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Abstract

Context-free grammar simplification is a subject of high importance in computer language processing tech-
nology as well as in formal language theory. This paper presents a formalization, using the Coq proof
assistant, of the fact that general context-free grammars generate languages that can be also generated
by simpler and equivalent context-free grammars. Namely, useless symbol elimination, inaccessible symbol
elimination, unit rules elimination and empty rules elimination operations were described and proven correct
with respect to the preservation of the language generated by the original grammar.
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1 Introduction

The formalization of context-free language theory is key to the certification of com-

pilers and programs, as well as to the development of new languages and tools for

certified programming. The results presented is this paper are part of an ongoing

work that intends to formalize parts of the context-free language theory in the Coq

proof assistant. The initial results comprised the formalization of closure properties

for context-free grammars, namely union, concatenation and Kleene star [30].
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In order to follow this paper, the reader is required to have basic knowledge

of Coq and of context-free language theory. For the beginner, the recommended

starting points for Coq are the book by Bertot [7], the online book by Pierce [15]

and a few tutorials available on [20]. Detailed information on the Coq proof assistant,

as well as on the syntax and semantics of the following definitions and statements, is

available in [12]. Background on context-free language theory can be found in [33],

[19] or [31], among others.

The objective of this work is to formalize a substantial part of context-free lan-

guage theory in the Coq proof assistant, making it possible to reason about it in a

fully checked environment, with all the related advantages. Initially, however, the

focus has been restricted to context-free grammars and associated results. Push-

down automata and their relation to context-free grammars will be considered in

the future.

When the work is complete, it should be useful for a few different purposes.

Among them, to make available a complete and mathematically precise description

of the behavior of the objects of context-free language theory. Second, to offer fully

checked and mechanized demonstrations of its main results. Third, to provide a

library with basic and fundamental lemmas and theorems about context-free gram-

mars and derivations that can be used as a starting point to prove new theorems

and increase the amount of formalization for context-free language theory. Fourth,

to allow for the certified and efficient implementation of its relevant algorithms in a

programming language. Fifth, to permit the experimentation in an educational envi-

ronment in the form of a tool set, in a laboratory where further practical observations

and developments can be done, for the benefit of students, teachers, professionals

and researchers.

The general idea of formalizing context-free language theory in the Coq proof

assistant is discussed in Section 2. The methodology used is briefly reviewed in

Section 3. Specific results related to the formalization of grammar simplification are

presented in Section 4. The plan for the rest of this research is presented in Section

5, and Section 6 considers related work by various other researchers.

The results reported in this paper are related to the elimination of symbols

(terminals and non-terminals) in context-free grammars that do not contribute to

the language being generated, and also to the elimination of unit and empty rules,

in order to shorten the derivation of the sentences of the language.

All the definitions and proof scripts presented in this paper were written in plain

Coq and are available for download at:

https://github.com/mvmramos/simplification

2 Basic Definitions

Context-free grammars were represented in Coq very closely to the usual algebraic

definition G = (V,Σ, P, S), where V is the vocabulary of G (it includes all non-

terminal and terminal symbols), Σ is the set of terminal symbols (used in the con-
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struction of the sentences of the language generated by the grammar), N = V \ Σ
is the set of non-terminal symbols (representing different sentence abstractions), P

is the set of rules and S ∈ N is the start symbol (also called initial or root symbol).

Rules have the form α → β, with α ∈ N and β ∈ V ∗.

Basic definitions in Coq are presented below. The N and Σ sets are represented

separately from G (respectively by types non_terminal and terminal). The dis-

joint union of the types non_terminal and terminal is represented by the symbol

+. Notations sf (sentential form) and sentence represent lists, possibly empty, of

respectively terminal and non-terminal symbols and terminal only symbols.

V a r i a b l e s n o n _ t e r m i n a l t e r m i n a l : T y p e .
N o t a t i o n sf := ( l i s t ( n o n _ t e r m i n a l + t e r m i n a l ) ) .
N o t a t i o n s e n t e n c e := ( l i s t t e r m i n a l ) .
N o t a t i o n n l i s t := ( l i s t n o n _ t e r m i n a l ) .

The record representation cfg has been used for G. The definition states that

cfg is a new type and contains three components. The first is the start_symbol of

the grammar (a non-terminal symbol) and the second is rules, that represent the

rules of the grammar. Rules are propositions (represented in Coq by Prop) that take

as arguments a non-terminal symbol and a (possibly empty) list of non-terminal and

terminal symbols (corresponding, respectively, to the left and right-hand side of a

rule).

