
Formal Verification of Word-Level Specifications

Stefan Höreth Rolf Drechsler

Siemens Corporate R&D Institute of Computer Science
D-81730 Munich / Germany Albert-Ludwigs-University

and 79110 Freiburg i. B., Germany
Darmstadt University of Technology

Dept. of Electrical & Computer Engineering
http://www.rs.e-technik.tu-darmstadt.de/ sth drechsle@informatik.uni-freiburg.de

Abstract

Formal verification has become one of the most impor-
tant steps in circuit design. In this context the verification
of high-levelHardware Description Languages(HDLs), like
VHDL, gets increasingly important.

In this paper we present a complete set of datapath op-
erations that can be formally verified based onWord-Level
Decision Diagrams(WLDDs). Our techniques allow a di-
rect translation of HDL constructs to WLDDs. We present
new algorithms for WLDDs for modulo operation and di-
vision. These operations turn out to be the core of our ef-
ficient verification procedure. Furthermore, we prove up-
per bounds on the representation size of WLDDs guaran-
teeing effectiveness of the algorithms. Our verification tool
is totally automatic and experimental results are given to
demonstrate the efficiency of our approach.

1 Introduction

Nowadays modern circuit design can contain several
million transistors. For this, also verification of such large
designs becomes more and more difficult, since pure simu-
lation can not guarantee the correct behavior and exhaustive
simulation is too time consuming.

But many designs have very regular structures, like
ALUs, that can be described easily on a higher level of ab-
straction. E.g. describing (and verifying) an integer mul-
tiplier on the bit-level is very difficult, while the verifi-
cation becomes easy, when the outputs are grouped to a
build a bit-string. Recently, several approaches to formal
circuit verification have been proposed that make use of
these regularities [1, 12, 3]. All these approaches have in
common that they are based onWord-Level Decision Dia-
grams(WLDDs), i.e. graph based representations of func-
tions (similar to BDDs [4]) that allow to represent functions
with a Boolean range and an integer domain. Examples of
WLDDs are e.g. EVBDDs [20], MTBDDs [9, 2], *BMDs
[6], HDDs [10], and K*BMDs [14]. In the meantime
WLDDs have been integrated in verifications tools [1, 8]

and are also used for symbolic model checking [11, 7]. In
[19] HDDs have been applied to verification of circuits at
the register transfer level. WLDDs are a tool for bridging
the gap between verification of high-levelHardware De-
scription Languages(HDLs), like VHDL, and the netlists
consisting of basic gates, like AND and OR. But so far for
many HDL commands no effective way of translation into
a WLDD is known.

In this paper we present a complete set of datapath opera-
tions that can be formally verified based onWord-Level De-
cision Diagrams(WLDDs). Our verification techniques al-
low to directly translate a HDL constructs to WLDDs. The
key to this transformation are two new algorithms for mod-
ulo operation and division. Even though the operations have
exponential worst case behavior we show by some experi-
ments that these algorithms can handle functions with up
to several hundred variables, while previously known algo-
rithms fail for more than 16 bits. For some important func-
tions often occurring in high-level descriptions we prove
polynomial upper bounds on the representation size of the
WLDD.

For each HDL operation we describe the main ideas and
report some experiments. Finally, a case study on verifying
a BCD-to-binary converter shows how the different com-
ponents can be combined. We succeeded in automatically
verifying this circuit, while other approaches, e.g. based on
*BMDs only, fail.

The paper is structured as follows: In Section 2 WLDDs
are introduced. In Section 3 arithmetic functions are de-
scribed that often occur in high-level descriptions of circuits
and their size is estimated. In Section 4 datapath operations
are discussed. An experimental study is given in Section 5.
Finally, the results are summarized.

2 Word-Level Decision Diagrams

In this section notations and definitions are given that
are important for understanding the paper. We give a brief
overview onDecision Diagrams(DDs). (For more details
see [18, 13].)



