
Formalization of a Fully-Decoupled Reactive

Tuple Space Model for Mobile Middleware

Suddhasil De, Diganta Goswami, Sukumar Nandi, and Suchetana Chakraborty

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, Assam – 781039, India
{suddhasil,dgoswami,sukumar,suchetana}@iitg.ernet.in

Abstract. This paper suggests an approach for formalizing Tuple Space
based Mobile Middleware (TSMM) that contains a fully-decoupled reac-
tive tuple space model as coordination medium. Formalization of TSMM
is carried out using Mobile UNITY.

Keywords: mobile middleware, coordination, tuple space, Mobile UNITY.

1 Introduction

Mobile middleware [1], an emergent area of middleware research, originates to
support execution of a variety of distributed applications in presence of mobil-
ity and dynamics in underlying infrastructure. Like other existing middleware,
mobile middleware incorporates a suitable coordination medium for managing
asynchronous interactions between different active components of an application,
called agents, whose execution is supported by computing environments called
hosts. Tuple space model [2], a popular coordination model, supports multi-
ple inherent decoupling qualities [3], and as such is a potential coordination
medium for mobile middleware [4], called Tuple Space based Mobile Middleware
(TSMM). In TSMM, tuple is considered as basic unit of information exchanged
during interaction of agents via a shared repository (called tuple space), while
antituple is considered as basic unit of search key to identify some specific tuples
residing in tuple space. Tuple space model subsequently includes reactivity, a
powerful programming construct, to accomplish synchronization decoupling, an-
other decoupling quality for agent interaction [3]. Recently, further decoupling
ability is added to reactivity itself to achieve complete coordination decoupling
in agent interaction [5]. TSMM, with this fully-decoupled tuple space model,
facilitates application designers in developing robust and flexible applications.

Like other software/hardware design, formalization of TSMM is essential for
performing an appropriate analysis of robustness and flexibility in its design.
This paper suggests an approach for formally specifying and developing a TSMM,
which incorporates a fully-decoupled reactive tuple space model, to define its pre-
cise semantics and lay the foundation for its implementation. A general-purpose
formal reasoning tool, Mobile UNITY [6], which is an extension of well-known
UNITY model [7], is used for formalizing this TSMM. After specifying and step-
wise refining behaviors of TSMM in terms of Mobile UNITY, if the specifications

C. Borcea et al. (Eds.): MobilWare 2012, LNICST 65, pp. 77–91, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

78 S. De et al.

satisfy desired safety and progress properties, that TSMM is considered suitable
for supporting robust and flexible applications. Authors believe that exhaustive
formalization of any TSMM has not yet presented, though preliminary speci-
fications of some functionalities exist in literature [8,9]. In both these works,
basic tuple space operations and agent mobility are respectively formalized us-
ing Mobile UNITY, with reference to LIME. Moreover, in [9], formalization of
agent mobility of other coordination models are also depicted. These works differ
from this paper in several ways. First, this paper focuses on formalizing differ-
ent aspects of a particular TSMM exclusively. Second, this TSMM has achieved
full decoupling while coordinating agent interactions, which is widely dissimilar
from LIME. Third, all functionalities of this TSMM, including fully-decoupled
coordination, reactivity as well as associated communication and discovery mech-
anisms, are formalized in this paper. Agent mobility is only abstracted in this
formalization as one macro to simplify its representation. Fourth, this paper also
shows the construction of formal representation of an entire TSMM by combin-
ing individual specifications of its different functionalities using notations of a
standard formal tool. Rest of the paper is organized as follows. Section 2 gives
a brief overview of TSMM having a fully-decoupled reactive tuple space model,
which is next formalized using Mobile UNITY in Section 3. Finally, Section 4
concludes the paper.

2 Overview of TSMM Having Fully-Decoupled Reactive
Tuple Space Model

TSMM is the coordination tool to support agent interaction in mobile distributed
applications, and it intends to provide ubiquity to the wide variety of activities a
user performs. It assumes that connectivity of underlying network infrastructure
can be dynamic and unreliable, whereas coordination between its two interacting
agents is asymmetric. Former assumptions are essential to deal with host mobil-
ity and wireless connectivity of underlying infrastructure, while latter assump-
tion brings more control on interacting agent, as it can accept/deny interactions
with other available agents based on context, like users’ choice, link capacity etc.

Architecture. TSMM comprise of several components, each of which are spe-
cific to agent or host. Each agent contains a local tuple space, called agent tuple
space (ATS), and interfaces of ATS. Besides these two components, another compo-
nent handles invoke of local primitives, while a pair of components handle invoke
of remote primitives. Also, asymmetric interaction in each agent is enforced by
acquaintance list. Each instance of host, running in each device, supports execu-
tion of multiple agents. In each host, different components manage functionalities
of communication, discovery, host’s core functionalities, a common tuple space
called host tuple space (HTS), interfaces of HTS, agent management and mobility
etc. Architecture of TSMM with all its components is shown in figure 1.

