
Formalization and validation of the General Inter-ORB
Protocol (GIOP) using PROMELA and SPIN

Moataz Kamel, Stefan Leue∗

University of Waterloo, Dept. of Electrical and Computer Engineering, Waterloo ON N2L 3G1, Canada;
E-mail: m2kamel@uwaterloo.ca

Abstract. The General Inter-Orb Protocol (GIOP) is
a key component of the Common Object Request Bro-
ker Architecture (CORBA) specification. We present the
formal modeling and validation of the GIOP protocol
using the Promela language, Linear Time Temporal
Logic (LTL) and the Spin model checker. We validate the
Promela model using ten high-level requirements which
we elicit from the informal CORBA specification. These
requirements are then formalized in LTL and the Spin

model checker is used to determine their validity. Dur-
ing the validation process we discovered a few problems
in GIOP: a potential transport-layer interface deadlock
and problems with the server migration protocol. We also
describe how property specification patterns helped us
in formalizing the high-level requirements that we have
elicited.

Key words: General Inter-ORB Protocol – Model
checking – Promela/Spin – Temporal logic – Specifica-
tion patterns

1 Introduction

The automated, formal analysis of distributed system
specifications can greatly reduce software production
costs and increase software system reliability. Model
checking is a formal analysis technique that validates the
properties of a system by building a model of the system
and performing exhaustive simulation on the model. The
objective of our work is to use model checking to formally
capture and validate the software requirements specifica-
tion of the General Inter-ORB Protocol (GIOP). GIOP is
a central feature of the Common Object Request Broker

∗ Correspondence to: S. Leue; E-mail: leue@informatik.uni-
freiburg.de

Architecture (CORBA) [6]. The primary goal of our work
is to create a model of GIOP that aids automated formal
analysis. The benefit of the formal analysis is to discover
design flaws in the specification as well as to provide a for-
mally validated prototype of GIOP from which software
implementations could be derived. A secondary goal is to
evaluate the suitability of the formal analysis techniques
that we have chosen, namely the Promela language [8]
and the Spin model checker [10].

The steps that we describe in our paper apply to the
early design stages of the software development cycle.
We follow an iterative approach to requirements elic-
itation, capture, formalization, and validation1. Based
on an informal system requirements specification, which
in our case is given in the CORBA standard [6], we
develop a Promela model which captures essential
operational requirements from the standard. Next we
elicit some high-level properties from the system require-
ments document, encode them in Linear Time Temporal
Logic (LTL) [17], and determine, using model checking,
whether these properties hold of the operational require-
ments model. The results of this step lead to revisions
of the operational model and a new cycle of require-
ments capture, property elicitation and model checking.
This cycle is repeated until a satisfactory operational
model is obtained. The formal analysis is aimed at in-
creasing our confidence that: (a) there are no inherent
design flaws; and (b) that the obtained model represents
the intentions expressed informally in the system require-
ments document.

1 For the purpose of this paper verification stands for showing
the correctness of the model of a software system with respect to
certain properties using theorem proving techniques, while valida-
tion is used to denote the process of showing that properties hold
of the finite state model of a software system based on partial or
exhaustive state space exploration.

http://www.springerlink.com/content/101563
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6208/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-62085

Overview. The paper begins by discussing related work
in Sect. 2. A brief overview of GIOP and its place in
the CORBA framework is given in Sect. 3. A descrip-
tion of our GIOP model architecture is given in Sect. 4.
A summary of the specification pattern system is found
in Sect. 5. Section 6 presents the detailed elicitation and
LTL formalization of significant high-level requirements
of GIOP. Results of the validation and the problems that
were discovered are discussed in Sect. 7. Finally, conclud-
ing remarks follow in Sect. 8.

2 Related work

There is an extensive body of work in the literature
on verification and validation of communication proto-
cols. A recent example that combines verification and
validation techniques is the Radio Link Protocol case
study in [4]. The Promela language and the Spin model
checker were first introduced as formal protocol analy-
sis tools in [8]. Extensions to Spin, in particular the
graphical interface version XSpin

2, have recently been
described in [10]. A partial operational semantics for
Promela has been devised in [18]. A case study de-
scribing the application of Spin in the context of a size-
able industrial telecommunications software development
project is given in [9].

The task of deriving LTL formulas from the informal
specification of a property remains a point of difficulty
in the validation process. The correctness of the formula,
and hence the meaningfulness of the validation results,
depends greatly on the ability and experience of the de-
signer. An incorrect LTL property can render the model
checking futile. To address this problem, a collection of
“specification patterns” [3] were recently developed to
enable the transfer and sharing of experience between
validation practitioners. During the discussion of GIOP
high-level requirements we will explain how our LTL for-
malization relates to the patterns in [3].

Previous work on the validation of an Object Request
Broker (ORB) has been presented in [1]. In that paper,
a validation model was built for a simplified model of an
ORB with IIOP/TCP3 as the underlying transport ser-
vice. Our paper differs from the work in [1] in that it
focuses specifically on the GIOP protocol with reference
to the CORBA specifications and includes server object
migration functionality in the model. The differences can
be summarized as follows: whereas [1] mostly examines
intra-ORB interaction, our work examines inter -ORB in-
teraction.

A precursory version of our work appeared in [16]. In
this expanded version we provide an extended description
of the formal model and more specific elaboration on the

2
Spin and XSpin are software packages that are in the

public domain for research and educational use, see URL
http://netlib.bell-labs.com/netlib/spin/whatispin.html.

3 IIOP is the Internet specific mapping of GIOP.

use of the specification patterns. We have also run ad-
ditional experiments in which we changed various model
parameters in order to assess the effect of these parame-
ters on the validation. Finally, we have made corrections
to several of the LTL formulas since the writing of the
original paper.

3 Overview of GIOP

The Common Object Request Broker Architecture
(CORBA) is an evolving standard for distributed object
computing developed by the Object Management Group
(OMG). CORBA defines the communications infrastruc-
ture that enables distributed applications to communi-
cate over heterogeneous networks in a language indepen-
dent manner. An ORB enables transparent client/server
object interaction by linking potentially different object
systems. Starting with version 2.0, released in July 1995,
CORBA defines true interoperability by specifying how
ORBs from different vendors can interoperate.

The ORB is the middleware that establishes the
client-server relationships between objects. Using an
ORB, a client can transparently invoke a method on
a server object, which can be on the same machine or in
a remote location of a network. The ORB intercepts the
application’s call to a method and is responsible for find-
ing and invoking the server object that can implement the
request, and for returning the results. The client does not
have to be aware of where the object is located, in which
programming language the invoked method was imple-
mented, what operating system is used in order to execute
the method, or any other system aspects that are not part
of the object’s interface. Thus, the ORB provides inter-
operability between applications on different machines
in heterogeneous distributed environments and seamless
interconnection of multiple object systems.

In order to achieve the desired interoperability be-
tween ORBs, the CORBA specification defines a stan-
dard protocol to allow communication of object invoca-
tions between ORBs (even if the ORBs are independently
developed). This protocol is the General Inter-ORB Pro-
tocol (GIOP). The GIOP is designed such that it can be
mapped onto any connection-oriented transport protocol
(e.g., TCP/IP) that meets a minimal set of assumptions.
The conceptual architecture of an ORB system is shown
in Fig. 1.