The predicate rules_finite_def assures that the set of rules of the grammar is

finite by proving that the length of right-hand side of every rule is equal or less than

a given value, and also that both left and right-hand side of the rules are built from

finite sets of, respectively, non-terminal and terminal symbols (represented here by

lists).

D e f i n i t i o n r u l e s _ f i n i t e _ d e f ( ss : n o n _ t e r m i n a l )
( r u l e s : n o n _ t e r m i n a l −> sf −> P r o p )
( n : nat )
( ntl : l i s t n o n _ t e r m i n a l )
( tl : l i s t t e r m i n a l ) :=

In ss ntl /\
( f o r a l l l e f t : n o n _ t e r m i n a l ,
f o r a l l r i g h t : l i s t ( n o n _ t e r m i n a l + t e r m i n a l ) ,
r u l e s l e f t r i g h t −>
l e n g t h r i g h t <= n /\
In l e f t ntl /\
( f o r a l l s : n o n _ t e r m i n a l , In ( inl s ) r i g h t −> In s ntl ) /\
( f o r a l l s : t e r m i n a l , In ( inr s ) r i g h t −> In s tl ) ) .

R e c o r d cfg : T y p e := {
s t a r t _ s y m b o l : n o n _ t e r m i n a l ;
r u l e s : n o n _ t e r m i n a l −> sf −> P r o p ;
r u l e s _ f i n i t e : e x i s t s n : nat ,

e x i s t s ntl : nlist ,
e x i s t s tl : tlist ,
r u l e s _ f i n i t e _ d e f s t a r t _ s y m b o l r u l e s n ntl tl } .

The decision of representing rules as propositions has the consequence that it

will prevent executable code to be extracted from the formalization. It would surely

be desirable to be able to obtain certified algorithms for, in the present case, the

simplification of context-free grammars. The alternative then would be to represent

rules as a member of type list (non_terminal * sf) instead. This, however,
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would have changed the whole declarative approach of the present work into a more

computational one, by creating functions that manipulate grammars that have the

desired properties. The purely logical approach, thus, was considered more appealing

and selected as the choice for the present formalization. Anyway, it does not affect

the objectives listed in Section 1 and can be adapted in the future in order to allow

for code extraction, although this should demand a considerable effort in the creation

and proof of program-related scripts.

The example below represents grammar that generates language a∗b:

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′)

The following are the definitions used to represent G in Coq (as g):

I n d u c t i v e n o n _ t e r m i n a l : T y p e :=
| S ’
| A

| B .

I n d u c t i v e t e r m i n a l : T y p e :=
| a

| b .

I n d u c t i v e rs : n o n _ t e r m i n a l −> sf −> P r o p :=
r1 : rs S ’ [ inr a ; inl S ’ ]

| r2 : rs S ’ [ inr b ] .

D e f i n i t i o n g : cfg _ _ := { |
s t a r t _ s y m b o l := S ’ ;
r u l e s := rs ;
r u l e s _ f i n i t e := r s _ f i n i t e | } .

The term rs_finite (the proof that the set of rules of g is finite) is not presented

here, but can be easily constructed and is available from the link provided in Section

1.

Another fundamental concept used in this formalization is the idea of derivation:

a grammar g derives a string s2 from a string s1 if there exists a series of rules in g

that, when applied to s1, eventually result in s2. An inductive predicate definition

of this concept in Coq (derives) uses two constructors.

I n d u c t i v e d e r i v e s ( g : cfg ) : sf g −> sf g −> P r o p :=
| d e r i v e s _ r e f l : f o r a l l s : sf g ,

d e r i v e s g s s

| d e r i v e s _ s t e p : f o r a l l s1 s2 s3 : sf g ,
f o r a l l l e f t : n o n _ t e r m i n a l g ,
f o r a l l r i g h t : sf g ,
d e r i v e s g s1 ( s2 ++ inl l e f t : : s3 ) −>
r u l e s g l e f t r i g h t −>
d e r i v e s g s1 ( s2 ++ r i g h t ++ s3 ) .

The constructors of this definition (derives_refl and derives_step) are the

axioms of our theory. Constructor derives_refl asserts that every sentential form

s can be derived from s itself. Constructor derives_step states that if a sentential

form that contains the left-hand side of a rule is derived by a grammar, then the

grammar derives the sentential form with the left-hand side replaced by the right-

hand side of the same rule. This case corresponds to the application of a rule in a

direct derivation step.
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A grammar generates a string if this string can be derived from its root symbol.

Finally, a grammar produces a sentence if it can be generated from its root symbol.

