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Abstract This paper presents a formalization in higher-order logic of a prac-
tical representation of multivariate Bernstein polynomials. Using this repre-
sentation, an algorithm for finding lower and upper bounds of the minimum
and maximum values of a polynomial has been formalized and verified correct
in the Prototype Verification System (PVS). The algorithm is used in the def-
inition of proof strategies for formally and automatically solving polynomial
global optimization problems.

1 Introduction

Many engineering problems require determining whether, given bounds on the
variables of a multivariate polynomial, the values obtained by the polynomial
always fall within a particular range. These types of problems are called poly-
nomial global optimization problems. Global optimization problems appear in
critical applications such as air traffic conflict detection and resolution algo-
rithms [23], floating point analysis [14], and uncertainty and reliability anal-
ysis of dynamic and control systems [10, 17]. Finding precise bounds for the
minimum and maximum values of a function is fundamental to the logical cor-
rectness of these applications and, for a safety critical system, this correctness
is an important component of a safety case.

For example, a common problem used as a test for global optimization
algorithms is the Heart Dipole problem [37]. This problem can be reduced
to minimizing the following polynomial on variables x1 ∈ [−0.1, 0.4], x2 ∈
[0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4], x5 ∈ [0.1, 0.2], x6 ∈ [−0.1, 0.2],
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x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3]:
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2
5 − 0.9563453.

(1)

The minimum of the polynomial over this range is approximately -1.7434. This
paper presents tools that can be used to automatically and formally prove that
this polynomial always takes values greater than -1.7435 and that it achieves
a value less than -1.7434 in this range. These tools are based on Bernstein
polynomials.

Bernstein polynomials form a well-known technique for global optimiza-
tion [15, 16] and numerical approximation [24]. They are often called Bézier
curves when used in the domain of computer graphics. Bernstein polynomials
are used to determine bounds on the range of a multivariate polynomial where
each variable lies in a finite interval.

This paper presents a formalization of a representation of Bernstein polyno-
mials in the higher-order logic of the Prototype Verification System (PVS) [33].
Using this representation, an algorithm for global optimization is formalized
and verified in PVS. This algorithm is based on a branch and bound tech-
nique [37] and a clever data structure for representing polynomials [38]. The
formally verified branch and bound algorithm is the foundation of proof strate-
gies for mechanically and automatically finding lower and upper bounds for
the minimum and maximum values of a polynomial and for solving simply
quantified polynomial inequalities. As far as the authors know, the algorithm
presented in this paper is the first algorithm for multivariate global optimiza-
tion based on Bernstein polynomials that has been completely verified in a
proof assistant.

The rest of the paper is organized as follows. A general overview of mul-
tivariate Bernstein polynomials and their main properties is given in §2. The
formalization of a polynomial representation and verified algorithms for es-
timating bounds of the minimum and maximum value of a polynomial are
described in §3 and §4, respectively. Automated strategies for solving polyno-
mial global optimization problems in PVS and examples of use are presented
in §5. Related work is discussed in §6. The last section concludes this paper.

The formal development presented in this paper is electronically available
from http://shemesh.larc.nasa.gov/people/cam/Bernstein. Instructions
can be found in the file top.pvs in the PVS library Bernstein. All theorems
presented in this paper are formally verified in PVS. For readability, standard
mathematical notation is used throughout this paper. The reader is referred
to the formal development for implementation details.

2 Bernstein Polynomials

For readability, this section is presented in a rigorous, but informal, notation
similar to that used in mathematics textbooks, for example [24]. In particular,
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the term polynomial refers to a mathematical expression involving a finite sum
of powers in multiple variables multiplied by numerical constants.

Formal definitions of the concept presented in this section will be provided
in §3. All the properties presented in this section have been mechanically
verified for those formal definitions. Later sections in this paper provide the
actual statements of these properties in PVS. In order to distinguish the math-
ematical properties from the formal theorems in PVS, the former are called
propositions and the latter are called theorems. The formal proofs of these
theorems closely follow the proofs of the propositions presented here.

Finite sequences of real numbers in the form (a0, . . . , am−1) will be called
tuples, and such a finite sequence with a known number of elements m will
more specifically be called an m-tuple. That is, m-tuples are elements of Rm,
and every tuple is an m-tuple for a unique natural number m. Similarly, a finite
sequence of natural numbers is called an index, and such a sequence with m
elements is called an m-index. Meta-variables of tuples and indices will be
typed in boldface. The orders < and ≤ compare two tuples (respectively
indices) with the same number of elements. If m is a natural number and aaa
and bbb are m-tuples (respectively m-indices), then aaa < bbb if and only if aj < bj
for all natural numbers j < m. Moreover, aaa ≤ bbb if and only if aj ≤ bj for all
natural numbers j < m. A (bounded) m-box, written [aaa,bbb], where aaa and bbb are
m-tuples and aaa < bbb, denotes the set {xxx ∈ Rm | aaa ≤ xxx ≤ bbb} of m-tuples. For
j < m, the set [aj , bj ] = {x ∈ R | aj ≤ x ≤ bj} is called the j-th interval of
[aaa,bbb].

The product xxxiii =
∏m−1
j=0 x

ij
j , where iii is an m-index and xxx is an m-tuple of

variables over R, is called an m-variate monomial of degree iii. An m-variate
polynomial of degree at most nnn is a finite sum of the form

p(xxx) =
∑
iii≤nnn

ciii xxx
iii, (2)

where ciii ∈ R, for iii ≤ nnn, is called the iii-th coefficient of p. The degree of the m-
variate polynomial p is the minimum m-index kkk ≤ nnn such that every coefficient
ciii 6= 0, with iii ≤ nnn, satisfies iii ≤ kkk. Note that this does not imply that if kkk is
the degree of p, then ckkk 6= 0. Moreover, Formula (2) does not state that nnn is
the degree of p.

When the dimension m is either known from the context or irrelevant to
the discussion, this paper will refer to monomial, polynomial, tuple, index,
box, etc., as opposed to m-variate monomial, m-variate polynomial, m-tuple,
m-index, m-box, etc.

An m-variate polynomial p can be seen as a function from Rm into R. The
evaluation of a polynomial p in a tuple aaa is the function application p(aaa). The
expression “the polynomial p on a box [aaa,bbb]” refers to the polynomial p whose
domain has been restricted to the box [aaa,bbb]. In this case, the polynomial p will
be seen a function from [aaa,bbb] into R.

Several properties in this section are given for polynomials on the unit box
Um = [000m,111m], where 000m and 111m are m-tuples whose components are all 0 and
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all 1, respectively. The following proposition states that for any polynomial on
an arbitrary box there exists another polynomial on the unit box that attains
the same values.

Proposition 1 Let [aaa,bbb] be an m-box, p(xxx) =
∑
iii≤nnn ciii xxx

iii be an m-variate
polynomial, and σ : Um → [aaa,bbb] be defined by σ(xxx)j = aj + xj(bj − aj), where
0 ≤ j < m. For all xxx ∈ Um, p(σ(xxx)) = p∗(xxx), where p∗(xxx) =

∑
kkk≤nnn rkkk xxx

kkk and

rkkk =
∑

kkk≤iii≤nnn

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j .

Furthermore, since aaa < bbb, σ is a bijection and p(yyy) = p∗(σ−1(yyy)) for all
yyy ∈ [aaa,bbb].

Proof By the binomial theorem,

p(σ(xxx)) =
∑
iii≤nnn

ciii

m−1∏
j=0

(aj + xj(bj − aj))ij

=
∑
iii≤nnn

ciii

m−1∏
j=0

ij∑
kj=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j xkj

=
∑
iii≤nnn

∑
kkk≤iii

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j xkj

=
∑
kkk≤nnn

( ∑
kkk≤iii≤nnn

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j

)
xkj

= p∗(xxx).

2.1 Bernstein Basis Polynomials

The expression Bernstein polynomial refers to a polynomial written in the
form [24]

p(xxx) =
∑
iii≤nnn

b̂iiiBnnn,iii(xxx),

where b̂iii ∈ R and

Bnnn,iii(xxx) =
m−1∏
j=0

(
nj
ij

)
x
ij
j (1− xj)nj−ij . (3)

The coefficients b̂iii are called the Bernstein coefficients of p. The m-variate
polynomials Bnnn,iii(xxx) in Formula (3) are called Bernstein basis polynomials as
they form a basis for the vector space of m-variate polynomials of degree at
most nnn. Indeed, as the following proposition states, any polynomial can be
written as a polynomial in Bernstein form.
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Proposition 2 Any m-variate polynomial p(xxx) =
∑
iii≤nnn ciii xxx

iii can be written
in Bernstein form as p(xxx) =

∑
kkk≤nnn b̂kkk Bnnn,kkk(xxx), where

b̂kkk =
∑
iii≤kkk

(
ciii

m−1∏
j=0

(
kj

ij

)(
nj

ij

)).
Proof The trinomial revision formula states that for all natural numbers i, k,
and n, with i ≤ k ≤ n, (

k

i

)(
n

k

)
=
(
n

i

)(
n− i
k − i

)
. (4)

Thus, if iii and nnn are m-indices such that iii ≤ nnn, then for all j < m, by the
binomial theorem,

x
ij
j = x

ij
j (xj + (1− xj))nj−ij

= x
ij
j

nj−ij∑
kj=0

(
nj − ij
kj

)
x
kj

j (1− xj)nj−ij−kj

=
nj∑

kj=ij

(
nj − ij
kj − ij

)
x
kj

j (1− xj)nj−kj

=
nj∑
kj=0

(
kj

ij

)(
nj

ij

) ((nj
kj

)
x
kj

j (1− xj)nj−kj
)

Thus, the m-variate monomial xxxiii can be written in Bernstein form as follows.

xxxiii =
m−1∏
j=0

( nj∑
kj=0

(
kj

ij

)(
nj

ij

) ((nj
kj

)
x
kj

j (1− xj)nj−kj

))

=
∑
kkk≤nnn

(m−1∏
j=0

(
kj

ij

)(
nj

ij

)) Bnnn,kkk(xxx).

The result therefore follows from the fact that the property to be proved is
linear. ut

2.2 Properties of Bernstein Polynomials

A key result that makes Bernstein polynomials useful for proving polynomial
inequalities is that the Bernstein coefficients of a polynomial provide lower
and upper bounds for the values of the polynomial over the unit box.

Proposition 3 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in

Bernstein form, r be a real number, and < be a real order in {≤, <,≥, >}. If
b̂iii < r, for all iii ≤ nnn, then p(xxx) < r, for all xxx ∈ Um.
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Proof It can be easily proved by induction on m that
∑
iii≤nnnBnnn,iii(xxx) = 1 for all

xxx such that 000m ≤ xxx ≤ 111m. In that argument, the base case follows from the
binomial theorem:

n0∑
i0=0

Bn0,i0(x0) =
n0∑
i0=0

(
n0

i0

)
xi00 (1− x0)n0−i0 = (x+ (1− x))n0 = 1.

The inductive step follows from the binomial theorem as well. If b̂iii < r for all
iii ≤ nnn, then since Bnnn,iii(xxx) ≥ 0 for all xxx such that 000m ≤ xxx ≤ 111m,∑

iii≤nnn

b̂iiiBnnn,iii(xxx)

 <
∑
iii≤nnn

r Bnnn,iii(xxx)

 .

Therefore, p(xxx) < r. ut

By Proposition 3, the values attained by a polynomial on the unit box are
bounded by the minimum and maximum Bernstein coefficient of the polyno-
mial.

Corollary 1 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in Bern-

stein form. For all xxx ∈ Um,

min
iii≤nnn

b̂iii ≤ min
xxx∈Um

p(xxx),

max
xxx∈Um

p(xxx) ≤ max
iii≤nnn

b̂iii.
(5)

Another useful property of Bernstein polynomials is that the values of a
polynomial at the endpoints of the unit box are Bernstein coefficients of the
polynomial. An m-tuple ccc is an endpoint of an m-box [aaa,bbb] if and only if either
cj = aj or cj = bj , for all j < m. The set of endpoints of an m-box [aaa,bbb] is
denoted E[aaa,bbb]. Given an m-index nnn, an m-index kkk is an endindex of nnn if and
only if either kj = 0 or kj = nj , for j < m. The set of endindices of nnn is
denoted Innn. The following proposition establishes a correspondance between
the set of endindices of nnn and the set of endpoints of Um.

Proposition 4 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in

Bernstein form. If kkk is an endindex of nnn, i.e., kkk ∈ Innn, then p(yyy) = b̂kkk, where
yyy is the endpoint of Um defined as follows.

yj =
{

0 if qj = 0,
1 if qj = nj .

(6)

Proof Let yyy be defined as in Formula (6). It can be seen that for all iii ≤ nnn,
with iii 6= kkk, Bnnn,iii(yyy) = 0. Thus, p(yyy) = b̂kkk Bnnn,kkk(yyy). Since

(
nj

qj

)
= 1 for all j < m,

it also follows that Bnnn,kkk(yyy) = 1 and, therefore, p(yyy) = b̂kkk. ut
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By Proposition 4, the minimum Bernstein coefficient at an endindex is an
upper bound for the minimum value attained by a polynomial on the unit box.
Similarly, the maximum Bernstein coefficient at an endindex is a lower bound
for the maximum value attained by a polynomial on the unit box.

Corollary 2 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in Bern-

stein form. For all xxx ∈ Um,

min
xxx∈Um

p(xxx) ≤ min
iii∈Innn

b̂iii,

max
iii∈Innn

b̂iii ≤ max
xxx∈Um

p(xxx).
(7)

By Proposition 1, Corollary 1, and Corollary 2, the minimum and maxi-
mum values of an m-variate polynomial p(xxx) =

∑
iii≤nnn ciii xxx

iii on an m-box [aaa,bbb]
satisfy the inequalities

min
iii≤nnn

b̂iii ≤ min
xxx∈[aaa,bbb]

p(xxx) ≤ min
iii∈Innn

b̂iii,

max
iii∈Innn

b̂iii ≤ max
xxx∈[aaa,bbb]

p(xxx) ≤ max
iii≤nnn

b̂iii,
(8)

where b̂iii are the Bernstein coefficients of the polynomial p∗(xxx) =
∑
kkk≤nnn rkkk xxx

kkk

and

rkkk =
∑

kkk≤iii≤nnn

ciii

m−1∏
j=0

(
ij
kj

)
(bj − aj)kja

ij−kj

j .

2.3 Subdivision Method

The reciprocal implication of Proposition 3 does not hold in general, i.e., the
fact that a polynomial inequality holds on the unit box does not imply that
the Bernstein coefficients of the polynomial satisfy the same inequality. In
particular, the bound estimates given by Formula (8) are seldom exact.

Example 1 The Bernstein coefficients of the univariate polynomial p(x) =
4x2 − 4x + 1, which attains its minimum at the point 1

2 with p( 1
2 ) = 0 can

be written in Bernstein form as
(
2
0

)
(1 − x)2 −

(
2
1

)
x(1 − x) +

(
2
2

)
x2, so it has

b̂0 = 1, b̂1 = −1, and b̂2 = 1 as Bernstein coefficients. In this case, p(x) ≥ 0
for all x ∈ [0, 1], but it is not true that mini≤2 b̂i ≥ 0.

