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Abstract
This paper reflects on experiences designing, developing, and working with users of a variety of
interactive computer systems. The authors propose, based on these experiences, that the cause of
a number of unexpected difficulties in human-computer interaction lies in users’ unwillingness or
inability to make structure, content, or procedures explicit. Besides recounting experiences with
system use, this paper discusses why users reject or circumvent formalisms which require such
explicit expression, and suggests how system designers can anticipate and compensate for
problems users have in making implicit aspects of their tasks explicit. The authors propose
computational approaches that address this problem, including incremental and system-assisted
formalization mechanisms and methods for recognizing and using undeclared structure; they also
propose non-computational solutions that involve designers and users reaching a shared
understanding of the task situation and the methods that motivate the formalisms. This paper
poses that, while it is impossible to remove all formalisms from computing systems, system
designers need to match the level of formal expression entailed with the goals and situation of the
users -- a design criteria not commonly mentioned in current interface design.
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1. Introduction
Systems that support collaborative work provide informational and social structures through
which communication and coordination occur. The creation of these structures -- especially the
tendency to require explicit statements of these structures -- has been an issue for groupware
ranging from tools like group calendars (Grudin, 1988) and workflow systems (Ellis, Gibbs, Rein,
1991) to systems addressing general practices of categorization and social coordination
(Suchman, 1994; Winograd, 1994; Bannon, 1995). Indeed, Schmidt and Bannon describe the
ability to articulate information used in collaborative work and information about the work itself,
as central to the success of CSCW systems (Schmidt, Bannon, 1992). By reflecting on
experiences with a variety of systems, we argue that the use of formal representations hinders this
articulation thus causing many of the difficulties encountered by CSCW systems.

When people use computer systems, their interaction is usually mediated by abstract
representations that describe and constrain some aspect of their work or its content. Computer
systems use these abstract representations to support their users’ activities in a variety of ways: by
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structuring a task or users’ work practices, by providing users with computational services such as
information management and retrieval, or by simply making it possible for the system to process
users’ data. These abstractions are frequently referred to as formalisms.

When formalisms are embedded in computer systems, users often must engage in activities that
might not ordinarily be part of their tasks: breaking information into chunks, characterizing
content with a name or keywords, categorizing information, or specifying how pieces of
information are related. For example, in the World Wide Web, these activities might correspond
to creating pages, giving them titles or other metadata, putting the pages into a hierarchical
directory structure, and adding navigational links between the pages.

The abstract representations that computer systems impose on users may involve varying degrees
and types of formalization beyond those that users are accustomed to. In some instances, little
additional formalization is necessary to use a computer-based tool; text editors, such as vi or
emacs, do not require additional formalization much beyond that demanded by other mechanisms
for aiding in the production of linear text. Correspondingly, the computer can perform little
additional processing without applying sophisticated content analysis techniques. In other cases,
more formalization brings more computational power to bear on the task; idea processors and
hypermedia writing tools demand more specification of structure, but they also provide
functionality that allows users to reorganize text or present it on-line as a non-linear work. These
systems and their embedded representations are referred to as semi-formal since they require
some -- but not complete -- encoding of information into a schematic form. At the formal end of
the spectrum, knowledge-based systems require people to encode materials in a representation
that can be fully interpreted by a computer program.

In this paper, we describe how creators of systems that support intellectual work like design,
writing, or organizing and interpreting information are particularly at risk of expecting too great a
level of formality from their users. To understand the effects of imposing or requiring formality,
we draw on our own experiences designing and using such systems.

First, we draw lessons from some of our experiences with these types of systems as well as
corroborative reports by others. We discuss possible reasons why users reject formalisms,
including issues associated with cognitive overhead, tacit knowledge, premature structure, and
situational structure. We then propose system design approaches that address the problems
associated with formalisms. In particular, we focus our proposals on mechanisms that are based
on incremental system-assisted formalization and restructuring as people reconceptualize their
tasks; we also consider ways designers can work with users to evaluate appropriate formalisms
for the task at hand.

2. Experiences with a Variety of Formalisms
To understand how formalization influences system use and acceptance, this paper examines four
different kinds of systems that support intellectual work: general purpose hypermedia systems,
systems for capturing argumentation and design rationale, knowledge-based systems, and
groupware. Some of these systems, such as those designed to capture design rationale, are based
on specific formalisms that reflect a prescriptive method or approach to the work; others, such as
hypermedia systems, require that an arbitrary formal structure be developed given more abstract,
less prescriptive, building blocks. Each type of system addresses a very different aspect of a
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user’s work, but all advance our analysis of the underlying problems developers encounter when
they field systems to support intellectual work.

