

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 16, 2022

Formalization of the Resolution Calculus for First-Order Logic

Schlichtkrull, Anders

Published in:
Journal of Automated Reasoning

Link to article, DOI:
10.1007/s10817-017-9447-z

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A. (2018). Formalization of the Resolution Calculus for First-Order Logic. Journal of Automated
Reasoning, 61(1–4), 455–484. https://doi.org/10.1007/s10817-017-9447-z

https://doi.org/10.1007/s10817-017-9447-z
https://orbit.dtu.dk/en/publications/a74cefcc-822f-4b84-a8e2-beb1f2aefb13
https://doi.org/10.1007/s10817-017-9447-z

Journal of Automated Reasoning

Formalization of the Resolution Calculus for
First-Order Logic

Anders Schlichtkrull

Abstract I present a formalization in Isabelle/HOL of the resolution calculus for
first-order logic with formal soundness and completeness proofs. To prove the cal-
culus sound, I use the substitution lemma, and to prove it complete, I use Herbrand
interpretations and semantic trees. The correspondence between unsatisfiable sets
of clauses and finite semantic trees is formalized in Herbrand’s theorem. I discuss
the difficulties that I had formalizing proofs of the lifting lemma found in the liter-
ature, and I formalize a correct proof. The completeness proof is by induction on
the size of a finite semantic tree. Throughout the paper I emphasize details that
are often glossed over in paper proofs. I give a thorough overview of formalizations
of first-order logic found in the literature. The formalization of resolution is part
of the IsaFoL project, which is an effort to formalize logics in Isabelle/HOL.

Keywords First-order logic · Resolution · Isabelle/HOL · Herbrand’s theorem ·
Soundness · Completeness · Semantic trees

1 Introduction

The resolution calculus plays an important role in automatic theorem proving
for first-order logic as many of the most efficient automatic theorem provers, e.g.
E [69], SPASS [74], and Vampire [57], are based on superposition, an extension
of resolution. Studying the resolution calculus is furthermore an integral part of
many university courses on logic in computer science. The resolution calculus was
introduced by Robinson in his ground-breaking paper [60] which also introduced
most general unifiers (MGUs).

The resolution calculus reasons about first-order literals, i.e. atoms and their
negations. Since the literals are first-order, they may contain full first-order terms.
Literals are collected in clauses, i.e. disjunctions of literals. The calculus is refu-
tationally complete, which means that if a set of clauses is unsatisfiable, then the
resolution calculus can derive a contradiction (the empty clause) from it. One can

Anders Schlichtkrull
DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
E-mail: andschl@dtu.dk

2 Anders Schlichtkrull

also use the calculus to prove any valid sentence by first negating it, then trans-
forming it to an equisatisfiable set of clauses, and lastly refuting this set with the
resolution calculus. Resolution is a calculus for first-order logic, but it does not
have any machinery to handle equality or any other theories.

There are several techniques for proving the completeness of resolution calculi.
In this work I use the one of semantic trees, which was introduced by Robin-
son [61]. Semantic trees are binary trees that represent interpretations. I mostly
follow textbooks by Ben-Ari [4], Chang and Lee [19], and Leitsch [43]. The idea
of Chang and Lee’s completeness proof is that a semantic tree is cut smaller and
smaller, and for each cut, a derivation is done towards the empty clause. I also
formalize Herbrand’s theorem, which cuts the tree down to finite size. I prove a
stronger version of the usual refutational completeness theorem by weakening its
assumption to require unsatisfiability in only a single countably infinite universe
instead of in all universes. The usual theorem follows directly from this, which is
proven, e.g. by Chang and Lee as Theorem 4.2. I discuss why this usual theorem
is not formalized.

The formalization is included in the IsaFoL project [33] and the Archive of
Formal Proofs [65] where it is available for download. The IsaFoL project for-
malizes several logics in Isabelle/HOL [47]. IsaFoL is part of a larger effort of
research in this area. This also includes formalizations of ground resolution, which
is propositional by nature. The formalization in this paper stands out from these
by formalizing resolution for first-order logic. The theory needed to do this is very
different from that of ground resolution since first-order logic involves a richer
syntax and semantics. To the best of my knowledge, I present the first formalized
completeness proof of the resolution calculus for first-order logic.

Harrison [28] formalized Herbrand’s theorem, also known as uniformity, in a
model theoretic formulation. It says that if a purely existential formula is valid,
then some disjunction of instances of the body is propositionally valid. In auto-
matic theorem proving, the theorem is viewed in a different, equivalent way: A
set of clauses is unsatisfiable only if some finite set of ground, i.e. variable free,
instances of its clauses is as well. This can be used to build a first-order refuta-
tion prover from a propositional SAT solver. Such a prover enumerates ground
instances, which it tries to refute with the SAT solver. I formalize a third equiv-
alent view stating exactly what the completeness proof needs: If a set of clauses
is unsatisfiable, then there is a finite semantic tree whose branches falsify the set.
This bridges first-order unsatisfiability with decisions made in a semantic tree.

Understanding proofs of logical systems can be challenging since one must keep
separate the parts of the proofs that are about the syntactic level, and the parts
that are about the semantic level. It can be tempting to mix intuition about syntax
and semantics. Fortunately, a formalization makes the distinction very clear, and
ideally this can aid in understanding the proofs.

This paper extends my previous paper [64] which I presented at ITP 2016. It is
extended with more thorough explanations and now contains illustrative examples
of structured Isar proofs. Furthermore, the discussion of the tools used in the
formalization has been expanded, and the related-works section now contains a
much more thorough overview of the formalizations of first-order logic found in
the literature. Additionally, the formalization now contains three new versions
of the soundness theorem and two new illustrative versions of the completeness
theorem, which are explained.

Formalization of the Resolution Calculus for First-Order Logic 3

2 Overview

This section introduces the terminology of clausal first-order logic and the resolu-
tion rule. It gives a brief explanation of semantic trees and gives the big picture
of the proofs of Herbrand’s theorem, the lifting lemma, and completeness.

A literal l is either an atom or its negation. The sign of an atom is True,
while that of its negation is False. The complement pc of an atom p is ¬p, and
the complement (¬p)c of its negation is p. The complement LC of a set of literals
L is {lc | l ∈ L}. The set of variables in a set of literals L is varsls L. A clause is
a set of literals representing the universal closure of the disjunction of the literals
in the clause. The empty clause represents a contradiction since it is an empty
disjunction. A clause with an empty set of variables is called ground. A substitution
σ is a function from variables to terms, and is applied to a clause C by applying
it to all variables in C. The result is written C ·ls σ and is called an instance of
C. We can likewise apply a substitution to a single literal l ·l σ or term t ·t σ.
The composition σ1 · σ2 of two substitutions is the substitution that maps any
variable x to (σ1 x) ·t σ2. A unifier σ for a set of literals L is a substitution such
that applying it to L makes all the literals therein equal. A most general unifier
(MGU) for a set of literals L is a unifier σ for L such that any other unifier for L
can be expressed as σ · τ for some substitution τ .

We will consider the following formulation of the resolution rule:

C1 C2

((C1 − L1) ∪ (C2 − L2)) ·ls σ
varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is a substitution and an MGU of L1 ∪ L2
C

The conclusion of the rule is called a resolvent of C1 and C2. L1 and L2 are
called clashing sets of literals. Additionally, the calculus allows us to apply variable
renaming to clauses before we apply the resolution rule. Renaming variables in
two clauses C1 and C2 such that varsls C1 ∩ varsls C2 = {} is called standardizing
apart. Notice that L1 and L2 are sets of literals. Some other resolution calculi
instead let L1 and L2 be single literals. These calculi then have an additional rule
called factoring, which allows unification of subsets of clauses. The completeness
of the above rule implies the completeness of resolution on single literals with
factoring, as explained by e.g. Fitting [25], but I have not formalized this result.
The idea is that the above rule can be simulated by applications of resolution on
single literals and factoring.

I now give an overview of the completeness proof. The completeness proof is
very much inspired by that of Chang and Lee [19], while the proof of the lifting
lemma is inspired by that of Leitsch [43].