Tuple Space Model. In TSMM, tuples and antituples are considered as un-
ordered sequence of heterogeneously typed fields, as presented in [10]. During

Formalization of Tuple Space Model 79

Host

DISTRIBUTED MULTI-THREADED APPLICATIONS

Tuple Space Interface

Local Operation Manager

Agent Tuple
Space (ATS)

Configuration
 Interface

 ATS
Reaction
Manager

Agent

 Agent
 Mobility
 Manager

Communication Manager

Incoming

 Remote
Operation
 Manager

 HTS
Interface

 Host
 Tuple
Space
 (HTS)

Agent's Availability
Checker & Notifier

Discovery
 Manager

Neighbor
 List

Agent List

 Agent
Manager

 Host's Availability
Checker & Notifier

 Host Server

ATS Interface

Outgoing

Acquaintance
 List

OS & Network Services

Reaction
 List

Remote Op
 List

Fig. 1. Architecture of TSMM showing its significant components

interaction between any pair of agents (initiator of interaction is reference agent
and destination becomes target agent), reference agent is interested in some tu-
ples of tuple space, termed sought tuples [11], which are related to its interaction.
It uses antituple to identify these sought tuples. While searching for sought tu-
ples, antituple fields are compared with tuple fields following ‘type-value’, ‘exact
value’ and ‘polymorphic’ matching conditions. Only fields of sought tuples match
positively with fields of given antituple. Before reading/withdrawing sought tu-
ples, they are first identified from tuple space by following tuple-antituple match-
ing using given antituple. Different primitives are defined to carry out writing,
reading and withdrawing tuples from tuple space. Tuple space is partitioned into
preamble and tuple store for identifying apposite tuples. Apposite tuples refer to
those tuples present in tuple space, whose fields are suitable for matching with
all constituent fields of an antituple according to matching conditions. In other
words, sought tuples are selected from the set of apposite tuples. Preamble of
tuple space holds all index tables corresponding to different constituent fields
of all tuples present in tuple space, while tuple store is the actual storehouse
of those tuples. Each index table is a list holding a set of indices of tuples in
tuple store, which contains at least one constituent field having name or type

80 S. De et al.

identical or polymorphically-related to table name. Any tuple-reading or -consuming
primitive first identifies index table, whose content indicates locations of differ-
ent apposite tuples in tuple store for given antituple. Moreover, tuple-consuming
primitives, after withdrawing one/more sought tuples, update all relevant index
tables in preamble. On the other hand, tuple-producing primitives first write
given tuple(s) in tuple store, and update indices of written tuple(s) in all re-
quired index tables. Both ATS and HTS follow this structure of tuple space.

Both local and remote tuple-producing, tuple-reading and tuple-consuming
primitives are present for handling tuple space operations in ATS. Tuple-producing
primitives cover out and outg, while tuple-reading primitives include rd, rdp, rdg
and rdgp, and tuple-consuming primitives are in, inp, ing and ingp. Remote
primitives are both blocking as well as nonblocking, whereas local primitives
are solely nonblocking. Each agent carries out invoked local primitives in its
ATS. Local primitives include out, outg, rdp, rdgp, inp and ingp, whereas, remote
primitives supported are out, outg, rd, rdp, rdg, rdgp, in, inp, ing and ingp,
details of which are given in [5]. For executing remote operations, parameters of
invoked primitives are shipped by reference agent to specified target agent(s),
executed in ATS of each target agent and results of execution, if any, are sent back
to reference agent. On the other hand, only two special primitives, viz. inject
and eject, which are tuple-producing and -consuming respectively in nature,
are provided for managing operations locally on HTS. However, only primitives
corresponding to ATS are provided as application programming interfaces (APIs)
for application programmers.

Reactivity Model. For achieving synchronization decoupling (i.e. decoupling
reference agent from its invoked remote primitives), TSMM incorporates reac-
tivity in ATS, which is the ability of ATS to monitor and respond to different
circumstances (called events) during execution [12]. Reactivity is implemented
by generating and registering reaction in ATS for monitoring and responding
to events (like, presence of a particular sought tuple in tuple space etc.). For
recognizing relevant event, reaction expects some condition to be specified by
means of antituple. If condition gets satisfied, desired event is said to happen
and corresponding registered reaction fires. Firing of reaction signifies that some
application-defined actions (called reactive codes) will be executed subsequently,
like notifying presence of tuples, withdrawing tuples from ATS etc, and responses
are sent back to reference agent. Mode of a reaction indicates its active period,
and is of two types in TSMM, viz. ONCE and ONCE/TUPLE. With ONCE modality, re-
actions fire once irrespective of the number of matching tuples and immediately
get deregistered, while reactions with ONCE/TUPLE mode continue firing for each
positively-matched tuple of ATS. Typically, a reaction comprises of antituple,
name of invoked primitive, reactive code, identity of ATS, mode, user identity
etc., of which antituple, invoked primitive name, reactive code and ATS identity
are mandatory components.

Fully-Decoupled Coordination Model. In TSMM, interactions among dif-
ferent agents are completely decoupled by using decoupled reactivity model [5].