What do systems supporting intellectual work require their users to formalize? First, many
hypermedia models, including the World Wide Web, are designed to allow authors to make
structure explicit. They provide facilities for authors to divide text or other media into chunks
(usually referred to as nodes or pages), and define the ways in which these chunks are
interconnected (as links). This formalism is intended as either an aid for navigation, or as a
mechanism for expressing how information is organized without placing any formal requirements
on content.

Systems that support argumentation and the capture of design rationale go a step further than
general-purpose hypertext systems: they usually require the categorization of content within a
prescriptive framework (for example, in Rittel’s Issue-Based Information Systems (IBIS) (Kunz,
Rittel, 1970) and subsequent derivatives, users must specify whether a given chunk is an issue, a
position, or an argument) and the corresponding formalization of how these pieces of content are
organized (for example, which argument supports which position). This prescriptive framework is
seen as providing a facilitative methodology for the task.

Knowledge-based systems are built with the expectation of processing content (Waterman, 1986).
Thus, to add or change knowledge that the system processes, users are required to encode domain
structure and content in a knowledge representation language. This level of formalization enables
the system to apply knowledge-based reasoning techniques to support users by performing tasks
such as automated diagnosis, configuration, or planning.

Groupware systems supporting coordination are an interesting counterpoint to knowledge-based
systems: they may not require users to formalize the structure of their information or its content,
but rather their own interactions. This type of formalization allows the system to help coordinate
activities between users, such as scheduling meetings or distributing documents along a work-
flow (Ellis, Gibbs, Rein, 1991).

Through analysis of this range of information systems, we describe how formalisms structure the
activity in unexpected or unintended ways, are understood differently by different people, may be
an unfamiliar addition to a formerly familiar task, may cause people to lose information that falls
outside the prescribed structure, and in general require people to make knowledge explicit that
may be difficult or undesirable to articulate. Our discussions delve into these lessons, and
illustrate them with specific experiences.

2.1. General Purpose Hypermedia
Hypermedia systems, including the World Wide Web, provide a semi-formal representation
where chunks of text or other media, called nodes, can be connected via navigational links. An
important goal of these links is to accommodate individual reading patterns by supporting non-
linear traversal of the document. Authors must formalize structure during the creation of such
hyperdocuments.

Learning how to write, and to a lesser extent learning how to read, in a hypermedia system takes
time. Observing writers become accustomed to page-based hypertext (WWW, NoteCards, KMS,
and VNS), it became apparent that people do not easily accept new authoring modes. In these
page-based hypermedia systems, authors record information on electronic pages which can be
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linked together with navigational links. Frequently, novice authors begin by following practices
from prior authoring tools, such as outlining tools or word processors). Thus, hypertexts end up as
hierarchical outlines with full pages of text connected by a single link to the next page of text. By
defaulting to the authoring practices of familiar systems, users avoid the decision of what
information belongs together in a node or what links should be created. Information that fit on a
page became a chunk with a link to the next page. Thus the new medium, with its unfamiliar
formalism, combined with existing practice to yield unexpected results.

NoteCards (Halasz, Moran, Trigg, 1987) is a hypermedia environment that uses an index card
metaphor. Authoring in NoteCards involves deciding how much content to put in each card,
naming individual cards, and filing cards into electronic fileboxes; the system supports and
enforces this working style. Not surprisingly, many NoteCards users reported problems creating
non-linear structures in the unfamiliar medium. Experiences training information analysts to use
NoteCards revealed that they had difficulties chunking information into cards (“How big is an
idea? Can I put more than one paragraph on a card?”), naming cards (“What do I call this? Do I
have to name this card before I can get it off the screen?”), and filing cards (“Where do I put
this?”). Typed links -- the strongest formalization mechanism the system provided -- were rarely
used, and when they were, they were seldom used consistently. Both link direction and link
semantics proved to be problematic. For example, links nominalized as “explanations” sometimes
connected explanatory text with the cards being explained; other times, the direction was
reversed. Furthermore, the addition of “example” links confounded the semantics of earlier
explanation links; an example could easily be thought of as an explanation.

Monty documents similar problems in her observations of a single analyst structuring information
in NoteCards in (Monty, 1990). She describes her observations of a subject taking notes in
preparation for writing a paper:

The processes of creating a note, titling it, filing it in a FileBox, and creating a link ... were
sometimes difficult for the subject. Many times he struggled to create a title for his note; he
often claimed that the most difficult aspect of this task was thinking of good titles (Monty,
1990, p. 71).

She confirms our own observations of information analysts and their use of links, “In his earlier
notetaking using NoteCards, he [the subject] was more likely to link notes together. As time went
on though he built fewer special purpose links between cards and relied on Source links and filing
in FileBoxes [the primary system-supported link types].” Of course, training and supervision
helped users learning the general techniques for hypermedia authoring, but they tended to avoid
(or lose interest in) the more sophisticated formalisms.

