate level design of Intel’s FPU using a
combination of model-checking and theorem proving [18]. Denormals and exceptions
are not covered in the paper. Their definition of rounding is not directly related to the
IEEE standard.

Moore et al. have verified the AMD K5 division algorithm [16] with the theorem
prover ACL2. Russinoff has verified the K5 square root algorithm as well as the Athlon
multiplication, division, square root, and addition algorithms [21,22,23]. In all his veri-
fication projects, Russinoff proves the correctness of a register transfer level implemen-
tation against his formalization of the IEEE standard using ACL2. Russinoff does not
handle exceptions and denormals in his publications; however, he states that he handles
denormals in unpublished work (private communication). The definition of sticky in [16,
23] corresponds to our rounding of representatives.

2 IEEE Floating Point Arithmetic

To formally verify the correctness of a FPU, we need a formal notion of “correctness”,
i.e., a formalization of the IEEE standard which the FPU shall obey. In this section,
we sketch the formalization of the IEEE standard used in our verification project. The
formalization is primarily based on [6,14,17]. An extended version of this section is
available as [11].

2.1 Factorings

We abstract IEEE numbers as defined in the standard to factorings. A factoring is a triple
(s, e, f) with sign bit s ∈ {0, 1}, exponent e ∈ Z, and significand f ∈ R≥0. Note that
exponent range and significand precision are unbounded. The value of a factoring is

[[s, e, f]] := (−1)s · 2e · f.

The standard introduces an exponent width N , from which constants emin :=
−2N−1 + 2 and emax := 2N−1 − 1 are derived. These constants are used to bound
the exponent range.

We call a factoring (s, e, f) normal if e ≥ emin and 1 ≤ f < 2. A factoring is called
denormal if e = emin and 0 ≤ f < 1. We call a factoring an IEEE factoring if it is
either normal or denormal.

Lemma 1. Each x ∈ R �=0, has a unique factoring (ŝ, ê, f̂) with 1 ≤ f̂ < 2 and
[[ŝ, ê, f̂]] = x. Each x ∈ R �=0 has a unique IEEE factoring (s, e, f) with [[s, e, f]] = x.
Zero has two IEEE factorings (0, emin, 0) and (1, emin, 0), called +0 and −0, respec-
tively.

Let η̂ and η be the functions that map (non-zero) reals x to their corresponding
factorings (ŝ, ê, f̂) and (s, e, f), respectively. We define η(0) := (0, emin, 0).

328 C. Berg and C. Jacobi

Lemma 2. Let x ∈ R with x �= 0 in the context of η̂. It holds:2

η̂e(x) = 	log2 |x|� , ηe(x) =

{
	log2 |x|� if x �= 0 and 	log2 |x|� ≥ emin

emin otherwise,

η̂f (x) = |x| · 2−η̂e(x), ηf (x) = |x| · 2−ηe(x).

Let P be the significand precision as defined in the standard. A significand f is called
representable, if f has at most P −1 digits behind the binary point, i.e., if 2P−1 ·f ∈ N0.
We call an IEEE-factoring (s, e, f) semi-representable, if f is representable. We call an
IEEE-factoring representable, if it is semi-representable, and furthermore e ≤ emax

holds. We call a real x (semi-)representable, if η(x) is (semi-) representable.
We will only investigate semi-representable factorings in the following (i.e., we allow

e to exceed emax). In order to “round” semi-representable factorings to representable
ones, one has to decide whether to round to infinity or to the largest representable number
in case e > emax. This decision depends only on the sign and the rounding mode, and
therefore is trivial.

Representable numbers exactly correspond to the representable numbers as defined
in the standard. Common values for (N, P) are (8, 24) and (11, 53), called single and
double precision, respectively. The standard defines an encoding of single and double
precision IEEE factorings into bit strings of length 32 and 64, respectively. To enhance
the readability of our formulas in the following, we consider factorings instead of their
bit string encodings.

2.2 Rounding

We proceed with the definition of the rounding function. The IEEE standard defines
four rounding modes: round to nearest, up, down, and to zero. We define a function
rint(· , M) for each rounding mode M ∈ {near, up, down, zero}, which rounds reals
x to integers [14]:

rint(x, up) := x� rint(x, near) :=

	x� if x − 	x� < x� − x
x� if x − 	x� > x� − x
x if 	x� = x�
2 	x� /2� otherwise

rint(x, down) := 	x� rint(x, zero) := (−1)sign(x) · 	|x|�

By scaling by 2P−1, reals are rounded to rationals with P − 1 fractional bits:

rrat(x, M) := 2−(P−1) · rint(x · 2P−1, M).