D e f i n i t i o n g e n e r a t e s ( g : cfg ) ( s : sf ) : P r o p :=
d e r i v e s g [ inl ( s t a r t _ s y m b o l g ) ] s .

D e f i n i t i o n p r o d u c e s ( g : cfg ) ( s : s e n t e n c e ) : P r o p :=
g e n e r a t e s g ( map t e r m i n a l _ l i f t s ) .

Function terminal_lift converts a terminal symbol into an ordered pair of type

(non_terminal + terminal). With these definitions, it has been possible to prove

various lemmas about grammars and derivations, and also operations on grammars,

all of which were useful when proving the main theorems of this article.

As an example, the lemma that states that G produces the string aab (that is,

that aab ∈ L(G)) is represented as:

L e m m a G _ p r o d u c e s _ a a b :
p r o d u c e s G [ a ; a ; b ] .

The proof of this lemma can be easily constructed and relates directly to the

derivations in S ⇒ aS ⇒ aaS ⇒ aab, however in reverse order because of the way

that derives is defined.

3 Methodology

This formalization is about the definition of a new contex-free grammar from a

previous one, such that it (i) both grammars generate the same language and (ii)

the new grammar is free of a certain kind of symbols or rules. For all the four cases

considered, the following common approach has been adopted:

(i) Depending on the case, inductively define a new type of non-terminal symbols;

this will be important, for example, when we want to guarantee that the start

symbol of the grammar does not appear in the right-hand side of any rule or

when we have to construct new non-terminal symbols from the existing ones;

(ii) Inductively define the rules of the new grammar, in a way that allows the con-

struction of the proofs that the resulting grammar has the required properties;

these new rules will likely make use of the new non-terminal symbols described

above;

(iii) Define the new grammar by using the new non-terminal symbols and the new

rules; define the new start symbol (which might be a new non-terminal symbol

or an existing one) and build a proof of the finiteness of the set of rules for this

new grammar;

(iv) State and prove all the lemmas and theorems that will assert that the newly

defined grammar has the desired properties.

In the following section, this approach will be explored with further detail for

each main result achieved in this work.
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4 Simplification

The definition of a context-free grammar allows for the inclusion of symbols and

rules that might not contribute to the language being generated. Also, context-free

grammars might also contain sets of rules that can be substituted by equivalent

smaller and simpler sets of rules. Unit rules, for example, do not expand sentential

forms (instead, they just rename the symbols in them) and empty rules can cause

them to contract. Although the appropriate use of these features can be important

for human communication in some situations, this is not the general case, since it

leads to grammars that have more symbols and rules than necessary, making difficult

its comprehension and manipulation. Thus, simplification is an important operation

on context-free grammars.

Let G be a context-free grammar, L(G) the language generated by this grammar

and ǫ the empty string. Different authors use different terminology when presenting

simplification results for context-free grammars. In what follows, we adopt the

terminology and definitions of [33].

Context-free grammar simplification comprises four kinds of objects, whose def-

initions and results are presented below:

(i) An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g. X → ǫ).

We formalize that for all G, there exists G′ such that L(G) = L(G′) and G′ has

no empty rules, except for a single rule S → ǫ if ǫ ∈ L(G); in this case, S (the

initial symbol of G′) does not appear in the right-hand side of any rule in G′;

(ii) A unit rule r ∈ P is a rule whose right-hand side β contains a single non-

terminal symbol (e.g. X → Y ). We formalize that for all G, there exists G′

such that L(G) = L(G′) and G′ has no unit rules;

(iii) s ∈ V is useful ([33], p. 116) if it is possible to derive a string of terminal

symbols from it using the rules of the grammar. Otherwise s is called a useless

symbol. A useful symbol s is one such that s ⇒∗ ω, with ω ∈ Σ∗. Naturally,

this definition concerns mainly non-terminals, as terminals are trivially useful.

We formalize that, for all G such that L(G) 6= ∅, there exists G′ such that

L(G) = L(G′) and G′ has no useless symbols;

(iv) s ∈ V is accessible ([33], p. 119) if it is part of at least one string generated

from the root symbol of the grammar. Otherwise, it is called an inaccessible

symbol. An accessible symbol s is one such that S ⇒∗ αsβ, with α, β ∈ V ∗.

We formalize that for all G, there exists G′ such that L(G) = L(G′) and G′ has

no inaccessible symbols.

Finally, we formalize a unification result: that for all G, if G is non-empty, then

there exists G′ such that L(G) = L(G′) and G′ has no empty rules (except for one, if

G generates the empty string), no unit rules, no useless symbols and no inaccessible

symbols.