GIOP also incorporates support for server object mi-
gration and object locating services. This permits server
objects to move between different ORBs (potentially on
different networks) and have messages forwarded to them
wherever they are. For example, in a distributed data-
base system, queries might be processed more efficiently if
a query object could migrate to a remote site and perform
processing there. Although object migration is supported
to a limited extent in GIOP, mobile agent systems are
not directly part of the ORB functionality. Aspects of

To Other ORBs

GIOP

ORB Core

AgentClient

Transport

Common ORBORB Client ORB Server
InterfacesInterfaces Interfaces

Server
ApplicationApplication

Client

ORB

Fig. 1. Relation of GIOP to the conceptual ORB architecture

object migration and discussion of how a mobile agent
system can be incorporated into the overall Object Man-
agement Architecture (OMA) as a CORBA facility is de-
scribed in [5].

GIOP messages. The message types used in the GIOP
model are shown in Table 1. Message types marked with
* are not part of the formal GIOP specification but are
included in the model to drive the external interactions
with the GIOP layer. GIOP defines other message types
such as the MessageError, Fragment, LocateRequest
and LocateReply messages, but these were not included
in the built Promela model in an attempt to keep the
model to a reasonable size. In GIOP, connections are
asymmetric. Only clients can send Request and Cancel-

Request messages while only servers can send Reply and
CloseConnectionmessages over a connection. According
to the specification, “Only GIOP messages are sent over
GIOP connections.” ([6] pp. 12–30).

4 GIOP Model architecture

The first step towards validating the GIOP protocol is
the construction of an abstract model of a GIOP system.
Since the goal of the modeling and automated analysis
described in this paper is to determine if there exist any
logical design errors in the operational requirements spe-
cification, our Promela model omits certain details of
GIOP that do not form part of the behavior of the proto-
col (e.g., transfer syntax, etc.).

A high-level view of the Promela model4 of the
GIOP system is shown in Fig. 2. The figure uses an
informal notation to represent the architecture of the

4 The source code for the Promela model and all never
claims related to our validation can be retrieved as a tar file
from URL http://www.fee.uwaterloo.ca/~sleue/sources/giop/

giop-sttt.tar.

Table 1. Summary of GIOP message formats

Message Type Sender Receiver

URequest* User GIOPClient
UReply* GIOPClient User
Request GIOPClient GIOPAgent
Reply GIOPAgent GIOPClient
CancelRequest GIOPClient GIOPAgent
CloseConnection GIOPAgent GIOPClient
SRegister* Server GIOPAgent
SRequest* GIOPAgent Server
SReply* Server GIOPAgent
SMigrateReq* Server GIOPAgent

Client Agent
GIOP GIOP

toTransportU[1 2] toAgentL[1 2]

toTransportL[1 2]

toAgentU[1 2]

Server

Transport

toTransportU[0]

toTransportL[0]

Transport

toUser

toClientL

toClientU

User

(0) (0)(0)(0)

(0)(N) (N) (N)

(N)(N)

toServer[0 2]

Fig. 2. High-level Promela model for GIOP system

Promela model in which boxes represent processes and
arrows represent message channels. Arrows originating or
terminating at a box indicate that a channel is “bound”
or passed as a parameter to the associated process. Free
arrows, which appear at the upper interface to the GIOP

Agent and the lower interface to the Transport pro-
cesses, indicate dynamic port selection. That is, the sen-
der can dynamically choose the recipient by using the
port address. Each Transport and Server process is as-
signed a port address upon creation5. A Server uses its
assigned port to select the appropriate input channel.
Servers may change their assigned port address by mi-
grating. Stacked boxes represent multiple instances of
a process. Stacked arrows represent arrays of channels
between processes. Numbers in parenthesis are channel
lengths. Channels in the model are either unbuffered
(zero length) or buffered (length N where N is a positive
integer).

5 A port in the GIOP model is an abstraction representing all
required addressing information needed to uniquely identify an
endpoint for the transport protocol being used.

The GIOP system is arranged in a standard layered
architecture. The system model is composed of an arbi-
trary number of User and Server processes at the top
layer, the ORB processes (GIOPClient and GIOPAgent)
in the middle layer, and the network transport processes
in the lowest layer. Each process is described below.

The User process represents an application object ex-
ternal to the ORB that wishes to request a service. In
our simplified model, the User process issues a URequest

message to the GIOPClient and then blocks until the
reception of a UReply. The GIOPClient forwards the re-
quest to the GIOPAgent which then sends an SRequest

to the server. The Server processes represent the imple-
mentation of services. In the GIOP model, the services
that they implement are empty since they are not relevant
to the validation of the protocol. The Server processes
communicate with the GIOPAgent via the toAgentU and
toServer channels. To allow servers to migrate between
agents, the Server processes are not statically bound to
particular channels. Instead, they dynamically choose the
correct channel based on their current location. The port
variable of the Server process holds its current location.
The location of a Server must be equal to the port of
one of the GIOPAgent processes. During a migration, the
server changes the value of its port variable to the port of
another GIOPAgent. The server then uses the port vari-
able to select the proper channel to communicate with
the GIOPAgent. Figure 6 shows the Promela code for the
Server process. Portions of the code marked with ellipses
have been omitted for clarity.

The GIOP layer of the ORB is partitioned into two
parts corresponding to the Client (called GIOPClient)
and the Server (called GIOPAgent6). Each ORB imple-
mentation must contain the functionality of both the
Client and the Agent and must support GIOP as the
means to communicate externally with other ORBs. GI-
OP can also be used to communicate internally within an
ORB, but this is not a mandatory requirement according
to the CORBA specification.

Some aspects of GIOP are under-specified in the
CORBA standard to allow for some variation in vendor
implementations. The SDL-style7 state machines pre-

6 The term “agent” is used as opposed to “server” to avoid con-
fusion with the server implementation.

7 The SDL-style diagrams are used for the sole purpose of in-
formally documenting the structure of our Promela models. The
use of an SDL dialect to document Promela models has first been
suggested in [8]. We do not assert that the diagrams form or are
part of a complete, syntactically valid SDL specification [14], and
we do not assume that they be interpreted strictly according to
the standardized SDL semantics [15]. There is no formal linkage
between the SDL-style diagrams and the resulting Promela code,
however, an approximate correspondence could be described as fol-
lows. SDL symbolic states correspond to important control state
locations in the Promela model. A process in the Promela model
may receive messages from more than one queue. This differs from
the SDL message reception semantics which mandates one unique
input queue per SDL process. We do not assume that unexpected
messages are discarded, as in standard SDL, instead, an unspeci-

wait till all

objRefs are

published

randomly

select objRef

UReply(

eval(tag),

status)

wait

URequest(

tag,objRef)

Fig. 3. User SDL-style state machine

sented here illustrate some of the assumptions that need
to be made in order to fill the gaps in the specification. In
particular, interfaces to the GIOP layer are not specified
in the standard and therefore, in our model, we have de-
fined interfaces based on our interpretation of GIOP and
its role in the ORB architecture. These SDL-style state
machines are not meant to be a comprehensive represen-
tation of the protocol behavior but are for the purpose of
illustrating the operation of the Promela processes in
our model.

The GIOPClient accepts URequest messages from
the User process and generates Request messages which
it forwards through the lower transport layer to the
appropriate GIOPAgent. On receiving a Reply message
from the GIOPAgent, the GIOPClient sends a UReply to
the appropriate User process. An SDL-style state dia-
gram representing the structure of the state machine for
the GIOPClient process is shown in Fig. 4. Figures 3, 7
and 8 show the state machine structure for the User,
GIOPAgent and Server processes, respectively.