Further scaling with 2e, e := ηe(x), yields the IEEE rounding function:

rd(x, M) := 2e · rrat(x · 2−e, M).

2 ηe(x) denotes the e-component of the factoring η(x) = (s, e, f); analogous for other compo-
nents and η̂.

Formal Verification of the VAMP Floating Point Unit 329

It is not obvious that this definition conforms with the IEEE standard. We prove the
theorems stating this conformance in [11].

The rounding of reals x can be decomposed into three steps: η-computation (some-
times called pre-normalization in the literature), significand rounding, and a post-nor-
malization.

The η-computation step computes the IEEE factoring η(x), where x is the number
to be rounded. The significand round step then rounds the significand computed in the
η-computation to P −1 digits behind the binary point. This is formalized in the function
sigrd:

sigrd(X, M) :=
∣∣rrat

(
(−1)s · f, M)∣∣ ,

where X = (s, e, f) is an arbitrary IEEE factoring, and M ∈ {near, up, down, zero}
is a rounding mode.

In the case that the significand round returns 0 or 2, the factoring has to be post-
normalized. If the significand round returns 2, the exponent is incremented, and the
significand is forced to 1; if the significand round returns 0, the sign bit is forced to 0 in
order to yield η(0). The post-normalization is defined as follows:

postnorm(X, M) =

(s, e, sigrd(X, M)) if 0 < sigrd(X, M) < 2,
(s, e + 1, 1) if sigrd(X, M) = 2,
(0, emin, 0) if sigrd(X, M) = 0.

Theorem 1 (Decomposition Theorem). For any real x, and rounding mode M ∈
{near, up, down, zero}, it holds

postnorm
(
η(x), M)

= η
(
rd(x, M)

)
.

The benefit of having the decomposition theorem is that it simplifies the design and
verification of the rounder (cf. Sect. 3.3).

2.3 Exceptions

The IEEE standard defines five exceptions: invalid operation (INV), division by zero
(DIVZ), overflow (OVF), underflow (UNF), and inexact result (INX). Our formalization
of these exceptions is taken from [17], as the implementation in the actual hardware is.
For example, the inexact result exception is formalized as

INX(x, M) :=
(
x �= rd(x, M)

)
,

where x is the infinitely precise result of a floating point operation. The definition of the
other exceptions is similiar.

Lemma 3. Let x be a real. It holds INX(x, M) ⇐⇒ ηf (x) �= sigrd(η(x), M).

In case of underflow or overflow with the respective trap handler enabled, the standard
mandates scaling the result into the representable range, and passing the scaled result to
the trap handler. This is called wrapped exponent. The handling of wrapped exponents
is as in [17].

330 C. Berg and C. Jacobi

2.4 α-Equivalence

We now define the concept of α-equivalence and α-representatives [17]. As we will see
in theorem 3, this concept is a very concise way to speak about sticky-bit computations.

Let α be an integer. Two reals x and y are said to be α-equivalent (x ≡α y), if x = y
or if there exists some q ∈ Z with q · 2α < x, y < (q + 1) · 2α, i.e., if both x and y
lie in the same singleton {2α} or in the same open interval between two consecutive
integral multiples of 2α. Clearly, if such an q exists, it must be qα(x) := 	x · 2−α�. The
α-representative of x is defined as

[x]α =
{

x x = qα(x) · 2α(
qα(x) + 1

2

) · 2α otherwise,

i.e., if x is an integral multiple of 2α, the representative of x is x itself, and the midpoint
of the interval between the surrounding multiples of 2α otherwise. The following lemma
summarizes some important facts:

Lemma 4. Let x, y ∈ R, and α, k ∈ Z.