Unlike NoteCards, which only supported the expression of binary relationships between chunks
of information, Aquanet (Marshall et al., 1991) used a substantially more general (and more
complex) model of hypertext that involved a user-defined frame-like knowledge representation
scheme with a graphical presentation component. Aquanet users would first select a schema, a
description of the node and relation (link) types to be used in a particular information space, and
then begin creating instances of these types on a two-dimensional plane. Node types generally
had distinctive visual properties; relations could have visible manifestations and impose layout
constraints on the nodes they connected.
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Experiences with use showed that instead of building large interconnected networks of nodes
(like the designers expected), users created linkless spaces of nodes arranged in regular graphical
patterns that indicated relationships among nodes spatially and visually (although the structures
were well within the range of Aquanet’s more formal object/relation model) (Marshall, Rogers,
1992). In fact, Aquanet’s greatest strength ended up being its ability to express interpretations in
terms of visual appearance and spatial positioning; users chose informal modes of expression that
circumvented the more powerful knowledge representation mechanism.

Experiences with internal use of early prototypes of the Virtual Notebook System (VNS)
(Shipman, Chaney, Gorry, 1989), another page-based hypermedia system, point out the potential
for work practices to emerge which reduce the difficulties of chunking and linking information.
Groups agreed upon high-level organizational conventions so they could locate and understand
information in each other’s notebooks. These high-level conventions did not inhibit individual
variations in the amount of information on a page and the number of links created. 

Later usage of the VNS outside of the development community showed how user communities
adapted to the new technology (Brunet, Morrissey, Gorry, 1991). Over time, users built up
structured templates similar to form-based interfaces, thus reducing the overhead involved in
adding structure to the information they were entering. In this case, the new medium placed
additional requirements on the task; the use of formalisms had to be negotiated within the
workgroup. Users, rather than developers, designed their own formalisms to match their task.

2.2. Argumentation and Design Rationale
There have been many different proposals for embedding specific representations in systems to
capture argumentation and design rationale (HCI Journal, 1991). Some of them use variations on
Toulmin’s micro-argument structure (Toulmin, 1958) or Rittel’s issue-based information system
(IBIS) (Kunz, Rittel, 1970); others invent new schemes like Lee’s design representation language
(Lee, 1990) or MacLean and colleagues’ Question-Option- Criteria (MacLean et al., 1991).

The goals of formal argumentation or design rationale include lower maintenance costs on
products, and better designs due to the earlier discovery of inconsistencies and
miscommunications. Reported experiences with mechanisms to capture design rationale -- from
McCall et al’s use of PHI (McCall, Schaab, Schuler, 1983) to Conklin and Burgess Yakemovic’s
use of itIBIS (Conklin, Burgess Yakemovic, 1991) -- can be interpreted as limited successes. The
methods resulted in long-term cost reductions, but success relied on social pressure, extensive
training, or continuing human facilitation. In fact, Conklin and Burgess Yakemovic reported that
they had little success in persuading other groups to use itIBIS outside of Burgess Yakemovic’s
development team, and that meeting minutes had to be converted to a more conventional prose
form to engage any of these outside groups.

Like general-purpose hypermedia systems, argumentation and design rationale systems prescribe
that their users chunk and categorize information according to its methodological role, such as
issue, position, or argument. Users of these methods must then specify connections between
chunks, such as answers, supports, or contradicts links. Both authors have, independently, worked
with argumentation schemes and have noticed several problems users have in effectively
formalizing their design rationale or argumentation in this type of system; these problems can be
predicted from the prior experiences with hypermedia.
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First, people aren’t always able to chunk intertwined ideas; we have observed, for example,
positions with arguments embedded in them. Second, people seldom agree on how information
can be classified and related in this general scheme; what one person thinks is an argument may
be an issue to someone else. Both authors have engaged in extended arguments with their
collaborators on how pieces of design rationale or arguments were interrelated, and about the
general heuristics for encoding statements in the world as pieces of one of these representation
schemes (see (Newman, Marshall, 1992) for a short discussion of collaborative experiences using
Toulmin structures). Finally, there is always information that falls between the cracks, no matter
how well thought out the formal representation is. Conklin and Begeman document the latter
problem in their experiences with gIBIS (Conklin, Begeman, 1988).

2.3. Knowledge-Based Systems
Knowledge-based systems have long endorsed the goal of having users add or correct knowledge
in the system. End-user knowledge acquisition imposes a number of formalization requirements
on users. Users must learn the system’s knowledge representation, even if it is hidden by a good
interface, or else they will not fully understand the effects of their changes.