The state machine for the GIOPClient process is im-
plemented using a single do-od loop corresponding to
self-transitions on a single wait state as shown in the
SDL-style state diagram of Fig. 4. All other processes in
the model, with the exception of the User process, have
a similar structure. Execution of the loop is blocked un-

fied reception will cause deadlock. Contrary to the SDL semantics
the channels in our Promela model have bounded length. SDL
task boxes represent Promela code sequences, and SDL decision
symbols represent Promela if statements. A more detailed discus-
sion of the joint use of SDL and Promela is outside the scope of
this paper and we refer to [9] instead.

wait

Build

Request msg

Request(

svrPort,msg)

Free up

reqId

Reply(URequest(

svrPort,msg)

Request(

done?
No

Yes

Find next

outstanding

request for port

wait

tag,objref)

Find a free

reqId

svrPort,msg)

Record

reqId,tag,objref

any

cancelled?pending?

Location
Forward?

Request(

fwdPort,msg)

reqId

CloseConnection

pending?

cancelled?
reqId

svrPort,msg)

free?

CancelRequest(
svrPort,msg)

UReply(tag,

EXCEPTION)

UReply(tag,

reply_status)

SYSTEM_

Free up
reqId

Fig. 4. GIOPClient SDL-style state machine

til a URequest, a Reply, or CloseConnection message is
available on an input channel. Upon reception of the mes-
sage, the corresponding transition code is processed and
control returns to the wait state. The behavior is similar
to SDL in that message receptions only follow the wait

state. This helps to reduce deadlock possibilities when
used in conjunction with asynchronous communication.
A simplified Promela code skeleton for the GIOPClient
process is shown in Fig. 5.

After sending a Request, the GIOPClient may ran-
domly choose to either cancel the request or allow the
request to complete. The CancelRequest message is
used to cancel a Request. Although it is not explicitly
specified under what circumstances it should be used,
the CancelRequest message is most likely intended as
a means for a client to shutdown while requests are still
outstanding. The model implementation abstracts and
simulates this behavior by using random choice to send
a CancelRequest.

The Server processes represent the implementation
of a service. In the GIOP model, the service that they im-
plement is empty since it is not relevant to the validation
of the protocol. The Server processes communicate with
the GIOPAgent via the toAgentU and toServer channels
but are not statically bound to particular channels. In-

proctype GIOPClient(chan uin, uout, lin, lout)

{

...

end: do

:: uin?URequest(tag,objref) ->

svrPort = objref.port;

/* find a free request_id */

...

/* build and send the Request message */

lout!Request(svrPort, msg);

/* randomly choose to cancel */

if

:: (1) -> /* do nothing */

:: (1) ->

/* send a CancelRequest */

lout!CancelRequest(svrPort, msg);

/* mark request_id as cancelled */

...

/* send an exception to user */

uout!UReply(tag, SYSTEM_EXCEPTION);

fi;

...

:: lin?Reply(svrPort, msg) ->

if

:: (request_id is inuse) ->

/* mark request_id as free */

...

/* send UReply to user */

uout!UReply(tag, status);

:: (request_id was cancelled) ->

/* mark request_id as free */

...

fi;

:: lin?CloseConnection(svrPort, msg) ->

/* for each request_id on svrPort */

do

:: (reqId == MAXREQID) ->

break;

:: (reqId != MAXREQID) ->

if

:: (request_id is inuse) ->

/* resend the request */

:: (request_id was cancelled) ->

/* free the request_id */

:: (request_id is free) ->

/* ignore */

fi;

reqId = reqId + 1

od

od

}

Fig. 5. Simplified GIOPClient process Promela code

stead, they dynamically choose the correct channel based
on their current location (which may change during a mi-
gration). The port variable of the Server process indi-
cates the current location of the process. The Promela

code fragment of Fig. 6 shows the Server process. Por-
tions marked with ellipses are omitted for clarity.

chan toAgentU[NUMPORTS] = [0] of {mtype,byte,byte,

byte};

chan toAgentL[NUMPORTS] = [0] of {mtype,byte,

GIOPMsg};

proctype Server(byte port, objKey)

{

/* initial registration */

toAgentU[port]!SRegister(objKey,0,0);

end:

do

:: toServer[port]?SRequest(eval(objKey),

opaqueData, opaqueData2) ->

/* send the reply */

toAgentU[port]!SReply(objKey,

opaqueData,opaqueData2)

:: (numMigrations < MAXMIGRATIONS) ->

/* determine migration target */

...

toAgentU[newport]!SRegister(objKey,0,0);

toAgentU[port]!SMigrateReq(objKey,newport,0);

/* handle any SRequests still in our queue */

...

/* migration complete */

port = newport;

od

}

Fig. 6. Simplified Server process Promela code

The GIOPAgent mediates requests for server objects. It
is responsible for passing object requests to the appro-
priate Server process as well as for sending Reply mes-
sages back to the GIOPClient via the lower transport
layer. Also, the GIOPAgent can initiate a close of the con-
nection by sending a CloseConnection message to the
GIOPClient. In GIOP, only agents can initiate the clos-
ing of a connection. On receiving a close message the
GIOPClient is expected to re-send any outstanding re-
quests on a new connection.

The Transport process represents the protocol layers
below the GIOP layer. This includes (in the case of
IIOP) the TCP/IP layer and further layers below it. The
GIOP specification makes some standard assumptions
regarding transport behavior (see [6], pp. 12–29) such
as connection-oriented and reliable transfers. These as-

sumptions are implemented by the Transport process in
our model.

Object registration and migration. The Server requires
a means of identifying itself and its location to a User.
It does this by sending an SRegister message containing
a unique identifier – the object key – to the GIOPAgent.
On receiving such a message, the GIOPAgent publishes the
object key and the current port8 in a commonly accessible
name service database. In our Promela model of GIOP
we simulate the name service by using a global table. The
global table of published objRefs can be queried by clients
wishing to request services. During migration, the Server
sends an SRegister message (containing the server ob-
jKey) to the GIOPAgent that is the target of the mi-
gration. The subsequent publishing of the objRef by the
GIOPAgent overwrites the previous location information.

5 Property specification patterns

A set of property specification patterns for finite state
verification have been devised in [3]. The goal of the pat-
tern system is to reduce the pragmatic barriers to the
adoption of temporal logic formalisms for practical soft-
ware verification and validation. These patterns repre-
sent a collection of high-level specification abstractions
that assist practitioners in mapping system behavior into
logic formalisms such as Linear Temporal Logic (LTL),
Computational Tree Logic (CTL), and Graphical Interval
Logic (GIL), among others. This paper is concerned with
LTL as it is the formalism that is used by Spin.

Three categories of patterns have being identified
in [3]: (1) occurrence patterns; (2) order patterns; and (3)
compound patterns. Occurrence patterns describe the oc-
currence of some event or state during the system execu-
tion. The four occurrence patterns are absence, existence,
bounded existence, and universality. Order patterns de-
scribe relative orderings of events or states. The ordering
patterns include response and precedence. Finally, com-
pound patterns generalize the response and precedence
patterns to sets of events and also include Boolean com-
binations of other patterns. The patterns are organized in
a hierarchy based on their semantics. Conceptually, this
is a useful organization for the novice user of the pattern
system. However, we have found that, because of the rela-
tively small number of patterns, the table of patterns and
scopes for a given formalism (e.g., LTL) is the most useful
organization when formulating properties. Table 2 sum-
marizes several patterns that were used in the paper and
their corresponding LTL formulas. We use standard LTL
syntax as defined in [17] where 2 denotes the “always”,
3 denotes the “eventually”,W denotes the “unless” and
U denotes the “until” operator. P,Q,R and S are place-
holders for state or event propositions.