Formalization of Tuple Space Model 81

In this reactivity model, HTS is the additional layer of decoupling medium that
accomplishes complete decoupling of agent interaction. HTS is used for storing
two special tuples (viz. reaction tuple and response tuple). Reaction tuples are
created from different parameters of invoked remote primitives, while response
tuples are created from the result of execution of different remote primitives as
well as while maintaining consistency in agent interaction. Reaction tuples and
response tuples are both unordered tuples [10], and so their arity and nature of
constituent fields vary with nature of invoked remote primitives. Reaction tuple
is first inserted into HTS of reference host using inject primitive. On availabil-
ity of target host (different from reference host), it is withdrawn from reference
host’s HTS using eject, passed over communication links to reach target host,
and subsequently inserted into its HTS. Eventually, reaction tuple is withdrawn
from target host’s HTS, once desired target agent becomes available. It is pro-
cessed next to extract parameters of invoked primitive, and execution of invoked
remote primitive starts at ATS of target agent. In case of remote tuple-reading
and -consuming primitives, target agent packs results of execution (viz. sought
tuple(s) from ATS of target agent) and other necessary parameters into response
tuple. Following previous approach, that response tuple eventually reaches ref-
erence agent, and sought tuple(s) are extracted from it. For achieving consis-
tency in this asynchronous form of coordination, reference agent responds back
with ACK tuple and NACK tuple when it has invoked any tuple-consuming
primitives. ACK tuple positively acknowledges target agent about selection of
its responded tuple as sought tuple, whereas NACK tuple returns non-selected
responded tuple back to target agent. These special tuples are converted into
response tuples before dispatch to target agents.

Additional Supporting Concepts. For execution over unreliable and dy-
namic underlying infrastructure, TSMM includes its own communication and
discovery mechanisms that interfaces with transport service of corresponding
device to achieve data transmission. Among the underlying infrastructure, this
paper considers that Infrastructure Basic Service Set (iBSS) is deployed under
TSMM. When deployed over iBSS, three categories of hosts are earmarked for
TSMM, viz. stationary host, mobile host and access point. Stationary hosts are
provided with only wired network connectivity, whereas mobile hosts are only
having wireless network connectivity. Access point acts as a “mediator” either
between a pair of mobile hosts, or between a mobile host and a stationary host,
as it contains both wired and wireless network interfaces. Discovery mechanism
furnishes an updated knowledge of available agents (along with their hosts) that
are reachable from (i.e. neighbors of) reference host. This knowledge, utilized
by other components of TSMM, is attained by sending and receiving beacons
and is preserved in NeighborList. However, communication mechanism empha-
sizes on reliably transferring reaction/response tuples from one host to another.
It uses additional acknowledgement mechanism to achieve this reliability. How-
ever, acknowledgement mechanism is only required when mobile hosts and their
associated access point are communicating via wireless network interfaces.

82 S. De et al.

System TSMM

Program host(i) at λ

...
... {Program description of host(i), given separately}

Program agent(k) at λ

...
... {Program description of agent(k), given separately}

Components

〈� i :: host(i) 〉 � 〈� k :: agent(k) 〉

Interactions

{Attach TW of all hosts with wired network interfaces as transiently-shared variable}
sharedW ::

〈� i, j :: host(i).TW ≈ host(j).TW

when
(
isSH(host(i)) ∨ isAP(host(i))

) ∧ (
isSH(host(j)) ∨ isAP(host(j))

)

engage host(i).TW disengage current ‖⊥
〉

{Attach TWL of mobile host and access point as transiently-shared variable, only when colocated}
� sharedWL ::

〈� i, j :: host(i).TWL ≈ host(j).TWL

when
((
isMH(host(i)) ∧ isAP(host(j))

) ∨ (
isAP(host(i)) ∧ isMH(host(j))

))

∧ (host(i)Γ′host(j))

engage host(i).TWL disengage current ‖⊥
〉

{Prepare to register active agents in respective hosts}
� regAgent :: 〈� i, k :: host(i).Qin := host(i).Qin • agent(k).aid when (host(i).λ = agent(k).λ) 〉

{Prepare to deregister terminated/migrated agents from respective hosts}
� deregAgent :: 〈� i, k :: host(i).Qout := host(i).Qout • agent(k).aid when ¬(host(i).λ = agent(k).λ) 〉

end

Fig. 2. Mobile UNITY system of TSMM

3 Proposed Approach of Formalization of TSMM

This section proposes an approach of formalization of TSMM as a Mobile UNITY
system, comprising of a set of formal programs representing different agents and
hosts. Favoring Mobile UNITY over other formal tools is due to its suitability
for formalizing inherently non-terminating programs (like mobile middleware),
reasoning about agents temporal behavior using its proof rules, and following
stepwise specification and refining. In System TSMM, as shown in Figure 2, sev-
eral instances of two Mobile UNITY programs are components of whole system,
and their interaction are specified in Interactions section. i-th host is specified
by Program host(i), whereas k-th agent is represented by Program agent(k),
where i and k are assumed to be quantified over appropriate ranges. Different
conditions for two hosts or a host and an agent to interact in Interactions section
are enforced through when clauses. engage and disengage clauses, and current

construct are used for effecting transient sharing between different hosts. Also,
first two statements in Interactions section, labeled as sharedw and sharedwl,
are reactive statements as they have used “≈” notation [13].