The subdivision method is a branching technique that significantly im-
proves the bound estimates of the minimum and maximum values of an m-
variate polynomial p on an m-box [aaa,bbb] given by Formula (8). The basic idea
is to split [aaa,bbb] into two boxes by selecting a variable xj , with j < m, and
then consider the case where aj ≤ xj ≤ aj+bj

2 separately from the case where
aj+bj

2 ≤ xj ≤ bj . This technique can be used recursively to compute arbitrar-
ily precise bounds of the minimum and maximum values of the polynomial on
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[aaa,bbb]. An important feature of the subdivision method is that the Bernstein
coefficients arising from the polynomial on the two subdivided intervals can be
computed directly from the Bernstein coefficients of the original polynomial.

The notation aaa with [j := r], where j < m and r ∈ R, denotes the m-tuple
that is equal to aaa in every index, except in j where it has the value r. Since
the functions DL(x) = x

2 and DR(x) = x+1
2 are bijections from [0, 1] into [0, 1

2 ]
and [12 , 1], respectively, the Bernstein coefficients of an m-variate polynomial p
on the boxes [000m,111m with [j := 1

2 ]] and [000m with [j := 1
2 ],111m] are the Bernstein

coefficients of the polynomials

pLj (xxx) = p(xxx with [j :=
xj
2

]),

pRj (xxx) = p(xxx with [j :=
xj + 1

2
]),

(9)

respectively.
An algorithm by de Casteljau [6], based on recursively applying linear

interpolations, is often used in global optimization problems to compute the
Bernstein coefficients of pLj and pRj [16]. In this paper, another algorithm is
used where the Bernstein coefficients are computed, not by linear interpolation
as in de Casteljau’s algorithm, but by directly expanding the definitions in
Formula (9). Both de Casteljau’s algorithm and the method presented below
have been implemented in PVS and proved correct for both the univariate and
multivariate cases.1

Proposition 5 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in

Bernstein form. For all j < m, pLj (xxx) =
∑
kkk≤nnn b̂

L
kkk Bnnn,kkk(xxx), where

b̂Lkkk =
kj∑
r=0

1
2kj

(
kj
r

)
b̂kkk with [j := r],

and pRj (xxx) =
∑
kkk≤nnn b̂

R
kkk Bnnn,kkk(xxx), where

b̂Rkkk =
nj−kj∑
r=0

1
2nj−kj

(
nj − kj

r

)
b̂kkk with [j :=nj−r].

Proof In the left case, it is noted that for all polynomials q(xxx) = Bnnn,iii(x),
q(xxx with [j := xj

2 ]) is given by(
nj
ij

)(xj
2

)ij (
1−

(xj
2

))nj−ij ∏
s<m,s6=j

(
ns
is

)
xiss (1− xs)ns−is .

1 Formulas for the Bernstein coefficients on arbitrary divisions of the unit box are pre-
sented in [2].
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It can be proved using the binomial theorem and the trinomial revision formula
given by Formula (4) that(

nj
ij

)(xj
2

)ij (
1−

(xj
2

))nj−ij
=

nj∑
kj=ij

1
2kj

(
kj
ij

)(
nj
kj

)
x
kj

j (1− xj)nj−kj .

From this, it follows immediately that

q(xxx with [j :=
xj
2

]) =
∑

iii≤kkk≤iii with [j :=nj ]

1
2kj

(
kj
ij

)
Bnnn,kkk(xxx). (10)

Thus, if p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx), then

p(xxx with [j :=
xj
2

]) =
∑
iii≤nnn

b̂iii ∑
iii≤kkk≤(iii with [j :=nj ])

1
2kj

(
kj
ij

)
Bnnn,kkk(xxx)


=
∑
kkk≤nnn

 kj∑
r=0

1
2kj

(
kj
r

)
b̂kkk with [j := r]

 Bnnn,kkk(xxx).

The right case can be reduced to the left case as follows.

p(xxx with [j :=
xj + 1

2
]) = p(xxx with [j := 1− 1− xj

2
])

=
∑
kkk≤nnn

b̂kkk with [j :=nj−kj ]Bnnn,kkk(xxx with [j :=
1− xj

2
]), from definition of Bnnn,kkk.

The proof continues by applying Formula (10) to the case where the variable
xj is replaced by 1− xj ,

p(xxx with [j :=
xj + 1

2
]) =

=
∑
kkk≤nnn

 kj∑
r=0

1
2kj

(
kj
r

)
b̂kkk with [j :=nj−r]

Bnnn,kkk(xxx with [j := 1− xj ])

=
∑
kkk≤nnn

nj−kj∑
r=0

1
2nj−kj

(
nj − kj

r

)
b̂kkk with [j :=nj−r]

Bnnn,kkk(xxx with [j :=xj ])

ut

The following proposition, which follows directly from Proposition 3 and
Proposition 5, enables the use of the subdivision method to improve the accu-
racy of the estimates for the minimum and maximum values of a polynomial
on the unit box given by formulas (5) and (7).

Proposition 6 Let p(xxx) =
∑
iii≤nnn b̂iiiBnnn,iii(xxx) be an m-variate polynomial in

Bernstein form, r be a real number, and < be a real order in {≤, <,≥, >}. If
b̂Liii < r and b̂Riii < r, for all iii ≤ nnn, then p(xxx) < r, for all xxx ∈ Um.
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1. Let p∗(xxx) =
P

kkk≤nnn rkkk xxx
kkk, where

rkkk =
X

kkk≤iii≤nnn

ciii

m−1Y
j=0

“ij
kj

”
(bj − aj)kja

ij−kj

j .

2. Compute the Bernstein coefficients b̂iii, for iii ≤ nnn, of p∗.
3. If for all iii ≤ nnn, b̂iii < r, then, by Proposition 3, the polynomial inequality p∗(xxx) < r holds

for all xxx ∈ Um.
4. If there is iii ∈ Innn such that b̂iii ¬< r, then, by Proposition 4, the polynomial inequality

p∗(xxx) < r does not hold for xxx ∈ Um defined as xj = 0 if ij = 0 and xj = 1 if ij = nj ,
for 0 ≤ j < m.

5. Otherwise, chose any 0 ≤ j < m and recursively apply this procedure to prove that

p∗(xxx with [j :=
xj

2
]) < r and p∗(xxx with [j :=

xj+1

2
]) < r.

(a) If both statements hold, then, by Proposition 6, the polynomial inequality p∗(xxx) < r
holds for all xxx ∈ Um.

(b) If the first statement does not hold for some xxx (returned in Step 4), then the poly-
nomial inequality p∗(xxx) < r does not hold for xxx with [j :=

xj

2
].

(c) If the second statement does not hold for some xxx (returned in Step 4), then the

polynomial inequality p∗(xxx) < r does not hold for xxx with [j :=
xj+1

2
].

Fig. 1 Branch and bound procedure for solving universally quantified polynomial inequal-
ities

2.4 Solving Simply Quantified Polynomial Inequalities

A simply quantified polynomial inequality on a bounded box is a first-order
proposition of the form � xxx ∈ [aaa,bbb] : p(xxx) < r, where � is either a universal
quantifier ∀ or an existential quantifier ∃, [aaa,bbb] is an m-box, p is an m-variate
polynomial of degree at most nnn, < is a real order in {≤, <,≥, >}, and r is a
real number. The real order relation ¬< denotes the negated relation of <, i.e.,
for all r1, r2 ∈ R, r1 ¬< r2 if and only if ¬(r1 < r2). The branch and bound
procedure in Figure 1 can be used to check whether the universally quantified
polynomial inequality

∀xxx ∈ [aaa,bbb] : p(xxx) < r, (11)

holds or not, and if not to find a counterexample. If the procedure states that
the polynomial inequality p∗(xxx) < r holds for all xxx ∈ Um, then, by Proposi-
tion 1, Formula (11) holds. If the procedure above states that the polynomial
inequality p∗(xxx) < r does not hold for some xxx ∈ Um, then Formula (11) does
not hold for yyy ∈ [aaa,bbb] defined as yj = aj + xj · (bj − aj), for 0 ≤ j < m.

To check whether the existentially quantified polynomial inequality

∃xxx ∈ [aaa,bbb] : p(xxx) < r (12)

holds, i.e., whether p(xxx) < r is satisfiable or not, and if so to find a witness, the
procedure is used on the universally quantified formula ∀xxx ∈ [aaa,bbb] : p(xxx) ¬< r.
If the procedure states that the polynomial inequality p∗(xxx) ¬< r does not
hold for some xxx ∈ Um, then Formula (12) holds for yyy ∈ [aaa,bbb] defined as
yj = aj + xj · (bj − aj), for 0 ≤ j < m. If the procedure states that the
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polynomial inequality p∗(xxx) ¬< r holds for all xxx ∈ Um, then, Formula (12)
does not hold.

The procedure given in Figure 1 is complete for verifying strict inequalities
assuming that the method for selecting a variable for the subdivision method
is fair, i.e., that every variable is eventually chosen an infinite number of times
in every recursive branch. The completeness result follows from the fact that
any continuous function (in this case a polynomial) on a bounded box [aaa,bbb]
attains a minimum on that box. With a fair subdivision method, the bounds
on the maximum and minimum values of the polynomial converge to those
values as the recursion goes to infinity.

In the case of non-strict inequalities, the method is not complete. Indeed, it
does not terminate in cases such as the polynomial inequality 9x2−6x+1 ≥ 0
for all x ∈ [0, 1]. The polynomial attains its minimum 0 at the point 1

3 . The
point 1

3 is never a point attained at an endindex during the recursion, so there
will always be a small interval on whose interior the function attains its mini-
mum, and the result can not be proved on that interval. However, the method
does terminate for the polynomial inequality 4x2−4x+1 ≥ 0 for all x ∈ [0, 1],
even though the polynomial attains the value 0 at the point x = 1

2 . This is be-
cause the subdivision scheme will split the interval [0, 1] exactly at this point,
and the inequalities on the resulting sub-intervals will be proved immediately
by the Bernstein coefficients. In general, given a polynomial inequality that is
not strict, where the polynomial actually attains the value given by the bound
on the given box, the method will terminate only if it eventually subdivides
exactly at each of the points where the polynomial attains that value.

Due to the subdivision technique used in Step 5, the complexity of the
branch and bound procedure described in Figure 1 is, in the worst case, at
least exponential in the number of variables. Neither the completeness result
nor the complexity analysis is part of the formal development presented in this
paper. However, as the rest of this paper illustrates, the completeness result is
not necessary for the development of practical proof producing strategies based
on this procedure for verifying simply quantified polynomial inequalities.

2.5 Partially Open and Partially Unbounded Boxes

The branch and bound algorithm described in §2.4 can be modified to verify
simply quantified polynomial inequalities on boxes that are partially open
or partially unbounded. Problems of these types are reduced to problems on
bounded boxes.

A partially open m-box lll[aaa,bbb]uuu, where [aaa,bbb] is an m-box and lll,uuu are m-
indices, is the set

{xxx ∈ [aaa,bbb] | ∀j < m : aj ≺ lj xj ≺uj
bj}, (13)

where the relation ≺ k, for k ∈ N, is the real order given by ≤ when k = 0 and
< when k 6= 0.
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Given a bounded m-box [aaa,bbb], the natural numbers lj and uj , with j < m,
determine whether the lower bound and upper bound, respectively, of the j-th
interval of lll[aaa,bbb]uuu formed by the real numbers aj and bj is closed or open with
0 denoting closed and any other value denoting open. Using this notation,
a bounded box [aaa,bbb] is a partially open box lll[aaa,bbb]uuu, where lll = uuu = 000m. A
completely open box (aaa,bbb) can be defined as lll[aaa,bbb]uuu, where lll = uuu = 111m.

The following trivial proposition reduces a universally quantified polyno-
mial inequality on a partially open box to a universally quantified polynomial
inequality on a closed box.

Proposition 7 For all m-variate polynomials p, bounded m-boxes [aaa,bbb], m-
indices lll,uuu, real numbers r, and real orders < in {≤, <,≥, >}, if p(xxx) < r
holds for all xxx ∈ [aaa,bbb], then p(xxx) < r holds for all xxx ∈ lll[aaa,bbb]uuu.

The reciprocal implication of Proposition (7) does not hold in general. There-
fore, the procedure in Figure 1 is not complete for verifying polynomial inequal-
ities on partially open boxes. In particular, the procedure does not succeed to
verify the formula ∀x ∈ (0, 1) : x2 > 0. Furthermore, if the procedure deter-
mines that the formula p(xxx) < r does not hold for yyy ∈ [aaa,bbb], it does not mean
that yyy is a counterexample to the formula ∀xxx ∈ lll[aaa,bbb]uuu : p(xxx) < r. However,
by updating the information on lll and uuu at every recursive step, it is possible
to modify Step 4 of the algorithm in Figure 1 to return valid counterexamples
to universally quantified polynomial inequalities on partially open boxes. That
technique is described in the verified algorithm presented in §4.

A partially unbounded m-box lll{aaa,bbb}uuu, where [aaa,bbb] is an m-box and lll,uuu are
m-indices such that for lj + uj ≤ 3, for j < m, is the set

{xxx ∈ Rm | ∀j < m : aj ≺ lj xj , if lj ≤ 1, and xj ≺uj
bj , if uj ≤ 1}. (14)

As in the case of partially open boxes, the natural numbers lj and uj , with
j < m, determine whether the lower bound and upper bound, respectively, of
the j-th interval of lll{aaa,bbb}uuu is closed, open bounded, or open unbounded with 0
denoting closed, 1 denoting open bounded, and any other value denoting open
unbounded. The restriction lj + uj ≤ 3, for j < m, states that any interval of
a partially unbounded box is bounded in at least one end. In the case where
lj > 1 (resp. uj > 1), the value of aj (resp. bj) is irrelevant in the definition
of lll{aaa,bbb}uuu. However, for technical reasons, whenever the partially unbounded
box lll{aaa,bbb}uuu is referred to, it it is still assumed that [aaa,bbb] is an m-box, i.e.,
aj < bj for all j < m.

Bernstein polynomials are generally used as tools to optimize polynomials
over bounded boxes. However, any universally quantified polynomial inequality
on a partially unbounded box can be reduced to a similar inequality on a
bounded box, so Bernstein polynomials can therefore be used for polynomial
inequalities on partially unbounded boxes as well. The key insight here is that
if s0, . . . , sm−1 and q0, . . . , qm−1 are univariate polynomials and θ : lll[aaa,bbb]uuu →
lll{aaa,bbb}uuu is a function defined by

θ(xxx) = (
s0(x0)
q0(x0)

, . . . ,
sm−1(xm−1)
qm−1(xm−1)

)
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that is a bijection, then for any polynomial p(xxx) =
∑
iii≤nnn ciii xxx

iii,

p∗(xxx) = (q0(x0)n0 · · · qm−1(xm−1)nm−1) · p(θ(xxx))

is a polynomial. Thus, if qj(xj) > 0 for all xxx ∈ lll{aaa,bbb}uuu and j < m, then
the universally quantified polynomial inequality ∀xxx ∈ lll{aaa,bbb}uuu : p(xxx) < 0 is
equivalent to the inequality ∀xxx ∈ lll[aaa,bbb]uuu : p∗(xxx) < 0, the latter of which is
on a bounded, partially open box. Since θ is a bijection, if ccc ∈ lll[aaa,bbb]uuu is a
counterexample to the second inequality, in the sense that p∗(ccc) ¬< 0 holds,
then θ−1(ccc) ∈ lll{aaa,bbb}uuu is a counterexample to the first inequality, in the sense
that p(θ−1(ccc)) ¬< 0 holds. Furthermore, if each polynomial sj or qj is of
degree at most 1, then p∗ can be written as p∗(xxx) =

∑
iii≤nnn c

∗
iii xxx

iii, where the
c∗iii are real numbers that will be calculated exactly in a later section. What
makes these facts useful is that there actually exist such polynomials, with
degree at most 1, such that θ is a bijection. This depends on the fact that
the box lll{aaa,bbb}uuu is unbounded, in each variable, at no more than one end. The
bijection θ : lll[aaa,bbb]uuu → lll{aaa,bbb}uuu is defined component-wise by

θ(xxx)j =


xj if lj ≤ 1 and uj ≤ 1,
(bj+1)·xj−bj ·(aj+1)

xj−aj
if lj > 1 and uj ≤ 1,

(1−aj)·xj+aj ·(bj−1)
bj−xj

if lj ≤ 1 and uj > 1.