In all these four cases and five grammars that are discussed next (namely g_emp,

g_emp’, g_unit, g_use and g_acc), the proof of the predicate rules_finite is based

on the proof of the correspondent predicate for the argument grammar. Thus, all
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new grammars satisfy the cfg specification and are finite as well.

4.1 Empty rules

Result (i) is achieved in two steps. First, the idea of a nullable symbol was repre-

sented by the definition empty:

D e f i n i t i o n e m p t y

( g : cfg t e r m i n a l _ ) ( s : n o n _ t e r m i n a l + t e r m i n a l ) : P r o p :=
d e r i v e s g [ s ] [ ] .

Notation sf’ represents a sentential form built with symbols from non_terminal’

and terminal. Definition symbol_lift maps a pair of type (non_terminal +

terminal) into a pair of type (non_terminal’ + terminal) by replacing each

non_terminal with the corresponding non_terminal’:

I n d u c t i v e n o n _ t e r m i n a l ’ : T y p e :=
| L i f t _ n t : n o n _ t e r m i n a l −> n o n _ t e r m i n a l ’
| N e w _ s s .

N o t a t i o n sf ’ := ( l i s t ( n o n _ t e r m i n a l ’ + t e r m i n a l ) ) .

D e f i n i t i o n s y m b o l _ l i f t

( s : n o n _ t e r m i n a l + t e r m i n a l ) : n o n _ t e r m i n a l ’ + t e r m i n a l :=
m a t c h s w i t h

| inr t => inr t

| inl n => inl ( L i f t _ n t n )
end .

With these, a new grammar g_emp g has been created, such that the language

generated by it matches the language generated by the original grammar (g), except

for the empty string. Predicate g_emp_rules states that every non-empty rule of g

is also a rule of g_emp g, and also adds new rules to g_emp g where every possible

combination of nullable non-terminal symbols that appears in the right-hand side of

a rule of g is removed, as long as the resulting right-hand side is not empty. Finally,

it adds a rule that maps a new symbol, the start symbol of the new grammar

(New_ss), to the start symbol of the original grammar. For this reason, the new

type non_terminal’ has been defined. The motivation for introducing a new start

symbol at this point is to be able to prove that the start symbol does not appear in

the right-hand side of any rule of the new grammar, a result that will be important

in future developments.

I n d u c t i v e g _ e m p _ r u l e s ( g : cfg _ _ ) : n o n _ t e r m i n a l ’ −> sf ’ −> P r o p :=
| L i f t _ d i r e c t :

f o r a l l l e f t : n o n _ t e r m i n a l ,
f o r a l l r i g h t : sf ,
r i g h t <> [ ] −> r u l e s g l e f t r i g h t −>
g _ e m p _ r u l e s g ( L i f t _ n t l e f t ) ( map s y m b o l _ l i f t r i g h t )

| L i f t _ i n d i r e c t :
f o r a l l l e f t : n o n _ t e r m i n a l ,
f o r a l l r i g h t : sf ,
g _ e m p _ r u l e s g ( L i f t _ n t l e f t ) ( map s y m b o l _ l i f t r i g h t )−>
f o r a l l s1 s2 : sf ,
f o r a l l s : n o n _ t e r m i n a l ,
r i g h t = s1 ++ ( inl s ) : : s2 −>
e m p t y g ( inl s ) −>
s1 ++ s2 <> [ ] −>
g _ e m p _ r u l e s g ( L i f t _ n t l e f t ) ( map s y m b o l _ l i f t ( s1 ++ s2 ) )

| L i f t _ s t a r t _ e m p :
g _ e m p _ r u l e s g N e w _ s s [ inl ( L i f t _ n t ( s t a r t _ s y m b o l g ) ) ] .
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D e f i n i t i o n g _ e m p ( g : cfg n o n _ t e r m i n a l t e r m i n a l ) :
cfg n o n _ t e r m i n a l ’ t e r m i n a l := { |
s t a r t _ s y m b o l := N e w _ s s ;
r u l e s := g _ e m p _ r u l e s g ;
r u l e s _ f i n i t e := g _ e m p _ f i n i t e g | } .

Suppose, for example, that S,A,B,C are non-terminals, of which A,B and C

are nullable, a, b and c are terminals and X → aAbBcC is a rule of g. Then, the

above definitions assert that X → aAbBcC is a rule of g_emp g, and also:

• X → aAbBc;

• X → abBcC;

• X → aAbcC;

• X → aAbc;

• X → abBc;

• X → abcC;

• X → abc.