Formalization of Tuple Space Model 83

Program agent(k) at λ

declare
type : ∈{stationary,mobile} � aid, taid, a : agentid � taids : sequence of agentid

� T : tuple space � t , tuple : tuple � t, tuples : set of tuple � a, atuple : antituple

� T : set of {agentid, set of tuple} � r : RTtuple � QTS
ak

,QTR
ak

: queue of RTtuple � prid : primitiveid

� ROL : sequence of (primitiveid, primitivename, set of agentid of target agents)

� RL : sequence of (reactionid, primitiveid)

� prType : ∈{local, remote} � prName : ∈{OUT,OUTG,RD,RDG,RDP,RDGP, IN, ING, INP, INGP}
� mode : ∈{ONCE,ONCE/TUPLE} � TAs, rform : natural � prBulk, prRdIn, UsrRdy4Evt : boolean

always
aid := getMyAgentID(k) � type := getAgentType(stationary,mobile)

� isPresentinROL(prid, taid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (aid ∈ e ↑ 3) 〉
� isEmptyinROL(prid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (e ↑ 3 = ∅) 〉

initially
λ = Location(k) � TAs = 0 � rform = 0 � T =⊥ � ROL =⊥ � RL =⊥ � T = ∅

� t = ε � tuple = ε � t = ∅ � tuples = ∅ � a = ε � atuple = ε � QTS
ak

=⊥ � QTR
ak

=⊥
� UsrRdy4Evt = false

assign
{Migrate to different location}

� λ := Location(Move())

{Capture different parameters when user application is ready}
� 〈 prType, prName,UsrRdy4Evt := getPrimType(),getPrimName(), false

‖ prRdIn, prBulk := getPrimRDorIN(),getPrimBulk()

‖ tuple := getTuple() if
(
(prRdIn = false) ∧ (prBulk = false)

)

‖ tuples := getTuples() if
(
(prRdIn = false) ∧ (prBulk = true)

)

‖ atuple := getAntiTuple() if (prRdIn = true)

‖ TAs := getTargetAgentCount() if (prType = remote)

‖ 〈‖ a : 1 ≤ a ≤ TAs :: taids[a] := getTargetAgentID(a)〉 if (prType = remote)

‖ mode := getMode(ONCE,ONCE/TUPLE) if
(
(prType = remote) ∧ (prRdIn = true)

)

〉 if (UsrRdy4Evt = true)

{- - - - - - - - - - Start of Local Operation Manager - - - - - - - - - -}
{Perform different local tuple space primitives}

� 〈 t , tuple, prType := tuple, ε, ε ‖ out(t ,T) 〉 if
(
(prType = local) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ outg(t,T)
〉 if

(
(prType = local) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε

‖ 〈 t := rdp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = RDP)

‖ 〈 t := rdgp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = RDGP)

‖ 〈 t := inp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = INP)

‖ 〈 t := ingp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = INGP)

〉 if
(
(prType = local) ∧ ¬(atuple = ε)

)

{- - - - - - - - - - End of Local Operation Manager - - - - - - - - - -}

Fig. 3. Mobile UNITY Program agent(k): part 1

84 S. De et al.

{- - - - - - - - - - Start of Remote Operation Manager - - - - - - - - - -}
{Initiate (as reference agent) execution of different remote tuple space operations}

� 〈 t , tuple, prType := tuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S
ak

:= QT S
ak

• createRTupler(rform, prid, prName, t , mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S
ak

:= QT S
ak

• createRTupler(rform, prid, prName, t, mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ ROL := ROL ∪ {prid, prName, taids}
‖ 〈‖ a : 1 ≤ a ≤ TAs :: QT S

ak
:= QT S

ak
• createRTupler(rform, prid, prName, a, mode, aid, taids[a])〉

〉 if
(
(prType = remote) ∧ (prRdIn = true) ∧ ¬(atuple = ε)

)

� 〈 r,QT R
ak

:= head(QT R
ak
),tail(QT R

ak
) ‖ prid := r ↑ prid

‖ 〈 Tprid := Tprid ∪ {r ↑ tAid, r ↑ data} ‖ 〈 ∃e : (e ∈ ROL) ∧ (e ↑ 1 = prid) :: e ↑ 3 := e ↑ 3 \ r ↑ tAid 〉
〉 if

(
(r ↑ rAid = aid) ∧ isPresentinROL(prid, r ↑ tAid)

) {Handling Response tuple}
〉 if

(¬(QT R
ak

=⊥) ∧ (head(QT R
ak
) ↑ rform = 2)

)

{Return result of execution of remote tuple-reading or -consuming operation to user}
� 〈‖ e : (e ∈ ROL) ∧ (e ↑ 3 = ∅)

:: prid, prName := e ↑ 1, e ↑ 2 ‖ ROL := ROL \ e

‖ 〈 〈‖ e : e ∈ Tprid :: t := t ∪ e ↑ tuples 〉 ‖ retTuples2Usr(t)
‖ 〈‖ e : e ∈ Tprid ∧ (

(prName = ING) ∨ (prName = INGP)
)

:: QT S
ak

:= QT S
ak

• createRTupler′(3, prid, prName, aid, e ↑ tAid) 〉
〉 if

(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

‖ 〈 〈‖ e : e = e′.(e′ ∈ Tprid) :: t , taid := e ↑ tuple, e ↑ tAid 〉 ‖ retTuple2Usr(t)
‖ QT S

ak
:= QT S

ak
• createRTupler′(3, prid, prName, aid, taid)

if
(
(prName = IN) ∨ (prName = INP)

)

‖ 〈‖ e : e ∈ Tprid ∧ ¬(e ↑ tAid = taid) ∧ (
(prName = IN) ∨ (prName = INP)