Semantic trees are defined from an enumeration of Herbrand, i.e. ground,
atoms. A semantic tree is essentially a binary decision tree in which the deci-
sion of going left in a node on level i corresponds to mapping the ith atom of
the enumeration to True, and in which going right corresponds to mapping it to
False. See Fig. 1. Therefore, a finite path in a semantic tree can be seen as a partial
interpretation. This differs from the usual interpretations in first-order logic in two
ways. Firstly, it does not consist of a function denotation and a predicate denota-
tion, but instead assigns True and False to ground atoms directly. Secondly, it is
finite, which means that some ground literals are assigned neither True nor False.
A partial interpretation is said to falsify a ground clause if it, to all literals in the

4 Anders Schlichtkrull

clause, assigns the opposite of their signs. A branch is a path from the root of a
tree to one of its leaves. An internal path is a path from the root of a tree to some
node that is not a leaf. A closed path is a path whose corresponding partial inter-
pretation falsifies some ground instance of a clause in the set of clauses. A closed
semantic tree for a set of clauses is a tree that has two properties: Firstly, each of
its branches is closed. Secondly, the internal paths in the tree are not closed. The
second property expresses minimality of the first property, because it ensures that
no proper subtree of a closed semantic tree can have the first property.

Note that Chang and Lee’s notion of semantic trees is more general than mine
since it allows each decision to assign truth values to several atoms. This generality
is not needed in the completeness proof, and therefore I prefer a simpler definition
in order to ease formalization.

Fig. 1 Semantic tree with partial interpretation [p 7→ True, q 7→ False].

p 7→>

q 7→>

r(c) 7→>

...
...

r(c) 7→⊥

...
...

q 7→⊥

r(c) 7→>

...
...

r(c) 7→⊥

...
...

p 7→⊥

q 7→>

r(c) 7→>

...
...

r(c) 7→⊥

...
...

q 7→⊥

r(c) 7→>

...
...

r(c) 7→⊥

...
...

Herbrand’s theorem is proven in the following formulation: If a set of clauses is
unsatisfiable, then there is a finite and closed semantic tree for that set. I prove it in
its contrapositive formulation and therefore assume that all finite semantic trees of
a set of clauses have an open (non-closed) branch. By obtaining longer and longer
branches of larger and larger finite semantic trees, we can, using König’s lemma,
obtain an infinite path, all of whose prefixes are open branches of finite semantic
trees. Thus these branches satisfy, that is, do not falsify, the set of clauses. We can
then prove that this infinite path, when seen as an Herbrand interpretation, also
satisfies the set of clauses, and this concludes the proof. Converting the infinite
path to a full interpretation can be seen as the step that goes from syntax to
semantics.

The lifting lemma lifts resolution derivation steps done on the ground level up
to the first-order world. The lemma considers two instances, C′

1 and C′
2, of two

first-order clauses, C1 and C2. It states that if C′
1 and C′

2 can be resolved to a
clause C′ then also C1 and C2 can be resolved to a clause C. And not only that,
it can even be done in such a way that C′ is an instance of this C. See Fig. 2. To
prove the theorem, we look at the clashing sets of literals L′

1 ⊆ C′
1 and L′

2 ⊆ C′
2.

We partition C′
1 in L′

1 and the rest, R′
1 = C′

1 − L′
1. Then we lift this up to C1

by partitioning it in L1, the part that instantiates to L′
1, and the rest R1, which

instantiates to R′
1. We do the same for C2. Since L′

1 and L′
2
C

can be unified, so can
L1 and L2

C, and therefore they have an MGU. Thus C1 and C2 can be resolved
to a resolvent C. With some bookkeeping of the substitutions and unifiers, we can
also show that C has the ground resolvent C′ as an instance.

Formalization of the Resolution Calculus for First-Order Logic 5

C1

C

C2

C′
1 C′

2

C′

7 8

9 10
ground

Fig. 2 The lifting lemma. An arrow from C to C′ indicates that C′ is an instance of C.
The bars are derivations. Full bars or arrows are relations we know, and the dashed ones are
established by the lemma.

Lastly, completeness itself is proven. It states that the empty clause can be
derived from any unsatisfiable set of clauses. We start by obtaining a finite closed
semantic tree for the set of clauses. Then we cut off two sibling leaves. The branches
ending in these leaves agree on all atoms except for the one, a, in their leaves.
Additionally they falsify a ground clause each, but, by minimality of closed trees,
their prefixes do not. Therefore, setting a to True in a sibling, must have falsified
a clause, and thus the literal ¬a must be in a clause. Likewise, setting a to False
in a sibling, must have falsified a clause, and thus the literal a must be in a clause.
These clauses can be resolved. We lift this up to the first-order world by the lifting
lemma and resolve the first-order clauses. Repeating this procedure, we obtain a
derivation that ends when we have cut the tree down to the root. Only the empty
clause can be falsified here, so we have a derivation of the empty clause.

3 Isabelle

This section explains the logic of Isabelle/HOL and the Isar language [75] for
writing structured proofs. Isar is illustrated with some simple examples.

Isabelle is a generic proof assistant that implements several logics, and Isabelle/
HOL is its implementation of a higher-order logic (HOL). HOL can be seen as a
combination of typed functional programming and logic. This gives, among other
things, access to the usual logical operators and quantifiers such as −→, ∧, ∨, ¬, ∀
and ∃. The long arrow (=⇒) is Isabelle’s meta-implication, which for the purpose
of this paper can be thought of as a normal implication (−→), and likewise the
big wedge (

∧
) can be thought of as universal quantification (∀).

In Isabelle’s Isar language one can write structured proofs that both humans
can read and Isabelle/HOL can check. I present a subset here, which is large

6 Anders Schlichtkrull

enough for the reader to understand this paper. Let us consider a template Isar
proof:

theorem L:
assumes a1: A1
...
assumes an : An

shows B
proof R

C1
...
Cm

qed

Here L is the theorem’s name, A1, . . . , An are optional assumptions of the
theorem, a1, . . . , an are optional names of the assumption, and B is the theorem’s
conclusion. If there are no assumptions the keyword shows may be omitted. R
instructs Isabelle on how to start the proof. For instance, if nothing is written,
it applies a well-suited rule, and if a dash (−) is written, then no rule is applied.
C1, . . . , Cm is a list of statements, similar to the sentences of a paper proof, which
is to prove the theorem. Let us look at three kinds of statements. First, we have
the have goal:

from F1 have s: S using F2 by M

Here S is a proposition which is proven by proof method M . Proof method M
could be one of Isabelle/HOL’s proof methods that implement automatic theorem
provers. s is an optional name of S. F1 and F2 are lists of names of facts that M is
allowed to use. They could be names of previously proven theorems, assumptions
or of a proposition of one of the preceding statements. Both from F1 and using F2

can be omitted. Additionally from F1 can be replaced with then, which refers
to the fact that was most recently established, i.e. the proposition in the previous
statement.

Second, we have the obtain goal:

from F1 obtain t where s: S using F2 by M

Here t is a new constant that is introduced in the proof. S is a proposition that
characterizes t. It is named s. F1 and F2 are lists of facts that the proof method
M is instructed to use to prove the existence of t.

Third, we have the show goal:

from F1 show s: S using F2 by M

This is similar to the have goal except that it requires S to be one of the
propositions that R instructs us to prove. Sometimes S will be ?thesis, which
refers to B. When we have shown all statements required by R we can end the
proof with qed.

Let us look at a variation of a simple proof of Cantor’s theorem from an intro-
duction to Isabelle/HOL by Nipkow and Klein [46] that illustrates the language.
The theorem states that a function from a set to its powerset cannot be surjective.
Here the set is formalized as a type ′a and its powerset as the type ′a set.