8 The combination of an object key and port are called an Inter-
operable Object Reference (IOR) or objRef for short.

FORWARD

Build Reply msg.
reply_status=
LOCATION_

NOT_EXIST

Build Reply msg.
reply_status=

OBJECT_

Request(

wait

wait

registered replied?

CancelRequest(

Yes

No

Mark as

cancelled

SMigrateReq(

here?

SReply(

objKey,reqId)

cancelled?

outstanding
requests

==0

>0

Yes

SRegister(

Publish

SRequest(
migrated?

Yes

NoYes

clPort,msg)

Save

Save

objKey,reqId)

No

objKey,port

clPort,msg)

objKey,port

objKey)

msg)

Reply(clPort,

No

objKey,fwdPort)

objKey,fwdport

CloseConnection(

clPort, msg)
msg)

Reply(clPort,

Fig. 7. GIOPClient SDL-style state machine

wait

Choose
destination

To new
Agent

Agent
To old

SRequest(

SReply(

eval(objKey),

objKey,

opaqueData)

opaqueData)

SRegister(

wait

objKey)

Process
SRequests in

SRegister(

SMigrateReq(

objKey)

queue

objKey,fwdport)

None

Fig. 8. Server SDL-style state machine

Each pattern has five possible scopes9. A scope de-
fines the boundaries of a state or event subsequence over
which the property must hold. By considering the range
of events or states that are described by the require-
ment, one can usually recognize which scope is most
appropriate.

6 Requirements elicitation

To validate the logical consistency of the model with the
intentions of the system requirements document, it is ne-
cessary to elicit and formalize properties of the specifi-
cation that must hold in all circumstances. These high-
level requirements (HLR) are formalized here using LTL
formulas.

The Spin model checker has a facility to convert an
LTL formula into a Büchi automaton, which is called
a “never claim” in Spin. In order to take advantage of
partial-order reduction mechanisms in Spin, LTL for-
mulas have to be stutter-invariant. We use only next-
time free LTL formulas which ensures stutter invari-

9 The possible scopes are global , before R, after Q , between Q
and R, and after Q until R; where Q and R represent state or event
occurrences.

Table 2. Summary of patterns used for GIOP requirements formulation

Pattern Scope LTL Formula

Absence
P is false:

globally 2(¬P)
between Q and R 2((Q∧3R)→ (¬P U R))
after Q until R 2((Q∧¬R)→ (¬P W R))

Existence
P becomes true:

globally 3(P)
between Q and R 2((Q∧3R)→ (¬R UP))

Bounded Existence
P becomes true at most once:

globally (¬P W (P W 2¬P))))
between Q and R 2((Q∧3R)→

((¬P ∧¬R)U(R∨ ((P ∧¬R)U
(R∨ (¬P U R))))))

Universality
P is true:

globally 2P

before R 3R→ (P U R)

Precedence
S precedes P :

globally 3P → (¬P U (S∧¬P))

Response
S responds to P :

globally 2(P →3S)

ance [12, 13]. Given a never claim, Spin can perform ei-
ther an exhaustive or a partial exploration of all system
states to prove that the formula holds. For models in
which there is not enough physical memory to perform an
exhaustive validation, it is advisable to use Spin’s non-
exhaustive search algorithm called Supertrace which is
based on bit-state hashing to reduce the amount of mem-
ory required to store states [11]. Using bit-state hash-
ing Spin will never report an error incorrectly although
it may fail to report existing errors. The quality of the
search is reported as the hash factor . A hash factor of 100
indicates a good quality search, however, it is a heuristic
estimate and is subject to a large variance.

Event modeling in state based model checking. A few of
the requirements (e.g., HLR-3 and HLR-6) refer to event
occurrences. For example, the sending of a message, the
reception of a message, and the incrementing of a counter,
all constitute events. However, Spin is inherently a state
based model checker; i.e., LTL formulas must refer to
state properties. Spin supports a mechanism for specify-
ing correctness requirements involving event occurrences
known as an event trace definition. These are similar
to never-claims but specify correctness requirements in
terms of event sequences. Unfortunately, event traces are
difficult to use because of several limitations. An event

trace definition may contain only send and receive oper-
ations and control flow constructs but no variables, no
assignments, and no Boolean expressions can be used.
Further, event traces must be built manually by the user,
there is no facility to convert LTL formulas to event
traces. For these reasons, event trace definitions were not
suitable for specifying the requirements for the GIOP
model.

An alternative to using event traces is to capture
event-oriented properties by associating the control state
locations following the event with the particular event.
For example, to capture the event “an SRequest message
was sent” we introduce a corresponding control state la-
bel (SRequestSent) into the code immediately after the
event occurrence:

/* send the SRequest */

uout!SRequest(objKey,reqId,srcport);

SRequestSent:

...

We can then refer to the event in an LTL formula
by using Spin’s remote reference feature. For instance,
the reference GIOPAgent[pid[5]]@SRequestSent evalu-
ates to true when the process GIOPAgent[pid[5]]10 is at

10 The number in brackets following the process type name is the
process id of the process that we are interested in. We have stored

the reference label SRequestSent. This technique for rep-
resenting events will work as long as the entry into the
Promela state denoting an event occurrence is unam-
biguously caused by a single type of event, i.e., if there
are no other paths to the SRequestSent state that do
not pass through the SRequest-sent event code. Further-
more, there must not be more than one code location in
the Promela model that causes an event of the consid-
ered type to occur. Our model satisfies both these condi-
tions for the SRequest-sent event and other events that
are used in the LTL formulas.

GIOP High level requirements. We will now present some
of the high level requirements (HLR) that were elicited
from the CORBA GIOP specification. Note that HLR-1
and HLR-2 are common-sense requirements that are not
explicitly stated anywhere in the specification but which
are important for any protocol. We discuss the LTL for-
malization of each requirement, and how the property
specification patterns of [3] help us in finding the right
LTL formula to match with the informally stated HLR.

6.1 HLR-1

Description. The protocol should be free from deadlocks.

Formulation. Although a formalization of this require-
ment in LTL is possible (see [17]) the resulting formula
is rather unwieldy11. Instead, validation of this property
is done using the built-in valid end states labeling mech-
anism of Promela and requesting that Spin report any
invalid end-states during the validation run. For instance,
the end: label in the GIOPAgent process indicates a valid
end state when it is in the state in which it can process
the next SRegister, SMigrateReq, Request, SReply and
CancelRequest messages, but not in any intermediate
state. This ensures that if the process terminates it will do
so after having processed any of the external messages to
completion.

6.2 HLR-2

Description. The protocol should be free from livelocks.

Formulation. Like the absence-of-deadlock property, this
property could be captured in LTL but the result would
be unwieldy. Instead, validation is done automatically
by placing progress: labels at appropriate places in the
code and requesting that Spin report any non-progress
cycles. We use exactly one progress label attached to the
User process when it is in a state ready to accept a UReply

the pid that was assigned to the GIOPAgent at location 5 in an array
named pid[].
11 Essentially, one would have to form a disjunction over all en-
abling predicates of all transitions and require this disjunction
invariably to hold true.

message. This indicates that the only means for the pro-
tocol to make progress is through satisfying the user re-
quest. Spin will verify that no cycles exist that do not
pass through the progress state at least once.