1. ≡α is an equivalence relation,
2. x ≡α [x]α,
3. x ≡α y ⇐⇒ [x]α = [y]α, (representative equivalence)
4. x ≡α y ⇐⇒ −x ≡α −y, and [−x]α = −[x]α, (negative value)
5. x ≡α y ⇐⇒ 2k · x ≡α+k 2k · y, and [2k · x]α+k = 2k · [x]α, (scaling)
6. x ≡α y ⇐⇒ x + k · 2α ≡α y + k · 2α, (translation)
7. x ≡α y =⇒ x ≡α+k y if k ≥ 0, (coarsening)
8. x = 0 ⇐⇒ x ≡α 0 ⇐⇒ [x]α = 0, (zero value)
9. 0 < x < 2α =⇒ [x]α = 2α−1. (small value)

The following theorem describes the computation of IEEE-factorings corresponding
to representatives:

Theorem 2. Let x ∈ R, (s, e, f) = η(x), and p ∈ N. The IEEE-factoring of [x]e−p can
be computed by computing the representative [f]−p of f :

η([x]e−p) = (s, e, [f]−p).

Next, we show that the representative of f can be computed by a sticky-bit computation.
Let f ≥ 0 be a real in binary format fk, . . . , f0, f−1, . . . , f−l ∈ {0, 1}k+l+1 such that
f =

∑k
i=−l fi · 2i. Let p ∈ Z, k ≥ −p > −l. The (−p)-sticky-bit of f is the logical

OR of all bits f−p−1, . . . , f−l:

sticky−p(f) :=
−p−1∨
i=−l

fi.

Theorem 3. The representative [f]−p of f can be computed by replacing the less sig-
nificant bits by the sticky bit:

[f]−p =

 k∑

i=−p

fi · 2i

 + 2−p−1 · sticky−p(f)

Formal Verification of the VAMP Floating Point Unit 331

Theorems 2 and 3 together allow a very efficient computation of representatives
(respectively their IEEE-factorings) by or-ing the less significant bits in an OR-tree, and
replacing them by the sticky-bit. This technique is well known [7], but introducing the
formalism with α-representatives allows for a very concise argumentation about these
sticky-computations.

The valuable property of α-representatives is that rounding x and its representative
[x]e−P yields the same result:

Theorem 4. Let x be an arbitrary real, (s, e, f) = η(x), and M be a rounding mode.
It holds

rd(x, M) = rd([x]e−P , M).

The significand round can be performed on the representative [f]−P of f :

sigrd
(
(s, e, f), M)

= sigrd
(
(s, e, [f]−P), M)

.

Corollary 1. By lemma 4.7, theorem 4 also holds for any α ≤ e − P :

rd(x, M) = rd([x]α, M).

As a consequence, one can detect the OVF, UNF and INX exceptions by analysis of
the representative of x:

Corollary 2. Again, let α ≤ e − P . It holds

INX(x, M) ⇐⇒ INX([x]α, M),

and analogously for UNF and OVF.

Corollaries 1 and 2 facilitate the verification of the FPU in that they allow the decom-
position of the FPU into computation units and a rounding unit. The computation unit
performs the operation, e.g., a multiplication, and delivers a result to the rounder which
is α-equivalent to the infinitely precise result of the operation (with the appropriate α).
The rounder therefrom computes the correctly rounded result and the exception signals.
During the verification of the computation units, the rounding algorithm and exceptions
do not matter, and during the verification of the rounder, the operations do not matter.
In fact, using the α-equivalence interface, the first author has verified the addition unit
independently of the rounding unit, which was verified at the same time by the second
author.

2.5 Correctness of the FPU

The standard requests that every floating point operation shall return a result obtained
as if one first computed the exact result with infinite precision, and then rounded this
exact result. We therefore call the FPU correct, if for each operation ◦ ∈ {+, −, ×, ÷}
on all representable numbers x and y, the FPU returns the IEEE bit string encoding of
the factoring

η
(
rd(x ◦ y, M)

)
.

Furthermore, the FPU must compute the correct exception signals.

332 C. Berg and C. Jacobi

3 Verifying the VAMP FPU

Figure 1 shows the top-level schematic of the FPU. Floating point operands are passed
into the floating point unpacker FPUnpack, integer operands are passed into the fixed
point unpacker FXUnpack. Integer operands are used in conversion from integers to
floating point numbers.

The floating point unpacker converts the operands from the IEEE format into a more
convenient format. It translates the exponent from biased integer into two’s complement
format, and reveals the hidden significand bit. In case of multiplication and division,
the unpacker normalizes denormal significands and adjusts the exponents accordingly.
Single and double precision operands are embedded into the same internal format. Fur-
thermore, the floating point unpacker handles special cases such as operations on ±∞,
NaN , zeros etc.

From the floating point unpacker, non-special operands

Round

Pack

FPOut f

S
p
e
c
ia
l

C
a
s
e
s

FPOp a FPOp b

Computation Unit

Unpack

Fig. 1. VAMP FPU

are fed into one of the computation units, namely addition and
subtraction, multiplication and division, comparison, and the
conversion unit.