Formalization of the Resolution Calculus for First-Order Logic 7

theorem cantor : ¬ surj (f :: ′a ⇒ ′a set)
proof

assume surj f
then have ∀A. ∃ a. A = f a using surj-def by metis
then have ∃ a. {x . x /∈ f x} = f a by blast
then obtain a where {x . x /∈ f x} = f a by blast
then show False by blast

qed

A list of statements can also form a calculation. In the example below the
horizontal ellipses (. . .) are part of the concrete Isabelle syntax while the vertical
ellipsis (

...) indicates that some intermediate steps were omitted.

have s1: S0 = S1 using F1 by M1

also have s2: . . . = S2 using F2 by M2
...

also have sn : . . . = Sn using Fn by Mn

finally have sn+1: S0 = Sn using Fn+1 by Mn+1

This list of statements proves S0 = Sn by proving S0 = S1 = S2 = · · · =
Sn where the first equality S0 = S1 is proven by the first have goal and each
subsequent equality Si = Si+1 is proven by the also have goal with name si.

For example we can prove a simple lemma about the identity function:

lemma identities:
assumes ∀ y. identity y = y
shows identity (identity (identity x)) = x

proof −
have identity (identity (identity x)) = identity (identity x) using assms by auto
also have ... = identity x using assms by auto
also have ... = x using assms by auto
finally show identity (identity (identity x)) = x by −

qed

Isar allows many more kinds of constructions of proofs, for instance nesting
proofs, combining proof methods and more.

4 Clausal First-Order Logic

This section explains the formalization of the syntax and semantics of first-order
clausal logic.

First, a signature is fixed where variable symbols, function symbols, and predi-
cate symbols are represented by the type string . The type string consists of strings
over a finite alphabet, and is thus a countably infinite type.

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

Similar to, e.g. Berghofer’s formalization of first-order logic [5], the predicate
and function symbols do not have fixed arities.

A first-order term is either a variable consisting of a variable symbol or it is a
function application consisting of a function symbol and a list of subterms:

datatype fterm = Var var-sym | Fun fun-sym (fterm list)

8 Anders Schlichtkrull

A literal is either positive or negative, and it contains a predicate symbol (a
string) and a list of terms. The datatype is parametrized with the type of terms ′t
since it will both represent first-order literals (fterm literal) and Herbrand literals.
A clause is a set of literals.

datatype ′t literal = Pos pred-sym (′t list) | Neg pred-sym (′t list)

type-synonym ′t clause = ′t literal set

Ground fterm literals are formalized using a predicate groundl which holds for
l if it contains no variables. Ground fterm clauses are similarly formalized using a
predicate groundls.

A semantics of terms and literals is also formalized. A variable denotation,
var -denot , maps variable symbols to values of the domain. The universe is repre-
sented by the type variable ′u.

type-synonym ′u var-denot = var-sym ⇒ ′u

Interpretations consist of denotations of functions and predicates. A function
denotation maps function symbols and lists of values to values:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u

Likewise, a predicate denotation maps predicate symbols and lists of values to
the two boolean values:

type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool.

The semantics of a term is defined by the recursive function evalt:

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
|evalt E F (Fun f ts) = F f (map (evalt E F) ts)

Here, map (evalt E F) [e1 , . . . , en] = [evalt E F e1 , . . . , evalt E F en], and
from now on map (evalt E F) ts is abbreviated as evalts E F ts.

If an expression evaluates to True in an interpretation, we say that it is satisfied
by the interpretation. If it evaluates to False, we say that it is falsified. The
semantics of literals is a function evall that evaluates literals:

fun evall :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where

evall E F G (Pos p ts)←→ G p (evalts E F ts)
|evall E F G (Neg p ts)←→ ¬G p (evalts E F ts)

The semantics is extended to clauses:

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E . ∃l ∈ C . evall E F G l)

It is important that the ranges of all the environments that evalc quantifies over
are actually subsets of the considered universe. The type system of Isabelle/HOL
ensures this, as we can inspect that the type of E indeed is ′u var -denot . Had I
instead chosen to represent the universe as a set, I would have to pass it as an
argument to evalc and have a predicate ensure that all the environments considered
did not go outside this universe. Likewise, I would also have to make a decision of
what to do if the range of F was not a subset of the universe.

A set of clauses Cs is satisfied, written evalcs F G Cs, if all its clauses are
satisfied:

Formalization of the Resolution Calculus for First-Order Logic 9

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

The semantics can be illustrated with the universe nat of natural numbers, a
function denotation that maps add , mul , one, and zero to their usual meanings, a
predicate denotation that maps less, greater , and equals to their usual meanings,
as well as a variable denotation that maps x to 26 and y to 5:

fun Fnat :: nat fun-denot where
Fnat f [n,m] =

(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x ,y] =

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

It is also illustrative to evaluate the literal equals(add(mul(y , y), one), x) with
the above denotations:

lemma evall Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
,Var ′′x ′′]

) = True
by auto

5 Substitutions and Unifiers

This section formalizes substitutions, unifiers, MGUs, and the unification theorem,
which states the existence of MGUs.

A substitution is a function from variable symbols into terms:

type-synonym substitution = var-sym ⇒ fterm

This is very different from Chang and Lee where they are represented by finite
sets [19]. The advantage of functions is that they make it much easier to apply and
compose substitutions. If C′ is an instance of C we write instance-ofls C ′ C . The
composition of two substitutions, σ1 and σ2, is also defined, and written σ1 · σ2.
We also define unifiers and MGUs of literals (and similarly of terms):

definition unifierls σ L←→ (∃l ′. ∀l ∈ L. l ·l σ = l ′)

definition mguls σ L←→ unifierls σ L ∧ (∀u. unifierls u L −→ ∃i . u = σ·i)

10 Anders Schlichtkrull

One important theorem is the unification theorem, which states that if a finite
set of literals has a unifier, then it also has an MGU. This is usually proven by
defining a unification algorithm and proving it correct. This has been formalized
several times. An early formalization is by Paulson [48] in LCF of an algorithm
by Manna and Waldinger [44]. Coen [21] used this as basis for a formalization of
the algorithm in Isabelle, and his formalization was improved first by Slind [72]
and later Krauss [38]. Their formalization [20] is now part of the Isabelle distri-
bution. There, terms are formalized as binary tree structures and substitutions as
association lists. Sternagel and Thiemann [73] formalize in the IsaFoR project [34]
an algorithm presented by Baader and Nipkow [2]. They formalize terms, unifiers
and MGUs in a similar way to me. Therefore it is relatively easy to obtain the
unification theorem by proving my terms, unifiers, and MGUs equivalent to the
ones in IsaFoR.

theorem unification:
assumes finite L
assumes unifierls σ L
shows ∃θ. mguls θ L

For the purpose of formalizing the resolution calculus the choice of unification
algorithm is irrelevant since we only need one to prove the existence of MGUs. If
one wants to formalize a resolution prover the choice is important especially with
respect to runtime. The two presented algorithms seem to be efficient in prac-
tice, but have an exponential worst-case runtime. Ruiz-Reina, Mart́ın-Mateos, and
Hidalgo [62], however, formalize, in ACL2, an algorithm by Corbin and Bidoit [22]
as presented by Baader and Nipkow [2], which has a quadratic worst-case runtime.
Some automatic theorem provers, e.g. SPASS, use the technique of term indexing
to compute MGUs – see, e.g. Sekar, Ramakrishnan, and Voronkov’s chapter on the
topic [55]. I do not know of any formalization of this technique in a proof assistant.

6 The Resolution Calculus

This section formalizes the resolution calculus and its soundness proof. It also
formalizes steps and derivations in the resolution calculus.

First, resolvents are formalized, i.e. the conclusions of the resolution rule:

definition resolution C1 C2 L1 L2 σ = ((C1 − L1) ∪ (C2 − L2)) ·ls σ
In Sect. 2 we saw that the resolution rule had three side-conditions. The rule

is additionally restricted to require that L1 and L2 are non-empty. When these
side-conditions are fulfilled, the rule is applicable.

definition applicable C1 C2 L1 L2 σ ←→
C1 6= {} ∧ C2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C1 ∩ varsls C2 = {}
∧ L1 ⊆ C1 ∧ L2 ⊆ C2

∧mguls σ (L1 ∪ L2
C)

A step in the resolution calculus either inserts a resolvent of two clauses in a
set of clauses, or it inserts a variable renaming of one of the clauses. Two clauses
are variable renamings of each other if they can be instantiated to each other. Al-
ternatively, we could say that we apply a substitution which is a bijection between
the variables in the clause and another set of variables.