All DDs are graph-based representations, where at each
(non-terminal) node labeled with a variablex a decomposi-
tion of the function represented by this node into two sub-
functions (thelow-function and thehigh-function) is per-
formed. In the following, we assume that the underlying
graph isorderedand reduced, i.e. variables occur in the
same order on all paths in the DD and functions represented
by nodes of the graph are unique.

For bit-level DDs the following three decompositions
have been considered:

f = x flow � x fhigh; Shannon(S)
f = flow � x fhigh; positive Davio(pD)
f = flow � x fhigh: negative Davio(nD)

Functionf is represented at nodev, while flow (fhigh) de-
notes the function represented by thelow-edge (high-edge)
of v. � is the Boolean Exclusive OR operation. The re-
cursion stops at terminal nodes labeled with 0 or 1. If at a
node a decomposition of typeS (D) is carried out this node
is called aS-node (aD-node). If only decompositions of
type S are applied the resulting DD is a BDD [4], while in
OKFDDs [15] all three are allowed.

In this paper, we consider the same three decomposi-
tions for word-level functions, i.e. functions of the form
f : Bn ! Z:

f = (1� x) � flow + x � fhigh;
f = flow + x � fhigh;
f = flow + (1� x) � fhigh:

The notationS, pD andnD is used analogously to the bit-
level. x still denotes a Boolean variable, but the values of
the functions are integer numbers and they are combined
with the usual operations (addition, subtraction, and multi-
plication) in the ringZ of integers. Which decomposition
is used, i.e. bit- or word-level, becomes clear from the con-
text. To simplify the notation in the following and to avoid
different cases for all decompositions, we use the notation

f = dlow(x) � flow + dhigh(x) � fhigh;

where� and+ is the multiplication and addition, respec-
tively, over a domainD, dlow; dhigh : B ! B, and
flow; fhigh : B

n�1 ! D. It is easy to see that all decompo-
sitions above can be formulated using this generalized form,
if dlow, dhigh, flow, andfhigh are chosen appropriately.

Decomposition types are associated to then Boolean
variablesx1; x2; : : : ; xn with the help of aDecomposi-
tion Type List (DTL) d := (d1; : : : ; dn) where di 2

fS; pD; nDg, i.e. di provides the decomposition type for
variablexi (i = 1; : : : ; n).

Based on the notations and definitions above we now in-
troduce the functions represented by an edge in a DD. The
edge functionfe is obtained from the function of the node
through multiplication or addition of integer values.

For MTBDD [9, 2], BMD [6], HDD [10], EVBDD [20],
*BMD [6] and K*BMD [14], the corresponding functions
fe are given in Table 1 (a;m are integer numbers).

Table 1. Functions represented by edges

graph type edge function
MTBDD, BMD, HDD fe = f
EVBDD fe = a+ f
*BMD fe = m � f
K*BMD fe = a+m � f

Edge-values are obtained from the node representation
during the graph reduction phase. Note that all remain-
ing DDs from Table 1 are obtained by further restricting the
K*BMD reduction rules and DTL.

3 Representation Size of Arithmetic Func-
tions

High-level circuit descriptions allow the use of buses. By
this, Boolean variables are grouped, if they belong together.
The big advantage of WLDDs is that they allow to directly
make use of this grouping, while the direct correlation gets
lost in bit-level DDs, like BDDs. Obviously, the smaller
the representation is, the faster are the algorithms. This be-
comes even more important, if algorithms with exponential
worst case behavior are used.

For this, we first consider arithmetic operations of func-
tions that are defined over Boolean variables. LetV ar =
fx1; : : : ; xng be a set of Boolean variables:

1. X =
Pn�1

i=0 xi2
i

2. X + Y

3. X � Y

4. X2; X3; : : : ; Xc (c constant)

5. cX (c constant)

While these functions are the basic operations for most oth-
ers, they are studied in more detail in the following.

Depending on the WLDD-type the representation size
largely varies (see below). The best results so far have been
obtained for *BMDs: ForX;X+Y;X �Y; cX *BMDs have
linear size [5]. These results directly transfer to K*BMDs.
The situation becomes more complex, when functions of
typeXc (c constant) are considered.