Note that if θ is bijective, then its inverse is easily computed by using the
fact that there is a surjective homomorphism from the group of invertible
2-by-2 matrices onto the group of non-constant functions of the form x 7→
r1·x+r2
r3·x+r4 under composition (the group of “Möbius transformations”), where

r3 ·x+ r4 6= 0. The homomorphism maps the matrix
(
r1 r2
r3 r4

)
to this function.

Further, since it is a homorphism, the inverse of this matrix, which has a
well-known formula, maps to the inverse of this function under composition.

The following proposition combines the reasoning above to reduce a given
universally quantified polynomial inequality on a partially unbounded box to
a universally quantified polynomial inequality on a partially open box.

Proposition 8 For any m-variate polynomial p on a partially unbounded m-
box lll{aaa,bbb}uuu, and real order < in {≤, <,≥, >}, there is an m-variate polynomial
p∗ on the partially open m-box lll[aaa,bbb]uuu such that:

– If p∗(xxx) < 0 holds for all xxx ∈ lll[aaa,bbb]uuu then p(xxx) < 0 holds for all xxx ∈ lll{aaa,bbb}uuu,
– if p∗(ccc) ¬< 0, where ccc ∈ lll[aaa,bbb]uuu, then there exists ccc∗ ∈ lll{aaa,bbb}uuu that is

computable from ccc, such that p(ccc∗) ¬< 0.

Formulas for p∗ and ccc∗ will be given in a later section, in the context of specific
data structures for representing polynomials.



14 César Muñoz, Anthony Narkawicz

3 Formalization of Polynomials

A key aspect in any algorithmic application involving multivariate polynomials
is the data structure used to represent polynomials. In [41], Zippel identifies
three decision points to take into account when choosing a particular polyno-
mial representation:

– Expanded vs. recursive representation.
– Variable sparse vs. variable dense.
– Degree sparse vs. degree dense.

A multivariate polynomial in expanded representation is seen as a list of pairs
of exponent vectors and coefficients. In a recursive representation, univariate
polynomials are defined such that the coefficients are members of an arbitrary
ring structure. Since polynomials form a ring, a polynomial on the variables
x0, . . . , xm, with m > 0, can be recursively represented as a univariate polyno-
mial on x0, where the coefficients are polynomials on the variables x1, . . . , xn.
Variable sparse/dense refers to a representation of a polynomial, where each
monomial occurring it its expansion excludes (respectively includes) all vari-
ables occurring with exponent 0 in that monomial. Degree sparse/dense refers
to a representation of a polynomial where each monomial that has a coefficient
of 0 in the polynomial is excluded (respectively included) in its representation.

For the formal development of Bernstein polynomials presented in this pa-
per, an expanded and variable dense representation has been chosen that is
degree dense for univariate polynomials. An expanded representation is conve-
nient since the order in which variables will be subdivided may be unknown.
In a recursive representation, subdividing a variable that is not the outermost
variable of the recursive representation can be cumbersome. A variable dense
representation is often used with an expanded representation so that the mono-
mials all have the same number of variables. A degree sparse representation
allows for a compact expanded representation. Unfortunately, the sparseness
of a polynomial, which is the ratio of the number of monomials with non-zero
coefficient to the total number of possible monomials, is not preserved by some
of the polynomial transformations presented in §2.

An expanded, variable dense, and degree dense representation of a polyno-
mial may be memory-wise expensive. Consider the polynomial

p(x, y) = x99y999 − 3x99 − 2xy999 + 6x. (15)

The total number of possible monomials in p, including all degrees up to
(99, 999) for (x, y), is 105. Of these monomials, all but four have a zero coeffi-
cient. In [38], Smith introduces an expanded and yet compact representation
of multivariate polynomials in Bernstein form. In Smith’s representation, the
Bernstein coefficients of a polynomial in Bernstein form are not explicitly
computed. This feature is used in [38] to propose an acceleration technique
for optimization algorithms based on Bernstein polynomials. That strategy is
not implemented in this paper. Smith’s representation is used in the formal
development presented here as a general polynomial representation technique.
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In addition to allowing for lazy computations of coefficients, it is more com-
pact than other representations of multivariate polynomials and often allows
proofs of properties about multivariate polynomials to be reduced to proofs
for the univariate case.

This section presents a formalization of univariate and multivariate polyno-
mials. The theorems presented in this section have been mechanically verified
in PVS. They correspond to the propositions presented in §2 and, from a log-
ical point of view, the formal proofs of these theorems follow the proofs of the
propositions presented in that section.

3.1 Formalization of Univariate Polynomials

In PVS, univariate polynomials are formalized using a degree dense represen-
tation. More precisely, a univariate polynomial p of degree at most n written in
either the form p(x) =

∑n
i=0 aix

i or the form p(x) =
∑n
i=0 ai

(
n
i

)
xi(1− x)n−i,

is represented by the (n+ 1)-tuple (a0, . . . , an). These two forms are referred
to here as standard form and Bernstein form, respectively. Using this repre-
sentation, the memory necessary to represent a polynomial p of degree at most
n is of the order of n+ 1.

Since a tuple can correspond to a polynomial in either standard or Bern-
stein form, it does not uniquely determine the polynomial it represents. Thus,
two polynomial evaluation functions are defined on tuples that correspond to
these forms. The function eval takes as a parameter a tuple aaa and returns a
function on real numbers that corresponds to the polynomial in standard form
represented by aaa. It is defined by

eval(aaa)(x) ≡
n∑
i=0

aix
i,

where x ∈ R and aaa is an (n + 1)-tuple. The function evalbern takes as a
parameter a tuple aaa and returns a function on real numbers that corresponds
to the polynomial in Bernstein form represented by aaa. It is defined by

evalbern(aaa)(x) ≡
n∑
i=0

ai

(
n

i

)
xi(1− x)n−i,

where, as above, x ∈ R and aaa is an (n+ 1)-tuple.
The function tobern takes as input a tuple aaa representing a univariate

polynomial p in standard form and returns a tuple, with the same number of
elements as aaa, that corresponds to p written in Bernstein form. It is defined
by

tobern(aaa)i ≡
i∑

k=0

ak

(
i
k

)(
n
k

) , (16)

where aaa is an (n+ 1)-tuple and i ≤ n.
The following theorem presents Proposition 2 as it has been proved in PVS

for the case of univariate polynomials.
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Theorem 1 For all tuples aaa and real numbers x,

eval(aaa)(x) = eval(tobern(aaa))(x).

The function tobern takes as inputs a tuple aaa representing a univariate
polynomial p in standard form, as well as two real numbers a and b. It returns a
tuple, with the same number of elements as aaa, that corresponds to a polynomial
on the unit interval [0, 1] that attains the same values that p does in the interval
[a, b]. It is defined by

translate(aaa, a, b)i ≡ (b− a)i
n∑
k=i

ak

(
k

i

)
ak−i, (17)

where, as above, aaa is an (n + 1)-tuple and i ≤ n. The following theorem has
been formally proved in PVS. It is a formal statement of Proposition 1 for the
case of univariate polynomials.

Theorem 2 For all tuples aaa and real numbers a, b, and x,

eval(aaa)(a+ x(b− a)) = eval(translate(aaa, a, b))(x).

Domain subdivision for univariate polynomials is accomplished by the func-
tions subdivl and subdivr. These functions take as input a tuple aaa represent-
ing a univariate polynomial p written in Bernstein form. They each return a
tuple with the same number of elements as aaa, which corresponds to a polyno-
mial written in Bernstein form. They are defined by

subdivl(aaa)i ≡
1
2i

i∑
k=0

(
i

k

)
ak,

subdivr(aaa)i ≡
1

2n−i

n−i∑
k=0

(
n− i
k

)
an−k,

(18)

where aaa is an (n+ 1)-tuple and i ≤ n.
The following theorem presents Proposition 5 for the case of univariate

polynomials.

Theorem 3 For all tuples aaa and real numbers x,

evalbern(subdivl(aaa))(x) = evalbern(aaa)(
x

2
),

evalbern(subdivr(aaa))(x) = evalbern(aaa)(
x+ 1

2
).



Formalization of a Practical Representation of Bernstein Polynomials 17

3.2 Smith’s Representation

Smith’s representation is based on the fact that any m-variate polynomial p
of degree at most nnn, where nnn is an m-index, can be written in the form

p(xxx) =
t−1∑
k=0

qk

m−1∏
j=0

pk,j(xj), (19)

where, for k < t and j < m, qk 6= 0 and pk,j is a univariate polynomial of degree
at most nj on variable xj . Indeed, since an m-variate monomial xxxiii has the form∏m−1
j=0 x

ij
j , an m-variate polynomial p of the form p(xxx) =

∑
iii≤nnn ciii xxx

iii has also

the form p(x) =
∑t−1
k=0 qk

∏m−1
j=0 x

ij
j , where t is the number of monomials with

non-zero coefficient in p.
A Smith’s representation of a polynomial p written in the form of For-

mula (19) consists of a t-tuple qqq = (q0, . . . , qt−1) and a list of t elements rep-
resenting each product

∏m−1
j=0 pk,j(xj), i.e., the k-th element of the list, with

k < t, is a list of length m, representing each univariate polynomial pk,j(xj)
in a degree dense form. There is not a unique Smith’s representation of a
polynomial, and the number of terms t may change for different representa-
tions. Further, each univariate polynomial pk,j can be a polynomial in either
standard form or Bernstein form.

Example 2 The degree of the 2-variate polynomial p in Formula (15) is (99, 999).
A Smith’s representation of p that corresponds to the form p(x, y) = x99y999−
3x99y0 − 2xy999 + 6xy0 consists of the 4-tuple qqq = (1,−3,−2, 6) and a list of
4 elements representing the products x99y999, x99y0, xy999, and xy0, respec-
tively. Each element in that list consists of a list of two tuples, one per variable.

– The first element consists of 000100 with [99 := 1] and 0001000 with [999 := 1],
which corresponds to the degree dense representations of p0,0(x) = x99

and p0,1(y) = y999, respectively.
– The second element consists of 000100 with [99 := 1] and 0001000 with [0 := 1],

which corresponds to the degree dense representations of p1,0(x) = x99 and
p1,1(y) = 1, respectively.

– The third element consists of 000100 with [1 := 1] and 0001000 with [999 := 1],
which corresponds to the degree dense representations of p2,0(x) = x and
p2,1(y) = y999, respectively.

– The last element consists of 000100 with [1 := 1] and 0001000 with [0 := 1], which
corresponds to the degree dense representations of p3,0(x) = x and p3,1(y) =
1, respectively.

An alternative representation of p based on the form p(x, y) = (x99−2x)(y999−
3y0) consists of the 1-tuple qqq = (1) and a list of one element. That element con-
sists of the tuples 000100 with [1 :=−2, 99 := 1] and 0001000 with [0 :=−3, 999 := 1],
which corresponds to the degree dense representation of x99−2x and y999−3y0,
respectively.
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One advantage of this representation of polynomials is that multivariate
polynomials are seen as a collection of univariate polynomials. Thus, veri-
fying properties of multivariate polynomials often reduces to proving them
for univariate polynomials. This makes Smith’s representation of multivariate
polynomials appealing for applications in theorem proving.

3.3 Formalization of Multivariate Polynomials

In PVS, multivariate polynomials are represented using Smith’s representa-
tion. In fact, there is one datatype, each of whose elements can represent
either a standard or a Bernstein representation of a polynomial. A pair 〈qqq,ααα〉,
where qqq is a tuple and ααα is a list, is said to be an m-variate polynomial pair
of degree at most nnn if the following conditions hold.

– The number of elements in qqq, which is written |qqq|, is equal to the length of
ααα, which is written |ααα|.

– The k-th element of ααα, denote ααα(k), is a list of length m.
– For j < m, the j-th element of ααα(k), denoted ααα(k)(j), is an (nj + 1)-tuple.

The memory used by such a pair is of the order of |qqq| · (1 +
∑m−1
j=0 (nj + 1)).

The functions defined in §3.1 are used to define similar functions for the
multivariate case. Two evaluation functions are defined on m-variate polyno-
mial pairs of degree at most nnn, corresponding representations of two distinct,
unrelated a m-variate polynomials. One of them is a standard representation,
and the other is a Bernstein representation. These two evaluation functions
are defined as follows.

The evaluation function evalmulti takes as input an m-variate polynomial
pair of degree at most nnn, 〈qqq,ααα〉, and it returns a function on an m-tuple xxx.

evalmulti(qqq,ααα)(xxx) ≡
t−1∑
k=0

qk ·
m−1∏
j=0

eval(ααα(k)(j))(xj),

This function corresponds to Smith’s representation of a polynomial in stan-
dard form.

Similarly, the evaluation function evalmultibern takes as input an m-
variate polynomial pair of degree at most nnn, 〈qqq,ααα〉, and it also returns a func-
tion on an m-tuple xxx.

evalmultibern(qqq,ααα)(xxx) ≡
t−1∑
k=0

qk ·
m−1∏
j=0

evalbern(ααα(k)(j))(xj),

This corresponds to Smith’s representation of a polynomial in Bernstein form.
The most important property of the evaluation function evalmulti is

that for any m-variate polynomial p(xxx) of degree at most nnn, there is an m-
variate polynomial pair 〈qqq,ααα〉, of degree at most nnn, such that for all xxx ∈ Rm,
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evalmulti(qqq,ααα)(xxx) = p(xxx), in which case 〈qqq,ααα〉 is said to be a standard rep-
resentation of p. Similarly, the most important property of the evaluation
function evalmultibern is that for any m-variate polynomial p(xxx) of degree
at most nnn, there is an m-variate polynomial pair 〈qqq,ααα〉, of degree at most nnn,
such that for all xxx ∈ Rm, evalmultibern(qqq,ααα)(xxx) = p(xxx), in which case 〈qqq,ααα〉
is said to be a Bernstein representation of p.