Formalization of the Resolution Calculus for First-Order Logic 11

definition var-renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var-renaming-of C1 C2 ←→ instance-ofls C1 C2 ∧ instance-ofls C2 C1

A step in the resolution calculus is formalized as an inductive predicate named
resolution-step. In Isabelle/HOL this is done by specifying a number of rules char-
acterizing the predicate. Specifically there are two rules. One resolution-rule allows
us to apply the resolution rule, and the other standardize-apart allows us to rename
clauses such that we can standardize them apart.

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:
C1 ∈ Cs =⇒ C2 ∈ Cs =⇒ applicable C1 C2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})
| standardize-apart:

C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

Derivation steps are extended to derivations by taking the reflexive transitive
closure of resolution-step, which is given by rtranclp:

definition resolution-deriv = rtranclp resolution-step

The soundness proofs in the three books were not immediately ready to be
formalized. The proof by Ben-Ari uses Herbrand interpretations, but this machin-
ery is actually not necessary to prove soundness and does not seem to give a
simpler proof. Chang and Lee prove soundness for first-order logic by referring to
the soundness proof for the propositional case, but they do not make it clear how
variables should be handled. Leitsch’s soundness proof refers to the substitution
principle, but neither states nor proves it. It can be found elsewhere, e.g. in the
textbook by Ebbinghaus, Flum, and Thomas [24] in the form of the substitution
lemma. The formalized soundness proof also uses the substitution lemma.

I prove the resolution rule sound by combining three simpler rules:

1. A substitution rule that allows us to infer instances.
2. A special, simpler, resolution rule.
3. A superset rule that allows us to infer supersets.

Rule 1, the substitution rule, states that we can do substitution:

C
C ·ls σ

Informally this seems obvious. C is satisfied and is a first-order clause, i.e. it rep-
resents a universal quantification. C ·ls σ then instantiates its variables, which are
bound and universally quantified, and must therefore also be satisfied. Formally,
however, this is not precise enough since C being satisfied is a statement about
variable denotations, i.e. a semantic form of instantiation, while a substitution is
a syntactic form of instantiation. This problem is overcome by the substitution
principle. The needed insight is that given a function denotation and a variable
denotation, any substitution can be converted to a variable denotation by evaluat-
ing the terms of its domain. In the formalization this is done using Isabelle/HOL’s
function composition operator which is written as ◦ in infix notation.

definition evalsub E F σ = (evalt E F) ◦ σ

12 Anders Schlichtkrull

The substitution lemma then states that applying a substitution to a literal is
semantically the same as instead turning the substitution into a variable denota-
tion:

lemma substitution: evall E F G (l ·l σ)←→ evall (evalsub E F σ) F G l

Let us now look at the soundness proof of substitution. The proof is written
in Isar and uses evalsub and the substitution lemma:

lemma subst-sound :
assumes asm: evalc F G C
shows evalc F G (C ·ls σ)

unfolding evalc-def proof
fix E
from asm have ∀E ′. ∃ l ∈ C . evall E ′ F G l using evalc-def by blast
then have ∃ l ∈ C . evall (evalsub E F σ) F G l by auto
then show ∃ l ∈ C ·ls σ. evall E F G l using substitution by blast

qed

Notice that I am unfolding the definition of evalc before the proof begins.
The definition says that evalc is a universal quantification over the variable deno-
tations. Therefore Isabelle now requires us to fix an arbitrary variable denotation
and find a satisfied literal in C · σ. By the assumption C has such a literal for any
variable denotation E′ and in particular for σ transformed to a variable denota-
tion evalsub E F σ. The substitution lemma allows the substitution to be applied
instead of transformed and this concludes the proof.

Rule 2, the special substitution rule, is a special, ground-like, version of the
resolution rule. The rule is special since it is only allowed to remove two literals l1
and l2 instead of two sets of literals and because it requires l1 and lc2 to be equal
instead of unifiable:

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})

l1 ∈ C1

l2 ∈ C2

l1 = lc2

Rule 3, the superset rule, states that from a clause follows any superset of the
clause:

C1

C1 ∪ C2

The proofs of all three rules are made as short structured Isar proofs.
These four sound rules are combined to give the resolution rule, which must

consequently be sound. We are of course allowed to use the assumptions of the
resolution rule, so we know that when σ is applied to L1 and L2, they turn into a
complementary pair of literals, which we denote l1 ·ls σ and l2 ·ls σ. This justifies
the bookkeeping inference below. It also means that we can apply the special
resolution rule. The bottom-most rule application uses the superset rule.

C1

C1 ·ls σ
C2

C2 ·ls σ substitution rule

(C1 ·ls σ − {l1 ·ls σ}) ∪ (C2 ·ls σ − {l2 ·ls σ})
special resolution

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)
book keeping

((C1 − L1) ∪ (C2 − L2)) ·ls σ
superset rule

All this reasoning is made as structured Isar proofs. The soundness theorem is
stated as follows:

Formalization of the Resolution Calculus for First-Order Logic 13

theorem resolution-sound:
assumes evalc F G C1 ∧ evalc F G C2

assumes applicable C1 C2 L1 L2 σ
shows evalc F G (resolution C1 C2 L1 L2 σ)

From this it follows that resolution steps are sound:

theorem step-sound:
assumes resolution-step Cs Cs′

assumes evalcs F G Cs
shows evalcs F G Cs′

And then it follows that resolution derivations are sound:

theorem derivation-sound:
assumes resolution-deriv Cs Cs′

assumes evalcs F G Cs
shows evalcs F G Cs′

The soundness theorem is also formalized in the refutational style:

theorem derivation-sound-refute:
assumes resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

shows ¬evalcs F G Cs

To summarize, I have defined a function resolution giving the conclusion of
the resolution rule, as well as a predicate applicable which formalizes its side
conditions. I have combined these to form the predicates resolution-step and
resolution-derivation which formalize when a set of clauses follows from another,
respectively by a step or derivation of the resolution calculus. The resolution rule
and its steps and derivations were proven sound.

7 Herbrand Interpretations and Semantic Trees

Now that soundness is proven, it is time to take the first steps towards proving
completeness. Therefore this section formalizes Herbrand interpretations and se-
mantic trees. It also formalizes Herbrand’s theorem and emphasizes how an infinite
path in a semantic tree is transformed to an interpretation.

Herbrand interpretations are a special kind of interpretation characterized by
two properties. The first is that their universe is the set of all Herbrand terms. I
chose that universes should be represented by types and this is of course also the
case for the universe of Herbrand terms. Therefore, a new type hterm is introduced
which is similar to fterm, but does not have a constructor for variables:

datatype hterm = HFun fun-sym (hterm list)

This is the same datatype as in Berghofer’s formalization of natural
deduction [5]. Had I chosen to represent the universes by sets like Ridge and
Margetson [59], then I could instead have represented the Herbrand universe by
the set of ground fterms.

Two functions called fterm-of -hterm and hterm-of -fterm are introduced that
convert between hterms and ground fterms. Note that some authors require the
terms in the Herbrand universe to be built from the function symbols in a con-
sidered set of clauses. I choose to use all function symbols because it allows the
Herbrand universe to be represented by the above datatype.

14 Anders Schlichtkrull

The second characteristic property is that the function denotation of an Her-
brand interpretation is HFun, and thus, evaluating a ground term under such an
interpretation corresponds to replacing all applications of Fun with HFun, that is,
the ground term is interpreted as itself.

As we saw in Sect. 2, an enumeration of Herbrand atoms is needed, such that
we can construct our semantic trees. Therefore, the type of atoms is defined:

type-synonym ′t atom = pred-sym ∗ ′t list

Again the symbols are not restricted to those occurring in a considered set of
clauses. Isabelle/HOL provides the proof method countable-datatype that can au-
tomatically prove that a given datatype, in our case hterm, is countable. Since also
the predicate symbols are countable, then so must hterm atom be. Furthermore, it
is easy to prove that there are infinitely many hterm atoms. Using these facts and
Hilbert’s choice operator, I specify a bijection hatom-of -nat between the natural
numbers and the hterm atoms. Its inverse is called nat-of -hatom. Additionally,
the functions nat-of -fatom and fatom-of -nat enumerate the ground fterm atoms
in the same order. A function get-atom returns the atom corresponding to a lit-
eral. The enumeration will be used to define which levels of the semantic trees
correspond to which atoms.