Let x = a◦ b with ◦ ∈ {+, −, ×, ÷} be the exact result of
an operation to be performed by the functional units. Instead
of feeding x into the rounder, the functional units compute a
factoring (si, ei, fi) which rounds to the same floating point
number as x does (cf. corollary 1):

[[si, ei, fi]] ≡α x with α ≤ ηe(x) − P.

This factoring needs not to be an IEEE-factoring. The rounder
computes the floating point result and the exceptions from
(si, ei, fi). After rounding, the circuit Pack transforms the
rounded floating point result into the IEEE format.

Together with the conversion unit, the rounder is capable to convert between single
and double precision floating point numbers, and to convert floating point numbers into
the integer format.

The comparison unit outputs a flag indicating the result of the comparision performed.
We have implemented and verified the comparison and conversion units, but do not
discuss this further in this paper.

In the following sections, we describe the construction and verification of the com-
putation units and the rounder. Exemplarily, we prove the correctness of the addition
algorithm. The proof is a transcript of the actual PVS proof using standard mathemati-
cal notation instead of PVS notation for the sake of readability. The proof is similar to
the proof given in [17] which, however, has larger gaps then the proof given here. The
significance of the proof presented here is that it is formally verified.

We do not describe the proofs of the other components due to lack of space.

3.1 Adder

The floating point adder has IEEE-factorings (sa, ea, fa) and (sb, eb, fb) as inputs. The
adder therefrom computes the sum (or difference in case of subtraction), (ss, es, fs),

Formal Verification of the VAMP Floating Point Unit 333

which is fed into the rounder. Let a := [[sa, ea, fa]] and b := [[sb, eb, fb]] be the values of
the operands.

Since the unpacker embeds single and double precision inputs into the same internal
format, we do not distinguish between single and double precision in the adder. The
final rounding stage will round the result to the appropriate precision. We therefore fix
P = 53 in this section.

To simplify the description, we assume that the adder shall perform an addition. If
it shall perform a subtraction, b is replaced with −b by inverting the sign bit sb.

The exact sum is denoted by S := a + b. We assume that a �= 0, b �= 0, and S �= 0,
since these are special cases handled by the unpacker.

Addition Algorithm. The informal description of the addition algorithm is

1. The larger exponent of ea and eb is the result’s exponent es.
2. Assume that ea ≥ eb, otherwise swap a and b.
3. Align the significand fb by shifting it δ := ea − eb to the right: f ′

b := 2−δ ·fb.
4. Add both significands with respect to the sign bits: f ′

s := (−1)sa ·fa + (−1)sb ·f ′
b.

The absolute value of f ′
s is the result’s significand, fs := |f ′

s|.
5. The result’s sign ss can be computed as ss := sa ⊕ (f ′

s < 0).

As the alignment shift in step 3 would require a shifter of size emax − emin ≈ 211,
this is impractical. We therefore approximate the shifted significand by its (−P − 1)-
representative:

f ′
b := [2−δ ·fb]−(P+1).

This does not change the result of the operation, since both values are rounded to the
same value by the rounder:

rd(S, M) = rd
(
2ea ·((−1)sa ·fa + (−1)sb ·f ′

b

)
, M)

.

From corollary 1 we know that it suffices to supply a value to the rounder that is α-
equivalent to the sum S, where α ≤ ηe(x) − P must hold. From lemma 2 we know that
η̂e(x) ≤ ηe(x). Therefore it suffices to prove the following theorem:

Theorem 5. Let ê := η̂e(S). It holds

S ≡ê−P 2ea ·((−1)sa ·fa + (−1)sb ·f ′
b

)
. (1)

Proof. By definition, we have

S = [[sa, ea, fa]] + [[sb, eb, fb]] = (−1)sa ·2ea ·fa + (−1)sb ·2eb ·fb

= 2ea ·((−1)sa ·fa + (−1)sb ·2−δ ·fb

)
.

The claim (1) is therefore equivalent to

2ea ·((−1)sa ·fa + (−1)sb ·2−δ ·fb

) ≡−(P−ê) 2ea ·((−1)sa ·fa + (−1)sb ·f ′
b

)
. (2)

Assume δ < 2. Since fb is a representable significand with at most P − 1 fractional
digits, it holds

f ′
b = [2−δ ·fb]−(P+1) = 2−δ ·fb.