One approach to enabling end-user knowledge acquisition is to have knowledge engineers create
domain-oriented knowledge acquisition tools. Domain-oriented tools are designed to allow users
to specify information in familiar abstractions. Because creating such domain-oriented tools is
time-consuming, domain-independent meta-level tools, such as PROTEGE (Musen, 1989) and
DOTS (Eriksson, 1991), have been developed to support the creation of the domain-oriented
knowledge acquisition tools. Even after such domain-oriented support is available, users are left
to work through the interdependencies of rules and to decide how to abstract from specific
instances to more useful general information.

A second approach to supporting end-user knowledge acquisition is demonstrated by the end-user
modifiability (EUM) tools developed to support designers in modifying and creating formal
domain knowledge. Tools such as task agendas, critics, explanations, and examples allowed end-
users to more effectively modify a knowledge-base without the intervention of a knowledge
engineer (Girgensohn, 1992). In a description of user studies on EUM tools, Girgensohn notes
that most of the problems found in the last round of testing “were related to system concepts such
as classes or rules.” In short, these user studies revealed that, although the EUM tools made the
input of knowledge significantly easier, users still had problems manipulating the formalisms
imposed by the underlying system.

Peper and colleagues developed a third approach to the problem of creating expert systems that
users can modify (Peper et al., 1989). They eliminated the inference engine, leaving a hypermedia
interface in which users were asked questions and based on their answers, were directed to a new
point in the document. For example, a user might see a page asking the question, “Did the
warning light come on?” with two answers, “Yes” and “No”. Each answer is a link to further
questions or information based upon the answer of the previous question. With this system, users
could add new questions or edit old questions in English since the computer was not processing
the information. By reducing the need for formalized knowledge, they produced a modifiable
system, although they sacrificed inferencing.
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2.4. Groupware Systems
Groupware systems that require the formalization of procedure and interaction have suffered
many of the same problems as systems that enforce formalization of structure and content. For
example, systems that extend electronic mail by attaching properties or types to messages require
their users to classify exactly what type of message they are sending or what type of reply is
acceptable. Experiences with systems like the Coordinator (Winograd, Flores, 1986) and
Information Lens (Malone et al., 1986) point out that many users ignore the formal aspects of
such systems, and generally use them as basic electronic mail systems (Bullen, Bennett, 1990).

Coordination oriented systems have the additional burden of formalizing social practices which
are largely left implicit in normal human-human interactions. Automatic scheduling systems, for
example, have met with limited acceptance (Grudin, 1988); users have proven to be unwilling to
describe how they decide whether and when to schedule meetings with other people. Scheduling
rules that apply to one’s manager do not apply to a stranger; making such differences explicit is
not only difficult, but also socially undesirable.

Experiences with workflow systems, systems which automatically route documents and work
through defined procedures, show that systems without the ability to handle exceptions to the
formalized procedure cannot support the large number of cases when exceptional procedures are
required (Ellis, Gibbs, Rein, 1991). Arguably, almost all office procedures turn out to be
exceptions to the prescribed form (Suchman, 1987). Increasing the flexibility in representing
group processes has been the goal behind much of the recent research in workflow systems
(Glance, Pagani, Pareschi, 1996; Dourish et al. 1996).

Furthermore, choosing which procedures to encode can be difficult. Do the procedures written in
the corporate manual get encoded, or those that are actually followed? How are the actual
procedures obtained? Does the encoding of the actual procedures give them legitimacy that will
be resisted by those who define or follow the corporate procedures? Formalization of such
information can quickly lead to a political battle whose first casualty is the workflow system. In
this light it is not surprising that the current enthusiasm with work-flow systems centers around
business-process reorganization (BPR) -- the replacement of existing and practiced procedures of
operation.

3. Difficulties Arising from Formal Interactions
The broad range of examples discussed in the previous section highlights the ubiquity of the
problems associated with enforced formalization. This section explains some of the problems that
frequently cause users to avoid formalization.

First, we will discuss the additional effort, or overhead, required of users when they work with
formal representations. Second, we describe how systems can end up expecting users to express
knowledge which is normally tacit. A third concern stems from users’ reluctance to commit to a
structure for evolving or not well understood information. Finally, we describe how useful formal
representations vary with the users’ situation and may be difficult to negotiate when multiple
users are sharing the formal information.

3.1. Cognitive Overhead
There are many cognitive costs associated with adding formalized information to a computer
system. Foremost, users must learn a system’s formal language. Practitioners in some domains
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use formal languages to describe precisely certain types of information. For example, electricians
and electrical engineers use circuit diagrams to communicate circuit designs. However, people
seldom use more generic formal languages, such as production rules or frames, for non-
computational tasks. While knowledge-based support mechanisms and interfaces can improve a
user’s ability to use formal languages successfully, Girgensohn’s experience (previously
mentioned) shows that system concepts related to underlying representations still pose major
obstacles for their use (Girgensohn, 1992).