)

:: QT S
ak

:= QT S
ak

• createRTupler′(4, prid, prName, e ↑ tuple, aid, e ↑ tAid) 〉
〉 if

(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

〉
{- - - - - - - - - - End of Remote Operation Manager - - - - - - - - - -}

Fig. 4. Mobile UNITY Program agent(k): part 2

Different agent behavior, including functionalities of ATS, Local Operation Man-

ager, Remote Operation Manager, ATS Reaction Manager etc. are contained in agent(k)

as shown in Figure 3, Figure 4, and Figure 5. Similarly, functionalities of different
components of host, including Transport Interface, Discovery Manager, Communica-

tion Manager, Host Server, Agent Manager etc., are contained in host(i) as shown in
Figure 6, Figure 7, Figure 8, Figure 9, and Figure 10. However, in above formal
system, many aspects of TSMM are not directly formalized, to keep this for-
mal system simple. Among these aspects, formalizing the mechanism to handle
agent mobility (i.e. migration of agents from one host to another) is already
shown in literature [14,9]. Also, correctness of above formal system (i.e. prov-
ing its safety/progress properties, and safety/progress properties of its individual
components and of statements specified in Interactions section) is omitted here.

Formalization of Tuple Space Model 85

{- - - - - - - - - - Start of ATS Reaction Manager - - - - - - - - - -}
{Complete execution of different remote tuple space operations}

� 〈 r,QT R
ak

:= head(QT R
ak
),tail(QT R

ak
) ‖ prid := r ↑ prid ‖ prName := r ↑ pName

‖ prBulk := true

if
(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

∼ false

if
(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

‖ 〈 〈 t := r ↑ data ‖ out(t , T) 〉 if (prName = OUT)

‖ 〈 t := r ↑ data ‖ outg(t, T) 〉 if (prName = OUTG)

‖ 〈 a := r ↑ data ‖ t := rd(a, T) 〉 if (prName = RD)

‖ 〈 a := r ↑ data ‖ t := rdg(a, T) 〉 if (prName = RDG)

‖ 〈 a := r ↑ data ‖ t := rdp(a, T) 〉 if (prName = RDP)

‖ 〈 a := r ↑ data ‖ t := rdgp(a, T) 〉 if (prName = RDGP)

‖ 〈 a := r ↑ data ‖ t := in(a, T) 〉 if (prName = IN)

‖ 〈 a := r ↑ data ‖ t := ing(a, T) 〉 if (prName = ING)

‖ 〈 a := r ↑ data ‖ t := inp(a, T) 〉 if (prName = INP)

‖ 〈 a := r ↑ data ‖ t := ingp(a, T) 〉 if (prName = INGP)

‖ rform := 2

‖ QT S
ak

:= QT S
ak

• createRTupler′(rform, prid, prName, t , aid, r ↑ rAid) if (prBulk = false)

‖ QT S
ak

:= QT S
ak

• createRTupler′(rform, prid, prName, t, aid, r ↑ rAid) if (prBulk = true)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 1)

) {Handling Reaction tuple}
‖ 〈 t := r ↑ data ‖ out(t , T)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 4)

) {Handling NACK tuple}
〉 if

(¬(QT R
ak

=⊥)∧
(
(head(QT R

ak
) ↑ rform = 1) ∨ (head(QT R

ak
) ↑ rform = 3) ∨ (head(QT R

ak
) ↑ rform = 4)

))

{- - - - - - - - - - End of ATS Reaction Manager - - - - - - - - - -}

{Discard messages destined for other agents}
� QT R

ak
:= tail(QT R

ak
) if

(¬(QT R
ak

=⊥) ∧ ¬(head(QT R
ak
) ↑ dstAg = aid)

)

end

Fig. 5. Mobile UNITY Program agent(k): part 3

Different variables pertaining to behavior of hosts and agents in TSMM are
used in this formal system. For instance, Q is used to express any queue used
to define different activities of TSMM; its subscripts represent purpose of us-
ing it. In this specification, head(Q) returns front element of Q, while tail(Q)

returns all elements of Q except front element. Also, Q • M inserts M in the
rear end of Q and returns updated Q. Each message M comprises of message
identity mid, source host’s identity src, destination host’s identity dest, type of
message kind, data encapsulated within the message data, and network interface,
ni, through which the message will be transmitted. M is generated by calling
newMsg(src, dest,kind, data,ni), which inserts its mid to return the complete mes-
sage. Possible types of messages included in the specification are BCON, RT, ACK,
Locate, and Found messages.