334 C. Berg and C. Jacobi

0

1

sb

Align

sub

sa2, sb2

fb2[0 : 54]

as2[5 : 0]

eb gt ea
as[10 : 0]

fb3[0 : 55]

sas
0

b

ExpSub

Swap

Limit

fa[0 : 52], fb[0 : 52]

S
ig
A
d
deb gt ea

ea[10 : 0]

eb[10 : 0]

es[10 : 0]

fs[�1 : 55]

ss

fa2[0 : 52]

Fig. 2. The adder

This proves (2) for this case. Now let δ ≥ 2. By the definition of f ′
b, we have

2−δ ·fb ≡−(P+1) f ′
b.

Successively rewriting with lemma 4 (parts 4,5,6) yields

(−1)sb ·2ea−δ ·fb ≡ea−(P+1) (−1)sb ·2ea ·f ′
b,

(−1)sa ·2ea ·fa + (−1)sb ·2ea−δ ·fb ≡ea−(P+1) (−1)sa ·2ea ·fa + (−1)sb ·2ea ·f ′
b.

Now assume ê − P ≥ ea − (P + 1). Lemma 4.7 then implies

(−1)sa ·2ea ·fa + (−1)sb ·2ea−δ ·fb ≡ê−P (−1)sa ·2ea ·fa + (−1)sb ·2ea ·f ′
b.

This proves (2). It remains to show that ê − P ≥ ea − (P + 1). By lemma 2, this is
equivalent to

ê = η̂e(S) =
⌊
log2 |(−1)sa ·2ea ·fa + (−1)sb ·2eb ·fb|

⌋ ≥ ea − 1. (3)

Since the operands are IEEE factorings, fb < 2. Since δ ≥ 2, we have 2−δ ≤ 1
4 .

Together, this yields
2−δ ·fb < 1

2 .

Since eb ≥ emin, and δ = ea − eb ≥ 2, we know that ea > emin, and hence fa ≥ 1.
We now have ∣∣(−1)sa ·fa + (−1)sb ·2−δ ·fb

∣∣ ≥ 1
2 .

Multiplying with 2ea and taking logarithms yields (3). The floor brackets 	·� may be
dropped since ea − 1 is integer. ��

The representative [2−δ ·fb]−(P+1) can be computed with a shift distance limited
to B (we later fix B = 63). This avoids the need for a very large shifter.

Lemma 5. For B > P , let δ′ = min(δ, B). It holds

[2−δ ·fb]−(P+1) = [2−δ′ ·fb]−(P+1)

Proof. The case δ ≤ B is trivial. Let δ > B > P . Then by lemma 4.9, it holds

[2−δ′ ·fb]−(P+1) = 2−(P+2) = [2−δ ·fb]−(P+1). ��

Formal Verification of the VAMP Floating Point Unit 335

����

1

0

eb gt ea

as2[5 : 0]
6

as[11; 0]

as1[11; 0]

6

6

ortree

[11; 6]

[5; 0]

Fig. 3. Circuit Limit

Adder Sardware. The adder (Fig. 2) is a straightforward implementation of the de-
scribed algorithm using basic components [2]. If a subtraction is to be performed, sb is
negated, yielding s′

b. Circuit ExpSub computes the difference as := ea − eb and the
flag eb gt ea := (eb > ea). The result’s exponent es is selected by a multiplexer. Circuit
Swap swaps a and b in case eb > ea. The shift distance is limited in circuit Limit to
B := 63. Circuit Align performs the actual alignment shift. It primaly consists of a
64-bit shifter and a sticky computation, which collects the bits shifted out during the
alignment. Circuit SigAdd performs the addition, i.e., steps 4 and 5 from our informal
description.

The verification of the adder is straightforward: prove the correctness of the sub-
circuits, and combine them using the above lemma and theorem.

Verifying the Gate Level. As an example for the detail level our proofs operate on,
we present the Limit circuit (Fig. 3) that calculates the shift distance as2 for circuit
Align. First, an approximation of the absolute value of the shift distance as = ea − eb

is computed.

as1 =

{
as if as ≥ 0
−as + 1 if as < 0.

If one of the high order bits as1[10 : 6] is set, then as1 > 63. In this case, the low
order bits of as1 are forced to one by the OR-gates. Otherwise, the shift distance as1 is
unchanged. It holds

as2 = min{as1, 63}.