There is function tomultibern that takes as input a list ααα that is part
of an m-variate polynomial pair 〈qqq,ααα〉, of degree at most nnn, representing a
univariate polynomial written in standard form. The function returns another
list ααα′, having the same structure as ααα, such that every (nj +1)-tuple ααα′(k)(j),
for k < |ααα| and j < m, represents the same univariate polynomial as ααα(k)(j),
but written in Bernstein form, i.e.,

tomultibern(ααα) ≡ ααα′,where ααα′(k)(j) = tobern(ααα(k)(j)), (20)

for all k < |ααα| and j < m.
The following theorem presents Proposition 2 as it has been proved in PVS

for the case of multivariate polynomials. The proof uses Theorem 1.

Theorem 4 For all m-variate polynomial pairs 〈qqq,ααα〉, of degree at most nnn,
and xxx ∈ Rm,

evalmulti(qqq,ααα)(xxx) = evalmultibern(qqq, tomultibern(ααα))(xxx).

There is another a function translatemulti that takes as input a list
ααα that is part of an m-variate polynomial pair 〈qqq,ααα〉, of degree at most nnn,
representing a univariate polynomial written in standard form, and an m-box
[aaa,bbb]. The function returns another list ααα′, having the same structure as ααα,
such that if every (nj + 1)-tuple ααα(k)(j), for k < |ααα| and j < m, represents
a univariate polynomial written in standard form, then ααα′(k)(j) represents a
univariate polynomial written in standard form that in the unit interval [0, 1]
attains the same values as ααα(k)(j) in the interval [aj , bj ], i.e.,

translatemulti(ααα,aaa,bbb) ≡ ααα′,where
ααα′(k)(j) = translate(ααα(k)(j), aj , bj),

(21)

for all k < |ααα| and j < m.
The following theorem presents Proposition 1 as it has been proved in PVS

for the case of multivariate polynomials. The proof uses Theorem 2.

Theorem 5 For all m-variate polynomial pairs 〈qqq,ααα〉, of degree at most nnn,
and for all m-boxes [aaa,bbb] and tuples xxx ∈ Rm,

evalmulti(qqq,ααα)(yyy) = evalmulti(qqq, translatemulti(ααα,aaa,bbb))(xxx),

where yj = aj + xj · (bj − aj), for j < m.
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Since the polynomials pLj and pRj from Formula 9 only affect the j-th vari-
able of the polynomial p, Smith’s representations of these polynomials can be
computed by only subdividing the univariate polynomials corresponding to
that variable. The functions subdivlmulti and subdivrmulti take as inputs
a list ααα and a natural number j < m. The list ααα is assumed to come from a an
m-variate polynomial pair of degree at most nnn that is a Bernstein representa-
tion of a given polynomial. These functions return, respectively, new lists αααL

and αααR that have the same as structure as ααα and are defined as follows.

subdivlmulti(ααα, j) ≡ αααL,where

αααL(k)(i) =

{
ααα(k)(i) if i 6= j,

subdivl(ααα(k)(j)) otherwise,

(22)

for k < |ααα| and i < m.

subdivrmulti(ααα, j) ≡ αααR,where

αααR(k)(i) =

{
ααα(k)(i) if i 6= j,

subdivr(ααα(k)(j)) otherwise.

(23)

for k < |ααα| and i < m.
The following theorem presents Proposition 5 as it has been proved in PVS

for the case of multivariate polynomials. It states that if 〈qqq,ααα〉 is a Bernstein
representation of a multivariate polynomial p, then 〈qqq, subdivlmult(ααα, j)〉 and
〈qqq, subdivrmult(ααα, j)〉 are Bernstein representations of pLj and pRj , respec-
tively. The proof uses Theorem 3.

Theorem 6 For all m-variate polynomial pairs 〈qqq,ααα〉, of degree at most nnn,
and for all natural numbers j < m,

evalmultibern(qqq,ααα)(xxx with [j :=
xj
2

]) =

evalmultibern(qqq, subdivlmult(ααα, j))(xxx).

evalmultibern(qqq,ααα)(xxx with [j :=
xj + 1

2
]) =

evalmultibern(qqq, subdivrmult(ααα, j))(xxx).

3.4 Bernstein Coefficients

Let 〈qqq,ααα〉 be an m-variate polynomial pair of degree at most nnn, and suppose
that p(xxx) =

∑
iii≤nnn ciii xxx

iii is a polynomial of degree at most nnn in such that
p(xxx) = evalmultibern(qqq,ααα)(xxx) for all xxx ∈ Rm. The function multicoeff,
defined below, computes the coefficient ciii, for iii ≤ nnn.

multicoeff(qqq,ααα, iii) ≡
|ααα|−1∑
k=0

qi

m−1∏
j=0

ααα(k)(j)ij .
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Similarly, if p is in Bernstein form and iii ≤ nnn, then multicoeff(qqq,ααα, iii)
is the Bernstein coefficient b̂iii of p, i.e., the coefficient of the Bernstein basis
polynomial Bnnn,iii(xxx) (§2).

As noted in §2.2, the Bernstein coefficients of a polynomial can be used
to find lower and upper bounds for the minimum and maximum values of the
polynomial on the unit box. The following result is the formal statement in
PVS of Proposition 3.

Theorem 7 For all m-variate polynomial pairs 〈qqq,ααα〉, of degree at most nnn,
real orders < ∈ {≤, <,≥, >}, r ∈ R, and xxx ∈ Um, if for all m-indices iii ≤ nnn,
multicoeff(qqq,ααα, iii) < r, then

evalmultibern(qqq,ααα)(xxx) < r.

The function endpoint(aaa,bbb), where [aaa,bbb] is an m-box, translates an m-
index to an m-tuple in [aaa,bbb]. It is defined as follows.

endpoint(aaa,bbb)(iii)j ≡
{
aj if ij = 0,
bj otherwise, (24)

where iii is an m-index and j < m. The range of the function endpoint(aaa,bbb)
is the set of endpoints of [aaa,bbb] as defined in §2.2. This function establishes a
correspondence between the set of endindices of nnn and the set of endpoints of
[aaa,bbb]. The following theorem is the formal version of Proposition 4. It states
that the function multicoeff can be used to compute values of a polynomial.

Theorem 8 For all m-variate polynomial pairs 〈qqq,ααα〉, of degree at most nnn,
and all endindices kkk of nnn,

multicoeff(qqq,ααα,kkk) = evalmultibern(qqq,ααα)(endpoint(000m,111m)(kkk)). (25)

3.5 Partially Open and Partially Unbounded Boxes

Let lll,uuu be m-indices and [aaa,bbb] be an m-box. The predicate open(lll,uuu,aaa,bbb) on
m-tuples characterizes the elements in Rm that are in the partially open box
lll[aaa,bbb]uuu, i.e.,

open(lll,uuu,aaa,bbb)(xxx) ≡ xxx ∈ lll[aaa,bbb]uuu, (26)

where xxx ∈ Rm. The predicate openindex(lll,uuu) on m-indices is defined as fol-
lows.

openindex(lll,uuu)(kkk) ≡ ∀j < m : kj 6= 0, if lj 6= 0, and
kj = 0, if uj 6= 0,

(27)

where kkk ∈ Nm. It is easy to check, by unfolding the definitions, that an endin-
dex kkk of nnn that satisfies openindex(lll,uuu)(kkk), produces an endpoint of [aaa,bbb] that
satisfies open(lll,uuu,aaa,bbb).

Lemma 1 For all m-indices lll,uuu,nnn, m-boxes [aaa,bbb], and m-indices kkk ∈ In, if
openindex(lll,uuu)(kkk) then open(lll,uuu,aaa,bbb)(endpoint(aaa,bbb)(kkk)).
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Lemma 1 is used with Theorem 8 to find points in a partially open box eval-
uation satisfy a given polynomial inequality.

Let lll and uuu be m-indices, and let [aaa,bbb] be an m-box. Then the predicate
unbounded(lll,uuu,aaa,bbb) on m-tuples characterizes the elements in Rm that are in
the partially unbounded box lll{aaa,bbb}uuu, i.e.,

unbounded(lll,uuu,aaa,bbb)(xxx) ≡ xxx ∈ lll{aaa,bbb}uuu, (28)

where xxx ∈ Rm.
Proposition 8 states that a polynomial inequality on a partially unbounded

box can be translated into a polynomial inequality on a partially open box.
This is accomplished through a function tr mob (for “translate Möbius”),
which takes as inputs real numbers A, B, C, D with either C 6= 0 or D 6= 0,
and a tuple aaa representing a polynomial p in standard form. It returns a tuple
of real numbers of the same length as aaa that represents the polynomial that is
equal to (C · x+D)n · p((A · x+B)/(C · x+D)) for all real numbers x such
that C ·x+D 6= 0, where aaa is an (n+ 1)-tuple. The function tr mob is defined
as follows for j < m.

tr mob(A,B,C,D,aaa)d ≡
n∑
i=0

ai ·
min(d,n−i)∑

k=max(0,d−i)

Ad−k ·Bk−d+i · Ck ·Dn−k−i ·
(
n− i
k

)
·
(

i

d− k

)
.

The following lemma gives the key property for this function.

Lemma 2 If A, B, C, D, and x are real numbers such that C · x + D 6= 0
and aaa is a (n+ 1)-tuple of real numbers, then

eval(tr mob(A,B,C,D,aaa))(x) = (C · x+D)n · eval(aaa)
(
A · x+B

C · x+D

)
.

The translation of a polynomial inequality on a partially unbounded box
to an inequality on a partially open box is accomplished through functions
translatebound and counterexbound, which depend on the function tr mob.
The function translatebound is defined by

translatebound(ααα, lll,uuu,aaa,bbb) ≡ ααα′,where ααα′(k)(j) =
ααα(k)(j) if lj ≤ 1 and uj ≤ 1
tr mob(bj + 1,−bj · (aj + 1), 1,−aj ,ααα(k)(j)) ≤ if lj > 1 and uj ≤ 1
tr mob(1− aj , aj · (bj − 1),−1, bj ,ααα(k)(j)) if lj ≤ 1 and uj > 1,

where lll,uuu are m-indices, [aaa,bbb] is an m-box, k < |ααα|, j < m, lj + uj ≤ 3, and ααα
is part of an m-variate polynomial pair of degree at most nnn. Similarly,

counterexbound(lll,uuu,aaa,bbb)(xxx)j ≡
xj if if lj ≤ 1 and uj ≤ 1
(−aj · x+ bj · (aj + 1))/(−x+ bj + 1) if if lj > 1 and uj ≤ 1
(bj · x− aj · (bj − 1))/(x+ 1− aj) if if lj ≤ 1 and uj > 1,
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where lll,uuu are m-indices, [aaa,bbb] is an m-box, xxx ∈ lll[aaa,bbb]uuu, j < m, and lj +uj ≤ 3.
It can be proved that the function counterexbound(lll,uuu,aaa,bbb) is a bijection
between lll[aaa,bbb]uuu and lll{aaa,bbb}uuu.

The following theorem formalizes Proposition 8.

Theorem 9 For all m-variate polynomial pairs 〈qqq,ααα〉, m-indices lll,uuu, with
lj + uj ≤ 3 for j < m, m-boxes [aaa,bbb], real orders < ∈ {≤, <,≥, >}, and
xxx ∈ lll[aaa,bbb]uuu, since counterexbound is bijective, if for all xxx ∈ lll[aaa,bbb]uuu,

evalmulti(qqq, translatebound(ααα, lll,uuu,aaa,bbb))(xxx) < 0,

then for all yyy ∈ lll{aaa,bbb}uuu, evalmulti(qqq,ααα)(yyy) < 0. Furthermore, if

evalmulti(qqq, translatebound(ααα, lll,uuu,aaa,bbb))(xxx) ¬< 0

then
evalmulti(qqq,ααα)(counterexbound(lll,uuu,aaa,bbb)(xxx)) ¬< 0.

3.6 Note About Formalization in PVS

The formalization of polynomials described in this section uses the pre-defined
PVS types nat and reals, for natural and real numbers, respectively, and de-
fined types for m-tuples and lists. In higher-order proof assistants such as PVS,
there are many ways in which these types of structures can be defined. The
PVS development presented in this paper uses functional terms to represent
both m-tuples and lists. More precisely, an m-tuple qqq is formalized in PVS as
a function q from nat into real such that q(j) = qj , for j < m, and q(j) = 0,
for j ≥ m. Furthermore, a list ααα of t elements, used in the representation of
an m-variate polynomial of degree at most nnn, is represented by a function A
of type nat→ nat→ nat→ real such that A(k)(j)(i) = ααα(k)(j)i, if k < |ααα|,
j < m, and i ≤ nj . Otherwise, A(k)(j)(i) = 0.

It is emphasized that nothing in this paper fundamentally depends on the
concrete data types used to represent m-tuples and lists. However, the authors
have found that a functional representation is convenient in PVS. For instance,
by using this formalization, the degree dense representation of univariate poly-
nomials presented here corresponds to the existing formalization of univariate
polynomials available as part of the NASA Libraries.2 The PVS prelude li-
brary includes a type list defined as an Abstract Data Type. An advantage
of a functional type over list is that the overwriting operator WITH, exten-
sively used in this development, is available for functions but not for terms
of type list. Furthermore, functions in PVS can be partially applied and
the development presented here takes advantage of this feature. For example,
A(k)(j)(i) has the type real and represents the coefficient of the degree i of
the univariate polynomial corresponding to the variable j in the k-th term of
the list A; A(k)(j) has the type nat→ real, which is the type of an m-tuple,

2 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
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and represents the univariate polynomial corresponding to the variable j in the
k-th term of the list A; and so forth. The use of functions with the unbounded
domain nat rather than a bounded domain simplifies the formal development
by avoiding generation of Type Correctness Conditions (TCCs) on expressions
involving access to m-tuples and lists. Those TCCs are typically easy to dis-
charge but they are an additional nuance on an already complex development.
The main drawback of this functional representation is that since the actual
lengths of m-tuples and lists do not appear in the data-structures, they have
to be explicitly carried out in all definitions.

In the paper, the notation 〈qqq,ααα〉, which represents a multivariate polyno-
mial pair, is used for notational convenience. However, the pair 〈qqq,ααα〉 is not
explicitly represented as a datatype in PVS. Hence, the PVS formalization of
polynomials described in this section is not a deep embedding of multivariate
polynomials. In other words, the formal development does not define opera-
tions such as addition, multiplication, etc. that manipulate objects such as
〈qqq,ααα〉 as if they were multivariate polynomials.

4 Formally Verified Branch and Bound Algorithm

Using a proof assistant with a sophisticated proof-scripting language, such as
PVS, and a formal development of Bernstein polynomials, such as the formal-
ization presented in §3, it is possible to implement the algorithm in Figure 1,
§2.4, as a proof rule for verifying simply quantified polynomial inequalities.3

This approach was initially taken by the authors, where the branch and bound
procedure was written in the proof-scripting language provided by PVS [3].
The major advantage of this approach is that since proof-scripting languages
preserve the logical consistency of theorem provers, tactics do not have to be
proved correct. By construction, proofs built by tactics are correct. However,
a tactic that implements the branch and bound procedure yields proofs that
mimic the recursive structure of the method. In other words, if the branch and
bound procedure requires n splits to prove a particular polynomial inequality,
a proof that follows the recursive structure of the procedure will have n cases,
one case per split. Since n may be large, this approach produces long proofs
and it is very inefficient for practical use.