We first prove an upper bound for functionXc for
BMDs. Obviously, the given bound holds for *BMDs and
K*BMDs as well.

Theorem 1 The BMD for functionXc has at most

cX
i=0

�
n

i

�

nodes using the variable orderingxn�1; : : : ; x0.



Proof: Before we consider the BMD representation we
start with some general considerations that will be used in
the following:

(a+ b)d =

dX
i=0

�
d

i

�
ad�ibi (1)

It now easily follows from Equation (1):

(a+ b)d � bd = (

dX
i=0

�
d

i

�
ad�ibi)� bd

= (

d�1X
i=0

�
d

i

�
ad�ibi) + bd � bd

=

d�1X
i=0

�
d

i

�
ad�ibi (2)

Notice that the exponent of the polynomial decreases by
one, i.e. fromd to d� 1.

We now make use of these equations, when we have a
closer look at the influence of the BMD decomposition on
polynomials:

f = flow + xifhigh

Here,flow represents the function, if variablexi is set to
zero, i.e.flow = fxi=0. fhigh is given byfxi=1 � fxi=0.
If in the following we decompose the function starting from
the highest coefficient in the polynomial towards the lower
coefficients, i.e.xn�1; xn�2; : : :, the function represented
by the low-edge of nodev computes the same polynomial
asv, with the only difference that coefficientxi has been set
to zero.

The case for thehigh-edge is more difficult: We have
to subtract the polynomials for the case ofxi = 1 and
xi = 0. But these polynomials differ only in a constant
factor. Thus, Equation (2) can be applied and it directly fol-
lows that by each use of thehigh-edge the exponent of the
polynomial represented by the corresponding node is de-
creased by one. Afterc high-edges the polynomial assumes
a constant value, but this is represented as a terminal node
in a BMD. Thus, forXc we only have to count the num-
ber of paths from the root of the BMD that pass at most
c high-edges. But as a straightforward computation shows
this number is given by:

cX
i=0

�
n

i

�

2

As mentioned before the bounds given in the theorem
directly transfer to *BMDs and K*BMDs. For *BMDs the
bound forc = 2 can (asymptotically) not further be im-
proved [5]:

Remark 1 A *BMD for X2 has a quadratic number of
nodes.

In the following two theorems we show that better upper
bounds can be given for K*BMDs.

Theorem 2 The K*BMD for functionX2 has at mostO(n)
nodes using the variable orderingxn�1; : : : ; x0.

Proof: We show the decomposition on the top level of the
function. Then the generalization for all variablesxi be-
comes obvious. We start with function

f = (

n�1X
i=0

xi2
i)2:

This function is decomposed to thelow-edge

flow = (

n�2X
i=0

xi2
i)2

and thehigh-edge

fhigh = 22n�2 + 2n
n�2X
i=0

xi2
i:

As in the proof of the theorem above the exponent in the
sum is reduced by one by thehigh-edge. Again, the case
for the low-edge is trivial. If the function on thehigh-edge
is decomposed again by a Davio decomposition, we obtain

22n�2 + 2n
n�3X
i=0

xi2
i:

But due to the additive and multiplicative edge values this
function becomes isomorphic to thehigh-successor of the
low-edge, while thehigh-edge points to a constant value.
All in all, the number of nodes per level is bounded by two.
(A more detailed analysis shows that the exact number is
given by2 � n� 2). 2

This result shows that K*BMDs are the only DD-type
presented so far for hardware verification, that can repre-
sent all functions considered in [5] in linear size (see Ta-
ble 2). The representation size becomes extremely impor-
tant for WLDDs, since most operations have exponential
worst case behavior. Thus, keeping the (final) representa-
tion small enables us to define more efficient algorithms.

Finally, we show that the result of Theorem 1 can also be
improved for K*BMDs forc = 3.

Theorem 3 The K*BMD for functionX3 has at most
O(n2) nodes using the variable orderingxn�1; : : : ; x0.