Observe that grammar g_emp g does not generate the empty string. The second

step, thus, was to define g_emp’ g, such that g_emp’ g generates the empty string if

g generates the empty string. This was done by stating that every rule from g_emp

g is also a rule of g_emp’ g and also by adding a new rule that allow g_emp’ g to

generate the empty string directly if necessary.

I n d u c t i v e g_emp ’ _ r u l e s ( g : cfg _ _ ) :
n o n _ t e r m i n a l ’ n o n _ t e r m i n a l −> sf ’ −> P r o p :=
| L i f t _ a l l :

f o r a l l l e f t : n o n _ t e r m i n a l ’ _ ,
f o r a l l r i g h t : sf ’ ,
r u l e s ( g _ e m p g ) l e f t r i g h t −>
g_emp ’ _ r u l e s g l e f t r i g h t

| L i f t _ e m p t y :
e m p t y g ( inl ( s t a r t _ s y m b o l g ) ) −>
g_emp ’ _ r u l e s g ( s t a r t _ s y m b o l ( g _ e m p g ) ) [ ] .

D e f i n i t i o n g_emp ’ ( g : cfg n o n _ t e r m i n a l t e r m i n a l ) :
cfg ( n o n _ t e r m i n a l ’ _ ) t e r m i n a l := { |
s t a r t _ s y m b o l := N e w _ s s _ ;
r u l e s := g_emp ’ _ r u l e s g ;
r u l e s _ f i n i t e := g_emp ’ _ f i n i t e g | } .

Note that the generation of the empty string by g_emp’ g depends on g gener-

ating the empty string.

The proof of the correctness of these definitions is achieved through the following

theorem:

T h e o r e m g_emp ’ _ c o r r e c t :
f o r a l l g : cfg n o n _ t e r m i n a l t e r m i n a l ,
g _ e q u i v ( g_emp ’ g ) g /\
( g e n e r a t e s _ e m p t y g −> h a s _ o n e _ e m p t y _ r u l e ( g_emp ’ g ) ) /\
(~ g e n e r a t e s _ e m p t y g −> h a s _ n o _ e m p t y _ r u l e s ( g_emp ’ g ) ) /\
s t a r t _ s y m b o l _ n o t _ i n _ r h s ( g_emp ’ g ) .

Four auxiliary predicates have been used in this statement: g_equiv for two

context-free grammars that generate the same language, generates_empty for a
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grammar whose language includes the empty string, has_one_empty_rule for a

grammar that has an empty rule whose left-hand side is the initial symbol, and

all other rules are not empty and has_no_empty_rules for a grammar that has no

empty rules at all.

The definition of g_equiv is straightforward:

V a r i a b l e s n o n _ t e r m i n a l n o n _ t e r m i n a l ’ t e r m i n a l : T y p e .

D e f i n i t i o n g _ e q u i v ( g1 : cfg n o n _ t e r m i n a l t e r m i n a l )
( g2 : cfg n o n _ t e r m i n a l ’ t e r m i n a l ) : P r o p :=

f o r a l l s : s e n t e n c e ,
p r o d u c e s g1 s <−> p r o d u c e s g2 s .

When applied to the previous theorem, it translates into:

f o r a l l s : s e n t e n c e ,
p r o d u c e s ( g_emp ’ g ) s <−> p r o d u c e s g s .

For the -> part, the strategy adopted is to prove that for every rule left →g_emp′

right of (g_emp’ g), either left →g right is a rule of g or left ⇒∗

g right in g. For

the <- part, the strategy is a more complicated one, and involves induction over the

number of derivation steps in g.

4.2 Unit rules

For result (ii), definition unit expresses the relation between any two non-terminal

symbols X and Y , and is true when X ⇒∗ Y .

I n d u c t i v e u n i t ( g : cfg t e r m i n a l n o n _ t e r m i n a l ) ( a : n o n _ t e r m i n a l ) :
n o n _ t e r m i n a l −> P r o p :=
| u n i t _ r u l e : f o r a l l ( b : n o n _ t e r m i n a l ) ,

r u l e s g a [ inl b ] −> u n i t g a b

| u n i t _ t r a n s : f o r a l l b c : n o n _ t e r m i n a l ,
u n i t g a b −>
u n i t g b c −>
u n i t g a c .

Grammar g_unit g represents the grammar whose unit rules have been substi-

tuted by equivalent ones. The idea is that g_unit g has all non-unit rules of g, plus

new rules that are created by anticipating the possible application of unit rules in

g, as informed by g_unit.