An alternative approach, based on computational reflection [19], is pre-
sented in this section. In this case, the algorithmic components of the branch
and bound procedure are written as PVS functions using the PVS specifica-
tion language. These functions act on the structures defined in §3 for repre-
senting multivariate polynomials. The correctness properties of the functions
have been mechanically verified in PVS. The function bernMinmax, described
in §4.1, estimates bounds of the minimum and maximum values of a poly-
nomial on a partially open unit box, where the polynomial is represented in
Bernstein form. The function polyMinmax, described in §4.2, estimates bounds

3 In some procedural theorem provers, proof rules are called tactics. In PVS, proof rules
are called strategies.
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of the minimum and maximum values of polynomial on a partially open box,
where the polynomial is represented in standard form. The function poly rel,
described in §4.3, solves a simply quantified polynomial inequality on a par-
tially unbound box, where the polynomial is represented in standard form.
These functions are used in PVS strategies, described in §5, that formally and
automatically solve polynomial global optimization problems.

Notation

The functions described in this section use record types. Record type declara-
tions take the form T ≡ a1 : T1 × · · · × an : Tn, where ai, with 1 ≤ i ≤ n, is a
field of T. Field access is performed using the dot operator, i.e., if r is a record
of type T, r.ai, with 1 ≤ i ≤ n, has the type Ti and representes the value of
r in the field ai. As in the case of tuples, the with operator overrides record
fields, i.e., given a field ai of r and an expression e of type Ti, r with [ai := e]
represents the record s that satisfies s.ai = e and for all 1 ≤ j ≤ n, with j 6= i,
s.aj = r.aj .

4.1 Function bernMinmax

The core component of the branch and bound procedure in §2.4 is the recursive
function bernMinmax presented in Figure 2. It is used to calculate the informa-
tion about the range of of a polynomial p in Bernstein form on the unit box.
Rather than having the polynomial p, which is not a formally defined object,
as an input, it has as basic parameters an m-variate polynomial pair 〈qqq,ααα〉 of
degree at most nnn, and m-indices lll and uuu that represent the partially open box
lll[000m,111m]uuu. The intent is that the pair 〈qqq,ααα〉 is a Bernstein representation of p.

In contrast to the procedure in Figure 1, the function bernMinmax always
terminates. Termination is enforced by having a maximum recursion depth
D ∈ N and the current recursion depth d ∈ N, which satisfy the invariant d ≤ D.
Additional inputs includes a function varsel, which determines the variable
to subdivide at each iteration and the direction to explore first, predicates
localex and globalex on the output type, which cause the algorithm to exit
locally and globally, respectively, and an accumulative parameter omm of the
same type as the output value, which is used to prune some branches of the
recursion. These inputs are described in Section 4.1.5. The inputs D, varsel,
localex, globalex, and qqq never change during the recursion. To emphasize
this fact, they are written as parameters of bernMinmax using PVS Curry
notation.

The function bernMinmax returns a record of type

Outminmax ≡ lbmin : R× lbmax : R× lbvar : Rm ∪ {⊥} ×
ubmin : R× ubmax : R× ubvar : Rm ∪ {⊥}.

The fields lbmin, lbmax, ubmin, and ubmax are all real numbers. The fields
lbvar and ubvar are either m-tuples or a special value ⊥, which represents
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01 : bernMinmax(D, varsel, localex, globalex, qqq)(ααα, lll,uuu, d, omm) : Outminmax ≡
02 : let

03 : bmm = berncoeffsminmax(qqq,ααα)

04 : in

05 : if d = D ∨ localex(bmm) ∨ between?(omm, bmm) ∨ globalex(bmm) then

06 : bmm

07 : else

08 : let

09 : (left, j) = varsel(qqq,ααα, d),

10 : sl = subdivlmulti(ααα, j),

11 : sr = subdivrmulti(ααα, j),

12 : (ααα1,ααα2) = if left then (sl, sr) else (sr, sl) endif,

13 : (lll1, lll2) = if left then (lll, lll with [j := 0]) else (lll with [j := 0], lll) endif,

14 : (uuu1,uuu2) = if left then (uuu with [j := 0],uuu) else (uuu with [j := 0],uuu) endif,

15 : σ = if left then λx.x/2 else λx.(x+ 1)/2 endif,

16 : omm1 = combine(omm, bmm),

17 : bmm1 = bernMinmax(D, varsel, localex, globalex, qqq)(ααα1, lll1,uuu1, d + 1, omm1)

18 : in

19 : if globalex(bmm1) then

20 : combine(update(bmm1, σ, j), bmm)

21 : else

22 : let

23 : omm2 = combine(omm1, bmm1),

24 : bmm2 = bernMinmax(D, varsel, localex, globalex, qqq)(ααα2, lll2,uuu2, d + 1, omm2),

25 : bmmleft = if left then bmm1 else bmm2 endif,

26 : bmmright = if left then bmm2 else bmm1 endif

27 : in

28 : combine(update(bmmleft, λx.x/2, j),

29 : update(bmmright, λx.(x+ 1)/2, j))

30 : endif

31 : endif

Fig. 2 The function bernMinmax

a null value. Elements of this type stores information about the range of an
m-variate polynomial on a partially open box:

– lbmin: a minimum estimate for the lower bound,
– lbmax: a maximum estimate for the lower bound, if such a estimate is

found.
– lbvar: a point where the polynomial attains the value lbmax, if such a

point if found,
– ubmin: a minimum estimate for the upper bound, if such a estimate is

found,
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– ubvar: a point in the where the polynomial attains the value ubmin, if such
a point is found,

– ubmax: a maximum estimate for the upper bound.
This null value is never returned when lll[000m,111m]uuu is a bounded box, i.e., when
lll = uuu = 000m. However, for arbitrary m-indices lll and uuu, it may be possible
that no appropriate values for lbmax, lbvar, ubmin, and ubvar are found.
The function bernMinmax keeps the invariant that lbvar = ⊥ if and only if
ubvar = ⊥. Furthermore, if lbvar = ubvar = ⊥, the values of lbmax and
ubmin are meaningless.

4.1.1 Lines 2–6: Base Case

Let 〈qqq,ααα〉 be an m-variate polynomial pair of degree at most nnn, as defined in
§3.3. The function berncoeffsminmax in Line 3 of Figure 2 iterates the func-
tion multicoeff over all possible m-indices iii ≤ nnn and computes an element
of Outminmax whose fields satisfy the following properties.

lbmin = min
iii≤nnn

multicoeff(qqq,ααα, iii),

ubmax = max
iii≤nnn

multicoeff(qqq,ααα, iii).

The values of the rest of the fields depend on the set O of endindices of nnn
defined as {iii ∈ Innn | openindex(lll,uuu)(iii)}. It is noted that when lll = uuu = 000m, O =
Innn 6= ∅. However, for arbitrary m-indices lll and uuu, the set O may be empty. If O
is empty, lbmax = ubmax = 0 and lbvar = ubvar = ⊥. Otherwise, let iiimin and
iiimax be m-indices in O where the minimum value miniii∈O multicoeff(qqq,ααα, iii)
and the maximum value maxiii∈O multicoeff(qqq,ααα, iii), respectively, are reached.
In this case,

lbmax = multicoeff(qqq,ααα, iiimin),
lbvar = endpoint(000m,111m)(iiimin),
ubmin = multicoeff(qqq,ααα, iiimax),
ubvar = endpoint(000m,111m)(iiimax).

By Theorem 7, for all xxx ∈ Um, lbmin ≤ evalmultibern(qqq,ααα)(xxx) ≤ ubmax.
Since O ⊆ Innn, the following properties follow from Theorem 8 when lbmax 6= ⊥
(equivalently, ubmin 6= ⊥),

evalmultibern(qqq,ααα)(lbvar) = lbmax,

evalmultibern(qqq,ααα)(ubvar) = ubmin.

As noted in §3.5, for all kkk ∈ O, the m-tuple endpoint(000m,111m)(kkk) satisfies
the predicate open(lll,uuu,000m,111m). Therefore, lbvar ∈ lll[000m,111m]uuu and ubvar ∈
lll[000m,111m]uuu.

Let bmm be an element of type Outminmax defined as in Line 3 of Fig-
ure 2. Then bmm.lbmin ≤ evalmultibern(qqq,ααα)(xxx) ≤ bmm.lbmax for all xxx ∈
lll[000m,111m]uuu. Furthermore, when both bmm.lbvar 6= ⊥ and bmm.ubmin 6= ⊥
hold, minxxx∈lll[000m,111m]uuu evalmultibern(qqq,ααα)(xxx) ∈ [bmm.lbmin, bmm.lbmax], and
maxxxx∈lll[000m,111m]uuu evalmultibern(qqq,ααα)(xxx) ∈ [bmm.ubmin, bmm.ubmax].
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4.1.2 Lines 7–14: Subdivision

If the condition in Line 5 is false, the function varsel selects a natural
number j < m, representing a variable to subdivide, and a Boolean value left,
representing a direction (left = true is left and left = false is right). Thus,
if the m-variate polynomial pair 〈qqq,ααα〉 is a Bernstein representation of the
polynomial p, then the functions subdivlmulti and subdivrmulti, defined
in §3.3, are used to compute Bernstein representations of polynomials pLj and
pRj as defined by Formula 9 in §2.3. By Theorem 6, 〈qqq,ααα1〉 and 〈qqq,ααα2〉 are m-
variate polynomial pairs of degree at most nnn that are Bernstein representations
of the polynomials p1 and p2, respectively, where

p1(xxx) =

{
pLj (xxx) if left = true,

pRj (xxx) otherwise.
p2(xxx) =

{
pRj (xxx) if left = true,

pLj (xxx) otherwise.

The m-indices lll1,uuu1 and lll2,uuu2 represent, according to the value of left, the
left or right partially open boxes that result from dividing the j-th interval of
the box lll[000m,111m]uuu in two halves.

4.1.3 Lines 15–32: Recursive Calls

The function berncoeffsminmax is recursively called with the parameters
ααα1, lll1,uuu1, d + 1, and omm1, which is an accumulative parameter explained in
§4.1.5. It returns an element bmm1 of Outminmax that represents range infor-
mation of the polynomials p1 on the partially open box lll1 [000m,111m]uuu1 . Since the
m-tuples by bmm1.lbvar and bmm1.ubvar are computed for a unit box, the j-th
element of those m-tuples must be translated back to the corresponding half
intervals. This translation is accomplished by the function defined by

update(bmm, σ, j) ≡ bmm with [lbvar := lbvar with [j :=σ(bmm.lbvarj)],
ubvar := ubvar with [j :=σ(bmm.ubvarj)]],

where bmm is an element of type Outminmax, σ is a function of type R → R,
and j < m is a natural number.

If the condition in Line 19 is true, the function update is used with the
actual parameters bmm1 (defined in Line 17), σ (defined in Line 15), and j
(defined in Line 9). Since the fields lbmin and lbmax in the element of type
Outminmax returned by the function update are only correct for one of the
half intervals, more conservative bound estimates should be computed for the
whole interval. This is accomplished by the function combine on elements omm1

and omm2 of type Outminmax that returns an element of type Outminmax that
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satisfies
lbmin = min(omm1.lbmin, omm2.lbmin),

lbmax =


omm1.lbmax if omm2.lbmax = ⊥,
omm2.lbmax if omm1.lbmax = ⊥,
min(omm1.lbmax, omm2.lbmax) otherwise,

lbvar =

{
omm1.lbvar if lbmax = omm1.lbvar,

omm2.lbvar otherwise,

ubmin =


omm1.ubmin if omm2.ubmin = ⊥,
omm2.ubmin if omm1.ubmin = ⊥,
max(omm1.ubmin, omm2.ubmin) otherwise,

ubvar =

{
omm1.ubvar if ubmin = omm1.ubmin,

omm2.ubvar otherwise,

ubmax = max(omm1.ubmax, omm2.ubmax),
The element of type Outminmax returned in Line 20 therefore has bound esti-
mates for evalmultibern(qqq,ααα)(xxx), where xxx ∈ lll[111m,000m]uuu.

If the condition in Line 19 is false, the function berncoeffsminmax is
recursively called for a second time with the parameters ααα2, lll2,uuu2, d + 1, and
omm2, which is an accumulative parameter explained in §4.1.5. The element
bmm2 represents range information of the polynomial p2 on the box lll2 [000m,111m]uuu2 .
In Line 28 and 29, the j-th component of the fields lbvar and ubvar of bmm1

and bmm2 are translated back to their corresponding half interval and then,
the resulting elements of type Outminmax are combined into a new element of
type Outminmax that has bound estimates for evalmultibern(qqq,ααα)(xxx), where
xxx ∈ lll[111m,000m]uuu.

4.1.4 Correctness

The correctness property of the function bernMinmax states that it computes
correct bound estimates for evalmultibern(qqq,ααα)(xxx), where xxx ∈ lll[111m,000m]uuu.
Thus, if the m-variate polynomial pair 〈qqq,ααα〉 is a Bernstein representation of a
polynomial p, then the function bernMinmax computes range information for
p on the unit box as well. The following theorem has been proved in PVS by
induction on the structure of the definition of bernMinmax. In PVS, the corre-
sponding induction scheme is generated by the type-checker by restricting the
output type of the function to elements that satisfy the correctness property.
Lemma 1, Theorem 7, and Theorem 8 are used to prove the base case. The
inductive case is discharged by Theorem 6.

Theorem 10 For all m-variate polynomial pairs 〈qqq,ααα〉 of degree at most nnn,
m-indices lll and uuu, D ∈ N, d ∈ N with d ≤ D, predicates localex and globalex,
functions varsel, and elements omm and bmm of type Outminmax such that

bmm = bernMinmax(D, varsel, localex, globalex, qqq)(ααα, lll,uuu, d, omm),
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the following properties hold

1. bmm.lbmin ≤ evalmultibern(qqq,ααα)(xxx) ≤ bmm.ubmax, for all xxx ∈ Um,
2. bmm.lbvar ∈ lll[111m,000m]uuu and evalmultibern(qqq,ααα)(bmm.lbvar) = bmm.lbmax,

if bmm.lbvar 6= ⊥, and
3. bmm.ubvar ∈ lll[111m,000m]uuu and evalmultibern(qqq,ααα)(bmm.ubvar) = bmm.ubmin,

if bmm.ubvar 6= ⊥.

It is noted that Theorem 10 holds for all possible values of the input pa-
rameters varsel, localex, globalex, and omm. These parameters are added
for generality and efficiency reasons. They are explained in §4.1.5. Further-
more, since all functions in PVS are total, it is implicit in this theorem that
the function bernMinmax always terminates.

4.1.5 Parameters varsel, omm, globalex, and localex

The parameter varsel is used to determine two things: (1) which variable to
subdivide at each recursive step, and (2) whether to compute bounds to the
left or the right first in that variable. The function varsel takes as inputs an
m-variate polynomial pair 〈qqq,ααα〉, of degree at most nnn, and a recursion depth. It
returns a pair (left, var), where left is a Boolean value and var < m. The
value left being true means that the given variable should be subdivided
to the left first, and var is a natural number representing the index of the
variable to be subdivided. The most basic example of such a function is given
by varsel(qqq,ααα, d) = (true, mod(m, d)), which alternates the variables at each
recursive call and always computes range information on the left interval first.
The function varsel is an input to the algorithm in PVS, so it can facilitate
any subdivision scheme.