Proof: A detailed analysis similar to the one of the proof
above shows that (starting from the third level) per level one
additional node is created. Thus, the total number of nodes
becomes quadratic in the number of variables. (The exact
number is given by(n2 + n� 4)=2). 2

All in all, it turns out there exist WLDD-types that can
efficiently represent arithmetic operations in polynomial
size (by polynomials of low degree), while other types fail.



Table 2. Representation sizes of different DD-
types for arithmetic functions

DD-type X X + Y X � Y X2 cX

MTBDD exp exp exp exp exp
EVBDD lin lin exp exp exp
BMD, HDD lin lin quad quad exp
*BMD lin lin lin quad lin
K*BMD lin lin lin lin lin

4 Word-Level Verification

In this section we define a set of datapath operations that
allow to effectively verify high-level HDLs, like VHDL.
For this, first two operations are introduced, i.e. modulo
operation and division. Recently, it has been proved that
none of the “usual” WLDD-types can represent the division
function efficiently [21]. Nevertheless, our algorithms for
these closely related operators work very well in practice.
(All experiments in this section have been carried out on
a SUN UltraSPARC-170 workstation with 256 MByte of
main memory.)

4.1 Modulo Operation

Modulo arithmetic based on powers of two is frequently
used in specifications of datapaths. But as described above,
division (and modulo) is a “hard” problem for WLDDs. A
straightforward approach to compute modulo would be to
recursively apply Shannon decompositions. But a limitation
of this approach when using WLDDs is that the range of
functions often becomes prohibitively large.

In the sequel, we present an algorithm for modulo arith-
metic, that often avoids explicit enumeration of function
values. We make use of the two properties of modulo arith-
metic:

(a+ b)%n = (a%n+ b)%n

= (a%n+ b%n)%n

(a � b)%n = (a%n � b)%n

= (a%n � b%n)%n:

Here% denotes the modulo operation,a; b 2 Z, andn 2 N.
The algorithm consists of two steps (only the main idea

is given in the following, due to page limitation; for more
details see [17]):

1. Terminal cases are checked based on a “conservative”
estimate for function ranges. We make use of the algo-
rithm for range estimation as described in [10].

2. If step 1. fails, an estimatef%�g is computed, by car-
rying out the modulo operation onflow andfhigh.

If g : Bn ! N is independent of variablex, it holds:

f%g = (dlow(x) � flow + dhigh(x) � fhigh)%g

= (dlow(x) � (flow%g)

+dhigh(x) � (fhigh%g))%g

= (f%�g)%g

= (dlow(x) � (flow%�g)

+dhigh(x) � (fhigh%�g))%g

Then again step 1. is applied to the WLDD forf%�g
until some terminal cases are reached.

If g depends onx, both algorithms, i.e. exact compu-
tation based on Shannon decomposition and estimate
are applied recursively.

As an important special case this algorithm also includes
the modulo operation with a constant functiong. Then for
computingf%�g only the WLDD forf has to be traversed,
and the operation has to be applied to the terminal nodes.
Afterwards, range estimation on the simplified WLDD fre-
quently leads to an early termination.

Remark 2 For WLDDs using additive and multiplicative
edge values for constant functionsg > 0 we proceed as
follows:

(a+m � fv)%g = (a%g + (m%g) � fv)%g

Then the modulo operation only has to be computed for the
simplified functiona%g + (m%g) � fv.

Experiment We consider modulo addition based on
WLDDs:

(

n�1X
i=0

2ixi +

n�1X
i=0

2iyi)%2
n (3)

We represent the formula by a K*BMD with onlypD de-
composition using an interleaved variable ordering.

The results of our approach in comparison to the con-
ventional approach based on Shannon expansion for vary-
ing bit-length are given in Table 3. Even though the size of
the output function grows only linear with the bit-length, the
straightforward approach fails for more than 16 bits, while
our algorithm can handle the function with 512 bits (and
1024 variables) in less than 300 CPU seconds.

4.2 Division

Based on the modulo operation described above, we now
give an algorithm for computing the division on WLDDs.