I n d u c t i v e g _ u n i t _ r u l e s ( g : cfg _ _ ) : n o n _ t e r m i n a l −> sf −> P r o p :=
| L i f t _ d i r e c t ’ :

f o r a l l l e f t : n o n _ t e r m i n a l ,
f o r a l l r i g h t : sf ,
( f o r a l l r : n o n _ t e r m i n a l ,
r i g h t <> [ inl r ] ) −> r u l e s g l e f t r i g h t −>
g _ u n i t _ r u l e s g l e f t r i g h t

| L i f t _ i n d i r e c t ’ :
f o r a l l a b : n o n _ t e r m i n a l ,
u n i t g a b −>
f o r a l l r i g h t : sf ,
r u l e s g b r i g h t −>
( f o r a l l c : n o n _ t e r m i n a l ,
r i g h t <> [ inl c ] ) −>
g _ u n i t _ r u l e s g a r i g h t .

D e f i n i t i o n g _ u n i t ( g : cfg _ _ ) : cfg _ _ := { |
s t a r t _ s y m b o l := s t a r t _ s y m b o l g ;
r u l e s := g _ u n i t _ r u l e s g ;
r u l e s _ f i n i t e := g _ u n i t _ f i n i t e g | } .
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Finally, the correcteness of g_unit comes from the following theorem:

T h e o r e m g _ u n i t _ c o r r e c t :
f o r a l l g : cfg _ _ ,
g _ e q u i v ( g _ u n i t g ) g /\
h a s _ n o _ u n i t _ r u l e s ( g _ u n i t g ) .

The predicate has_no_unit_rules states that the argument grammar has no

unit rules at all.

Similar to the previous case, for the -> part of the g_equiv (g_unit g) g proof,

the strategy adopted is to prove that for every rule left →g_unit right of (g_unit

g), either left →g right is a rule of g or left ⇒∗

g right in g. For the <- part, the

strategy is also a more complicated one, and involves induction over a predicate

that is isomorphic to derives (derives3 ), but generates the sentence directly without

considering the application of a sequence of rules, which allows one to abstract the

application of unit rules in g.

4.3 Useless symbols

For result (iii), the idea of a useful symbol is captured by the definition useful.

D e f i n i t i o n u s e f u l ( g : cfg _ _ ) ( s : n o n _ t e r m i n a l + t e r m i n a l ) : P r o p :=
m a t c h s w i t h

| inr t => T r u e

| inl n => e x i s t s s : s e n t e n c e , d e r i v e s g [ inl n ] ( map t e r m _ l i f t s )
end .

The removal of useless symbols comprises, first, the identification of useless sym-

bols in the grammar and, second, the elimination of the rules that use them. Defi-

nition g_use_rules selects, from the original grammar, only the rules that do not

contain useless symbols. The new grammar, without useless symbols, can then be

defined as in g_use.

I n d u c t i v e g _ u s e _ r u l e s ( g : cfg ) : n o n _ t e r m i n a l −> sf −> P r o p :=
| L i f t _ u s e : f o r a l l l e f t : n o n _ t e r m i n a l ,

f o r a l l r i g h t : sf ,
r u l e s g l e f t r i g h t −>
u s e f u l g ( inl l e f t ) −>
( f o r a l l s : n o n _ t e r m i n a l + t e r m i n a l , In s r i g h t −>
u s e f u l g s ) −> g _ u s e _ r u l e s g l e f t r i g h t .

D e f i n i t i o n g _ u s e ( g : cfg _ _ ) : cfg _ _ := { |
s t a r t _ s y m b o l := s t a r t _ s y m b o l g ;
r u l e s := g _ u s e _ r u l e s g ;
r u l e s _ f i n i t e := g _ u s e _ f i n i t e g | } .

The g_use definition, of course, can only be used if the language generated

by the original grammar is not empty, that is, if the root symbol of the original

grammar is useful. If it were useless then it would be impossible to assign a root

to the grammar and the language would be empty. The correctness of the useless

symbol elimination operation can be certified by proving theorem g_use_correct,

which states that every context-free grammar whose root symbol is useful generates

a language that can also be generated by an equivalent context-free grammar whose

symbols are all useful.

T h e o r e m g _ u s e _ c o r r e c t :
f o r a l l g : cfg _ _ ,
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n o n _ e m p t y g −>
g _ e q u i v ( g _ u s e g ) g /\
h a s _ n o _ u s e l e s s _ s y m b o l s ( g _ u s e g ) .

The predicates non_empty, and has_no_useless_symbols used above assert,

respectively, that grammar g generates a language that contains at least one string

(which in turn may or may not be empty) and the grammar has no useless symbols

at all.

The -> part of the g_equiv proof is straightforward, since every rule of g_use is

also a rule of g. For the converse, it is necessary to show that every symbol used in

a derivation of g is useful, and thus the rules used in this derivation also appear in

g_use.