6.3 HLR-3

Description. After sending a URequest message a User
should eventually receive the corresponding UReply

message.

Formulation. The requirement above describes a tem-
poral relationship between two events: the sending of
a URequest message and the receiving of a UReply mes-
sage. These events are related through an eventuality re-
lationship that specifies the desired order of the events.
In particular, the UReply event is required to occur in re-
sponse to a URequest event. These observations on the
nature of the requirement help to classify it as a response
property which is best represented by the response pat-
tern. In order to determine the appropriate scoping to
apply, we should consider if there are any additional en-
abling conditions that affect the applicability of the above
requirement. In this case, there are none. Thus we use the
response pattern with global scoping.

The requirement also specifies a subtle condition on
the response property that it describes. Namely, it re-
quires that the UReply corresponds to the URequest. We
use the following mechanism to express the correspon-
dence of instances of these message types: a User process
only generates a single URequest message and attaches
a unique tag to the message. It then blocks until it re-
ceives a UReply message with the same tag; i.e., the re-
ceive will not be executable unless the tag is correct. By
labeling the statements after which the send and receive
occur, and using remote references as explained previ-
ously, the events can be identified in the LTL formula.
Furthermore, the remote references in the LTL formula
refer to a particular instance of the user process (iden-
tified by pid) which is also necessary to ensure that the
events match.

LTL Formula. 2(S→3R), where:
S = User sent a URequest, and
R = User received a UReply.

6.4 HLR-4

Description. The GIOP layer must preserve CORBA’s
at-most-once execution semantics: “(a) if an operation re-
quest returns successfully, it was performed exactly once;
(b) if it returns an exception indication, it was performed
at-most-once.” ([6] pp. 1–7).

Formulation. The first clause, (a), of this requirement
specifies an implication that requires the existence of

a single event occurrence. The use of an existence pattern
alone ensures that the event occurs at least once but does
not limit it to once. The bounded existence pattern per-
mits specification of an “at-most-once” property but this
does not ensure that the event will happen at least once.
By conjoining the existence and bounded existence pat-
terns, we can specify the desired property. An added com-
plication is the scope: this property should hold after the
request was sent and until the reply is received; this calls
for a between scope. Conjoining the two patterns and
adding the implication gives the rather unwieldy com-
pound formula:

2(3R→ (2((S ∧3R)→ (¬RUP))∧2((S ∧3R)→

((¬P ∧¬R)U(R∨ ((P ∧¬R)U(R∨ (¬PUR))))))))

where:
S = User sent a URequest,
R = User received a successful UReply, and
P = The request was processed by the Server.
Large LTL formulas, like the above, have a detrimen-

tal effect on the efficiency of model-checking. An alter-
native formulation for this property is achieved by intro-
ducing a global counter variable into the model to count
the number of times a request is processed. The counter
is incremented each time the request is processed by the
Server and reset by the client when a new request is gener-
ated. This reduces the requirement to an invariance prop-
erty which is represented with the universality pattern
with global scoping. In fact, in this form, the require-
ment could be coded as a state assertion. As a result, we
have greatly simplified the LTL formula at the expense
of a larger state vector (due to the added counter vari-
able). We believe this to be a good trade-off considering
the increased understandability of the LTL formula. The
increased size of the state vector had a negligible effect on
size of the state space.

The second clause (b) also has the form of an impli-
cation. It specifies the “at-most-once” relationship and
requires the occurrence of the event to happen a bounded
number of times, if at all. This requirement is captured by
the bounded existence pattern with the between-Q-and-
R scope. A similar alternative formulation exists for this
requirement by using the universality pattern as shown
below.

LTL Formula. (a) 2(R→N) and (b) 2(E→ L), where:
R = User received a successful UReply,
E = User received an exception UReply,
N = Requests processed counter equals 1, and
L = Requests processed counter equals 1 or 0.

6.5 HLR-5

Description. GIOP requires that an integer request_id
field be sent with all Request and Reply messages in

order to match reply messages with the correspond-
ing requests. The CORBA specification states: “The
client is responsible for generating values so that ambi-
guity is eliminated; specifically, a client must not re-use
request_id values during a connection if: (a) the previ-
ous request containing that ID is still pending, or (b) if
the previous request containing that ID was canceled and
no reply was received.” ([6] pp. 12–22).

Formulation. In this requirement, the re-use of re-

quest_id values is the behavior that must be absent from
the model. This type of requirement is captured by the
absence pattern. The scope for the pattern can be de-
termined by examining the additional conditions that
must hold. Clause (a) specifies a temporal context dur-
ing which the absence condition must hold. Namely, the
temporal context is determined by the time that the pre-
vious request is still pending or in-use. Thus we can use
a between scope for the absence pattern. Note that, in
the model, the id of a canceled request is also consid-
ered in-use until the connection is closed. Thus, clause
(b) and clause (a) can be combined into one proposition:
request_id i is in-use. This information is recorded in the
model in a global array called usedReqId[]. A request_id
is considered re-used if a Request is sent with a request_id
that was previously marked as being in-use.

With Spin, there is no means of specifying a generic
proposition for this requirement (e.g., request_id i is
pending). Therefore, the requirement was validated ex-
plicitly for the case of i= 0. To verify that the choice of
i = 0 is not special, the requirement was also validated
for i values of 1,2 and 3. Justification that the prop-
erty holds irrespective of the request_id value requires
a proof that the model is data independent with respect
to request_ids, as defined by Wolper in [19]. In general,
such a proof can be quite difficult. Since the size of the
data domain is small in this case, we have chosen to manu-
ally validate each value of request_id that is used in the
model.

LTL Formula. 2((P ∧3¬P)→¬R U ¬P), where:
P = Request id i is in-use, and
R = Request id i is re-used.

6.6 HLR-6

Description. (a) After sending an SRequest the GIOP-

Agent should eventually receive a corresponding SReply.
Also, (b) the Agent should never receive an SReply for
a request that is not outstanding.

Formulation. The requirement describes two properties.
Part (a) is similar to the requirement of HLR-3. It repre-
sents a response property between SRequest and SReply

messages which is captured by the response pattern with
global scoping.

As in HLR-3, there is a need to ensure correspon-
dence of SRequests to SReplys. Unlike HLR-3, the cor-
respondence is not ensured by the implementation. The
basic response formula under-specifies the property since
it may accept a trace in which the SReply event does not
correspond to the SRequest: e.g., 〈SRequest, SRequest,
SReply〉. In order to address this correspondence issue
we have introduced two global variables into the model,
srequest_reqId and sreply_reqId, which hold the as-
sociated request_id of the SRequest and SReply, respec-
tively, at the time the events occur. To ensure that the
SReply event corresponds to the SRequest event we re-
quire that the srequest_reqId and the sreply_reqId

variables contain the same value.
Clause (b) implies an absence property due to the

term “never”. The requirement stipulates that an SReply

should never be received during the interval in which an
SRequest is not outstanding. It is important to note that
an SRequest need not ever become outstanding and thus
the requirement should not imply such a liveness prop-
erty. The after-until scope of the absence pattern satisfies
this condition through the use of the W (unless) opera-
tor. Again, the correspondence of SRequest and SReply

is established through the use of global variables.
The observant reader will realize that clause (b) can

be validated simply by using a assertion statement placed
after the reception of an SReply. Many absence proper-
ties can be represented using assertion statements instead
of using temporal logic. In addition to their simplicity,
the advantage of assertions is that they may refer to local
variables within a proctype. Also, assertions can be val-
idated during the validation of other LTL formulas thus
reducing the number of validation runs needed to validate
a given set of requirements.