Even if they know a system’s formal language, users face a mismatch between their
understanding of the information and the system’s formal representation; they face a conceptual
gap between their own goals and the system’s interface. Norman describes the process of bridging
this gap or “gulf of execution”:

The gap from goals to physical system is bridged in four segments: intention formation,
specifying the action sequence, executing the action, and, finally, making contact with the
input mechanisms of the interface (Norman, 1986, p. 39).

As this quote implies, formalisms are often difficult for people to use because they need to take
many extra steps (and make additional decisions) to specify anything. These extra decisions may
involve chunking, naming, linking, and labeling, where formal languages require much more
explicitly defined boundaries, names for subparts, connections between chunks, and labels for
such connections than their informal counterparts. The following two experiences point to how
such overhead can increase the cost/benefit ratio of use to a point where a system no longer is
viable.

The obstacle created by this conceptual gap between users’ goals and systems’ formal languages
was observed in an early prototype of the Virtual Notebook System’s “interest profile matcher.”
The profile matcher would, in theory, enable users of the system to locate other users with certain
interests and expertise. The vocabulary used in profiles was the Medical Subject Headings
(MeSH), a set of around 20,000 terms divided into about twelve interconnected trees (forming a
directed acyclic graph) which is used by medical journals to index articles. Defining an interest
profile required choosing terms out of the hierarchies of concepts which best described one’s
interests. Queries for locating people also required choosing terms from MeSH terms and
attaching “matching ranges” so that all terms in a given range in the MeSH hierarchies would be
considered a match. The matching ranges were necessary because MeSH was large enough to
experience the vocabulary problem (Furnas et al., 1987) -- people using different terms to
describe the same topic. With the increase in expressiveness in queries came an increase in
difficulty to define queries. Work on the profile matcher was discontinued because the effort
required to define interests and queries of sufficient clarity overcame the usefulness of the service
the system was to provide.

In an experiment in applying Assumption-based Truth Maintenance Systems (ATMS) derived
dependency analysis (described in (de Kleer, 1986)) to networks of Toulmin micro-argument
structures in NoteCards, a similar conclusion was reached: the cognitive cost was not
commensurate with the results, even though dependency analysis had long been a goal of
explicitly representing the reasoning in arguments. Although the hypertext representation of the
informal syllogistic reasoning inherent to Toulmin structures (the data-claim-warrant triple)
captures a dependency relationship, additional formalization is necessary to perform automated
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analysis by an ATMS model. In particular, it is important to identify assumptions and
contradictions. Not only was it difficult to identify contradictions in real data (belief was qualified
rather than absolute) and impossible to track relative truth values over time, but also -- and most
importantly -- by the time contradictions had been identified and relative truth values had been
determined, the user had performed a significant portion of the network evaluation. In this case,
the additional processing done by the ATMS mechanism did not compensate the user for the
initial effort.

3.2. Tacit Knowledge
Tacit knowledge is knowledge users employ without being conscious of its use (Polanyi, 1966).
Tacit knowledge poses a particularly challenging problem for adding formal structure and content
to any system since, by its very nature, people do not explicitly acknowledge tacit knowledge.
The problem of tacit knowledge has resulted in knowledge engineering methods aimed at
exposing expertise not normally conscious in experts, such as one described by Mittal and Dym:

We believe that experts cannot reliably give an account of their expertise: We have to exercise
their expertise on real problems to extract and model their knowledge (Mittal, Dym, 1985, p.
34).

When such introspection becomes necessary to produce and apply a formal representation during
a task it necessarily interrupts the task; the introspection structures and changes it. These changes
may be detrimental to the user’s ability to accomplish what he or she set out to do.

An example of this interference is McCall’s observation that design students have difficulty
producing IBIS-style argumentation even though videotapes of their design sessions show that
their naturally occurring discussions follow an IBIS structure (Fischer et al., 1991). McCall also
describes a simple physiological example of this interference: When a person is asked to breath
normally, their normal breathing will be interrupted. Furthermore, chances are that introspection
about what normal breathing means will cause the person’s breathing to become abnormal --
exaggeratedly shallow, overly deep, irregular.

To develop seemingly natural formalisms, designers may build systems that use representations
based on an analysis of user activities, discourse, or documents; these systems are particularly at
risk from this type of interference. For example, argument representations are often derived from
analyzing naturally occurring argumentative discourse: speech or text is broken into discourse
units; the discourse units are categorized according to their functional roles; then the relationship
between discourse units is described in general terms. But, as we can see from the IBIS example
above, post hoc analysis is very different from generation. When these descriptive models are
given to users, they find it very difficult to formalize knowledge as they are generating or
producing it.