86 S. De et al.

Program host(i) at λ

declare
type : ∈{stationary, mobile, accesspoint}

� hid : hostid

� nwdeploy : ∈{iBSS, IBSS}
� status : ∈{standalone, associated}
� T′ : tuple space

� QT S
ak

,QT R
ak

: queue of RTtuple

� a : agentid

� A : set of agentid

� Qin,Qout : queue of agentid

� assoc : set of hostid

� H : set of (MHhostid, APhostid, timestamp)

� L : set of (MHhostid, RTtuple, timestamp)

� CS : message

� LRT : set of (APhostid/MHhostid, RTmsgid)

� N : set of (Hosthostid, set of agentid, timestamp, extant)

� QSB ,QRB : queue of message

� QSRT ,QRRT : queue of message

� QRT S ,QRT R : queue of RTtuple

� r : RTtuple

� TW, TWL : message

� QSW ,QSWL : queue of message

� QS ,QR : queue of message

� M, m : message

� clock, lastHTSchk, lastRTsent, lastBsent, newRTGap, rtAtmpt : natural

Fig. 6. Mobile UNITY Program host(i): part 1

3.1 Formalization of agent(k)

Each agent is represented by program agent(k), which comprises of declare,
always, initially and assign sections. Agent behavior is specified by different
variables that are declared in declare section. In particular, aid and type are
declared as agent identity and nature (viz. stationary agent/mobile agent) of
any agent(k). T is declared as ATS of agent(k). Also, prid is declared as identity
of invoked primitive of agent(k). ROL is declared as remote operation list of
agent(k), and RL is declared as reactive list of agent(k). QTS

ak
and QTR

ak
are

declared as queues to interface between agents and their supported hosts. These
queues are defined to transfer request/response tuples from agents to hosts and
vice versa. When user application is generating an event for any tuple space
operation, corresponding agent must capture different parameters required to
complete that operation. In the specification, readiness of user application is
abstracted by UsrRdy4Evt, a boolean variable. Once user application is ready,
capturing values of different parameters are specified by using different functions.

Formalization of Tuple Space Model 87

always
BiBSSW = IBSSBROADCASTADDRESSDS � BiBSSWL = IBSSBROADCASTADDRESSBSA

� BIBSSWL = IBSSBROADCASTADDRESS

� λ := Location(i)

� hid := getMyHostID(i)

� type := getHostType(stationary, mobile, accesspoint)

� nwdeploy := getUnderlyingInfra(iBSS, IBSS)

� mhGap = SYSTEMMHVALIDITYINTERVAL � HTSaccessGap = SYSTEMHTSACCESSINTERVAL

� locateGap = SYSTEMLOCATEMSGINTERVAL � bconGap = SYSTEMBEACONINTERVAL

� mhGap = SYSTEMMHVALIDITYINTERVAL � bLife = SYSTEMBEACONLIFETIME

� isPresentH (mhid) ≡ 〈 ∃e : (e ∈ H) ∧ (e ↑ 1 = mhid) 〉
� isPresentL(mhid) ≡ 〈 ∃e : (e ∈ L) ∧ (e ↑ 1 = mhid) 〉
� isPresentN (hostid) ≡ 〈 ∃e : (e ∈ N) ∧ (e ↑ 1 = hostid) 〉
� isPresentLRT (hostid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) 〉
� isRepeatLRT (hostid, msgid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) ∧ (e ↑ 2 = msgid) 〉
� isValidH (e, now) ≡ (

(e ∈ H) ∧ ((now − e ↑ 3) ≤ mhGap)
)

� isValidL(e, now) ≡ (
(e ∈ L) ∧ (

(now − e ↑ 3) ≤ locateGap
))

� isValidN (e, now) ≡ (
(e ∈ N) ∧ (

(now − e ↑ 3) ≤ e ↑ 4))

� isMsgBcon(msg) ≡ (msg· kind = Beacon)

� isMsgRT(msg) ≡ (msg· kind = RT)

� isMsgACK(msg) ≡ (msg· kind = ACK)

� isMsgLocate(msg) ≡ (msg· kind = Locate)

� isMsgFound(msg) ≡ (msg· kind = Found)

� isNotOwnMsg(msg) ≡ ¬(msg· src = hid)

� isSH(host) ≡ (host· type = stationary)

� isMH(host) ≡ (host· type = mobile)

� isAP(host) ≡ (host· type = accesspoint)

initially
clock = 0 � lastHTSchk = 0 � lastRTsent = 0 � lastBsent = 0

� status = standalone � assoc = ∅ � H = ∅ � L = ∅ � LRT = ∅ � A = ∅ � N = ∅
� T′ =⊥ � TW =⊥ � TWL =⊥ � CS =⊥
� QT S

ak
=⊥ � QT R

ak
=⊥ � Qin =⊥ � Qout =⊥ � QRT S =⊥ � QRT R =⊥

� QSB =⊥ � QRB =⊥ � QSRT =⊥ � QRRT =⊥ � QSW =⊥ � QSWL =⊥ � QS =⊥ � QR =⊥

Fig. 7. Mobile UNITY Program host(i): part 2

3.2 Formalization of host(i)

Like agent(k), host(i) is also composed of declare, always, initially and assign

sections. Different variables related to host behavior is declared in declare sec-
tion. In particular, hid is declared as host identity of any host(i), whereas type

specifies nature of host(i) (viz. stationary host/mobile host/access point). T′ is
declared as its HTS. H and L are declared for History (that records path of
successful data transfer to different mobile hosts) and location list (that keeps
mobile hosts with ongoing location search) respectively for host(i) of stationary
hosts and access points. Moreover, LRT and CS are declared for LastRT (that
records message identity of last data messages received from different hosts) and
CommStash (that buffers data messages) respectively of host(i) of mobile hosts

88 S. De et al.

assign
{Increment the clock}

� clock := clock + 1

{- - - - - - - - - - Start of Transport Interface - - - - - - - - - -}
{Organize a message for onward transmission}

