
Formal Verification Problems in a Bigdata World:
Towards a Mighty Synergy

Matteo Camilli

matteo.camilli@unimi.it

http://camilli.di.unimi.it

1

Dept. of Computer Science

ICSE 2014

Hyderabad, India

June 3, 2014

mailto:matteo.camilli@unimi.it
http://camilli.dico.unimi.it

Matteo Camilli

Outline

• Introduction, Motivations, Objectives

• Background

• Some details on:

• MapReduce

• Techniques, Frameworks and Tools

• Experiments

• Conclusion

• Planned work

2

Matteo Camilli

Introduction

3

Formal

Verification

• background on formal methods

• Modeling

• Interpreting

Big Data

• deploy techniques into software

tools able to analyze large

amount of data very reliably and

efficiently

• adapting an application for

exploiting the scalability

provided by cloud computing

facilities.

Matteo Camilli

Introduction

3

Formal

Verification

• background on formal methods

• Modeling

• Interpreting

Big Data

• deploy techniques into software

tools able to analyze large

amount of data very reliably and

efficiently

• adapting an application for

exploiting the scalability

provided by cloud computing

facilities.

Techniques

Frameworks

Tools

Matteo Camilli

Background

• The behavior of a discrete-event dynamic system is formally given in terms

of a labeled state transition system: (S, !,→)

• ! is a set of labels

• →⊆ S⨉!⨉S s.t. (s,λ,s’) ∈ → iff s’ reachable from s (written as s→s’)

4

λ

S
0

...

...

...

initial���������	
�������������������� state

Matteo Camilli

Background

5

• In general S may be infinite, or even uncountable. Some abstraction

techniques are required in order to be able to enumerate the whole state

space.

• Abstract State Space: (A, L,⇒)

• Where A is a coverage of S, and ⇒⊆A⨉L⨉A s.t. exists a morphism f which

maps ! labels into L labels.

S
0

...
...

...

a
0

...

...

Matteo Camilli

Background

6

• The relation ⇒ satisfies the condition EE:

(1) if a⇒a’ , then ∃s∈a, s’∈a’ : s→s’ with λ ∈ f-1(l)

(2) if s→s’, then ∀a∈A s.t. s∈a, ∃a’∈A s.t. s’∈a’ ⋀ a⇒a’

λl

λ f(λ)

Matteo Camilli

Time Basic nets - Reachability analysis

7

• Three key points of the Time Reachability Graph building

algorithm allow in many cases the termination.

• Identification of inclusions between classes of states

• Erasure of absolute times

• Identification of anonymous timestamps

Bellettini, C.; Capra, L.; , "Reachability Analysis of Time Basic Petri Nets: A Time Coverage

Approach," Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th

International Symposium on , vol., no., pp.110-117, 26-29 Sept. 2011 doi: 10.1109/SYNASC.2011.16

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

[P1+1, P1+2]

0.2

0.6

W/S

P1

P2

T1

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

Matteo Camilli

Time Basic nets - Reachability analysis

7

• Three key points of the Time Reachability Graph building

algorithm allow in many cases the termination.

• Identification of inclusions between classes of states

• Erasure of absolute times

• Identification of anonymous timestamps

Bellettini, C.; Capra, L.; , "Reachability Analysis of Time Basic Petri Nets: A Time Coverage

Approach," Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2011 13th

International Symposium on , vol., no., pp.110-117, 26-29 Sept. 2011 doi: 10.1109/SYNASC.2011.16

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

[P1+1, P1+2]

0.2

0.6

W/S

P1

P2

T1

Execution of the Gas Burner example:

Total built abstract states: 22.978

Final abstract state space: 14.563

!

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169509&isnumber=6169489

Matteo Camilli

Sequential algorithm

8

Model m

Remaining

S0
m.buildRoot()

Si

Sk ...

Si.createSuccessors(m)

f���������	
�������������������� =���������	
�������������������� Sk.getFeatures()

Sj
Sk

*A

*E

... ...State space

Sk.identifyRelationship(Sj)
for���������	
�������������������� Sj���������	
�������������������� in���������	
�������������������� stateSpace.get(f)

EQUALS, INCLUDED, INCLUDES, NONE

f

Matteo Camilli

Sequential algorithm

8

Model m

Remaining

S0
m.buildRoot()

Si

Sk ...