One method for variable selection that has been implemented in PVS is
called MaxVarMinDir. This function iterates through the variables, and for
each j < m computes the Bernstein coefficients multicoeff(qqq,ααα,000m) and
multicoeff(qqq,ααα,000m with [j :=nj ]), which by Theorem 8 in Section 3.4 are
equal to the (Bernstein) evaluations of the polynomial at the points 000m and
(000m with [j := 1]), respectively. These are the values at two different corner
points of the unit box Um, where only the value of the j-th variable is different
at the two points. The function MaxVarMinDir picks a variable for which these
two function values have the greatest difference. The intention is that this is
likely to choose the variable for which there is the most variation in the values
of the polynomial on the box, when all of the other variables are fixed. The
boolean value returned by the function MaxVarMinDir, along with this variable,
depends on whether the algorithm is computing the maximum or the minimum
of the polynomial. For instance, if the algorithm is computing the minimum,
then the boolean value will be set to true, indicating subdividing left before
right, precisely when the coefficient multicoeff(qqq,ααα,000m) is no greater than
the coefficient multicoeff(qqq,ααα,000m with [j :=nj ]). This is because it is more
likely that the minimum value of the polynomial is attained on the left half of
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the interval. When computing the maximum, the boolean value would similarly
be set to false in this example.

The function MaxVarMinDir represents a simple, intuitive method for choos-
ing the variable for subdivision. The state of the art in variable and direction
selection methods for subdividing Bernstein polynomials is more advanced
than this method, however. As noted in [31] and [37], there are more efficient
methods for choosing these variables and directions, including several based
on derivatives. The reason that these methods have not been implemented in
PVS is that they require that all the Bernstein coefficients of the polynomial
are stored in memory and then analyzed by making many comparisons be-
tween them, and currently the PVS implementation does not store any of this
information in memory. There are two issues that would arise from storing this
information in memory. The first is that it would cause efficiency problems,
and the second is that the algorithms would have to be redesigned, and the
formal proofs would become more complicated. It is possible that these issues
are not entirely prohibitive, so this topic will be analyzed in future work.

The parameter omm is used to store the current output of the algorithm.
The function between? tests whether the output bmm at the current recursive
step can contribute anything to the final output of the function once it is
combined. That is,

between?(omm, bmm) ≡ omm.lbvar 6= ⊥ ∧ omm.lbmax ≤ bmm.lbmin ∧
omm.ubvar 6= ⊥ ∧ bmm.ubmax ≤ omm.ubmin.

At a given recursive step in the algorithm, if between?(omm, bmm) returns
true, then the output bmm of the current recursive step will not contribute
to the overall output of the function since between?(omm, bmm) implies that
combine(omm, bmm) = omm.

The function bernMinmax is at the core of other algorithms that solve spe-
cific global optimization problems, e.g., finding bounds for the minimum and
maximum values of a polynomial, proving a universally quantified polynomial
inequality, or checking whether a polynomial inequality is satisfiable or not.
Each of these problems has a different termination condition. The predicates
localex and globalex are used to prune the recursion depending on particu-
lar objectives. The predicate localex will be used to exit the algorithm locally
and continue to the next recursive step. The predicate globalex will be used
to force termination of the algorithm when a given condition is satisfied.

For instance, the algorithm can be set to compute bounds on the range of
a polynomial within an arbitrary precision ε > 0 of the actual bounds. This
can be accomplished by defining the predicates

eps localexit(ε)(bmm) ≡ bmm.lbvar 6= ⊥ ∧ bmm.lbmax− bmm.lbmin ≤ ε ∧
bmm.ubvar 6= ⊥ ∧ bmm.ubmax− bmm.ubmin ≤ ε,

eps globalexit(bmm) ≡ false.

In this case, the parameters localex and globalex are instantiated with
eps localexit(ε) and eps globalexit, respectively. Another useful instanti-
ation of these parameters is presented in §4.3.
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01 : polyMinmax(D, varsel, localex, globalex, qqq,ααα, lll,uuu,aaa,bbb) : Outminmax ≡
02 : let

03 : ααα1 = translatemulti(ααα,aaa,bbb),

04 : ααα2 = tomultibern(ααα1),

05 : omm = bernMinmax(D, varsel, localex, globalex, qqq)(ααα2, lll,uuu, 0, Emptymm)

06 : in

07 : omm with [lbvar := denormalize(aaa,bbb)(omm.lbvar),

08 : ubvar := denormalize(aaa,bbb)(omm.ubvar)]

Fig. 3 The function polyMinmax

4.2 Function polyMinmax

The function polyMinmax in Figure 3 can be used to compute range infor-
mation for polynomial in standard form on an arbitrary partially open box
lll[aaa,bbb]uuu. However, as for the function bernMinmax, it does not directly have p,
which is not a formally defined object, as an input. Rather, it has as parame-
ters an m-variate polynomial pair 〈qqq,ααα〉 of degree at most nnn, and m-indices lll
and uuu that represent the partially open box lll[aaa,bbb]uuu. The intent is that the pair
〈qqq,ααα〉 is a standard representation of p. The algorithm proceeds in four steps
as follows.

Step 1 (Line 3): Use translatemulti to translate the standard representa-
tion 〈qqq,ααα〉 of p on [aaa,bbb] to a standard representation 〈qqq,ααα1〉 of a polynomial
p1 on the unit box Um, such that p and p1 attain the same values on their
respective boxes.

Step 2 (Line 4): Use tomultibern to translate the standard representation
〈qqq,ααα1〉 of p1 to a Bernstein representation 〈qqq,ααα2〉 of p1. The constant el-
ement Emptymm of type Outminmax is defined such that all the numerical
fields are 0 and the m-tuples are ⊥.

Step 3 (Line 5): Apply bernMinmax to compute an element omm of Outminmax
that gives range information for evalmulti(qqq,ααα)(xxx) (equivalently p1(xxx)),
where xxx ∈ lll[000m,111m]uuu.

Step 4 (Lines 7–8): Translate the fields lbvar and ubvar of omm from lll[000m,111m]uuu
back to lll[aaa,bbb]uuu . This is accomplished by the function denormalize(aaa,bbb)
that maps lll[000m,111m]uuu to lll[aaa,bbb]uuu component-wise. It is defined such that

denormalize(aaa,bbb)(xxx)j ≡ aj + xj · (bj − aj),

for j < m and xxx ∈ lll[000m,111m]uuu.

The following correctness property of the function polyMinmax has been
proved in PVS. The proof uses Theorem 4, Theorem 5, and the correctness
property of bernMinmax (Theorem 10).

Theorem 11 For all m-variate polynomial pairs 〈qqq,ααα〉 of degree at most nnn,
m-indices lll and uuu, m-boxes [aaa,bbb], D ∈ N, predicates localex and globalex,
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functions varsel, and elements omm of type Outminmax such that

omm = polyMinmax(D, varsel, localex, globalex, qqq,ααα, lll,uuu,aaa,bbb),

the following properties hold

1. omm.lbmin ≤ evalmulti(qqq,ααα)(xxx) ≤ omm.ubmax, for all xxx ∈ lll[aaa,bbb]uuu,
2. omm.lbvar ∈ lll[aaa,bbb]uuu and evalmulti(qqq,ααα)(omm.lbvar) = omm.lbmax when-

ever omm.lbvar 6= ⊥, and
3. omm.ubvar ∈ lll[aaa,bbb]uuu and evalmulti(qqq,ααα)(omm.ubvar) = omm.ubmin when-

ever omm.ubvar 6= ⊥.

4.3 Function poly rel

The function poly rel, defined in Figure 4, uses the function polyMinmax to
decide whether the polynomial p satisfies the inequality p(xxx) < 0 for all xxx in a
given partially unbounded box lll{aaa,bbb}uuu. As for the functions bernMinmax and
polyMinmax, it does not have p as an input since it is not a formally defined
object. Rather, it has an m-variate polynomial pair 〈qqq,ααα〉 as input, and the
intent is that this pair is a standard representation of p.

The function poly rel has as inputs data structures representing a poly-
nomial inequality on a partially unbounded box. It returns an element of the
disjunct type

Outcome ≡ Rm ∪ {Unknown, IsTrue},

representing three possible kinds of outcomes of the function. The algorithm
proceeds in 3 steps as follows.

Step 1 (Line 3): Use translatemulti to translate the standard representa-
tion 〈qqq,ααα〉 of p on the partially unbounded box lll{aaa,bbb}uuu to a standard
representation 〈qqq,ααα1〉 of a polynomial p1 on the partially open box lll[aaa,bbb]uuu,
such that if the inequality is satisfied for p1, it is also satisfied for p.

Step 2 (Line 4): Apply polyMinmax to compute an element omm of Outminmax
that gives range information for p1 on lll[aaa,bbb]uuu. The parameters localex
and globalex of polyMinmax are instantiated with localtrue(<) and
counterex(<), respectively. These predicates, which are parametric on the
real order relation <, are defined as follows.

localtrue(<)(bmm) ≡ if 0 < 1 then bmm.ubmax < 0
else bmm.lbmin < 0 endif,

counterex(<)(bmm) ≡ if 0 < 1 then bmm.ubvar 6= ⊥ ∧ bmm.ubmin ¬< 0
else bmm.lbvar 6= ⊥ ∧ bmm.lbmax ¬< 0 endif,

where bmm is an element of type Outminmax.
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01 : poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,<) : Outcome ≡
02 : let

03 : ααα1 = translatebound(ααα, lll,uuu,aaa,bbb),

04 : omm = polyMinmax(D, varsel, localtrue(<), counterex(<), qqq,ααα1, lll,uuu,aaa,bbb)

05 : in

06 : if localtrue(<)(omm) then

07 : IsTrue

08 : elsif counterex(<)(omm) then

09 : if 0 < 1 then

10 : counterexbound(lll,uuu,aaa,bbb)(omm.ubvar)

11 : else

12 : counterexbound(lll,uuu,aaa,bbb)(omm.lbvar)

13 : endif

14 : else

15 : Unknown

16 : endif

Fig. 4 The function poly rel

Step 3 (Lines 6–16): Use the information in omm to determine wether the in-
equality evalmulti(qqq,ααα1)(xxx) < 0 (equivalently p1(xxx) < 0) holds for all
xxx ∈ lll[aaa,bbb]uuu, in which case it returns the value IsTrue, or there exists
ccc ∈ lll[aaa,bbb]uuu such that evalmulti(qqq,ααα1)(ccc) ¬< 0 (equivalently p1(ccc) ¬< 0),
in which case it returns counterexbound(lll,uuu,aaa,bbb)(ccc). If no determination
can be made from omm, the algorithm returns the value Unknown.

The functions localtrue(<) and counterex(<) are passed as the parame-
ters localex and globalex, respectively, to the recursive function bernMinmax.
Thus, once it is found in a recursive step that the polynomial inequality holds
on a subbox, i.e., localtrue(<)(bmm) returns true for some bmm, the recursion
will continue on the next branch. On the other hand, if counterex(<)(bmm)
returns true, the function bernMinmax will exit globally since there is a point
where the inequality does not hold.

The following correctness property of poly rel has been proved in PVS.
The proof uses Theorem 9 and the correctness property of polyMinmax (The-
orem 11).

Theorem 12 For all m-variate polynomial pairs 〈qqq,ααα〉 of degree at most nnn,
m-indices lll and uuu, with lj + uj ≤ 3 for all j < m, m-boxes [aaa,bbb], D ∈ N, real
order relations < ∈ {<,≤, >,≥}, and functions varsel,

1. poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,<) = IsTrue implies

∀xxx ∈ lll{aaa,bbb}uuu : evalmulti(qqq,ααα)(xxx) < 0.

2. poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,<) = ccc, with ccc ∈ Rm, implies

ccc ∈ lll{aaa,bbb}uuu ∧ evalmulti(qqq,ααα)(ccc) ¬< 0.
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1. Find a standard representation 〈qqq,ααα〉 of the polynomial p(xxx) + 17434
10000

.

2. Prove that the proposition eval(qqq,ααα)(xxx) = p(xxx) + 17434
10000

holds for all xxx in [aaa,bbb].
3. Given a concrete natural number D, e.g., 100, and a concrete function varsel, e.g.,

MaxVarMinDir, check that the ground expression

poly rel(D, varsel, qqq,ααα,000m,000m, aaa,bbb,>) (30)

evaluates to IsTrue.
4. Use the correctness theorem of poly rel to deduce Formula (29).

Fig. 5 Computational reflection approach

5 Strategies

The formal development presented in this paper includes strategies that solve
polynomial global optimization problems in PVS. These strategies apply the
functions minmax and bernstein, described in §4, and their correctness proper-
ties to construct proofs using a computational reflection approach. The strate-
gies not only yield proofs of constant length, but are effective in practical
non-trivial problems.

The computational reflection approach used in this paper, which is not
exclusive to PVS, can be illustrated as follows. Assume that a proof assistant
user wants to prove

∀xxx ∈ [aaa,bbb] : p(xxx) > −17434
10000

, (29)

where aaa is the 8-tuple (− 1
10 ,

4
10 ,−

7
10 ,−

7
10 ,

1
10 ,−

1
10 ,−
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11
10 ), bbb is the 8-tuple

( 4
10 , 1,−

4
10 ,

4
10 ,

2
10 ,

2
10 ,

11
10 ,−

3
10 ) and p(xxx) is the 8-variate polynomial in For-

mula (1), written as a real number expression involving numerical rational
constants, variables in xxx = (x1, x2, x3, x4, x5, x6, x7, x8), and the operations
addition, subtraction, multiplication, and exponentiation where the exponent
is a numerical natural constant. Instead of a direct proof of that formula, the
approach in Figure 5 is used.

In a theorem prover with a sophisticated strategy language, such as PVS,
all the steps in Figure 5 can be mechanized. Since the polynomial p(xxx) is writ-
ten as a real number expression in the specification language, Step 1 requires
introspective capabilities in the strategy language, i.e., the ability to observe
expressions in the specification language as data in the strategy language.
Once a representation 〈qqq,ααα〉 of p is found, Step 2 can be accomplished by un-
folding the definitions in eval(qqq,ααα)(xxx). Since the expression in Formula (30)
is ground, Step 3 can be efficiently executed using a ground evaluator in a
theorem prover that supports this feature. Otherwise, this step can be ac-
complished by unfolding all definitions in the expression. Step 4 is a simple
application of Theorem 12.

The PVS strategy bernstein, described in §5.1, implements the approach
described in Figure 5 to solve simply quantified polynomial inequalities on
partially unbound boxes. The PVS strategy minmax, described in §5.2, uses a
similar computational reflection approach, through the function polyMinmax,
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to find bound estimates to a given precision of the minimum and maximum
values of polynomials on partially open boxes.