� 〈 M,QS := head(QS),tail(QS)

‖ 〈 QSW := QSW • M if (M ·ni = W) ‖ QSWL := QSWL • M if (M ·ni = WL) 〉
〉 if ¬(QS =⊥)

{Transfer a message from QSW to TW; make TW empty after some time}
� transmit&resetW :: 〈 TW,QSW := head(QSW),tail(QSW) if ¬(QSW =⊥) ∧ (TW =⊥) ;

TW :=⊥ 〉
{Transfer a message from QSWL to TWL; make TWL empty after some time}

� transmit&resetWL :: 〈 TWL,QSWL := head(QSWL),tail(QSWL) if ¬(QSWL =⊥) ∧ (TWL =⊥) ;
TWL :=⊥ 〉

{Transfer a message from TW to QR}
� 〈 QR := QR • TW if isNotOwnMsg(TW) 〉 reacts-to ¬(TW =⊥)

{Transfer a message from TWL to QR}
� 〈 QR := QR • TWL if isNotOwnMsg(TWL) 〉 reacts-to ¬(TWL =⊥)
{- - - - - - - - - - End of Transport Interface - - - - - - - - - -}

{Organize a received Beacon/RT/ACK/Locate/Found message for further processing}
� 〈 M,QR := head(QR),tail(QR)

‖ 〈 QRB := QRB • M if isMsgBcon(M)

‖ QRRT := QRRT • M if isMsgRT(M) ∨ isMsgACK(M) ∨ isMsgLocate(M) ∨ isMsgFound(M)

〉
〉 if ¬(QR =⊥)

Fig. 8. Mobile UNITY Program host(i): part 3

and access points. Also, N and A are declared to represent NeighborList and
AgentList respectively of any host. Different macros related to various aspects of
discovery and communication mechanisms, used in this specification, are skipped
in this paper for space limitations.

At the lowest level, TSMM interacts with transport service of supporting
device, which is formalized as Transport Interface by a set of assignment state-
ments. Discovery Manager and Communication Manager interchange messages with
Transport Interface through two different queues, viz. QS and QR. Behavior of
Discovery Manager and Communication Manager are abstracted according to the na-
ture of host, which is subscripted in corresponding macro. These macros are,
in turn, used in different assignment statements to complete various functional-
ities of Discovery Manager and Communication Manager. Host Server interchanges
request/response tuples (represented as RTtuple) with Communication Manager

through QRTS and QRTR , which is formalized via a set of assignment state-
ments. Similarly, in this specification, a pair of assignment statements formalizes
registration/deregistration functionalities of Agent Manager.

Formalization of Tuple Space Model 89

{- - - - - - - - - - Start of Discovery Manager - - - - - - - - - -}
{Prepare to send Beacon message to destination}

� 〈 QSB , lastBsent := QSB • discSendWiBSS(), clock if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent := QSB • discSendWLiBSS(), clock if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent :=
(QSB • discSendWiBSS()

) • discSendWLiBSS(), clock

if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ((clock − lastBsent) > bconGap)

{Process received Beacon message}
� 〈 discRcvSHiBSS(QRB) if

(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvMHiBSS(QRB) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvAPiBSS(QRB) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRB =⊥)
{Remove expired entries from N}

� discValidNiBSS() if
(
(isSH(hid) ∨ isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

{Update assoc on account of change in associated AP of MH}
� 〈 discUpdtMHiBSS

() if
(
isMH(hid) ∧ (nwdeploy = iBSS)

) 〉
〉 if (¬isPresentN (assoc[0]) ∨ ¬isValidN (〈∃e : e ↑ 1 = assoc[0] :: e〉, clock))

{- - - - - - - - - - End of Discovery Manager - - - - - - - - - -}

{Organize a Beacon message for onward transmission}
� 〈 QS ,QSB := QS • head(QSB),tail(QSB) 〉 if ¬(QSB =⊥)

{- - - - - - - - - - Start of Host Server - - - - - - - - - -}
{Process received RT from different agents}

� 〈� k :: 〈 r,QT S
ak

:= head(QT S
ak
),tail(QT S

ak
) ‖ inject(r, T′) 〉 if ¬(QT S

ak
=⊥) 〉

{Process received RT from COMMUNICATION module}
� 〈 r,QRT R := head(QRT R),tail(QRT S) ‖ inject(r, T′) 〉 if ¬(QRT R =⊥)

{Periodically extract RT from HTS for onward transfer to target agents in same/different hosts}
� 〈 〈‖ a : a ∈ A :: r := eject(a, T′) ‖ 〈QT R

a
:= QT R

a
• r if ¬(r = ε)〉 〉

‖ 〈‖ e : (e ∈ N) ∧ (A = e ↑ 2) :: 〈‖ a : a ∈ A :: r := eject(a, T′) ‖ 〈QRT S := QRT S • r if ¬(r = ε)〉 〉 〉
‖ lastHTSchk := clock

〉 if (clock − lastHTSchk > HTSaccessGap)

{- - - - - - - - - - End of Host Server - - - - - - - - - -}

Fig. 9. Mobile UNITY Program host(i): part 4

90 S. De et al.

{- - - - - - - - - - Start of Communication Manager - - - - - - - - - -}
{Prepare to send RT/Locate message to destination}