7.1 Semantic Trees

In paper-proofs semantic trees are often labeled with the atoms that their nodes set
to True or False. In this formalization the trees are unlabeled, because for a given
level, the corresponding atom can always be calculated using the enumeration:

datatype tree = Leaf | Branching tree tree

The formalization contains a quite substantial, approximately 700-lines, theory
on these unlabeled binary trees, paths within them, and their branches. The details
are not particularly interesting, but a theory of binary trees is necessary.

In the formalization, bool lists represent both paths in trees and partial inter-
pretations, denoted by the type partial -pred-denot . E.g. if we consider the path
[True,True,False], then it is the path from the root of a semantic tree that goes
first left, then left again, and lastly right. On the other hand, it is also the partial
interpretation that considers hatom-of -nat 0 to be True, hatom-of -nat 1 to be
True and hatom-of -nat 2 to be False. Our formalization illustrates the correspon-
dence between partial interpretations and paths clearly by identifying their types.
Therefore, synonym dir is introduced for bool as well as the abbreviations Left for
True and Right for False.

The above datatype cannot represent infinite trees. Thus, infinite trees are
modeled as sets of paths with a wellformedness property:

abbreviation wf -tree :: dir list set ⇒ bool where
wf -tree T ≡ (∀ds d . (ds @ d) ∈ T −→ ds ∈ T)

Alternatively I could have used Isabelle’s codatatype package [8, 10], since co-
datatypes can represent infinite-depth trees in a very natural way.

Infinite paths are modeled as functions from natural numbers into finite paths.
Applying the function to number i gives us the prefix of length i. From here on
such functions are called infinite paths, and their characteristic property is

Formalization of the Resolution Calculus for First-Order Logic 15

abbreviation wf -infpath :: (nat ⇒ ′a list)⇒ bool where
wf -infpath f ≡ (f 0 = []) ∧ (∀n. ∃a. f (Suc n) = (f n) @ [a])

It must be made formal, what it means for a partial interpretation, i.e. a path,
to falsify an expression. A partial interpretation G falsifies, written falsifiesl G l , a
ground literal l, if the opposite of its sign occurs on index nat-of -fatom (get-atom l)
of the interpretation. The exclamation mark (!) is Isabelle/HOL’s nth operator,
i.e. G ! i gives the ith element of G.

definition falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→ groundl l
∧ (let i = nat-of -fatom (get-atom l) in

i < length G ∧G ! i = (¬sign l))

A ground clause C is falsified, written falsifiesg G C , if all its literals are fal-
sified. A first-order clause C is falsified, written falsifiesc G C , if it has a falsified
ground instance. A partial interpretation satisfies an expression if the partial inter-
pretation does not falsify it. A set Cs of first-order clauses is falsified by a partial
interpretation if it falsifies some clause in Cs. A set Cs of first-order clauses is
falsified by a tree if each of the tree’s branches falsifies some clause in Cs. Lastly, a
semantic tree T is closed, written closed-tree T Cs, for a set of clauses Cs if it is a
tree that falsifies Cs, but whose internal paths do not. Notice that a closed tree is
minimal with respect to having falsifying branches, since any proper subtree has
a branch that does not falsify anything in the set.

7.2 Herbrand’s Theorem

The formalization of Herbrand’s theorem is mostly straightforward and is done as
an Isar proof that follows the sketch from Sect. 2. The challenging part is to take
an infinite path, all of whose prefixes satisfy a set of clauses Cs and then prove
that its translation to an interpretation also satisfies Cs. Chang and Lee [19] do
not elaborate much on this, but it takes up a large part of the formalization and
illustrates the interplay of syntax and semantics.

The first step is to define how to transform the infinite path to an Herbrand
interpretation. The function denotation has to be HFun, and the infinite path
needs to be converted to a predicate denotation. This can be done as follows:

abbreviation extend :: (nat ⇒ partial-pred-denot)⇒ hterm pred-denot where
extend f P ts ≡

let n = nat-of -hatom (P , ts) in
f (Suc n) ! n

Because of currying, P and ts can be thought of as the predicate symbol and
list of values that we wish to evaluate in our semantics. It is done by collecting
them to an Herbrand atom, and finding its index. Thereafter a prefix of our infinite
path is found that is long enough to have decided whether the atom is considered
True or False.

I now prove that if the prefixes collected in the infinite path f satisfy a set of
clauses Cs, then so does its extension to a full predicate denotation extend f .

Since I want to prove that the clauses in Cs are satisfied, I fix one C and prove
that it has the same property:

16 Anders Schlichtkrull

lemma extend-infpath:
assumes wf -infpath (f :: nat ⇒ partial-pred-denot)
assumes ∀n. ¬falsifiesc (f n) C
assumes finite C
shows evalc HFun (extend f) C

There are four ways in which clauses can be satisfied:

1. A first-order clause can be satisfied by a partial interpretation.

2. A ground clause can be satisfied by a partial interpretation.

3. A ground clause can be satisfied by an Herbrand interpretation.

4. A first-order clause can be satisfied by an Herbrand interpretation.

The four ways are illustrated as the nodes in Fig. 3. The extend-infpath lemma
relates 1 and 4 using lemmas that relate 1 to 2 to 3 to 4. The four ways seem
similar, but they are in fact very different. For instance, a ground clause being
satisfied is very different from a first-order clause being satisfied, since there are
no ground instances or variables to worry about. Likewise, a ground clause be-
ing satisfied by a partial interpretation is clearly different from being satisfied
by an Herbrand interpretation, since the two types are vastly different: A par-
tial interpretation is a bool list while an Herbrand interpretation consists of a
fun-sym ⇒ hterm list ⇒ hterm and a pred-sym ⇒ hterm list ⇒ bool .

1 and 2 are related: If a first-order clause is satisfied by all prefixes of an infinite
path, then so is any, in particular ground, instance. This follows from the definition
of being satisfied by a partial interpretation.

2 and 3 are related: If a ground clause is satisfied by all prefixes of an infinite
path f , then it is also satisfied by extend f . This follows almost directly from the
definition of extend .

3 and 4 are related: Ideally one would prove that if a ground clause is satisfied
by an Herbrand interpretation, then so is a first-order clause of which it is an
instance. That is, however, too general. Fortunately, there is a similarity that ties
first-order clauses and ground clauses together. Consider a variable denotation in
the Herbrand universe, i.e. of type var -sym ⇒ hterm. There is a function that
converts its domain to fterms, and thus turns it in to a substitution:

fun sub-of -denot :: hterm var-denot ⇒ substitution
sub-of -denot E = fterm-of -hterm ◦ E

This is the machinery necessary to state the needed lemma: If the ground clause
C ·ls sub-of -denot E is satisfied by an Herbrand interpretation under E, then so
is the first-order clause C. The reason is simply that any variable in C is replaced
by some ground term in the domain of sub-of -denot E . This term evaluates to the
same as the Herbrand term that it is interpreted as in E.

The final step is to chain 1, 2, 3, and 4 together to relate 1 and 4. The steps
are shown as the arrows in Fig. 3.

1. Assume that C is satisfied by all prefixes of f .

2. Then the ground instance C ·ls sub-of -denot E is satisfied by all f ’s prefixes.

3. Then the ground instance C ·ls sub-of -denot E is satisfied by extend f under
E in particular.

4. Then C is satisfied by extend f under E.

Formalization of the Resolution Calculus for First-Order Logic 17

1 4

2 3

First-order

Partial Herbrand

interpretationinterpretation

Ground

Fig. 3 Illustration of how to go from satisfiability of first-order clauses in partial interpre-
tations to their satisfiability in Herbrand interpretations. As shown, it can be done by going
down to the ground level and up again.

With this, Herbrand’s theorem is formalized:

theorem herbrand:
assumes ∀G. ¬evalcs HFun G Cs
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
shows ∃T . closed-tree T Cs

The proof, as said, follows the sketch from Sect. 2.