The basic idea of the algorithm is to first subtract the re-
mainder of the division from the dividend and then to com-
pute the result:

f=g = (f � f%g)=g:

If g is independent of variablex, it holds:

f=g = (f � f%g)=g = f 0=g

= (dlow(x) � f
0

low + dhigh(x) � f
0

high)=g

= (dlow(x) � (f
0

low=g)

+dhigh(x) � (f
0

high=g)): (4)



Table 3. Modulo operation

bit-length 4 8 16 32 64 128 256 512
time (Shannon) [s] 0,1 0,2 18,5 >1h >1h >1h >1h >1h
time (mod) [s] 0,1 0,1 0,1 0,2 0,6 2,7 21,4 275,9
size [nodes] 16 36 76 156 316 636 1276 2556
max. size [nodes] 20 40 80 160 320 640 1280 2560

Table 4. Division with non-constant divisor

bit-lengthn 4 8 16 32 64 128
divisor [nodes] 6 14 30 62 126 254
max. size [nodes] 17 40 88 184 376 760
time [s] 0,1 0,1 0,1 0,4 3,9 170,5

Otherwise the division is computed by carrying out a Shan-
non expansion for its arguments(f � f%g) andg, respec-
tively. (Again, the algorithm can be simplified for constant
functionsg > 0 and for WLDDs making use of edge-
values.)

In some cases division can also be computed efficiently
when the divisor is not constant. This is often the case, if
dividend and divisor are monotonous and if they are defined
over the same set of variables.

Experiment Consider the division

a+ 1

a2 + 2a+ 1
; a =

n�1X
i=0

2iai:

The expressionsa+1 anda2+2a+1 are given as K*BMDs
consisting ofpD-nodes only. Fora = 0 the result becomes
1. In all other cases it becomes0. The K*BMD grows
linearly with the bit-length.

This is “obvious”, but hard to handle using DDs.
E.g. BDDs fail, since they can not represent multiplication
efficiently. Applying the standard methods (see e.g. [5]) all
input combinations have to be considered resulting in an
exponential runtime.

Using the algorithm described above also large bit-length
can be handled efficiently (see Table 4). A prerequisite for
this are the efficient representations of e.g.a2 as proven in
Section 3.

4.3 Datapath Operations

Based on the algorithm described so far in combination
with the results presented in [16] we can now efficiently
describe a large set of datapath operations for HDLs, like
VHDL (see Table 5).a, a0, a1 denote bit-vectors of
lengthn, that are given by integer encodingsa; a0; a1. b is
a single bit represented by the Boolean functionb. n, k,
l (n; k; l) are natural numbers.

equ(inc(ac,2*n),
cat(inc(selslice(ac,0,n-1),n),

adc(selslice(ac,n,2*n-1),0,
equ(inc(selslice(ac,0,n-1),n),0)),n))

Figure 1. Example of datapath operation

Notice that the operations often combine Boolean and
integer expressions. This is taken into account by using
Boolean and integer graph types. In the implementation of
the hybrid DD package from [16], e.g. the parity function
odd(a) uses a WLDD to represent the integer functiona,
while the result is represented by a Boolean graph type, i.e.
an OKFDD or a BDDs.

Experiment Consider the datapath operation in Figure 1.
It will be checked whether incrementing registerac (of bit-
length 2n) can be done by splitting it into two words of
lengthn and then performing the operation accordingly.

The implementation given in Figure 1 isfaulty , since a
carry might be generated during additionadc . In our exper-
iment all word-level operations are carried out on K*BMDs
and for all Boolean expressions BDDs are used. The BDD
for the first occurrence of functionequ represents the com-
plete set of possible values of registerac , for which the
operation is implemented correctly. (It is easy to see that
the BDD only needs2n+ 1 nodes.)