Si.createSuccessors(m)

f���������	
�������������������� =���������	
�������������������� Sk.getFeatures()

Sj
Sk

*A

*E

... ...State space

Sk.identifyRelationship(Sj)
for���������	
�������������������� Sj���������	
�������������������� in���������	
�������������������� stateSpace.get(f)

EQUALS, INCLUDED, INCLUDES, NONE

f

Straightforward, but because of the state explosion problem

sequential tools may become very slow or even crash.

Matteo Camilli

Map-Reduce

• Map-Reduce job =

• Map function (inputs -> key-value pairs) +

• Reduce function (key and list of values -> outputs)

• Map and Reduce tasks apply Map and Reduce function to many inputs in

parallel.

9Map tasks Reduce tasks

input output

shuffle

Hash(key) mod r

Matteo Camilli

Map-Reduce TB nets analysis tool

• Map step =

• given an unexplored state, it applies the createSuccessors function. Incoming

transitions are stored into destination states by a list of identifiers.

• Shuffle step =

• Gathers together states potentially related: This is done by using as

intermediate keys the evaluation of the getFeatures function.

• Reduce step =

• given a set of states potentially related, it applies the identifyRelationship
function foreach pair of states.

• Building blocks =

• State = <M,C> pair. M marking, C constraint.

• identifyRelationship computes the actual relationship between two states according to the following

rule: a ⊆ a’ ⟺ "(M) = "(M’) ⋀ C ⇒ C’

• getFeatures returns just the topological part of M ≣ "(M).
10

Matteo Camilli

Hybrid Iterative Map-Reduce

11

• A single Map-Reduce job is not

enough: Iterative Map-Reduce

• During the first and last iterations of

the algorithm the set of states is

quite small. Thus a MapReduce job

over a large cluster of machines is

useless and expensive in term of

time and resources.

• The computation starts with a

sequential algorithm and goes on

until the state space size passes a

configurable threshold. After that

we distribute the computation over

a big cluster.

runMapReduce()

while (| N | > 0) {

if (| N | > threshold)

else

runLocalBuilder()

sequential builder

} // end while

iteration output

Iterations

Map()

Reduce()

Matteo Camilli

Hybrid Iterative Map-Reduce

11

• A single Map-Reduce job is not

enough: Iterative Map-Reduce

• During the first and last iterations of

the algorithm the set of states is

quite small. Thus a MapReduce job

over a large cluster of machines is

useless and expensive in term of

time and resources.

• The computation starts with a

sequential algorithm and goes on

until the state space size passes a

configurable threshold. After that

we distribute the computation over

a big cluster.

runMapReduce()

while (| N | > 0) {

if (| N | > threshold)

else

runLocalBuilder()

sequential builder

} // end while

iteration output

Iterations

Map()

Reduce()
Gas Burner example:

!

!

!

• The execution with 8 machines is almost 80% faster than the sequential

algorithm

#machines machine type #abstract states threshold time (m)

1 m2.2xlarge 1.456x10 200 175

4 m2.2xlarge 1.456x10 200 95

8 m2.2xlarge 1.456x10 200 39

Matteo Camilli

MaRDiGraS

12

MaRDiGraS

Pacchetto

<<Java Class>>

ConcreteModel
<<Java Class>>

ConcreteState
<<Java Class>>

ConcreteEdge

MapReduce-based���������	
�������������������� Distributed���������	
�������������������� building���������	
�������������������� of���������	
�������������������� reachability���������	
�������������������� GraphS

Matteo Camilli

Use Cases

• P/T nets

• State = <M> marking, associates places with natural numbers.

• s = s’ ⟺ M = M’ thus we can use the optimized Reduce phase.

• In order to prove the effectiveness of using MaRDiGraS to improve legacy

tools, we adapted an existing P/T nets tool: PIPE.

• To adapt the sequential algorithm of PIPE into a distributed one, we just

needed 290 lines of code: a very small number also if compared with the

dimension of the effectively used PIPE modules (∼6500 lines of code).

13

Matteo Camilli

Use Cases

• P/T nets

• State = <M> marking, associates places with natural numbers.

• s = s’ ⟺ M = M’ thus we can use the optimized Reduce phase.

• In order to prove the effectiveness of using MaRDiGraS to improve legacy

tools, we adapted an existing P/T nets tool: PIPE.

• To adapt the sequential algorithm of PIPE into a distributed one, we just

needed 290 lines of code: a very small number also if compared with the

dimension of the effectively used PIPE modules (∼6500 lines of code).

13

Shared Memory example:

!

!

!

!

!

!

!

!

!

• 1.831×106 reachable states

• The PIPE tool takes more than 20 hours to

complete the computation.