8 Completeness

The completeness proof combines Herbrand’s theorem, the lifting lemma, and
reasoning about semantic trees and derivations. The purpose of this section is
to take a look at the most challenging parts of the formalization of the proof.
These are the lifting lemma, standardizing clauses apart, and some finer details of
reasoning about branches in semantic trees. Furthermore, the section illustrates
the derivation of the empty clause and shows a number of formal completeness
theorems.

8.1 Lifting Lemma

Let us first take a look at the formalization of the lifting lemma. More precisely I
will explain a flaw in proofs from the literature and present the formalization of a
correct proof.

Let us look at the flawed proofs. The formalization of the resolution rule re-
moves literals from clauses before it applies the MGU. This is similar to several
presentations from the literature including those of Robinson [60] and Leitsch [43].
Another approach, which the formalization used in an earlier version, is to apply
the MGU before the literals are removed:

18 Anders Schlichtkrull

L1

L1 ·ls τ

LC
2

L′
1 L′C

2

L′
1 ·ls σ

τ τ

η η

ϕ

σσ

Fig. 4 The substitutions of the lifting lemma. An arrow from L to L′ labeled with η indicates
that L ·ls η = L′. Full arrows are relations we know. The dashed ones are established in the

proof of the lemma by noticing that η ·σ is a unifier of L1 and LC
2 , which means we can obtain

the MGU τ and by the definition of MGUs also ϕ.

C1 C2

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is an MGU of L1 ∪ L2
C

This is exactly the rule used by Ben-Ari [4]. Chang and Lee [19] use a similar
approach with more possibilities for factoring. However, I was not able to formalize
their proofs of the lifting lemma because they had some flaws. The flaws are
described in my master’s thesis [63]. The most critical flaw is that the proofs seem
to use that B ⊆ A implies (A − B) ·ls σ = A ·ls σ − B ·ls σ, which does not hold
in general. Leitsch [42, Proposition 4.1] noticed flaws in Chang and Lee’s proof
already, and presented a counter-example to it.

Let us now look at a formalization of a correct proof. With the current approach
the lifting lemma is straightforward to formalize as an Isar proof following the proof
by Leitsch [43]. The Isar proof is presented below. It consists of four parts. First
we obtain the subsets L1 and L2 of C1 and C2 that we want to resolve upon. Next
we obtain substitutions τ and ϕ as illustrated in Fig. 4. This is where we use the
unification theorem to obtain τ . We can then construct the desired resolvent, and
show that resolution is applicable.

To illustrate the correspondence between informal proofs and Isar proofs I
present the whole Isar proof below, interleaved with an informal proof that expands
on the sketch from Sect. 2. The reader should notice the similarities between formal
and informal proof, but is not expected to understand all details of the formal
proof. Notice also that we do not need to assume groundness of C′

1 and C′
2.

Lemma: Assume we have two finite clauses C1 and C2 that share no variables.
Assume also that C′

1 is an instance of C1 and that C′
2 is an instance of C2. Fur-

thermore, assume that the resolution rule is applicable to C′
1 and C′

2 on clashing
sets of literals L′

1 and L′
2 with MGU σ. Then there exist sets of literals L1 and

L2 and substitution τ such that the resolution rule is applicable to C1 and C2 on
clashing sets of literals L1 and L2 with MGU τ and that their conclusion has the
conclusion from C′

1 and C′
2 as an instance.

Formalization of the Resolution Calculus for First-Order Logic 19

lemma lifting:
assumes fin: finite C1 ∧ finite C2

assumes apart : varsls C1 ∩ varsls C2 = {}
assumes inst : instance-ofls C

′
1 C1 ∧ instance-ofls C

′
2 C2

assumes appl : applicable C′
1 C

′
2 L

′
1 L

′
2 σ

shows ∃L1 L2 τ . applicable C1 C2 L1 L2 τ ∧
instance-ofls (resolution C′

1 C
′
2 L

′
1 L

′
2 σ) (resolution C1 C2 L1 L2 τ)

proof −
– First we obtain the subsets to resolve upon:
Look at the clashing sets of literals L′

1 and L′
2. We partition C′

1 in L′
1 and the rest,

R′
1 = C′

1−L′
1. Likewise, we partition C′

2 in L′
2 and the rest, R′

2 = C′
2−L′

2. Since
C′

1 is an instance of C1 there must be a substitution γ such that C1 ·ls γ = C′
1.

Likewise there must be a µ such that C2 ·ls µ = C′
2. Since the C1 and C2 share

no variables, we can replace this with a single substitution η. We now partition
C1 in a part, L1, that η instantiates to L′

1 and a rest C1−L1 that η instantiates
to R′

1. We call the rest R1. Likewise we obtain an L2 which η instantiates to L′
2

and an R2 that η instantiates to R′
2.

define R′
1 where R′

1 = C′
1 − L′

1
define R′

2 where R′
2 = C′

2 − L′
2

from inst obtain γ µ where C1 ·ls γ = C′
1 ∧ C2 ·ls µ = C′

2
unfolding instance-ofls-def by auto

then obtain η where η-p: C1 ·ls η = C′
1 ∧ C2 ·ls η = C′

2
using apart merge-sub by force

from η-p obtain L1 where L1-p: L1 ⊆ C1 ∧ L1 ·ls η = L′
1 ∧ (C1 − L1) ·ls η = R′

1
using appl project-sub using applicable-def R′

1-def by metis
define R1 where R1 = C1 − L1

from η-p obtain L2 where L2-p: L2 ⊆ C2 ∧ L2 ·ls η = L′
2 ∧ (C2 − L2) ·ls η = R′

2
using appl project-sub using applicable-def R′

2-def by metis
define R2 where R2 = C2 − L2

– Then we obtain their MGU:
We assumed that resolution is applicable on clashing sets of literals L′

1 and L′
2

with MGU σ. Therefore σ is an MGU of L′
1 ∪L′

2
C

which is the same as it being
an MGU of (L1 ·ls η) ∪ (L2 ·ls η)C which again is the same as it being an MGU
of (L1 ∪ L2

C) ·ls η. Thus σ is a unifier of (L1 ∪ L2
C) ·ls η, and therefore η · σ is

a unifier of L1 ∪ L2
C. By the unification theorem there must also be an MGU

τ of L1 ∪ L2
C, and by the definition of it being an MGU there must also be a

substitution ϕ such that τ · ϕ = η · σ.

from appl have mguls σ (L′
1 ∪ L′

2
C)

using applicable-def by auto
then have mguls σ ((L1 ·ls η) ∪ (L2 ·ls η)C)

using L1-p L2-p by auto
then have mguls σ ((L1 ∪ L2

C) ·ls η)
using compls-subls subls-union by auto

then have unifierls σ ((L1 ∪ L2
C) ·ls η)

using mguls-def by auto
then have ησuni : unifierls (η · σ) (L1 ∪ L2

C)
using unifierls-def composition-conseq2l by auto

then obtain τ where τ -p: mguls τ (L1 ∪ L2
C)

using unification fin L1-p L2-p by (meson finite-UnI finite-imageI rev-finite-subset)
then obtain ϕ where ϕ-p: τ · ϕ = η · σ

using ησuni mguls-def by auto

– We show that we have the desired conclusion:
Define C as ((C1 − L1) ∪ (C2 − L2)) ·ls τ , i.e. the resolvent of C1 and C2 on

20 Anders Schlichtkrull

clashing sets of literals L1 and L2 with MGU τ . Let us see what ϕ instantiates
it to:
C ·ls ϕ = (R1 ∪R2) ·ls (τ · ϕ) – by the definitions of C, R1, and R2.
= (R1 ∪R2) ·ls (η · σ) – since these two composed substitutions were equal.
= ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ
= (R′

1 ∪R′
2) ·ls σ – by the definitions of R′

1 and R′
2.

