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Introduction
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Formal 

Verification

• background on formal methods


• Modeling


• Interpreting

Big Data

• deploy techniques into software 

tools able to analyze large 

amount of data very reliably and 

efficiently


• adapting an application for 

exploiting the scalability 

provided by cloud computing 

facilities.
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Background

• The behavior of a discrete-event dynamic system is formally given in terms 

of a labeled state transition system: (S, !,→)


• ! is a set of labels


• →⊆ S⨉!⨉S s.t. (s,λ,s’) ∈ → iff s’ reachable from s (written as s→s’)
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Background
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• In general S may be infinite, or even uncountable. Some abstraction 

techniques are required in order to be able to enumerate the whole state 

space.


• Abstract State Space: (A, L,⇒) 


• Where A is a coverage of S, and ⇒⊆A⨉L⨉A s.t. exists a morphism f which 

maps ! labels into L labels.

S
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Background
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• The relation ⇒ satisfies the condition EE: 

(1) if a⇒a’ , then ∃s∈a, s’∈a’ : s→s’ with λ ∈ f-1(l) 

(2) if s→s’, then ∀a∈A s.t. s∈a, ∃a’∈A s.t. s’∈a’ ⋀ a⇒a’

λl

λ f(λ)
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Time Basic nets - Reachability analysis
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• Three key points of the Time Reachability Graph building 

algorithm allow in many cases the termination.


• Identification of inclusions between classes of states


• Erasure of absolute times


• Identification of anonymous timestamps

Bellettini, C.; Capra, L.; , "Reachability Analysis of Time Basic Petri Nets: A Time Coverage 

Approach," Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th 

International Symposium on , vol., no., pp.110-117, 26-29 Sept. 2011 doi: 10.1109/SYNASC.2011.16


URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489
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Execution of the Gas Burner example:


Total built abstract states: 22.978


Final abstract state space: 14.563


!

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489
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Sequential algorithm
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Model m

Remaining

S0
m.buildRoot()

Si

Sk ...

Si.createSuccessors(m)

f���������	
��������������������  =���������	
��������������������  Sk.getFeatures()

Sj
Sk
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*E

... ...State space

Sk.identifyRelationship(Sj)
for���������	
��������������������  Sj���������	
��������������������  in���������	
��������������������  stateSpace.get(f)

EQUALS, INCLUDED, INCLUDES, NONE

f
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Straightforward, but because of the state explosion problem 

sequential tools may become very slow or even crash.
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Map-Reduce

• Map-Reduce job =


• Map function (inputs -> key-value pairs) +


• Reduce function (key and list of values -> outputs)


• Map and Reduce tasks apply Map and Reduce function to many inputs in 

parallel.

9Map tasks Reduce tasks

input output

shuffle

Hash(key) mod r
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Map-Reduce TB nets analysis tool

• Map step = 


• given an unexplored state, it applies the createSuccessors function. Incoming 

transitions are stored into destination states by a list of identifiers.


• Shuffle step =


• Gathers together states potentially related: This is done by using as 

intermediate keys the evaluation of the getFeatures function.


• Reduce step = 


• given a set of states potentially related, it applies the identifyRelationship 
function foreach pair of states.


• Building blocks =


• State = <M,C> pair. M marking, C constraint.


• identifyRelationship computes the actual relationship between two states according to the following 

rule: a ⊆ a’ ⟺ "(M) = "(M’) ⋀ C ⇒ C’


• getFeatures returns just the topological part of M ≣ "(M).
10
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Hybrid Iterative Map-Reduce
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• A single Map-Reduce job is not 

enough: Iterative Map-Reduce


• During the first and last iterations of 

the algorithm the set of states is 

quite small. Thus a MapReduce job 

over a large cluster of machines is 

useless and expensive in term of 

time and resources.


• The computation starts with a 

sequential algorithm and goes on 

until the state space size passes a 

configurable threshold. After that 

we distribute the computation over 

a big cluster.

runMapReduce( )

while ( | N | > 0) {

if ( | N | > threshold )

else

runLocalBuilder( )

sequential builder

} // end while

iteration output

Iterations

Map( )

Reduce( )
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Gas Burner example:


!

!

!