5.1 Strategy bernstein

The strategy bernstein implements the approach in Figure 5. It automatically
discharges PVS sequents having one of the following forms

1. ` ∀x1, . . . , xm : X1 ∧ . . . ∧Xm =⇒ p(x1, . . . , xm) < r,
2. X1, . . . , Xm ` p(x1, . . . , xm) < r,
3. ` ∃x1, . . . , xm : X1 ∧ . . . ∧Xm ∧ p(x1, . . . , xm) < r,

where

– x1, . . . , xm is a collection of variables of type real,
– for 1 ≤ j ≤ m, Xj denotes a Boolean expression of one of the forms
aj ≺ lj xj , xj ≺uj

bj , aj ≺ lj xj ≺uj
bj , or |xj | ≺uj

bj , aj and bj are
numerical rational constants, and ≺ lj ,≺uj

, are real orders in {<,≤}.
– p(x1, . . . , xm) denotes a real expression involving numerical rational con-

stants, variables in x1, . . . , xm, and the operations addition, subtraction,
multiplication, and exponentiation where the exponent is a numerical nat-
ural constant.

– < is a real order in {<,≤, >,≥}, and
– r is a numerical rational constant.

Sequents of the form 1 and 2 are called universal and sequents of the form 3
are called existential. A sequent of the form 1 can be reduced to the form 2
by skolemizing the quantified variables.

The strategy bernstein does not require any parameters, but optional
strategy parameters allow for the specification of a maximum depth D (the
default is D = 100) and variable selection method varsel (the default is
varsel = MaxVarMinDir). First, the strategy builds from the Boolean ex-
pressions denoted by Xj , with 1 ≤ j ≤ m, PVS expressions representing a
partially unbounded interval lll{aaa,bbb}uuu, i.e., m-indices lll,uuu and m-tuples aaa,bbb de-
fined as follows.

– If Xj has the form a′j ≺ l′j
xj , then aj = a′j , bj = a′j+1, lj = l′j , and uj = 2.

– If Xj has the form xj ≺u′j
b′j , then aj = b′j−1, bj = b′j , lj = 2, and uj = u′j .

– If Xj has the form a′j ≺ l′j
xj ≺u′j

b′j , then aj = a′j , bj = b′j , lj = l′j , and
uj = u′j .

– If Xj has the form |xj | ≺u′j
b′j , then aj = −b′j , bj = b′j , and lj = uj = u′j .

Then, the strategy extracts a standard representation 〈qqq,ααα〉 from the real
expression denoted by p(x1, . . . , xm)−r. This part is the most complex function
in the strategy, it is 250 lines of strategy code and represents one third of the
whole strategy development. It is a parser of PVS real expressions that builds
an m-tuple qqq and a list ααα. The function, which was developed by B. Di Vito
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(NASA), does not assume any particular polynomial normal form. In partic-
ular, real expressions such as (x-y)^2, (x-y)*(x-y), and x*x-2*x*y+y*y are
all parsed into a pair of PVS expressions qqq and ααα representing the 2-variable
polynomial x2 − 2xy + y2.

It is noted that the correctness of the strategy is not compromised by the
constructions of lll,uuu,qqq, and ααα. Indeed, for the strategy to succeed in the case
of a universal sequent, the goals

X1, . . . , Xm ` unbounded(lll,uuu,aaa,bbb)(x1, . . . , xm), (31)

and
` evalmulti(qqq,ααα)(x1, . . . , xm) = p(x1, . . . , xm)− r, (32)

are discharged by unfolding the definition of unbounded and evalmulti, re-
spectively. Furthermore, the strategy uses the PVS ground evaluator to check
whether the goal

` poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,<) = IsTrue

holds or not. If this is the case, Theorem 12 is applied and the proof of the
sequent succeeds. If the expression poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,<) eval-
uates to an m-tuple ccc, the strategy fails with a message informing that the
counterexample ccc has been found.

In case of an existential sequent, the strategy evaluates the ground ex-
pression poly rel(D, varsel, qqq,ααα, lll,uuu,aaa,bbb,¬<). If the expresion evaluates to
IsTrue, the strategy fails with a message informing that the polynomial in-
equality does not hold for any point in the partially unbounded box lll{aaa,bbb}uuu.
If the expression evaluates to an m-tuple ccc, the strategy instantiates the exis-
tential quantifier with the m-tuple ccc and discharges the goal

` X1 ∧ . . . ∧Xm ∧ p(ccc) < r, (33)

using the ground evaluator. In the case of an existential sequent, neither For-
mula (31) nor Formula (32) need to be discharged.

In all cases, if the ground evaluation of poly rel returns Unknown, the
strategy fails with a message informing that it was not possible to make a
determination using the given maximum depth.

5.2 Strategy minmax

The strategy minmax can be applied to sequents having the form

Γ,X1, . . . , Xm ` ∆,

where

– Γ and ∆ denote arbitrary sets of Boolean expressions involving some vari-
ables x1, . . . , xm of type real,
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– for 1 ≤ j ≤ m, Xj denotes a Boolean expression of one of the forms
aj ≺ lj xj ≺uj bj , or |xj | ≺uj bj , aj and bj are numerical rational constants,
and ≺ lj ,≺uj

are real orders in {<,≤}.

The strategy has as parameter a real expression p(x1, . . . , xm), which is
given either as a string or as sequent reference location [13] to an expression in
Γ or ∆. As The expression p(x1, . . . , xm) must only involve numerical rational
constants, variables in x1, . . . , xm, and the operations addition, subtraction,
multiplication, and exponentiation where the exponent is a numerical natu-
ral constant. The strategy computes bound estimates for the minimum and
maximum values of p(x1, . . . , xm) within a given precision ε > 0 (default value
is), for the variable ranges given by X1 ∧ . . . ∧ Xm. Optional parameters of
the strategy set the precision ε, maximum recursion depth D, and variable
selection method varsel to values different from the defaults 1

100 , 100, and
MaxVarMinDir, respectively.

As in the case of the strategy bernstein, the strategy minmax builds m-
indices lll,uuu and m-tuples aaa,bbb from the Boolean expressions denoted by Xi, for
1 ≤ i ≤ m. In this case, since the forms of these expressions is more restricted
than for the strategy bernstein, the objects lll,uuu,aaa,bbb, represent the partially
open box lll[aaa,bbb]uuu. The goal

` open(lll,uuu,aaa,bbb)(x1, . . . , xm) ⇐⇒ X1 ∧ . . . ∧Xm,

is discharged by unfolding the definition of open. Furthermore, an m-tuple qqq
and a list ααα are built from p(x1, . . . , xm). The goal

` evalmulti(qqq,ααα)(x1, . . . , xm) = p(x1, . . . , xm).

is discharged by unfolding the definition of evalmulti. Then, the strategy
evaluates the expression

polyMinmax(D, varsel, eps localexit(ε), eps globalexit, qqq,ααα, lll,uuu,aaa,bbb).

The result of this evaluation is a PVS expression omm denoting a record of type
Outminmax. The strategy adds the following formulas to Γ :

1. omm.lbmin ≤ p(x1, . . . , xm),
2. p(x1, . . . , xm) ≤ omm.ubmax,
3. p(omm.lbvar) = omm.lbmax, if omm.lbvar 6= ⊥, and
4. p(omm.ubvar) = omm.ubmin, if omm.ubvar 6= ⊥.

These additional formulas are discharged by the application of Theorem 11. It
is noted that the strategy does not always guarantee omm.lbmax−omm.lbmin ≤
ε and omm.ubmax−omm.ubmin ≤ ε, since it is possible that the recursive function
bernMinmax reaches the maximum depth before that precision is achieved.



Formalization of a Practical Representation of Bernstein Polynomials 39

5.3 Examples

The rest of this section presents several examples of global optimization theo-
rems that can be automatically discharged with the strategy poly rel. These
examples are taken from [37] and were originally drawn from [40], where new
exit conditions and methods for range subdivision are tested on particular
problems. These polynomials are typical test problems for global optimization
algorithms since standard tricks, such as initially eliminating certain variables,
will not typically work with these problems. Thus, these problems are designed
to push global optimization problems to their limits. The polynomials and the
domains of the associated variables are given below.

– Schwefel:

schwefel(x1, x2, x3) = (x1 − x2
2)2 + (x2 − 1)2 + (x1 − x2

3)2 + (x3 − 1)2,

where x1, x2, x3 ∈ [−10, 10].

– 3-Variable Reaction Diffusion:

rd(x1, x2, x3) = −x1 + 2x2 − x3 − 0.835634534x2(1 + x2),

where x1, x2, x3 ∈ [−5, 5].

– Caprasse’s System

caprasse(x1, x2, x3, x4) = −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3+

4x2
3 − 10x2x4 − 10x2

4 + 2,

where x1, x2, x3, x4 ∈ [−0.5, 0.5].

– Adaptive Lotka-Volterra System:

lv(x1, x2, x3, x4) = x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1,

where x1, x2, x3, x4 ∈ [−2, 2].

– Butcher’s Problem:

butcher(x1, x2, x3, x4, x5, x6) = x6x
2
2 +x5x

2
3−x1x

2
4 +x3

4 +x2
4−

1
3
x1 +

4
3
x4,

where x1 ∈ [−1, 0], x2 ∈ [−0.1, 0.9], x3 ∈ [−0.1, 0.5], x4 ∈ [−1,−0.1],
x5 ∈ [−0.1,−0.05], and x6 ∈ [−0.1,−0.03].

– 7-Variable Magnetism:

magnetism(x1, x2, x3, x4, x5, x6, x7) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6+

2x2
7 − x1,

where x1, x2, x3, x4, x5, x6, x7 ∈ [−1, 1].
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Problem k1 k2

Schwefel -0.00000000058806 0.00000000058806
Reaction Diffusion -36.7126907 -36.7126

Caprasse -3.1801 -3.18009
Lotka-Volterra -20.801 -20.799

Butcher -1.44 -1.439
Magnetism -0.25001 -0.2499

Heart Dipole -1.7435 -1.7434

Table 1 Constants k1 and k2 for global optimization problems

– Heart Dipole:

heart(x1, x2, x3, x4, x5, x6, x7, x8) = −x1x
3
6 + 3x1x6x

2
7 − x3x

3
7+

3x3x7x
2
6 − x2x

3
5 + 3x2x5x

2
8 − x4x

3
8 + 3x4x8x

2
5 − 0.9563453,

where x1 ∈ [−0.1, 0.4], x2 ∈ [0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4],
x5 ∈ [0.1, 0.2], x6 ∈ [−0.1, 0.2], x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3].

For each one of these problems, the following types of theorems are proved
for some k1, k2 ∈ R.

– Theorem p forall: ∀xxx ∈ Rm : xxx ∈ [aaa,bbb] =⇒ p(xxx) ≥ k1.
– Theorem p exists: ∃xxx ∈ Rm : xxx ∈ [aaa,bbb] ∧ p(xxx) ≤ k2.

The constants k1 and k2 are chosen such that k2 − k1 < ε, where ε is a
small positive number. Hence, these theorems imply that both k1 and k2 are
estimates of the global minimum of the polynomial p in the box [aaa,bbb], within
a precision of ε. Table 1 shows the constants k1 and k2 for each problem.

Each of the theorems for the problems listed in Table 1 can be proved in
PVS using the proof strategy (bernstein). Table 2 shows proof times (in
seconds) for each theorem in a MacBook Pro 2.4 GHz Inter Core 2 Duo, 8 GB
of memory. In the case of the universally quantified theorems, a considerable
amount of time is spent in the verification of Formula (32). The first column
in the section p forall shows the total time to prove the theorem, and the
second column shows the proof time without discharging Formula (32). As
noted before, existential sequents do not require that formula to be discharged.
Therefore, this is not an issue for existential theorems.

Formula (32) involves variables x1 . . . xn. Hence, it can not be checked using
a ground evaluator. Since PVS does not feature an efficient symbolic evaluator,
it is discharged by fully unfolding the definition of evalmulti. This approach
requires many symbolic manipulations and, for some of these theorems, it is
the bottleneck in proof speed.

6 Related Work

Simply quantified multivariate polynomial inequalities belong to the category
of non-linear arithmetic problems, i.e., polynomial arithmetic problems that
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Problem
p forall

p exists
Full W/O Equiv.

Schwefel 10.23 3.18 1.27
Reaction Diffusion 3.11 0.17 0.21

Caprasse 11.44 1.25 0.01
Lotka-Volterra 4.75 0.23 0.24

Butcher 19.83 0.47 0.43
Magnetism 160.44 82.87 1.71

Heart Dipole 79.68 26.14 14.94

Table 2 Proof times (sec) for global optimization problems

are not restricted to the linear case. Tarski proved that the first-order theory of
real numbers with addition, subtraction, multiplication, and less-than allows
quantifier elimination [39]. Hence, non-linear arithmetic is decidable assuming
that the truth value of expressions involving only constants can be computed.
Tarski’s quantifier elimination procedure is not elementary recursive, which
makes it impractical for an actual implementation. A procedure with double
exponential complexity called Cylindrical Algebraic Decomposition (CAD) was
proposed by Collins [9]. Sophisticated implementations of the CAD procedure
are available in the Redlog system4 and in the QEPCAD library.5

In the context of interactive theorem proving, McLaughlin and Harri-
son present a proof-producing implementation in HOL Light of a quantifier
elimination procedure due to Hörmander [26]. As Tarski’s original method,
Hörmander’s procedure cannot be bounded by a tower of exponential func-
tions. A formalization in Coq of a quantifier elimination procedure that is
closer to CAD but still not elementary recursive is presented in [8]. Cohen
and Mahboubi hope that the formalization in [8] will lead to the verification
of a CAD algorithm specified, but not completely verified, in Coq [25]. Meti-
Tarski [1] and RAHD (Real Algebra in High Dimensions) [36] are specialized
theorem provers for the theory of real closed fields. MetiTarski is designed to
prove universally quantified inequalities involving real-valued functions such
as trascendental functions. RAHD combines several decision methods for the
existential theory of real closed fields. Both systems use a CAD procedure for
quantifier elimination among many other proof strategies.

Table 3 reports run times in seconds of different quantifier elimination tools
on the problems listed in §5.3. These tools are not all installed on the same
machine, but all machines have a similar configuration. For this reason, these
times should be used as relative indicators rather than as absolute times. A
blank entry for a given problem and tool means that the problem was not
solved by the tool in 5 minutes. The columns Redlogrlqe and Redlogrlcad refer
to two different quantifier elimination methods implemented in Redlog (Free
CSL version), 10-Mar-11. The first method is a specialized method for poly-
nomials where each quantified variable has at most degree 2. However, several

4 http://redlog.dolzmann.de.
5 http://www.usna.edu/cs/~qepcad/B/QEPCAD.html.
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Problem Kodiak Redlogrlqe Redlogrlcad QEPCAD Metit

Schwefel (∀) 0.94 0.49 0.84 0.11
Schwefel (∃) 0.28 138.9 0.91 (n/a)

Reaction Diffusion (∀) 0.0 0.34 0.37 0.01 0.09
Reaction Diffusion (∃) 0.0 0.34 0.35 0.01 (n/a)

Caprasse (∀) 0.29 1.75 6.54 0.16
Caprasse (∃) 0.31 15.06 6.88 (n/a)

Lotka-Volterra (∀) 0.1 0.36 0.45 0.01 0.1
Lotka-Volterra (∃) 0.0 0.35 0.4 0.01 (n/a)

Butcher (∀) 0.2 0.42 (abort) (abort)
Butcher (∃) 0.2 0.36 (abort) (n/a)

Magnetism (∀) 73.54 0.67 0.36 0.18 0.54
Magnetism (∃) 0.32 0.42 0.36 0.35 (n/a)

Heart Dipole (∀) 7.36
Heart Dipole (∃) 3.7 (n/a)

Table 3 Times (sec) of quantifier elimination procedures on global optimization problems

heuristics are used to handle the case of polynomials with higher degrees. The
second method is CAD. The next column corresponds to QEPCAD Version
B 1.54, 15 Apr 2010. The last column refers to MetiTarski 1.8 (built 18 Feb
2011), which was only tried on universally quantified problems. It is noted that
the problem Butcher causes QEPCAD to abort with the message “Failure oc-
curred in: GCSI (final check) Reason for the failure: Too few cells reclaimed.”
Since MetiTarski uses QEPCAD, this error is reflected in MetiTarski, which
also signals an error for this problem. The column Kodiak refers to the run
time of an implementation in C, using the GNU library for arbitrary precision
GMP6, of the verified algorithms presented in this paper.