Both statements are easily verified in PVS.
In case eb > ea, the described computation introduces an error of 1 in the shift

distance. This is compensated by pre-shifting the significand by one bit in circuit Swap
in this case. This detour is done to reduce the cycle time of the adder. The approximation
of the absolute value can be computed with the delay of a single inverter. If one computed
the exact absolute value of as, one would introduce the delay of an incrementer that would
increase the length of the critical path of the adder.

3.2 Multiplier and Divider

The product of two floating point numbers can be computed by adding the exponents
and multiplying the significands. The less significant bits of the significand’s product are
then compressed by means of a sticky bit computation. The so computed representative
of the product is then passed to the rounder. Implementation and verification of this
algorithm are straightforward.

336 C. Berg and C. Jacobi

In order to compute the quotient of two floating point numbers, one subtracts the
exponents, and computes the quotient of the significands. The latter is the interesting
part of the Mult/Div unit.

Let fa and fb be the two significands. We may assume 1 ≤ (fa, fb) < 2, since
the unpacker provides normalized significands. In our FPU, we use Newton-Raphson
iteration to compute an approximation of f−1

b . We start with an initial approximation x0
with 0 < |x0 − f−1

b | < 2−8, which is loaded from a lookup table with 256 entries. In
PVS, the lookup table is defined as a function mapping addresses a ∈ {0, . . . , 255} to
bitvectors b ∈ {0, 1}8. We have verified the content of the lookup table by automatically
checking all 256 entries. The verification takes 5 minutes on a 500 MHz AMD Athlon.

The analysis of the actual Newton-Raphson iteration and the following computation
of the representative [fa/fb]−P of the significand quotient is described very detailed in
[17]. The translation of the proofs to PVS is therefore straightforward.

Before passing the result to the rounder, the significand is left-shifted by one bit to
yield a significand in the range [1, 4) as required by the rounder. The exponent is adjusted
accordingly.

3.3 Rounder

Let x be the exact result of an operation, and let (si, ei, fi) be the input factoring to the
rounder. This factoring is not necessarily an IEEE-factoring. Let (s, e, f) = η(x) be
the IEEE factoring of x. The rounder specification requires the input factoring to satisfy
[[si,ei,fi]] ≡α x, where α ≤ e−P . Here, P is the precision of the operation’s destination
format.

The rounding unit is decomposed into the η-shifter, the repre-

�-Shift

Rep

SigRd

PostNorm

sifiei

snfnen

fr

eout fout sout

Fig. 4. Rounder

sentative computation, the significand round, and the post-normal-
ization stage (Fig. 4). The η-shifter computes an IEEE-factoring
(sn, en, fn) with sn = s, en = e, fn ≡−P f . Two cases have to
be distinguished:
1. In case of an addition/subtraction, the exponent ei satisfies ei ≥
emin by construction (Sect. 3.1). However, the significand fi lies
in the interval (0, 4), and can – due to cancellation – be less than 1
even if ei > emin. In the latter case, the significand has to be shifted
left.
2. In case of multiplication and division, the input significand fi

lies in the interval [1, 4), since the inputs to the multiplier/divider
were normalized by the unpacker. The exponent ei, however, does
not necessarily satisfy ei ≥ emin.3 In the case where ei < emin,
the significand fi has to be shifted right by emin − ei digits. Since
this shift could be very far, the shift distance is limited similarly to the adder alignment
shift explained in Sect. 3.1.

The η-shifter outputs fn with 128 binary digits. The circuit Rep computes the repre-
sentative fr := [fn]−P . This is done using an OR-tree, as suggested by theorem 3. We
then have (sn, en, fr) = η([x]e−P) by theorem 2.

The next circuits SigRd and PostNorm exactly correspond to the functions sigrd
and postnorm from Sect. 2.2. The significand round on fr is performed by investigation

3 For example, the multiplication 2emin × 2emin generates inputs (si, ei, fi) = (0, emin +
emin, 1) to the rounder. Note that emin < 0, and therefore 2 · emin < emin.

Formal Verification of the VAMP Floating Point Unit 337

of the 3 least significant bits of fr, and either chopping or incrementing the higher order
bits [17]. If this effectively changes the significand, then the inexact result exception
INX is signalled according to lemma 3.

The post-normalization increments the exponent and forces the significand to 1 if
normalization is necessary.

Theorems 1 and 4 together imply the correctness of the rounder:

(sout, eout, fout) = η
(
rd(x, M)

)
.