Formal representations can be specialized to match the user’s understanding of their domain and
task. Such careful design can reduce the problems of tacit knowledge, but will still influence the
outcome of the task, as described by Hutchins et al.:

While moving the interface closer to the user’s intentions may make it difficult to realize
some intentions, changing the user’s conception of the domain may prevent some intentions
from arising at all. So while a well designed special purpose language may give the user a
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powerful way of thinking about the domain, it may also restrict the user’s flexibility to think
about the domain in different ways (Hutchins, Hollan, Norman, 1986, p. 108).

Such specialized formal representations are possible for well-defined tasks, but general tasks like
analysis and design evolve over time and vary from person to person. The next two sections
describe basic problems for determining the user’s tasks, and thus the appropriate representations.

3.3. Enforcing Premature Structure
The process of formalizing information requires one to commit to an explicit structure for the
information. One definition of structure is “the elements of an entity or the position of such
elements in their relationships to each other.” Since a user’s understanding of any non-trivial task,
such as performing an analysis or completing a design, evolves as they attempt to complete the
task, users resist making such commitments. The negative effects of prematurely or unnecessarily
imposing a structure have been recorded in both the hypertext (Halasz, 1988) and design rationale
(Shum, 1991) literature.

In his studies of how people organized information in their offices Malone found that office
workers perceived the negative effects of prematurely structuring information (Malone, 1983). In
particular, one of the subjects in Malone’s study said of a pile of papers waiting to be filed:

You don’t want to put it away because that way you’ll never come across it again. ... it’s
almost like leaving them out means I don’t have to characterize them. ... Leaving them out
means that I defer for now having to decide--either having to make use of, decide how to use
them, or decide where to put them (Malone, 1983, p. 107).

This quote points out the perception that information formalized incorrectly or inconsistently will
be more difficult to use or simply be of less use than information not formalized. This problem
can also be seen in the directory structures of UNIX, Mac OS, or DOS users. Many users have
large numbers of disassociated files in the top level directory (or folder) of their machine or
account. Most of these users know how to create subdirectories or folders to organize their files
but postpone classification until they “have more time” or “the mess gets too bad.” For these users
the perceived benefit of organizing their files does not make up for the effort required to organize
the files and the possible cost of mischaracterizing the files.

3.4. Different People, Different Tasks: Situational Structure
The difficulties of creating useful formalizations to support individuals are compounded when
different people must share the formalization. An analogy can be drawn between collaborative
formalization and writing a legal document for multiple parties who have different goals. The best
one can hope for in either case is a result sufficiently vague that it can be interpreted in an
acceptable way to all the participants; ambiguity and imprecision are used in a productive way.
Formalization makes such agreements difficult because it requires the formalized information to
be stated explicitly so that there is little room for different interpretations.

For different people to agree on a formalization they must agree on conventions for chunking,
labeling, and linking of the information, as well as on the encoding of particular instances. As has
been discussed in the context of earlier examples in the use of tools to capture design rationale,
the prospects of negotiating how information is encoded in a fixed representation is at best
difficult.
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Differences occur not just within a group of users but between groups as well. A study of the
communication patterns in biomedical research groups showed that the characteristics of the
research being performed influenced the organization and communication of the research groups
(Gorry et al., 1978). A system which attempts to impose a particular structure on communication
will likely not match any given group’s actual communication structure.

The problem of situational structure does not arise only when multiple people use the same
structure; it can also arise when the user’s task changes. The context of the new task may not
match the existing structuring scheme. In their list of what are commonly considered the most
important properties of a formal system, Winograd and Flores include:

There is a mapping through which the relevant properties of the domain can be represented by
symbol structures. This mapping is systematic in that a community of programmers can agree
as to what a given structure represents (Winograd, Flores, 1986, p. 85).

Our own experience seems to indicate that domains for which this is true may be quite small and
task dependent. A representation that is suitable for one task may not be appropriate for a very
similar related task. For example, a representation developed for the process of assessing foreign
machine translation efforts proved to be of limited value in the closely related task of evaluating
Spanish-English machine translation software (Marshall, Rogers, 1992). The second task shared
source materials with the first task, but the representation did not formalize appropriate aspects of
these materials. Attributes like speed and accuracy as well as cost and computer platform turned
out to be very important in evaluating software, but only of secondary importance in a general
assessment of the field, while in the general assessment of the field, the technical approach of the
various systems was deemed important. In short, different situations require different user support
and thus different formal structures.

4. Approaches to Minimizing Problems of Formalisms
The difficulties of working with formalisms do not have a simple solution. Much like software
engineering, where programmers must formally define programs to a computer, there is no single
“silver bullet.” As Brooks has said of software engineering problems, the interfaces through
which formalisms are developed are often part of the problem, but they only contribute
“accidental complexity” (Brooks, 1987) to the overall task. Fortunately, unlike software
engineering, most of the systems we have discussed do not rely on bug-free formalisms, and thus
are amenable to approaches not possible in software engineering.