4.4 Inaccessible symbols

Result (iv) is similar to the previous case, and definition accessible has been used

to represent accessible symbols in context-free grammars.

D e f i n i t i o n a c c e s s i b l e

( g : cfg _ _ ) ( s : n o n _ t e r m i n a l + t e r m i n a l ) : P r o p :=
e x i s t s s1 s2 : sf , d e r i v e s g [ inl ( s t a r t _ s y m b o l g ) ] ( s1++s : : s2 ) .

Definition g_acc_rules selects, from the original grammar, only the rules that

do not contain inaccessible symbols. Definition g_acc represents a grammar whose

inaccessible symbols have been removed.

I n d u c t i v e g _ a c c _ r u l e s ( g : cfg ) : n o n _ t e r m i n a l −> sf −> P r o p :=
| L i f t _ a c c : f o r a l l l e f t : n o n _ t e r m i n a l ,

f o r a l l r i g h t : sf ,
r u l e s g l e f t r i g h t −> a c c e s s i b l e g ( inl l e f t ) −>
g _ a c c _ r u l e s g l e f t r i g h t .

D e f i n i t i o n g _ a c c ( g : cfg _ _ ) : cfg _ _ := { |
s t a r t _ s y m b o l := s t a r t _ s y m b o l g ;
r u l e s := g _ a c c _ r u l e s g ;
r u l e s _ f i n i t e := g _ a c c _ f i n i t e g | } .

The correctness of the inaccessible symbol elimination operation can be certified

by proving theorem g_acc_correct, which states that every context-free grammar

generates a language that can also be generated by an equivalent context-free gram-

mar whose symbols are all accessible.

T h e o r e m g _ a c c _ c o r r e c t :
f o r a l l g : cfg _ _ ,
g _ e q u i v ( g _ a c c g ) g /\
h a s _ n o _ i n a c c e s s i b l e _ s y m b o l s ( g _ a c c g ) .

In a way similar to has_no_useless_symbols, the absence of inaccessible sym-

bols in a grammar is expressed by predicate has_no_inaccessible_symbols used

above.

Similar to the previous case, the -> part of the g_equiv proof is also straightfor-

ward, since every rule of g_acc is also a rule of g. For the converse, it is necessary

to show that every symbol used in a derivation of g is accessible, and thus the rules

used in this derivation also appear in g_acc.
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4.5 Unification

If one wants to obtain a new grammar simultaneously free of empty and unit rules,

and of useless and inaccessible symbols, it is not enough to consider the previous

independent results. On the other hand, it is necessary to establish a suitable order

to apply these simplifications, in order to guarantee that the final result satisfies all

desired conditions. Then, it is necessary to prove that the claims do hold.

For the order, we should start with (i) the elimination of empty rules, followed

by (ii) the elimination of unit rules. The reason for this is that (i) might introduce

new unit rules in the grammar, and (ii) will surely not introduce empty rules, as long

as original grammar is free of them (except for S → ǫ, in which case S, the initial

symbol of the grammar, must not appear in the right-hand side of any rule). Then,

elimination of useless and inaccessible symbols (in either order) is the right thing

to do, since they only remove rules from the original grammar (which is specially

important because they do not introduce new empty or unit rules).

The formalization of this result is captured in the following theorem, which

represents the main result of this work:

T h e o r e m g _ s i m p l _ e x i s t s _ v 1 :
f o r a l l g : cfg n o n _ t e r m i n a l t e r m i n a l ,
n o n _ e m p t y g −>
e x i s t s g ’ : cfg ( n o n _ t e r m i n a l ’ n o n _ t e r m i n a l ) t e r m i n a l ,
g _ e q u i v g ’ g /\
h a s _ n o _ i n a c c e s s i b l e _ s y m b o l s g ’ /\
h a s _ n o _ u s e l e s s _ s y m b o l s g ’ /\

( g e n e r a t e s _ e m p t y g −> h a s _ o n e _ e m p t y _ r u l e g ’ ) /\
(~ g e n e r a t e s _ e m p t y g −> h a s _ n o _ e m p t y _ r u l e s g ’ ) /\
h a s _ n o _ u n i t _ r u l e s g ’ /\
s t a r t _ s y m b o l _ n o t _ i n _ r h s g ’ .

Hypothesis non_empty g is necessary in order to allow the elimination of useless

symbols. The predicate start_symbol_not_in_rhs states that the start symbol

does not appear in the right-hand side of any rule of the argument grammar.