• The adapted version takes 74 min 

to complete the same computation, using 16

machines.  

Simple Load Balancing example:

!

!

!

!

!

!

!

!

!

!

• 4.060×108 states 

3.051 × 109 transitions  

120GB of data

• execution time = 530 min. using

20 machines.

Matteo Camilli

CTL model checking in the cloud

• We developed a software tool which exploits the MaRDiGraS computed

graphs by applying iterative map-reduce algorithms based on fixpoint

characterizations of the basic temporal operators of CTL (Computational Tree

Logic).

• Given a state transition system T=<S,s0,R,L>, and a set of states that satisfy

the φ formula ([φ]T)

• [EXφ]T = R−([φ]T)

• [EGφ]T = #X([φ]T ∩ R−(X))

• [E[φUψ]] T = μX([ψ]T ∪ ([φ]T ∩ R−(X))) 

14

Matteo Camilli

Computation Tree Logic

• CTL is a branching-time logic which models time as a tree-like structure where each

moment can be followed by several different possible futures. In CTL each basic

temporal operator (i.e., either X, F, G) must be immediately preceded by a path

quantifier (i.e., either A or E). In particular, CTL formulas are inductively defined as

follows 

15

• The interpretation of a CTL formula is defined over a Kripke structure (i.e, a state

transition system).  

Matteo Camilli

Computation Tree Logic

16

• It can be shown that any CTL formula can be written in terms of ¬, ∨, EX, EG, and EU

least���������	
�������������������� fixed���������	
�������������������� point

greatest���������	
�������������������� fixed���������	
�������������������� point

monotonic���������	
�������������������� predicate���������	
�������������������� transformer

MapReduce EX evaluation

17

MapReduce EG evaluation

18

MapReduce EU evaluation

19

Matteo Camilli

20

CTL experiments

• Models:

• Shared memory  

(~106 states, ~107 transitions)

• Dekker  

(~107 states, ~108 transitions)

• Simple load balancing  

(~108 states, ~109 transitions)

Matteo Camilli

21

CTL experiments

Matteo Camilli

Conclusion

• MaRDiGraS + CTL verification in the cloud allow users to implement distributed

reachability graph builders and verification tools for different formalisms without care

about all non functional aspects.

• They apply techniques typically used by the big data community and so far

poorly explored for this kind of issues.

• We believe that this work could be a first step towards a synergy between two very

different, but related communities: the formal verification community and the big

data community.

• Open Questions

• How it can be optimized when the remaining set gets very small?

• How to choose the optimal threshold dynamically?

• Are there classes of formalisms for which this approach cannot be used? And

how can we adapt it to these classes?

• ... ?

22

Matteo Camilli

Planned Work

• Development of a technique for tackling topologically infinite TB net models

• computation of minimal coverability sets (so far unexplored)

• this provides a means to decide several important properties also for real time

systems:

• coverability: is it possible to reach a marking dominating a given marking?

• boundedness: is the set of reachability markings finite?

• place boundedness: is it possible to bound the number of tokens in a given

place?

• semi-liveness: is there a reachable marking in which a given transition is

enabled?

23

Matteo Camilli

References

• Matteo Camilli. 2012. Petri nets state space analysis in the cloud.  

In Proceedings of the 2012 International Conference on Software Engineering (ICSE 2012). IEEE

Press, Piscataway, NJ, USA, 1638-1640.

• Carlo Bellettini, Matteo Camilli, Lorenzo Capra, and Mattia Monga. 2012. Symbolic State Space

Exploration of RT Systems in the Cloud. In Proceedings of the 2012 14th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC '12). IEEE

Computer Society, Washington, DC, USA, 295-302. DOI=10.1109/SYNASC.2012.18 http://

dx.doi.org/10.1109/SYNASC.2012.18

• C. Bellettini, M. Camilli, L. Capra, and M. Monga. Mardigras: Simplified building of reachability

graphs on large clusters. In P. Abdulla and I. Potapov, editors, Reachability Problems, volume

8169 of LNCS, pages 83–95. Springer Berlin Heidelberg, 2013.

• Matteo Camilli. 2014. Formal verification problems in a big data world: towards a mighty synergy.

In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE

Companion 2014). ACM, New York, NY, USA, 638-641. DOI=10.1145/2591062.2591088 http://

doi.acm.org/10.1145/2591062.2591088

24

http://dx.doi.org/10.1109/SYNASC.2012.18
http://doi.acm.org/10.1145/2591062.2591088