Although difficulties introduced by formalization are widespread and users are justified in their
resistance to or rejection of some formalization tasks, there are viable approaches to this system
design dilemma; we describe five of them in this section. (1) Designers need to work with users to
reach a shared understanding of the use situation and the representations that best serve it; (2)
Designers must identify what other services or user benefits the computer can provide based on
trade-offs introduced by additional formalization; (3) Designers should also expect, allow, and
support reconceptualization and incremental formalization in longer tasks; (4) Taking a similar,
computationally-based approach, designers may provide facilities that use automatically
recognized (but undeclared) structures to support common user activities; (5) Finally, while not
part of system design per se, training and facilitation can be used to help users effectively work
with embedded formalisms.
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4.1. Identifying the Essentials for Task
Some information must be formalized for a computer system to perform any task. A word
processor must be told the order of characters, a drawing program must be told the color and
shape of objects being drawn, and a circuit analyzer must be told the logical circuit design.
Interaction based on a limited-domain formalism can become transparent when the user has
become skillful in expressing information in the formalism. Failure to get the user to formalize
information that is essential for the central task means rejection of the system.

But what is the central task for more general-purpose systems to support intellectual work and,
informationally, what does it require? What must be formalized for a system to support the
organization and sharing of information? Does the content just have to be entered into the system,
or for the system to work, does extra information, such as hypertextual structure need to be
specified? To answer these questions, participatory design techniques can be applied to gain an
understanding of the users’ work practices and possible formalisms to support these practices
(Greenbaum, Kyng, 1991).

For example, in Blomberg, Suchman, and Trigg’s account of the Work-Oriented Design project,
one possible focus for deploying technology in a law firm was document retrieval and reuse. By
using non-traditional representations of the attorney’s work (like videotape), ethnographers were
able to communicate with developers that an attorney in their study relied on page appearance
(and not simply on textual content) to identify a desired document in his file cabinet. This in turn
suggested that a tool to support his document retrieval and reuse could not depend on content-
based representations and retrieval techniques, but rather needed to include appearance-based
representations and retrieval methods to be effective for him (Blomberg, Suchman, Trigg, 1994).

Predevelopment ethnographic study can only inform software design to a point. Because the
introduction or replacement of software changes the associated work practices, systems must be
evaluated in real or simulated situations to fully understand these interactions.

4.2. Evaluating Cost/Benefit Trade-offs to Select Features
Another approach to addressing the problems of formality is to make some formalization only
required for using optional features of the system. Many systems provide functionality which is
not necessary for some uses of the system but is available to users who want the added benefits of
providing more information. Paragraph styles might be such information in a word processor. A
user can accept the default paragraph style to write a paper, and override each paragraph’s style
with a preferred font and spacing for the individual document elements. He or she would thus
never explicitly define the document structure, but would see a similar document appearance.
Over time, our hypothetical user might learn to use the feature for defining paragraph style as he
or she needs to reformat the document multiple times. Users can and do learn to use features as
their tasks require or as they re-evaluate the cost of not learning a particular feature.

It follows that some such features may be used infrequently. Spreadsheet programs include many
features which are used only by a small percentage of the user community (Nardi, Miller, 1990).
The rest of the users either get by without using the features or asking for help when they cannot
avoid such use. Because system development time and money is limited, designers need to be
wary to spending too much time incorporating features which only a small segment of their user
community will ever use. In information systems, our experiences indicate that features requiring
greater degrees of formality end up being less frequently used.
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The experience with Aquanet, discussed in Section 2.1, provides an unanticipated example of this
-- users decided that formally representing relationships was optional even through this was not
the use expected by the developers. Aquanet could still be used for the majority of the intended
tasks but was not able to provide certain types of reasoning support which relied on formalized
relationships between information objects.

4.3. Gradual Formalization and Restructuring
Longer tasks necessarily involve reconceptualization; the gradual evolution of human
understanding during task performance underlies many of the problems associated with
formalization. Providing mechanisms for information to be entered in a less formal representation
and then be incrementally formalized and structured is thus a fundamental way system designers
can support intellectual activities with computational tools (Shipman, 1993).

Incremental formalization strategies seek to reduce the overhead of entering information, and
defer formalization of that information until later in the task. This approach divides up the
overhead associated with formalizing information in the system by dividing up the process.
Another advantage is that incremental formalization strategies do not require people to impose
premature structure when they record information. Like the desks of the office workers in
Malone’s study (Malone, 1983), information in such systems can be kept without structure until
the user wants to add structure.