The most recent version of PVS (5.0) has a strategy rahd, which is an
early implementation of the RAHD method. In contrast to bernstein, the
strategy rahd is not implemented in the logic of PVS. In particular, it is not
supported by a proof tree of basic PVS proof rules. The strategy is supposed
to use the library QEPCAD. However, according to the PVS developers, this
feature is currently disabled. The strategy rahd proves the universal theorem
of the Reaction Diffusion problem in 0.34 second. In all the other problems, it
either terminates without proving the theorems or does not terminate within
5 minutes. The most recent standalone version of RAHD was not tried.7 The
authors also tried the quantifier elimination procedure implemented in HOL
Light, but since it did not return within 5 minutes in any of the problems, it
is not reported in the table.

From this limited benchmark, it seems that for these kinds of problems the
Bernstein method competes well against state-of-the-art quantifier elimination
procedures. In particular, none of these procedures was able to discharge the
Heart Dipole theorems.This is not surprising as it is generally accepted that

6 http://gmplib.org.
7 http://code.google.com/p/rahd.
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quantifier elimination is only practical for a small number of variables. For
example, Passmore remarks in his thesis that he has “never succeeded in using
pure P-CAD on a nonlinear problem in more than 10 variables” and that, in
particular, “standard P-CAD implementations such as QEPCAD run out of
resources on relatively small problems in 5 or 6 variables” [35]. However, a
comparison of the PVS strategy bernstein to these quantifier elimination
tools is not completely fair. On one hand, some of these tools handle a richer
set of formulas, e.g., mixed quantification, Boolean operators, non-polynomial
inequalities, etc. On the other hand, bernstein is a proof-producing strategy
entirely implemented in the logic of PVS, while those tools are implemented
using efficient programming languages.

Another approach to solving non-linear arithmetic problems of the form

∀xxx ∈ Rm : p(xxx) ≥ 0 (34)

consists of finding q0, . . . , qn polynomials such that p(xxx) =
∑n
i=0 qi(xxx)2. Find-

ing this polynomial decomposition is sufficient to prove Formula (34), since for
i ≤ n, qi(xxx)2 ≥ 0. Such problems are referred to as Sum of Squares problems
and have been studied for more than a century. Parrillo proposes a method to
find such a sum of squares decomposition of a polynomial using Linear Matrix
Inequalities (LMI’s), which are solved using semidefinite programming [34].
Harrison implemented this method in HOL Light [20] in a procedure that
comes with the standard distribution of HOL Light. An advantage of this
method with respect to CAD is that the algorithm that computes the de-
composition on sum of squares can be used in a proof-producing procedure
without being trusted, i.e., it does not need to be verified. The fact that the
decomposition is correct is checked by the theorem prover. However, the soft-
ware that solves the LMI problem does use floating point computations and
can be susceptible to related errors. Thus, the coefficients in the polynomi-
als qi may not be exact. Harrison proposes a heuristic method to adjust the
original decomposition to rational coefficients that works in several cases. The
authors are also aware of recent developments on SOS methods that work on
polynomials with rational coefficients [22,29].

The authors have tried the REAL SOS procedure available in HOL Light
on the universal theorems listed in §5.3. That procedure instantly solves the
universal case of the problem Magnetism. The universal case of the problem
Schwefel is solved, but only when no bounds are given. In all the other cases,
the procedure does not terminate within 5 minutes. It has been reported that
the Coq theorem prover also implements this procedure.8 The authors did not
try it, but expect similar results as the documentation states that Coq’s SOS
tactic is based on HOL Light’s procedure.

Numerical approximation methods have been tried before in the context of
interactive theorem proving. A PVS proof-producing strategy called numerical
is presented in [11]. This strategy, which is available as part of the PVS
NASA Libraries, solves universally quantified formulas involving variables in a

8 http://coq.inria.fr/refman/Reference-Manual026.html#@default870.
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bounded box and real-valued functions. The strategy uses a branch-and-bound
method called interval splitting, but relies on interval arithmetic rather than
on Bernstein polynomials. The authors tried numerical, with default param-
eters, on the universal case of the problems listed in §5.3, and it succeeds to
discharge Schwefel in 2.79 seconds; it fails in all the other problems. A sim-
ilar tactic called interval is available in Coq [27]. The Coq tactic is more
efficient than the PVS strategy as it uses a formalized floating-point arith-
metic rather than rational arithmetic. In any case, the well-known variable
dependency problem of interval arithmetic, due to the fact that interval arith-
metic is only semi-distributive, make interval arithmetic, without additional
optimization techniques, impractical for solving high-dimension multivariate
polynomial inequalities.

A sophisticated implementation of interval arithmetic is provided by the
tool RealPaver [18]. The input to RealPaver is a constraint satisfaction problem
(CSP), i.e., set of constraints involving variables and real-valued functions. The
output is a set of boxes containing solutions to the constraints. This tool is
particularly interesting as it uses floating-point numbers to correctly bound the
interval computations. Therefore, the output of RealPaver is guaranteed to be
correct, i.e., the union of the boxes returned by RealPaver precisely contain all
the solutions to the CSP. In particular, if no boxes are returned, the problem
has no solutions. RealPaver is a powerful tool, but it is a constraint solver
rather than a theorem prover, and using the tool in a theorem prover would
require the user to trust two things: the logical soundness of the theorem
prover, and the validity of the answer produced by RealPaver. However, using
an algorithm that is implemented and verified in a theorem prover directly to
solve problems in that same theorem prover only requires the user to trust the
logical soundness of the prover.

Solving a universally quantified polynomial inequality in RealPaver re-
quires expressing the problem as a CSP with no solution and looking for an
empty box as the result. By using this technique, the universal case of the
Heart Dipole problem is solved by RealPaver in 0.280 sec. Existential prob-
lems cannot be solved this way, since there is no way to express disjunctive
constraints in the language and the fact that a box is returned does not mean
that a solution is found on it. Moreover, RealPaver may use some heuristics
that do not preserve completeness. This is indicated by RealPaver with a mes-
sage stating that the process was not reliable and some solutions may be lost.
In that case, the fact that no box is produced as output does not guarantee
that the CSP does not have a solution.

The authors have modified the branch-and-bound algorithm in §4 such
that given a list of polynomial inequalities, which can be interpreted in a
conjunctive or disjunctive way, it returns 3 sets of boxes:

– Green boxes whose points are guaranteed to satisfy the constraints.
– Red boxes whose points are guaranteed not to satisfy the constraints.
– Yellow boxes whose points may or may not satisfy the constraints.
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For the restricted set of polynomial constraints, this algorithm provides a
functionality similar to that of RealPaver. However, since it is written in PVS
and uses rational arithmetic instead of floating-point computations, it is not
nearly as efficient as RealPaver. In contrast to RealPaver, it computes sets of
boxes that under approximate (green boxes) and over approximate (union of
red and yellow boxes) the region defined by the constraints. This algorithm
is used in [10] to approximate, with a high level of accuracy, the failure and
safe domains, i.e., red and green boxes, of a system modeled by polynomial
inequalities.

Heuristic and incomplete methods have also been used in interactive the-
orem provers to handle non-linear arithmetic [21]. The PVS proof-producing
strategy field [30], which is based on an homonymous tactic in Coq [12],
works by first removing all divisions of the real number expressions in a se-
quent and then applying several heuristics such as case analysis, simplification
of expressions, application of real order properties, etc. These kinds of strate-
gies work on some practical problems, but they are not general enough to
handle multivariate polynomials.

Single and multivariate Bernstein polynomials have been formalized in the
Coq theorem prover [4, 43]. In [4], a formalization in Coq of de Casteljau’s
algorithm for computing Bernstein coefficients of univariate polynomial is pre-
sented. That algorithm is used to formally prove a criterion for the existence
of a root of single variable separable polynomials in a bounded interval. It is
not intended to be used in a reflective way as the algorithm for multivariate
polynomials presented in this paper. The closest work to the one presented
here, and the inspiration for this work, is the formalization in Coq of mul-
tivariate Bernstein polynomials given by Zumkeller in [43]. That work also
includes strategies for solving global optimization problems based on a branch-
and-bound algorithm. In his thesis, Zumkeller gives a short overview of the
branch-and-bound method, but does not provide any technical details of its
implementation. The thesis uses a recursive formalization of multivariate poly-
nomials, but it is unknown to the authors if the same representation is used
in the algorithm. The correctness of that algorithm is not formally proved in
Coq. Unfortunately, that development seems to be abandoned and, according
to the Coq developers, it is not supported in the current version of Coq. Hence,
the authors were unable to compare the development presented here to that
presented in [43].

7 Conclusion

This paper presented a set of formally verified algorithms for global opti-
mization of multivariate polynomials. These algorithms, which are based on
Bernstein polynomial techniques, are the building blocks of PVS strategies for
automatically finding upper and lower polynomial bounds and solving simply
quantified multivariate polynomial inequalities. For the limited set of problems
presented here, the PVS strategies compare well to state-of-the-art implemen-



46 César Muñoz, Anthony Narkawicz

tations of quantifier elimination procedures, such as those available in RedLog
and QEPCAD, and to other tools based on SOS, such as the the one available
in HOL Light.

The proof of a formula that uses the PVS strategies presented here are
guaranteed to be correct in the sense that they are supported by a tree of basic
PVS proof rules that completely discharges the original statement. These proof
rules do not make use of any trusted external oracle. A key step in this proof
is the use of the correctness theorem of a branch-and-bound algorithm, which
is fully proved in PVS. The evaluation of this algorithm on ground terms is
relatively efficient, since PVS natively supports rational arithmetic. In other
words, the fact that 1

3 + 1
3 + 1

3 is equal to 1 does not require a proof. PVS
automatically reduces the former expression into the latter one.

Despite the promising results, there is still room for improvement. An obvi-
ous one is to implement a better approach for discharging Formula (32), which
states that a real number expression p(x1, . . . , xn) is correctly represented by
〈qqq,ααα〉. It could be possible to request that the user enters the formulas using a
particular datatype for polynomial expressions, e.g., P(x1, . . . , xn). In this case,
in the spirit of computational reflection, it would be possible to write in PVS
a function that translates a representation such as P(x1, . . . , xn) into 〈qqq,ααα〉.
Proving Formula (32) would only require the application of a correctness the-
orem for such a function. However, if the PVS strategies allow users to specify
polynomials as real number expressions in no particular form, it is unavoidable
to discharge a formula such as Formula (32), where one side of the equality is
a real number expression involving universally quantified variables x1, . . . , xn
and the other side is an evaluation function on the given representation and
variables x1, . . . , xn. In PVS, there is not a particularly efficient way to evalu-
ate expressions containing variables. Expanding the definitions will definitively
discharge the formula, assuming that the representation is correct. However, if
the number of sums and products involved in the evaluation function is large,
as it is the case for evalmulti, this approach is not very efficient.

The authors are looking into a deeper embedding of multivariate polyno-
mials, where the representation P(x1, . . . , xn) reflects the syntactical structure
of p(x1, . . . , xn). In order to do this, the polynomial representation needs to
support polynomial operations such as addition, multiplication, and exponen-
tiation. As stated in a previous section, such as representation is called a
deep-embedding. In this case, Formula (32) can be discharged by recursively
rewriting the component of the expressions. This approach is successfully ap-
plied by the interval arithmetic strategy numerical to discharge the inclusion
relation between a real number expressions and a syntactically similar interval
arithmetic expressions [11].

The algorithms in §4 have a function varsel as a parameter. This param-
eter is instantiated by the strategies in §5 with the function MaxVarMinDir.
As noted in [31] and [37], there are efficient methods for choosing these vari-
ables that have not been implemented, including several based on derivatives.
Furthermore, some of heuristics to prune the recursive search tree in the brand-
and-bound algorithm can be also implemented through the local exit and
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global exit parameters of the function bernMinmax. Since the correctness
proofs of these algorithms hold for all possible inputs of these functions, the
correctness of the strategies is not affected by any particular instantiation
of these parameters. The problem there is not the verification but the for-
malization of these methods and heuristics. Some of these techniques require
complex dynamic data structures that may be difficult to formalize in the pure
functional specification language provided by PVS. Furthermore, from an algo-
rithmic point of view, the performance of bernMinmax can still be improved by
using additional data structures that cache values involved in the computation
of subdivlmulti and subdivrmulti. The definition of these data structures
is not difficult but they require modifications to the formalization that add
complexity to an already technically complex proof. These enhancements are
left for future work.

The strategies presented in this paper only handle simply quantified poly-
nomial inequalities. The authors are currently working on an extension of the
approach presented here to arbitrary Boolean formulas involving conditional
polynomials, i.e, expressions of the form if b(xxx) then p(xxx) else q(xxx) endif,
where b(xxx) is a Boolean expression and p and q are multivariate polynomials
on xxx. A generic branch and bound algorithm has been specified and verified,
whose inputs and outputs are defined on abstract types. That generic algo-
rithm has been instantiated to work with polynomial representations, e.g.,
〈qqq,ααα〉, but also with representations of conditional polynomials. The authors
are currently investigating other possible instantiations of this verified branch-
and-bound algorithm for paving, as in [10], and for interval analysis.

As mentioned before, interval arithmetic is another well-known technique
for global optimization [28]. The interval splitting technique used in interval
analysis is very similar to the subdivision method used in algorithms based
on Bernstein polynomials. Interval arithmetic does not perform well on high-
dimension polynomials, but it handles real-valued functions such as logarithm,
exponential, square root, and trigonometric functions. A possible direction of
research that combines both interval arithmetic and polynomial approxima-
tions of real-valued functions is Taylor models [32]. A Taylor model is an object
consisting of an interval and a polynomial that together approximates a func-
tion in a given interval. Interval arithmetic and Taylor models are already
available in PVS [7]. In order to extend the work presented in this paper to
real-valued functions, the authors will follow [42] and explore the use of Taylor
models to bound expressions involving real-valued functions, where the poly-
nomial part of a Taylor Model is represented using Bernstein polynomials.

Finally, although PVS has built-in rational arithmetic, rational arithmetic
is still expensive compared to floating-point arithmetic. In the context of Tay-
lor models, an interesting idea is to formalize floating-point arithmetic in PVS
and use it for representing either polynomials with floating-point coefficients,
as in [5], interval arithmetic with floating-point bounds, as in [27], or both.
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11. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library for
interval arithmetic. IEEE Transactions on Computers 58(2), 1–12 (February 2009)

12. Delahaye, D., Mayero, M.: Field, une procédure de décision pour les nombres réels en
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