In conclusion C ·ls ϕ = ((C′
1 − L′

1) ∪ (C′
2 − L′

2)) ·ls σ, i.e. the conclusion from C1

and C2 has the one from C′
1 and C′

2 as an instance.

define C where C = ((C1 − L1) ∪ (C2 − L2)) ·ls τ
have C ·ls ϕ = (R1 ∪ R2) ·ls (τ · ϕ)

using subls-union composition-conseq2ls using C-def R1-def R2-def by auto
also have ... = (R1 ∪ R2) ·ls (η · σ)

using ϕ-p by auto
also have ... = ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ

using subls-union composition-conseq2ls by auto
also have ... = (R′

1 ∪ R′
2) ·ls σ

using η-p L1-p L2-p using R1-def R2-def by auto
finally have C ·ls ϕ = ((C′

1 − L′
1) ∪ (C′

2 − L′
2)) ·ls σ

unfolding R′
1-def R′

2-def by auto
then have ins: instance-ofls (resolution C′

1 C
′
2 L

′
1 L

′
2 σ) (resolution C1 C2 L1 L2 τ)

using resolution-def instance-ofls-def C-def by metis

– We show that the resolution rule is applicable:
We know that the resolution rule was applicable on C′

1 and C′
2 with clashing sets

of literals L′
1 and L′

2. Therefore these sets must be non-empty. Since they are
instances of C′

1, C′
2, L′

1, and L′
2, these must also be non-empty. We have already

established all other conditions of resolution being applicable.
This concludes the proof.

have C′
1 6= {} ∧ C′

2 6= {} ∧ L′
1 6= {} ∧ L′

2 6= {}
using appl applicable-def by auto

then have C1 6= {} ∧ C2 6= {} ∧ L1 6= {} ∧ L2 6= {}
using η-p L1-p L2-p by auto

then have appli : applicable C1 C2 L1 L2 τ
using apart L1-p L2-p τ -p applicable-def by auto

from ins appli show ?thesis
by auto

qed

8.2 The Formal Completeness Proof

Like Herbrand’s theorem, I formalize completeness as an Isar proof following
Chang and Lee [19]. This time, however, the proof is much longer than its in-
formal counterpart. The paper proof is about 30 lines, while the formal proof is
approximately 150 lines. There are several reasons for this:

1. Clauses have to be explicitly standardized apart.

2. The clauses falsified by branches ending in two sibling leaves must be resolved
and the sibling leaves must be cut off.

3. Even more of the tree must be cut off to minimize it.

4. The derivation-steps must be tied together.

Formalization of the Resolution Calculus for First-Order Logic 21

We need to prove that the cut tree is closed. Furthermore, cutting the tree requires
very precise reasoning about the numbers of the ground atoms. In the following
subsection I tackle 1, 2 and 4 which are particularly interesting.

Let us now look at the completeness proof from a high level to choose an
appropriate induction principle. The completeness proof consists of two steps.
First Herbrand’s theorem is applied to obtain a finite tree. Next the finite tree is
cut smaller and a derivation step is made. Then the process is repeated on the
smaller tree. To prove that this works, I formalize the process using induction on
the size of the tree. The formalization uses the induction rule measure induct rule
instantiated with the size of a tree. This gives the following induction principle:

lemma
assumes

∧
x . (

∧
y. treesize y < treesize x =⇒ P y) =⇒ P x

shows P a

Here, the induction hypothesis holds for any tree of a smaller size, and this is
needed since several nodes are cut off in each step.

In order for the completeness theorem to fit with the above induction principle,
it is first formulated in an appropriate way, assuming the existence of a closed
semantic tree. I show this formulation along with a sketch of the inductive Isar
proof:

theorem completeness ′:
assumes closed-tree T Cs
assumes ∀C∈Cs. finite C
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of treesize])
fix T :: tree
fix Cs :: fterm clause set
assume ih:

∧
T ′ Cs. treesize T ′ < treesize T =⇒ closed-tree T ′ Cs =⇒

∀C∈Cs. finite C =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

assume clo: closed-tree T Cs
assume finite-Cs: ∀C∈Cs. finite C...

ultimately show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ by auto
qed

An alternative approach would have been to use an induction on the subtree
relationship.

8.3 Standardizing Apart

In each step the resolved clauses must be standardized apart. Two functions can
do this:

abbreviation std1 C ≡ C ·ls (λx . Var (′′1 ′′ @ x))

abbreviation std2 C ≡ C ·ls (λx . Var (′′2 ′′ @ x))

They take clauses C1 and C2 and create the clauses std1 C1 and std2 C2 which
have added respectively 1 and 2 to the beginning of all variables. The most impor-
tant property is that the clauses actually have distinct variables after the functions
are applied. We need this such that we can apply the resolution rule, and so we
can use the lifting lemma.

22 Anders Schlichtkrull

lemma std-apart-apart: varsls (std1 C1) ∩ varsls (std2 C2) = {}

I prove that the functions actually rename the variables. This was a prerequisite
for the standardize apart rule of the calculus.

lemma std1-renames: var-renaming-of C1 (std1 C1)

In the completeness proof I need that C1 and std1 C1 are falsified by the same
partial interpretations:

lemma std1-falsifies: falsifiesc G C1 ←→ falsifiesc G (std1 C1)

8.4 Resolving Falsified Clauses

Let us now look at how to formalize the removal of two sibling leaves, and why
the clauses that their branches falsified can be resolved. In each step, the com-
pleteness proof removes two sibling leaves. The branches, B1 = B @ [True] and
B2 = B @ [False], ending in these sibling leaves falsified a first-order clause each,
C1 and C2. By the definition of falsification of first-order clauses, B1 and B2 falsi-
fied ground instances C′

1 and C′
2 of C1 and C2 respectively. These ground clauses

are then resolved, and the resolvent is falsified by B. This is then lifted to the
first-order level using the lifting lemma. See the situation in Fig. 5.

Thus, on the ground level, two properties must be established:

1. The two ground clauses C′
1 and C′

2 falsified by B1 and B2 can be resolved.
2. Their ground resolvent C′ is falsified by B. This ensures that the tree is closed

when we cut off B1 and B2 and minimize it.

Let us prove 1 first. This is done by proving that C′
1 contains the negative

literal l = Neg a of number length B in the enumeration, and that C′
2 contains its

complement. Here, the case for C′
1 is presented. C′

1 is falsified by B1, but not B,
because the closed semantic tree is minimal. Thus, it must be the decision of going
left that was necessary to falsify C′

1. Going left falsified the negative literal l with
number length B in the enumeration, and hence it must be in C′

1.

Let us prove 2 next. To prove it we must show that the ground resolvent
C′ = (C′

1 − {l}) ∪ (C′
2 − {lc}) is falsified by B. We do it by proving that the

literals in both C′
1−{l} and C′

2−{lc} are falsified. The case for C′
1−{l} is presented

here. The overall idea is that l is falsified by B1, but not by B. The decision of
going left falsified l, and then all of C′

1 was falsified. Therefore, the other literals
must have been falsified before we made the decision, in other words, they must
have been falsified already by B.

To formalize this we must prove that all the literals in C′
1 − {l} are indeed

falsified by B. We do it by a lemma showing that any other literal lo ∈ C′
1 than l

is falsified by B. Its proof first shows that lo has another number than l has, i.e.
other than length B . It seems obvious since lo 6= l , but we also need to ensure that
lo 6= lc. We do this by proving another lemma, which says that a clause only can
be falsified by a partial interpretation if it does not contain two complementary
literals. Then we show that lo has a number smaller than length (B @ [True]),
since lo is falsified by B @ [True]. This concludes the proof.

Formalization of the Resolution Calculus for First-Order Logic 23

a 7→ True a 7→ False

B

Fig. 5 B is a path from the root of a semantic tree to a parent of two sibling nodes. B1

extends B by going left and B2 by going right. B falsifies no clause in our set of clauses, but
B1 falsifies C1, and B2 falsifies C2.