� 〈 commSendSHiBSS(QRT S) if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendMHiBSS(QRT S) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendAPiBSS(QRT S) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRT S =⊥)
{Process received RT/Locate/Found message, and prepare to send RT/ACK/Found message}

� 〈 commRcvSHiBSS(QRRT) if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvMHiBSS(QRRT) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvAPiBSS(QRRT) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if ¬(QRRT =⊥)
{Resend RT message whose ACK fails to reach before timeout}

� 〈 QSRT := QSRT • commReSendRTiBSS() if
(
(isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

〉 if ((clock − lastRTsent) > newRTGap)

{Process RT message whose destination is presently not available}
� 〈 〈 QRT R := QRT R • CS· data ‖ CS :=⊥ 〉 if

(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ 〈 QSRT := QSRT • newMsg(hid, BiBSSW , Locate, CS· dest, W
)

‖ L := L ∪ {(CS· dest, CS· data, clock)} 〉 if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

〉 if
(¬(CS =⊥) ∧ (rtAtmpt > 3)

)

{Remove expired entries from H and L, and preserve unsent RT}
� commValidH LiBSS() if

(
(isSH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

{- - - - - - - - - - End of Communication Manager - - - - - - - - - -}

{Organize RT/ACK/Locate/Found message for onward transmission}
� 〈 QS ,QSRT := QS • head(QSRT),tail(QSRT) 〉 if ¬(QSRT =⊥)

{- - - - - - - - - - Start of Agent Manager - - - - - - - - - -}
{Register active agents in A}

� A,Qin := A ∪ head(Qin),tail(Qin) if ¬(Qin =⊥)
{Deregister terminated/migrated agents from A}

� A,Qout := A \ head(Qout),tail(Qout) if
(¬(Qout =⊥) ∧ (head(Qout) ∈ A))

{- - - - - - - - - - End of Agent Manager - - - - - - - - - -}

end

Fig. 10. Mobile UNITY Program host(i): part 5

4 Conclusion

This paper has proposed an approach of formalization of a TSMM, which incor-
porates a fully-decoupled reactive tuple space model, using Mobile UNITY. It
has been formally specified as a Mobile UNITY system, which is comprised of
components representing different behaviors of agents and hosts of TSMM.

References

1. Bruneo, D., Puliafito, A., Scarpa, M.: Mobile Middleware: Definition and Motiva-
tions. In: Bellavista, P., Corradi, A. (eds.) The Handbook of Mobile Middleware,
pp. 145–167. Auerbach Pub. (2007)

2. Gelernter, D.: Generative Communication in Linda. Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

Formalization of Tuple Space Model 91

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
Publish/Subscribe. Computing Surveys 35(2), 114–131 (2003)

4. Cabri, G., Ferrari, L., Leonardi, L., Mamei, M., Zambonelli, F.: Uncoupling Co-
ordination: Tuple-Based Models for Mobility. In: Bellavista, P., Corradi, A. (eds.)
The Handbook of Mobile Middleware, pp. 229–255. Auerbach Pub. (2007)

5. De, S., Nandi, S., Goswami, D.: Modeling an Enhanced Tuple Space based Mobile
Middleware in UNITY. In: Proc. 11th IEEE International Conference on Ubiqui-
tous Computing and Communications, IUCC 2012 (June 2012)

6. Roman, G.C., McCann, P.J., Plun, J.Y.: Mobile UNITY: Reasoning and Specifi-
cation in Mobile Computing. Transactions on Software Engineering and Method-
ology 6(3), 250–282 (1997)

7. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Reading (1988)

8. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A Coordination Model and Mid-
dleware supporting Mobility of Hosts and Agents. Transactions on Software Engi-
neering and Methodology 15(3), 279–328 (2006)

9. Roman, G.-C., Payton, J.: Mobile UNITY Schemas for Agent Coordination. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
126–150. Springer, Heidelberg (2003)

10. De, S., Nandi, S., Goswami, D.: On Performance Improvement Issues in Unordered
Tuple Space based Mobile Middleware. In: Proc. 2010 Annual IEEE India Confer-
ence, INDICON 2010 (December 2010)

11. Gelernter, D., Bernstein, A.J.: Distributed Communication via Global Buffer. In:
Proc. 1st Symp. on Principles of Distributed Computing (PODC 1982), pp. 10–18
(August 1982)

12. Denti, E., Natali, A., Omicini, A.: On the Expressive Power of Language for Pro-
gramming Coordination Media. In: Proc. Symposium on Applied Computing (SAC
1998), pp. 169–177 (August 1998)

13. McCann, P.J., Roman, G.C.: Compositional Programming Abstractions for Mobile
Computing. Transactions on Software Engineering 24(2), 97–110 (1998)

14. Picco, G.P., Roman, G.C., McCann, P.J.: Reasoning about Code Mobility with
Mobile UNITY. Transactions on Software Engineering and Methodology 10(3),
338–395 (2001)

	Formalization of a Fully-Decoupled Reactive Tuple Space Model for Mobile Middleware
	Introduction
	Overview of TSMM Having Fully-Decoupled Reactive Tuple Space Model
	Proposed Approach of Formalization of TSMM
	Formalization of agent(k)
	Formalization of host(i)

	Conclusion
	Conclusion
	References