• The execution with 8 machines is almost 80% faster than the sequential 

algorithm

#machines machine type #abstract states threshold time (m)

1 m2.2xlarge 1.456x10 200 175

4 m2.2xlarge 1.456x10 200 95

8 m2.2xlarge 1.456x10 200 39
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MaRDiGraS
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MaRDiGraS

Pacchetto

<<Java Class>>

ConcreteModel
<<Java Class>>

ConcreteState
<<Java Class>>

ConcreteEdge

MapReduce-based���������	
��������������������  Distributed���������	
��������������������  building���������	
��������������������  of���������	
��������������������  reachability���������	
��������������������  GraphS
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Use Cases

• P/T nets


• State = <M> marking, associates places with natural numbers.


• s = s’ ⟺ M = M’ thus we can use the optimized Reduce phase.


• In order to prove the effectiveness of using MaRDiGraS to improve legacy 

tools, we adapted an existing P/T nets tool: PIPE.


• To adapt the sequential algorithm of PIPE into a distributed one, we just 

needed 290 lines of code: a very small number also if compared with the 

dimension of the effectively used PIPE modules (∼6500 lines of code).

13
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Shared Memory example: 

!

!

!

!

!

!

!

!

!

• 1.831×106 reachable states


• The PIPE tool takes more than 20 hours to 

complete the computation.


• The adapted version takes 74 min 

to complete the same computation, using 16 

machines.  

Simple Load Balancing example: 

!

!

!

!

!

!

!

!

!

!

• 4.060×108 states 

3.051 × 109 transitions  

120GB of data


• execution time = 530 min. using 

20 machines.
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CTL model checking in the cloud

• We developed a software tool which exploits the MaRDiGraS computed 

graphs by applying iterative map-reduce algorithms based on fixpoint 

characterizations of the basic temporal operators of CTL (Computational Tree 

Logic).


• Given a state transition system T=<S,s0,R,L>, and a set of states that satisfy 

the φ formula ( [φ]T )


• [EXφ]T = R−([φ]T)


• [EGφ]T = #X([φ]T  ∩  R−(X))


• [E[φUψ]] T = μX([ψ]T ∪ ([φ]T ∩ R−(X))) 

14
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Computation Tree Logic

• CTL is a branching-time logic which models time as a tree-like structure where each 

moment can be followed by several different possible futures. In CTL each basic 

temporal operator (i.e., either X, F, G) must be immediately preceded by a path 

quantifier (i.e., either A or E). In particular, CTL formulas are inductively defined as 

follows 

15

• The interpretation of a CTL formula is defined over a Kripke structure (i.e, a state 

transition system).  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Computation Tree Logic
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• It can be shown that any CTL formula can be written in terms of ¬, ∨, EX, EG, and EU

least���������	
��������������������  fixed���������	
��������������������  point

greatest���������	
��������������������  fixed���������	
��������������������  point

monotonic���������	
��������������������  predicate���������	
��������������������  transformer



MapReduce EX evaluation
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MapReduce EG evaluation

18



MapReduce EU evaluation
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CTL experiments

• Models:


• Shared memory  

(~106 states, ~107 transitions)


• Dekker  

(~107 states, ~108 transitions)


• Simple load balancing  

(~108 states, ~109 transitions)
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CTL experiments
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Conclusion

• MaRDiGraS + CTL verification in the cloud allow users to implement distributed 

reachability graph builders and verification tools for different formalisms without care 

about all non functional aspects.


• They apply techniques typically used by the big data community and so far 

poorly explored for this kind of issues.


• We believe that this work could be a first step towards a synergy between two very 

different, but related communities: the formal verification community and the big 

data community.


• Open Questions


• How it can be optimized when the remaining set gets very small?


• How to choose the optimal threshold dynamically?


• Are there classes of formalisms for which this approach cannot be used? And 

how can we adapt it to these classes?


• ... ?

22
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Planned Work

• Development of a technique for tackling topologically infinite  TB net models


• computation of minimal coverability sets (so far unexplored)


• this provides a means to decide several important properties also for real time 

systems:


• coverability: is it possible to reach a marking dominating a given marking?


• boundedness: is the set of reachability markings finite?


• place boundedness: is it possible to bound the number of tokens in a given 

place?


• semi-liveness: is there a reachable marking in which a given transition is 

enabled?

23
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