In Table 6 again the runtimes and the maximum graph
sizes during the computation are given. The main problem
in this case is the computation of the division and modulo
operation in functionsselslice and inc , respectively.
Notice that the additionadc is again a hybrid operation,
i.e. between K*BMDs and BDDs. Even though, most of
the word-level operations have exponential worst case be-
havior it turns out that in most practically relevant cases



Table 5. HDL and their implementation by word-level operations

HDL word-level operation interpretation
a

Pn�1

i=0 2i � ai integer encoding
adc(a0, a1, b) a0+a1+b addition with carry
cat(a0, a1, n) 2n � a1 + a0 concatenation
fae(b, n)

Pn�1

i=0 b � 2i fanout
selel(a, k) odd(a=2k) bit selection
selslice(a, k, l) (a%2l+1)=2k bit-slice
inc(a, n) (a+ 1)%2n increment modulo
dec(a, n) (a� 1)%2n decrement modulo
rsh(a, b, n) (a%2n)=2 + 2n�1 � b shift right
lsh(a, b, n) ((a � 2) + b)%2n shift left
rol(a, n) (a � 2)%2n + (a%2n)=2n�1 rotate left
ror(a, n) (a%2n)=2 + 2n�1 � odd(a) rotate right
equ(a0,a1) equ(a0; a1) equivalence
gt(a0,a1) gt(a0; a1) greater than
IF b THEN a0;

ELSE a1; FI b � a0 + (1� b) � a1 conditional

Table 6. Verification of datapath operation

bit-length2n 16 32 64 128 256 512
time [s] 0,3 0,6 1,3 4,3 21,4 161,2
max. size [nodes] 54 155 315 681 1387 2811

the runtimes are very small. (If a correct implementation
is considered the runtimes of our algorithm are in the same
range.)

5 A Case Study

Finally, we describe the complete automatic formal ver-
ification of a 10-decade BCD-to-binary converter. (Minor
details are left out due to page limitation.) Following the
Texas Instrument TTL Data Book for Design Engineersthe
specification is given by:

The BCD-to-binary function of the SN54184 and
SN74184 is analogous to the algorithm:

a. Shift BCD number right one bit and exam-
ine each decade. Subtract three from each 4-
bit decade containing a binary value greater
than seven.

b. Shift right, examine, and correct each shift
until all converted decades contain zeros.

One possible formulation of this algorithm in a more formal
way is given in Figure 2. We compare the HDL descrip-
tion to an implementation composed of subcircuits of type
SN74184. As can be seen the HDL description makes use of
several operations introduced in the previous sections, like
addition, multiplication, greater than.

i:=0; d[n]:=0;
DO

b[i] := odd(d[0]);
FOR j:=0 TO n-1 DO

d[j] := d[j]/2 + 2ˆ3 * odd(d[j+1]);
FOR j:=0 TO n-1 DO

d[j] := d[j] - 3 * gt(d[j], 7);
i := i+1;

UNTIL (d[0]=0 & ... & d[n-1]=0);

Figure 2. Algorithmic specification

For all Boolean functions we used BDDs and all word-
level operations are carried out using K*BMDs. The de-
composition types and the variable ordering are not pre-
determined: they are dynamically found using DTL-sifting
[18].

On a SUN UltraSPARC-170 workstation 30 MByte of
main memory were needed. For the transformation of
the specification to WLDDs about 11 CPU minutes were
needed. Then the BDD for the implementation is con-
structed. The circuit consists of 82 TTL elements (corre-
sponding to about 5000 two-input gates). The BDDs for
the outputs are constructed in less then 1 CPU minute. Fur-



thermore, alsoDon't Caresare considered, i.e. only “valid”
input combinations are used.

All in all, the verification could be completed (including
computation of specification and implementation) in less
than 18 CPU minutes using 97 MByte of main memory.
60% of the runtime was used for dynamic minimization
based on DTL-sifting and the maximal number of nodes
during the run was 1.5 million.

Finally notice that in contrast the verification of the spec-
ification against the circuit using *BMDs only failed. This
further underlines the importance to hybrid structures in
verification.

6 Conclusions

In this paper we presented a complete set of datapath op-
erations that can be formally verified based onWord-Level
Decision Diagrams. Our techniques allow a direct transla-
tion of HDL constructs to WLDDs. The sizes of WLDDs
for important arithmetic functions have been estimated and
we have studied manipulation algorithms for WLDDs for
modulo operation and division. Based on these core opera-
tions, we have shown by several experiments the feasibility
of our approach.