LTL Formula. (a) 2(S → 3R) and (b) 2(¬T →
(¬RW T)) where:

S = GIOPAgent sent an SRequest to the Server, and
R = GIOPAgent received an SReply from the Server.
T = SRequest is outstanding.

6.7 HLR-7

Description. The GIOPClient should never receive a
Reply for a request that is not outstanding or canceled.

Formulation. This requirement specifies the absence of
the behavior in which a Reply is received for a request
that is not outstanding. It is captured in a formula simi-
lar to HLR-6(b), using the after-until absence pattern.
The correspondence of Replys and Requests is again es-
tablished by using global variables to hold the request_id
values and testing these values within the propositions of
the LTL formulas.

LTL Formula. 2(¬T → (¬RW T)) where:
T = request_id i is outstanding or canceled, and
R = Reply received for request_id i.

6.8 HLR-8

Description. “Servers may only issue CloseConnection

messages when Reply messages have been sent in re-
sponse to all received Request messages that require
replies.” ([6] pp. 12–31).

Formulation. This is an interesting requirement since it
incorporates two types of patterns. It embodies a re-
sponse condition between Replys and Requests and the
response is an invariance condition that must hold before
the CloseConnection event can happen. The response
and universality patterns are used to capture this re-
quirement. Applying both patterns to the problem using
some insightful comments from [2] results in the follow-
ing formula:

3close→ ((2(request→ (¬close U reply))) U close).

This formulation under-specifies the requirement due
to the difficulty of matching reply events with the corres-
ponding request events. For example, a sequence such as
〈request, request, reply, close〉 would be accepted by the
above formula, but it violates the requirement. In order to
address this shortcoming, we have introduced the variable
N which is used to express a weak correspondence propo-
sition. It ensures that the number of requests matches the
number of replies. This is justified since there is no mes-
sage loss or duplication in the system.

LTL Formula. 2((3C → ((2(S → (¬C U R))) U C))∧
(C→N)), where:

C = The GIOPAgent sent a CloseConnection,
S = The GIOPAgent received a Request,
R = The GIOPAgent sent a Reply, and
N = The number of Replys equals the number of

Requests (GIOPAgent side)

6.9 HLR-9

Description. “Clients may have multiple pending re-
quests. A client need not wait for a reply from a previous
request before sending another request.” ([6] pp. 12–31).

Formulation. This requirement is difficult to formulate
at first glance but is made simpler by considering the con-
trary requirement Q:“A client must wait for a reply from
a previous request before sending another request.” This
requirement can be captured by the between scope ab-
sence pattern: (Si∧3Ri)→ (¬Sj U Ri) where Si is the
event corresponding to “sending the previous request”
and Sj is the event “sending another request” and Ri
is the event “reply from the previous request”. Negat-
ing this formula results in the requirement ¬Q:“A client
must not wait for a reply from a previous request be-
fore sending another request.” Clearly, this differs from
the informally given requirement. In order to represent

the “need not” relationship, it is necessary to disjoin the
“must” and “must not” properties. This results in a tau-
tology (Q∨¬Q). Validation of a tautology is pointless.
However, validation ofQ alone can be useful. If Spin finds
an execution whereQ is violated then it confirms that the
model contains the behavior that allows “multiple pend-
ing requests”. If, on the other hand, Spin does not find
a violation then the model does not contain the behavior.
An exception to this statement is possible if replies for re-
quests are never received. Therefore we have introduced
another requirement in part (b) to ensure that requests
sent by the client are responded to eventually by a reply
unless they have been cancelled.

LTL Formula. (a) Q : 2((Si∧3Ri)→ (¬Sj U Ri)), and
(b) 2((Si→3(Ri∨Ci)), where:

Si = Client sent Request i,
Sj = Client sent Request j,
Ri = Client received Reply for Request i, and
Ci = Client cancelled request i.

6.10 HLR-10

Description. Requests should be processed by servers in
the same order that they were issued by a client.

Formulation. This requirement is not part of the COR-
BA specifications, nonetheless, it may represent a useful
feature for some applications. The requirement describes
an ordering relationship between when multiple requests
are issued and when they are processed. In particular, if
request 0 and request 1 have both been issued (outstand-
ing), then request 1 must not be processed until request 0
is processed first. The requirement can be described with
the absence pattern using the between scope. The absence
pattern constrains certain states not to be reached within
a given temporal context. In this case, the property spec-
ifies the absence of the behavior in which request 1 is
processed between request 0 being issued and processed.

LTL Formula. 2((I0 ∧ I1 ∧3P0)→ (¬P1 U P0)), where:
I0 = Request 0 was issued,
I1 = Request 1 was issued,
P0 = Request 0 was processed, and
P1 = Request 1 was processed.

7 Validation results

In Sect. 6 ten high-level requirements of the GIOP pro-
tocol were presented. All of these high-level requirements
were validated using the Spin tool. For all claims that
were formalized with LTL, two passes were performed in
Spin. The first pass validated state (safety) properties of
the never claim while the second pass validated liveness
properties by checking for infinite acceptance cycles. All
validations were performed on a Sun Ultra 1 (200 MHz)

with 128 MB of main memory. Spin/XSpin version 3.2.4
and GCC version 2.8.1 were used in all cases.

Five variations of the GIOP model were created for
validation. The basic model (named giop3) contains two
User, two Server, one GIOPClient, two GIOPAgent, and
three Transport processes. Buffered message queues (la-
beled N in Fig. 2) were set to a length of 5. Request_id
values were limited to 4. An augmented model (named
giop4) was created in which the number of User pro-
cesses was increased to five. Another model was created
(named giop5) in which the number of Server processes
was increased to ten. Experiments with these models have
confirmed that the model behavior is the same despite the
change in the number of User or Server processes in the
system.

Exhaustive validation of the GIOP model with server
migration functionality was not possible as memory lim-
its of the workstation were quickly reached. Therefore, it
was necessary to use the Supertrace/Bitstate option of
Spin to validate the properties on the GIOP model with
server migration. The output of the Bitstate safety vali-
dation of HLR-1 (deadlock freedom requirement) on the
GIOP models is shown in Table 312. Safety validation of
other properties on the giop3 model lasted between 50
min to 1.5 h for each property. Liveness validations on the
giop3 model lasted between 3 to 4 h for each property. Vi-
olations were detected in under 5 min and in most cases
within a matter of seconds. Safety validation on the giop3
model required 33.7 Mb of memory while liveness valida-
tion of the same model required 84.2 Mb.

In an effort to reduce the size of the model to enable
exhaustive validation, two additional model variations
were created. The giop2 model is a scaled down version
of the giop3 model in which all special property vali-
dation variables and code were removed. Although this
resulted in a smaller state vector (612 versus 652) and
less memory (17.2 versus 33.7), it did not enable exhaus-
tive validation. Thus, a further refinement of the model
was carried out in which the transport process function-
ality was merged into the GIOPAgent and GIOPClient

processes. This model (named giop1) resulted in a much
smaller state vector (412 bytes) but still did not allow ex-
haustive validation.