In the Hyper-Object Substrate (HOS) (Shipman, McCall, 1994) we have investigated the potential
to support users by suggesting possible formalizations based on recognized patterns in textual
information. In HOS, suggestions for new attributes or relations in the knowledge base were
presented to the user for acceptance, modification, rejection, or just to be ignored. Experience
with HOS indicates that such suggestions not only reduce the overhead of users providing
formalizations, but have the possibility of bringing previously tacit knowledge to consciousness.
A similar result is reported in Stevens’ account of the use of Infoscope (Stevens, 1993), a system
that suggests information filters based on the users’ reading patterns of Usenet News. In Steven’s
study, a particular suggestion triggered one user to better understand unstated goals and
assumptions underlying his Usenet News reading. By helping the user understand their own goals
the system helps overcome potential barriers to formalization.

Another example of a suggestion mechanism which helps users formalize structure can be found
in VIKI (Marshall, Shipman, 1995), a spatial hypertext system designed to better support the
types of non-verbal interpretation seen in Aquanet. In this case, heuristic algorithms are used to
find recurring visual/spatial patterns in a layout of information objects; these patterns are
indicative of possible relationships among objects. Inferred structures of this sort are used to help
users develop representational schemas (the meta-level language of the information space) and to
identify specific relationships among groups of objects (like sets and lists).

4.4. Ephemeral Structure on Demand
Incremental formalization techniques and structure suggestion mechanisms are effective as long
as they don’t overwhelm a user with too many requests to acknowledge inferred structure. When
there is too much inferred structure, a more automated approach is appropriate. Approaches of
this sort provide services to the user based on informally represented (i.e. undeclared)
information; structures can be inferred through the heuristic recognition of textual, spatial,
temporal, or other patterns.
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Inferred structure cannot be treated identically to user specified information. One characteristics
of possible uses is that the structures are not formalized, but rather used as the basis for
interaction. Thus, even if the system’s inferences are incorrect at times, as long as they are right
part of the time and it is apparent to the user when the system has made the wrong inference,
features based on automated recognition of implicit structure will cost the user little for the
benefit they provide.

One such use of inferred structure is the hierarchic click-selection feature of VIKI (Marshall,
Shipman, Coombs, 1994). In this case the users of VIKI are provided access to the inferred
groupings of objects through multiple mouse clicks. The interaction is similar to the expand-
selection feature attached to multiple mouse clicks in text editors and word processors. Because
VIKI users get visible feedback as to the current selection, incorrect inferences are easily noticed.
Another distinctive property of this use of inferred structure is its transience. Because the effect of
the inference, the selection of a set of objects, is transient the effects of an incorrect inference do
not have an impact on later use of the system.

Similarly, Tivoli, an electronic whiteboard program, uses undeclared structures to support user
activities like list and table manipulation (Moran et al., 1994). Once again, interaction is
facilitated by system interpretation of layout; the recognition is lightweight, and does not interfere
with the normal course of user activities.

4.5. Training, Facilitation, and Intervention
The approaches we have discussed so far suggest alternatives for reducing use difficulties
inherent in systems that use embedded formalisms. Another approach to improving the
acceptance of such systems involves helping users learn and understand the expected use of the
formalisms through training or through facilitation. Sometimes developers may intervene -- at
least on a temporary basis -- to help users through a difficult portion of the formalization.

As our earlier observations of novice hypermedia users show, the expressive capacity of a system
is not necessarily realized intuitively, through use. Instead, to help users learn enough about a
system and its embedded formalisms to make effective use of them, training may be necessary
and desirable. But training is often insufficient support if the formalisms are complex, or
represent a methodology that is far from the users’ experience. In these cases, human facilitation
has often ensured the success of a system. For example, companies supplying software for
recording design rationale find that facilitation is an important part of their business; designers,
users, and technology all interact to change practice.

5. Conclusions
We have sought to describe the extent of the difficulties caused by systems that require users to
formalize information. These problems are pervasive in systems designed to support intellectual
work such as hypermedia, argumentation, knowledge-based systems, and groupware.

The difficulties users experience in defining, applying, and instantiating formalisms are not just
interface problems. Users are hesitant about formalization because of a fear of prematurely
committing to a specific perspective on their tasks; this may be especially true in a collaborative
setting, where people must agree on an appropriate formalism and the conventions for encoding
information into them. Even when users know precisely what they want to formalize there is the
added overhead of learning the formalism and determining how to instantiate their desires in the
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formalism provided. Additionally, achieving an understanding of what to formalize can require
users to become conscious of knowledge that is usually tacit.

There are decisions that system designers can make to reduce the need of formal information by
systems and also methods to make it easier for users to provide this information. Designers should
observe the current practices involved in the user task to determine what representational features
are required and determining what explicit formalization can be asked of users. Systems should
be designed to support the process of incremental formalization and structure evolution as tasks
are reconceptualized. Finally, systems’ designers should determine if it is possible to provide
services based on inferred structure in informally represented information.

As groupware and collaborative system designers, it is tempting to add more powerful features
that rely on formal information. We must temper that urge and consider the difficulty that the user
will have providing that information before relying on it for the success of our systems.
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