In a case study we showed how a specification and its im-
plementation could be automatically verified using formal
techniques. Alternative approaches based e.g. on *BMDs
could not complete the verification within several hours,
while the whole process took less than 18 CPU minutes us-
ing our techniques.

References

[1] L. Arditi. *BMDs can delay the use of theorem prov-
ing for verifying arithmetic assembly instructions. In
FMCAD, pages 34–48, 1996.

[2] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic deci-
sion diagrams and their application. InInt' l Conf. on
CAD, pages 188–191, 1993.

[3] C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision
procedure for bit-vector arithmetic. InDesign Au-
tomation Conf., June 1998.

[4] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[5] R.E. Bryant and Y.-A. Chen. Verification of arithmetic
functions with binary moment diagrams. Technical
report, CMU-CS-94-160, 1994.

[6] R.E. Bryant and Y.-A. Chen. Verification of arithmetic
functions with binary moment diagrams. InDesign
Automation Conf., pages 535–541, 1995.

[7] Y. Chen, E. Clarke, P. Ho, Y. Hoskote, T. Kam,
M. Khaira, J. O' Leary, and X. Zhao. Verification of all
circuits in a floating-point unit using word-level model
checking. InFMCAD, pages 389–403, 1996.

[8] Y.-A. Chen and R.E. Bryant. ACV: an arithmetic cir-
cuit verifier. In Int' l Conf. on CAD, pages 361–365,
1996.

[9] E. Clarke, M. Fujita, P. McGeer, K.L. McMillan,
J. Yang, and X. Zhao. Multi terminal binary decision
diagrams: An efficient data structure for matrix rep-
resentation. InInt' l Workshop on Logic Synth., pages
P6a:1–15, 1993.

[10] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision
diagrams - overcoming the limitations of MTBDDs
and BMDs. InInt' l Conf. on CAD, pages 159–163,
1995.

[11] E.M. Clarke and X. Zhao. Word level symbolic model
checking - a new approach for verifying arithmetic cir-
cuits. Technical Report CMU-CS-95-161, 1995.

[12] D. Cyrluk, O. Möller, and H. Rueß.An Efficient Deci-
sion Procedure for the Theory of Fixed-Sized Bitvec-
tors, volume 1254 ofLNCS. Computer Aided Verifi-
cation, 1997.

[13] R. Drechsler and B. Becker.Binary Decision Dia-
grams - Theory and Implementation. Kluwer Aca-
demic Publishers, 1998.

[14] R. Drechsler, B. Becker, and S. Ruppertz. The
K*BMD: A verification data structure.IEEE Design
& Test of Comp., pages 51–59, 1997.

[15] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and
M.A. Perkowski. Efficient representation and manip-
ulation of switching functions based on ordered Kro-
necker functional decision diagrams. InDesign Au-
tomation Conf., pages 415–419, 1994.

[16] S. Höreth. Implementation of a multiple-domain deci-
sion diagram package. InCHARME, Chapman & Hall,
pages 185–202, 1997.

[17] S. Höreth. Effiziente Konstruktion und Manipulation
von bin̈aren Entscheidungsgraphen. Ph.D. thesis at
Technische Universit¨at, Darmstadt, 1998.

[18] S. Höreth and R. Drechsler. Dynamic minimization of
word-level decision diagrams. InDesign, Automation
and Test Europe, pages 612–617, 1998.

[19] G. Kamhi, O. Weissberg, and L. Fix.Automatic Da-
tapath Extraction for Efficient Usage of HDD, volume
1254 ofLNCS. Computer Aided Verification, 1997.

[20] Y.-T. Lai and S. Sastry. Edge-valued binary decision
diagrams for multi-level hierarchical verification. In
Design Automation Conf., pages 608–613, 1992.

[21] C. Scholl, B. Becker, and T.M. Weis. Word-level de-
cision diagrams, WLCDs and division. InInt' l Conf.
on CAD, 1998.