After rounding, the circuit Pack outputs the IEEE bit string encoding of this factoring.
In case of an untrapped overflow, however, the circuit Pack outputs either the format’s
maximal value, or infinity, depending on the sign and the rounding mode.

The correctness of the unpacker, the computation units, the rounder, and the packer
together imply the correctness of the whole FPU.

3.4 Errors Encountered

We briefly describe some of the errors in [17] that we have encountered during the
verification of the FPU in PVS:

The specification of the rounder interface (pg. 392) is wrong. There it is required
that an overflow does not occur if a denormal significand fi is fed into the rounder, i.e.,
fi < 1 ⇒ ¬OV F (x, M). This is necessary to detect overflows correctly (pg. 397).
However, the requirement is not strong enough: it must hold that the input exponent ei

is less than emax in case of a denormal input significand, i.e., fi < 1 ⇒ ei ≤ emax.
Otherwise, the proof on page 397 fails.

The divider does not obey the rounder specification (neither the old nor the new one).
A division of 1 · 2emax by (2 − 2−P+1) · 2emin overflows, but the input significand into
the rounder fi ≈ 1/2 is denormal. This bug can be fixed by left-shifting fi by 1 and
appropriately adjusting the exponent ei in case of divisions (cf. Sect. 3.2).

On page 400, a carry-in is fed into a compound adder, although compound adders
do not feature a carry-in. A similar error was found in the exponent addition circuit in
the multiplier (pg. 383).

In circuit SigRd (pg. 406), chopping the significand in single precision mode leaves
non-zero digits after the least significand bit. The claims in Sect. 8.4.5 are therefore
wrong. This can be fixed by tying the bits after the least significand bit to zero.

In the significand round, the circuit for the decision whether to chop or to increment
the significand is wrong (pg. 407). The Xor has to be replaced by an Xnor gate.

In the adder, the computation of the sign bit is wrong (pg. 371).

The proofs in [17] partly have large gaps. These gaps had to be filled during the
verification in PVS. Most proof gaps could be filled without revealing errors in [17], but
some proof gaps hid errors, e.g., the errors listed above. Having formally verified the
proofs in PVS ultimately gives us the certainty that the design of the FPU is correct –
under the assumption that PVS is sound.

338 C. Berg and C. Jacobi

4 FPU Control
So far we have verified combinatorial circuits. In order to implement the FPU in hard-
ware with reasonable cycle time, one has to insert pipelining registers. Since multipliers
are very expensive, one cannot fully pipeline the iterative Newton-Raphson algorithm. A
loop has to be incorporated into the pipeline structure to reuse the multiplier in each itera-
tion. This saves hardware costs, but considerably complicates control and the correctness
proof.

In [17], the FPU is integrated into an in-order variant of the DLX-processor. In our
verification project, the FPU will be integrated into a Tomasulo based out-of-order DLX-
variant. It is therefore necessary to design a new control automaton for the FPU in order
to exploit the benefits of the out-of-order scheduler.

After pipelining, the FPU has a variable latency, and operations are finished out-of-
order. The latency of the FPU is 1 cycle for comparison and for operations involving
special operands. It is 5 cycles for addition, subtraction, and multiplication. The division
unit has latency 16 and 20 cycles in single and double precision, respectively. Two
divisions can be performed interleaved without increased latency.

We have verified the new FPU control using a combination of PVS’s modelchecking
and theorem proving capabilities We omit the control implementation details here, since
they are not specific to FPUs.

5 Summary and Future Work
We have formally verified a fully IEEE compliant floating point unit. The supported
operations are addition, subtraction, multiplication, division, comparison, and conver-
sions. The FPU handles denormals and exceptions as required by the IEEE standard.
The hardware has been verified on the gate level with respect to a formal description of
the IEEE standard using the theorem prover PVS.

The proofs in PVS used paper proofs from [17] as guidelines. However, some of the
proofs in [17] were erroneous, and most proofs had gaps needed to be filled in PVS.
Those gaps hid errors in the design in [17]. Having formally verified the proofs (and
filled the proof gaps) in PVS gives us the certainty that now the hardware is correct with
respect to its specification.

To the best of our knowledge, this is the first time that a floating point unit that supports
addition/subtraction, multiplication/division, comparison, conversions, denormals, and
exceptions in hardware has been formally verified on the gate level, and the designs and
proofs scripts are made publicly available.