Further experimentation was done on the models
by removing the server migration functionality. This
resulted in significantly reduced state spaces and al-
lowed the models to be exhaustively validated. The re-
sults of a validation of basic safety properties are shown
in Table 4. These experiments highlight the potential

12 Statistics for validation come from Spin’s output format. The
state-vector is the size of each global state representation in bytes.
Depth refers to the longest non-cyclic execution sequence. States
Stored is the number of unique system states generated. Transi-
tions are the number of transitions explored during the search. The
hash factor indicates the coverage of the search for non-exhaustive
searches. A large value (larger than 100) indicates a coverage of
99% or 100%. Memory usage is expressed in Megabytes and real
time is expressed in hours:minutes:seconds.

penalty of using non-deterministic choice as an abstrac-
tion technique. In the case of the server process, server
migration is enabled whenever the server is in the wait
state. This causes an explosion in the size of the state
space due to the fact that it allows server migration to be
interleaved with almost every other event in the system.

All requirements were validated successfully with the
exception of HLR-10 which failed to hold. HLR-9a caused
a violation as expected which indicates that the model
contains the behavior that allows multiple pending re-
quests. HLR-9b also validated successfully with no vio-
lations. During validation, some issues were identified as
important in the development of the model for the GIOP
protocol. These include the issues of transport deadlock,
request cancellation, server migration, and order preser-
vation of requests. These issues are discussed in detail
below.

Transport deadlock. Early in the development of the
GIOP model a deadlock situation was revealed by Spin

through an invalid end-state. By examining the trail pro-
duced by Spin, it was found that the deadlock situation
arises when either the GIOPClient or the GIOPAgent at-
tempts to send a message down to the transport layer
which simultaneously tries to forward a message up. Since
the communication is synchronous between these enti-
ties, this results in a deadlock situation. The deadlock
is a known problem in the TCP protocol and is docu-
mented in the GIOP specification [6] (pp. 12–34). Given
that this is a known problem, a solution was imple-
mented in the GIOP Promela model by employing the
timeout construct of Promela. When the said dead-
lock condition arises, the timeout statement is enabled in
the Transport process. On detecting the deadlock, the
Transport process stores the message from the lower in-
terface in a channel called savedmsg and allows the upper
interface message to be processed. After processing the
upper interface message it checks the savedmsg buffer

Table 3. Bitstate safety validation output in the presence of server migration

Model State-vector Depth States Stored Transitions Hash Factor Memory Real Time

giop1 412 232 2.7e+07 4.0e+07 2.4 16.9 0:16:00
giop2 612 347 2.9e+07 4.6e+07 2.2 17.2 0:55:32
giop3 652 385 6.2e+07 1.0e+08 2.1 33.7 0:55:38
giop4 716 1232 3.9e+07 7.0e+07 1.7 17.3 0:45:47
giop5 740 1337 4.3e+07 8.8e+07 1.5 17.4 1:05:08

Table 4. Exhaustive safety validation output without server migration

Model State-vector Depth States Stored Transitions Hash Factor Memory Real Time

giop1 412 135 203496 245524 - 77.4 0:0:19
giop2 612 200 76611 102464 - 39.7 0:0:11
giop3 628 227 121912 167834 - 65.0 0:0:20

and if it finds a message then it resumes processing the
lower interface message.

CancelRequest problem. In previous work [16] on the
GIOP model a problem was reported due to the use of
CancelRequest messages. The inclusion of CancelRe-

quest messages in the model had caused a non-progress
cycle to be detected by Spin. The cycle resulted from
a condition in which the GIOPClient would repeatedly
send Request and CancelRequestmessages infinitely of-
ten. The problem highlighted the importance of designing
CancelRequest functionality carefully. In this paper, the
GIOP model has been revised and no longer causes the
non-progress cycle. Instead of re-sending a Request after
a CancelRequest, the GIOPClient returns an exception
indication to the User informing it that the Request did
not complete. This new CancelRequestbehavior was val-
idated successfully and was included in all validation runs
for all LTL properties.

Server migration problems. The CORBA GIOP specifi-
cation does not include the concrete specification of a pro-
tocol to support object migration, although this is one of
its specified capabilities. Therefore, we developed a sim-
ple migration protocol for our GIOP Promela model. In
the first cut of the migration protocol, the Server would
initiate a migration by first sending an SMigrate mes-
sage to the source Agent informing it that it intended to
migrate to another Agent. Next, the Server would send
an SRegister message to the destination Agent. Finally,
the Server completed the migration by changing its port
to the port of the target Agent. Agents keep local in-
formation about the location of servers so that they can
forward requests when necessary. A few problems were
found while using the above protocol; they are described
below.

The GIOP model simulates server object migration
by allowing a Server process to initiate migration non-

Server(A) GIOPAgent(1) GIOPAgent(2) Server(B)

A@1 port=2port=1
SRegister(A) SRegister(B)

B@2

SMigrate(2)

A@2

Request(A)
transport

Reply(A@2)

Request(A)

Reply(unknown_obj)

Fig. 9. Race in migration protocol

deterministically at any point in time except if it is al-
ready in the process of migrating. As a result of this,
one interesting scenario that arises is an infinite execu-
tion sequence in which the Server continuously migrates
between GIOPAgents and consequently, no requests ever
get processed. This was detected by Spin as a non-pro-
gress cycle. Although, in reality this may be a patholog-
ical scenario, it could potentially happen in real imple-
mentations. The problem was resolved in the model by
limiting the number of times a server can migrate to a fi-
nite number.

The next problem that was found was a race condition
between the migrating Server and the Requests destined
for the Server. The problem was detected by Spin as an
invalid end-state. The message trail generated by Spin

was used to identify the problem. The trail is reproduced
in Fig. 9. The Request arrives at Agent 2 before Server

A has completed the migration. Agent 2 does not recog-
nize the object_id in the Request and thus returns an
UNKNOWN_OBJECT exception.

A related problem, that was discovered during the
validation of HLR-2, was the potential for a forward-
ing loop. The problem was detected by Spin as a non-
progress cycle. Consider the scenario of Fig. 9 but, instead
of returning UNKNOWN_OBJECT, Agent 2 has a forward-
ing address for Server A13. Until Agent 2 receives the
SRegister, the two agents will be stuck forwarding any
requests back and forth.

The root of both problems is the fact that the lo-
cation information changes at the local Agent before it
changes at the remote Agent. The correction that was
implemented in our Promela model was to register the
Server with the remote Agent first, and then to initiate
the migration from the local Agent. This way forwarded
requests will not be discarded when they reach the remote
Agent. Instead they will be held until the Server com-
pletes the migration and can handle them.

13 This can happen if Server A had previously migrated from
Agent 2 to Agent 1.

Server(A) GIOPAgent(1) GIOPAgent(2) Server(B)

A@1

SMigrate(2)

A@2

A@2,B@2

port=2

port=2

port=1

SRegister(A)

SRegister(A) SRegister(B)

B@2

Fig. 10. Suggested migration protocol

A small problem still remains. SRequests may arrive
at Agent 1 after Server A has initiated the migration
to Agent 2. These SRequests will be queued for Server
A but may not be served since Server A is considered
in transit . To resolve this, an additional step is added to
the migration protocol. Before completing the migration,
the Server must process all SRequests that arrived after
the SRegister, but before the SMigrate. The final cut
of the server migration protocol interaction is illustrated
in Fig. 10.

Order preservation of requests. During the validations of
HLR-10 it was discovered that the order preservation re-
quirement was not met by the GIOP model in the pres-
ence of server migration. Validation of the requirement
in the absence of server migration was also attempted
and also failed. Upon examining the message trail it was
realized that, in the general case, it is not possible to
guarantee that requests will be serviced in the order they
were issued because there is no synchronization between
the servers. Through a simple interleaving, as shown
in Fig. 11, request 1 is processed before request 0.