The proof of g_simpl_exists_v1 demands auxiliary lemmas to prove that the

characteristics of the initial transformations are preserved by the following ones. For

example, unit rules elimination, useless symbol elimination and inaccessible symbol

elimination operations preserve the characteristics of the empty rules elimination

operation.

The proofs of all lemmas and theorems presented in this article have been for-

malized in Coq and comprises approximately 10,000 lines of scripts. This number

can be explained for the following reasons:

(i) The style adopted for writing the scripts: for the sake of clarity, each tactic

is placed in its own line, despite the possibility of combining several tactics in

the same line. Also, bullets (for structuring the code) were used as much as

possible and the sequence tactical (using the semicolon symbol) was avoided

at all. This duplicates parts of the code but has the advantage of keeping the

static structure of the script related to its dynamic behaviour, which favors

legibility and maintenance.

(ii) The formalization includes not only the main theorems described here, but also
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an extensive library of other fundamental and auxiliary lemmas on context-free

grammars and derivations, which have been used to obtain the main results

presented here, were used in the previously obtained results and will be used

in future developments.

5 Further Work

Current work has focussed on the representation of context-free grammars, context-

free derivations, the formalization of grammar simplification strategies and the cer-

tification of their correctness. It represents an important step towards the formal-

ization of context-free language theory, and adds to the previous results on the

formalization of closure properties for context-free grammars ([30]).

The next steps of this formalization work are:

(i) Describe Chomsky normal form for context-free grammars and prove its exis-

tence for any context-free grammar that satisfies the required conditions;

(ii) Obtain a formal proof of the Pumping Lemma for context-free languages.

The second objective relies on the first one, while the first depends directly on

the results presented here.

6 Related Work

Language and automata theory has been subject of formalization since the mid-

1980s, when Kreitz used the Nuprl proof assistant to prove results about determin-

istic finite automata and the pumping lemma for regular languages [25]. Since then,

the theory of regular languages has been formalized partially by different researchers

using different proof assistants (see [11], [22], [16], [10], [26], [27], [2], [1], [28] [8],

[9], [3], [13], [24] and [34]). The most recent and complete formalization, however,

is the work by Jan-Oliver Kaiser [14], which used Coq and the SSReflect extension

to prove the main results of regular language theory.

Context-free language theory has not been formalized to the same extent so far,

and the results were obtained with a diversity of proof assistants, including Coq,

HOL4 and Agda. Most of the effort start in 2010 and has been devoted to the

certification and validation of parser generators. Examples of this are the works

of Koprowski and Binsztok (using Coq, [23]), Ridge (using HOL4, [32]), Jourdan,

Pottier and Leroy (using Coq, [21]) and, more recently, Firsov and Uustalu (in Coq,

[17]).

On the more theoretical side, on which the present work should be considered,

Norrish and Barthwal (using HOL4, [4], [5], [6]), published on general context-free

language theory formalization, including the existence of normal forms for grammars,

pushdown automata and closure properties. Recently, Firsov and Uustalu proved

the existence of a Chomsky Normal Form grammar for every general context-free

grammar (using Agda, [18]).

It can thus be noted that apparently no formalization has been done in Coq so
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far for results not related directly to parsing and parser verification, and that this

constitutes an important motivation for the present work, mainly due to the increas-

ing usage and importance of Coq in different areas and communities. Specifically,

the formalization done by Norrish and Barthwal in HOL4 is quite comprehensive

and extends our work with the Greibach Normal Form and pushdown automata and

its relation to context-free grammars. It does not include, however, a proof of either

the decidability of the membership problem or the Pumping Lemma for context-free

languages, which are objectives of the present work. The formalization by Firsov

and Uustalu in Agda comprises basically the existence of a Chomsky Normal Form,

and formalizes the elimination of empty and unit rules, but not elimination of useless

and inaccessible symbols.

When it comes to computability theory and Turing machines related classes of

languages, formalization has been approached by Asperti and Ricciotti (Matita, [3]),

Xu, Zhang and Urban (Isabelle/HOL, [35]) and Norrish (HOL4, [29]).

7 Conclusions

The present paper reports an ongoing effort towards formalizing the classical context-

free language theory, initially based only on context-free grammars, in the Coq proof

assistant. All important objects have been formalized and different simplification

strategies on grammars have been implemented. Proofs of their correctness were

successfully constructed.

Building up on the previous formalization of closure properties for context-free

grammars [30], the present results create a comfortable situation in order to pursue

the formalization of normal forms for context-free grammars, the next step of this

work.
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da Universidade do Minho, Portugal) and Arhur Azevedo de Amorim (University of

Pennsylvania) as well as their contributions to this work. Also, we are grateful to the
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