The amount of work needed to develop the PVS hardware description and proofs
was roughly a year for each of the authors. Since theorem proving strongly profits from
experience, we think we would succeed in at most half the time now on a comparable
project.

We are currently working on the integration of the FPU into the VAMP processor
and the translation of the VAMP to Verilog. The VAMP processor including the FPU
will then be implemented on a Xilinx FPGA.

Acknowledgements. The authors would like to thank Sven Beyer, Daniel Kröning, Dirk
Leinenbach, Wolfgang Paul, and Jochen Preiß for valuable discussions.

Formal Verification of the VAMP Floating Point Unit 339

References

1. M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined double-precision
IEEE floating-point multiplier. In ICCAD, pages 7–10. IEEE, Nov. 1995.

2. C. Berg, C. Jacobi, and D. Kroening. Formal verification of a basic circuits library. In IASTED
International Conference on Applied Informatics. ACTA Press, 2001.

3. Y.-A. Chen and R. E. Bryant. Verification of floating point adders. In CAV’98, volume 1427
of LNCS, 1998.

4. M. Cornea-Hasegan. Proving the IEEE correctness of iterative floating-point square root,
divide, and remainder algorithms. Intel Technology Journal, Q2, 1998.

5. E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT division algorithm using theorem
proving techniques. In CAV’96, volume 1102 of LNCS, 1996.

6. G. Even and W. Paul. On the design of IEEE compliant floating point units. In Proceedings
of the 13th Symposium on Computer Arithmetic. IEEE Computer Society Press, 1997.

7. D. Goldberg. Computer Arithmetic. In [9], 1996.
8. J. Harrison. A machine checked theory of floating point arithmetic. In TPHOL ’99, volume

1690 of LNCS. Springer, 1999.
9. J. L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, San Mateo, CA, second edition, 1996.
10. Institute of Electrical and Electronics Engineers. ANSI/IEEE standard 754–1985, IEEE Stan-

dard for Binary Floating-Point Arithmetic, 1985.
11. C. Jacobi. A formally verified theory of IEEE rounding. Unpublished, available at

www-wjp.cs.uni-sb.de/˜cj/ieee-lib.ps, 2001.
12. C. Jacobi and D. Kroening. Proving the correctness of a complete microprocessor. In GI

Jahrestagung 2000. Springer, 2000.
13. D. Kroening. Formal Verification of Pipelined Microprocessors. PhD thesis, Saarland Uni-

versity, Computer Science Department, 2001.
14. P. S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical Report TM-

110167, NASA Langley Research Center, 1995.
15. P. S. Miner and J. F. Leathrum. Verification of IEEE compliant subtractive division algorithms.

In FMCAD-96, volume 1166 of LNCS, pages 64–, 1996.
16. J Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the AMD5K86

floating point division program. IEEE Transactions on Computers, 47(9):913–926, 1998.
17. S. M. Mueller and W. J. Paul. Computer Architecture. Complexity and Correctness. Springer,

2000.
18. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. IA-64 floating point operations and the

IEEE standard for binary floating-point arithmetic. Intel Technology Journal, Q4, 1999.
19. S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In CADE 11,

volume 607 of LNAI, pages 748–752. Springer, 1992.
20. H. Ruess, N. Shankar, and M. K. Srivas. Modular verification of SRT division. In CAV’96,

volume 1102 of LNCS, 1996.
21. D. M. Russinoff. A mechanically checked proof of IEEE compliance of the floating point

multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal
of Computation and Mathematics, 1:148–200, 1998.

22. D. M. Russinoff. A mechanically checked proof of correctness of the AMD K5 floating point
square root microcode. Formal Methods in System Design, 14(1):75–125, Jan. 1999.

23. D. M. Russinoff. A case study in formal verification of register-transfer logic with ACL2: The
floating point adder of the AMD Athlon processor. In FMCAD-00, volume 1954 of LNCS.
Springer, 2000.

24. D. Verkest, L. Claesen, and H. De Man. A proof on the nonrestoring division algorithm and
its implementation on an ALU. Formal Methods in System Design, 4, 1994.

	Introduction
	IEEE Floating Point Arithmetic
	Factorings
	Rounding
	Exceptions
	$alpha $-Equivalence
	Correctness of the FPU

	Verifying the VAMP FPU
	Adder
	Multiplier and Divider
	Rounder
	Errors Encountered

	FPU Control
	Summary and Future Work