However, when the model was changed to use only one
server, it was found that HLR-10 validated successfully
in the absence of server migration. With server migration
enabled, HLR-10 does not hold even if only one server is
present. The reason for this is that if the server migrates
while a request is in transit, it can cause the requests to
be processed out of order due to the forwarding mechan-
ism. These results confirmed that the implementation of
GIOP that was constructed does inherently preserve the
order of requests for a single server but that the server
migration functionality interferes with this order preser-
vation. Although the general requirement did not validate
successfully, it does serve to illustrate how Spin can be
used to aid the developer in gaining a better understand-
ing of the limitations of the model.

8 Conclusions

We have presented a formal specification and validation
of the GIOP using the Promela language and the Spin

User(A) User(B) GIOPClient GIOPAgent Server(X) Server(Y)

URequest(A,X)

URequest(B,Y)
Request(A,X)

Request(B,Y)
SRequest(B,Y)

SRequest(A,X)

Fig. 11. Order preservation problem due to message overtaking

model checker. To the best of our knowledge, at the time
of writing, our Promela model is the first formal de-
scription of GIOP in the literature. To validate our model
a representative subset of GIOP’s high-level requirements
were elicited and formalized in linear temporal logic.
These were then converted to never claims and validated
by the Spin tool. Of the ten high-level requirements that
were elicited, nine were validated successfully on the final
GIOP Promela model.

During validation it was discovered that a potential
deadlock exists in the system. This deadlock is known
and is documented in [6] (pp. 12–34). Server migration
proved to be a difficult feature to implement correctly.
A simple migration protocol was outlined to avoid the
discovered problems. Finally, we detected an undesired
interaction between the requirement for order preserva-
tion of method invocations and the provision of an object
migration service.

It should be emphasized that we do not claim to
accomplish a verification or proof of correctness of our
Promela model. First, we have not provided a proof
that our modeling assumptions, which rely on just two
server processes, two agents, two users and one client,
are a property-preserving abstraction of the real GIOP
protocol. A formal justification for the abstractions that
we are using is the subject of future research, and we
currently rely largely on common sense and intuition to
justify our choices. Second, the validation runs were only
possible using non-exhaustive state exploration, hence it
cannot be ruled out with certainty that exhaustive model
checking would reveal execution scenarios that violate
some of our properties. However, the methods we have
employed are certainly sufficient for increasing our con-
fidence that there are no residual design flaws in our
model, and that the model achieves the requirements of
the GIOP specification.

We have shown that finite state modeling and LTL
based model checking can be a useful tool for discovering
logical design errors. In particular, the message sequence
trails that Spin produces were very helpful in discovering
problems and pinpointing the sequence of events leading
to the failure.

When describing the architecture of the CORBA
GIOP in Fig. 2 we resorted to informal structure dia-

grams with boxes and arrows. In order to obtain a visual
documentation of the structure of the GIOP state ma-
chines we relied on SDL-style diagrams. To overcome
Promela’s deficit with respect to visual, architectural
modeling we are currently working on a notation for
Promela to enable visual expression of structural and
behavioral modeling concepts [7].

The use of patterns from [3] helped direct the formal-
ization of informal requirements. Also, the cited pattern
catalog contains a good coverage of the property space
that was used in our validation. At least six different pat-
tern/scope combinations from [3] were used for the for-
mulation of the GIOP requirements. In some cases, the
difference between patterns were very subtle and it was
not immediately clear which pattern was more appropri-
ate. More clarification of these differences through exam-
ples like those found in the Pattern Notes ([2]) would be
beneficial to make more effective use of the patterns. Fur-
thermore, in Spin it is essential to use formulas that are
invariant under stuttering in order to preserve applicabil-
ity of partial order reductions that greatly enhance the
efficiency of the model checking process. Not all pattern
formulas from [3] are invariant under stuttering, namely
those that rely on the next state operator are not. How-
ever, we feel that the use of specification patterns and
their support by specification tools (the XSpin graphical
user interface already provides a specifier with a small set
of specification templates reminiscent of the specification
patterns) will help in allowing LTL property specification
one day to become engineering practice.

Acknowledgements. The authors wish to thank the anonymous ref-
erees for their detailed reviews and helpful suggestions.

References

1. Duval, G.: Specification and verification of an object request
broker. In: Proc. 20th Int. Conf. on Software Engineering (IC-
SE’98), April 1998

2. Dwyer, M., Avrunin, G., Corbett, J., Alavi, H., Dillon, L.,
Pasareanu, C.: Property specification pattern notes. Available
at: http://www.cis.ksu.edu/~dwyer/SPAT/notes.html, 1998

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property spe-

cification patterns for finite state verification.In: Proc. 2nd
Workshop on Formal Methods in Software Practice, March
1998. For access to the patterns catalog see URL
http://www.cis.ksu.edu/~dwyer/spec-patterns.html

4. Ferguson, M.: Formalization and validation of the radio Link
protocol (RLP1). Computer Networks and ISDN Systems
29:(3), 1997

5. Object Management Group. Mobile Agent System Interoper-
ability Facilities Specification. Joint Submission, November
1997

6. Object Management Group. The Common Object Request
Broker: Architecture and Specification. Revision 2.1, August
1997

7. Holzmann, G.J., Leue, S.: Towards v-Promela, a visual,
object-oriented interface for Xspin. Unpublished manuscript,
1998

8. Holzmann, G.J.: Design and Validation of Computer Proto-
cols. Englewood Cliffs, NJ: Prentice Hall, 1991

9. Holzmann, G.J.: The theory and practice of a formal method:
NewCoRe. In: Proc. IFIP World Computer Congress, Ham-
burg, Germany, August 1994

10. Holzmann, G.J.: The model checker Spin. IEEE Trans. on
Software Engineering 23(5): 279–295, May 1997. Special issue
on Formal Methods in Software Practice

11. Holzmann, G.J.: An analysis of bitstate hashing. Formal
Methods in System Design 13(3): 287–305, 1998. Earlier ver-
sion in: Proc. PSTV95, pp. 301–314

12. Holzmann, G.J., Kupferman, O.: Not checking for closure
under stuttering. In: The Spin Verification System, pp. 17–22.
American Mathematical Society, 1996. Proc. 2nd Spin Work-
shop

13. Holzmann, G.J., Doron Peled. An improvement in formal ver-
ification. In: Proc. Formal Description Techniques, FORTE94,
pp. 197–211, Berne, Switzerland. Chapman & Hall, October
1994

14. ITU-T. Recommendation Z.100: Specification and Description
Language (SDL). Geneva, Switzerland, 1993

15. ITU-T. Recommendation Z.100: Specification and Descrip-
tion Language (SDL), Annex F3: Dynamic semantics. Geneva,
Switzerland, 1993

16. Kamel, M., Leue, S.: Validation of remote object invocation
and object migration in CORBA GIOP using Promela/Spin.
In: Proc. 4th Int. SPIN Workshop. Ecole Nationale Supérieure
de la Télécommunication, Paris, France, November 1998

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and
Concurrent Systems. Berlin, Heidelberg, New York: Springer-
Verlag, 1992

18. Natarajan, V., Holzmann, G.J.: Outline for an operational-
sematics definition of Promela. In: Proc. 2nd SPIN Work-
shop, August 1996

19. Wolper, P.: Expressing interesting properties of programs in
propositional temporal logic. In: Conference Record of the
13th Annual ACM Symposium on Principles of Programming
Languages, pp. 184–193. ACM, January 1986