I abstract from True to d such that the lemma also will work for the path
B @ [False] that goes left:

lemma other-falsified:
assumes groundls C

′
1 ∧ falsifiesg (B @ [d]) C′

1
assumes l ∈ C′

1 ∧ nat-of -fatom (get-atom l) = length B
assumes lo ∈ C′

1 ∧ lo 6= l
shows falsifiesl B lo

8.5 The Derivation

At the end of the proof the derivations are tied together:

C1

std1 C1

C2

std2 C2

resolution C1 C2 L1 L2 σ

...
{}

24 Anders Schlichtkrull

The dots represent the derivation we obtain from the induction hypothesis. It is
done using the definitions of resolution-step and resolution-deriv . From herbrand
and completeness ′ follows the completeness theorem:

theorem completeness:
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: hterm fun-denot) (G :: hterm pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

8.6 Further Completeness Theorems

Let us now look at the strength of the above completeness proof and consider
several other variants.

Notice that the above completeness theorem is actually stronger than the usual
one. Usually, the assumption would consider all interpretations of all universes.
Here, however, the assumption is weakened to consider only all interpretations of
the Herbrand universe.

It could be illustrative to also formalize the usual formulation, but unfortu-
nately, because of my choice of representing universes by types this is not possi-
ble. The reason is that although all statements in HOL are implicitly universally
quantified over all types at the top, we are not allowed to do type quantification
explicitly inside HOL formulas.

I instead prove some other instructive formulations of the theorem. For the
completeness proof it was central that we considered the Herbrand universe, but
for the theorem it is actually not important. The Herbrand universe can be re-
placed by any countably infinite universe. To prove this we fix an arbitrary un-
countably infinite universe and obtain a bijection between it and the Herbrand
terms. Three functions are defined that can apply the bijection to respectively
variable denotations, function denotations, and predicate denotations:

definition E-conv :: (′a ⇒ ′b) ⇒ ′a var-denot ⇒ ′b var-denot where
E-conv b-of-a E ≡ λx . (b-of-a (E x))

definition F-conv :: (′a ⇒ ′b) ⇒ ′a fun-denot ⇒ ′b fun-denot where
F-conv b-of-a F ≡ λf bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: (′a ⇒ ′b) ⇒ ′a pred-denot ⇒ ′b pred-denot where
G-conv b-of-a G ≡ λp bs. (G p (map (inv b-of-a) bs))

Proving some appropriate lemmas about these functions I arrive at the follow-
ing completeness theorem:

theorem completeness-countable:
assumes infinite (UNIV :: (′u :: countable) set)
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: ′u fun-denot) (G :: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

In particular, I use it to replace the Herbrand universe with the universe of the
natural numbers:

theorem completeness-nat:
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: nat fun-denot) (G :: nat pred-denot). ¬evalcs F G Cs
shows ∃Cs′. resolution-deriv Cs Cs′ ∧ {} ∈ Cs′

Formalization of the Resolution Calculus for First-Order Logic 25

9 Discussion

Since this paper is a case study in formalizing mathematics, it is worthwhile con-
sidering which tools were helpful in this regard. This section discusses each of these
tools. The section also gives an idea of how much work went in to making the for-
malization. It discusses the consequences of the choice of representing universes
as types. Lastly, it discusses the applicability of the formalization to implemented
automated theorem provers.

Integrated Development Environments (IDEs) help their users do software
development. Isabelle includes the Isabelle/jEdit Prover IDE, which has many
useful features for navigating, reading, and writing proof documents. For instance
it reveals type information of constants when the user hovers the mouse cursor
over them. The user can click on any constant or type to jump to its definition
and with another click she can jump back again. These features were especially
advantageous when the theory grew larger. This is not only useful when writing
proofs but also when reading them. In a formalization, every word is formally tied
to its definition, so if at some point I forget the meaning of some expression the
definitions are available by the click of a button. In my opinion this corroborates
the claim that formal companions to paper proofs are highly useful.

The structured proof language Isar was beneficial because it allows formal
proofs to be written as sequences of claims that follow from the previous claims.
This clearly mirrors mathematical paper proof, which is what I am formalizing.
Furthermore, it makes the proofs easy to read, and this is important when a
formalization is to help in the understanding of a theory.

Isabelle/HOL includes several generic proof methods or tactics that can dis-
charge proof goals. Writing a proof in Isabelle/HOL is a process of stating the
formula you think holds and showing this from the previous statements with the
right proof method. The simp and auto methods do rewriting and more while, e.g.
blast and metis are first-order automatic theorem provers. Knowing which one
to use in a given situation is a matter of knowledge of how the prover works, of
experience, and of trial and error.

The Sledgehammer tool [6] finds proofs by picking important facts from the
theory and then employing top-of-the-line automatic theorem provers and satis-
fiability modulo theory solvers. It often helps proving claims that we know are
true, but where finding the necessary facts from the theory and libraries as well
as choosing and instructing a proof method would be tedious.

It is also worthwhile considering how much work went into the formalization.
The whole development is about 3300 lines of code. A preliminary version of the
theory was developed during 5 months as part of my master’s thesis [63] including
formalizations of clausal logic, its semantics, unifiers, a resolution calculus, its
soundness, Herbrand interpretations, semantic trees and Herbrand’s theorem. I
developed the rest of the theory during the first 5 months of my PhD studies
concurrently with my other duties. The completeness theorems in Subsect. 8.6
were formalized with little work while writing this extended paper. The lifting
lemma was the greatest challenge because of the flaws in Chang and Lee’s proof.
As soon as I looked at the proof by Leitsch, it was straightforward to finish.

In Sect. 4, I chose to represent universes as sets. The advantage of this was that
I did not need additional predicates to restrict the ranges of variable and function
denotations to stay within the fixed universe, since this was captured in the types.

26 Anders Schlichtkrull

This is rather convenient, since then the proofs are not cluttered with reasoning
about these predicates. On the other hand, in Sect. 7, I needed to introduce a type
for the Herbrand universe, where it could otherwise have been captured directly
as the set of ground terms. In Sect. 8, we also saw that a consequence was that
we could not express completeness in its usual formulation, but had to go with
a stronger formulation. To sum up, by formalizing universes as types rather than
sets, I gained convenience, but lost some expressibility.

Finally, it is worthwhile considering the applicability of the formalization to
implementations of automated theorem provers such as E, SPASS, and Vampire.
Such automatic theorem provers consist of a calculus and a function to construct
proofs in the calculus. The present formalization is purely of a calculus. Further-
more, the mentioned provers use the superposition calculus, which is an extension
of resolution to first-order logic with equality. Resolution and superposition coin-
cide for first-order logic without equality. The rules of superposition have several
side conditions which only serve to rule out unnecessary inferences while the res-
olution rule I formalize has no such side conditions.

10 Related Work

The literature describes several formalizations of logic. This section takes a look at
formalizations of both intuitionistic and classical first-order logic. Furthermore, it
looks at two results that go beyond first-order logic. Lastly, it gives an overview of
the IsaFoL project, which is an effort to bring together researchers of formalizations
of logic.

10.1 Formalizations of Proof Systems for First-Order Logic

The completeness of first-order logic is a landmark of logic and thus formalizing
this theorem is interesting in itself. Natural deduction calculi and sequent calculi
are very suited for this purpose because of their simplicity.

Persson [54] formalized, in ALF, intuitionistic first-order logic. He formalized an
intuitionistic natural deduction system and an intuitionistic sequent calculus. The
semantics are defined using topology, which is a generalization of the semantics for
classical first-order logic. He formalized both natural deduction, sequent calculi,
and an axiomatic system. He proved the natural deduction systems and the sequent
calculus sound, and proved the natural deduction with named variables complete.
Ilik [31] also formalized, in Coq, natural deduction for intuitionistic first-order
logic. He proved it complete with respect to a Kripke semantics. He also studied
properties of intuitionistic logic extended with delimited control operators known
from programming languages.

Harrison [28] formalized, in HOL Light, model theoretic results about classi-
cal first-order logic, including the compactness theorem, the Löwenheim-Skolem
theorem, and Herbrand’s theorem.

Moreover, there are several formalized completeness proofs for classical first-
order natural deduction. Berghofer [5] formalized natural deduction, in Isabelle/
HOL, and proved it sound and complete. He also proved the Löwenheim-Skolem
theorem. Raffalli [56] proved, in Phox, natural deduction complete for first-order

Formalization of the Resolution Calculus for First-Order Logic 27

logic. His semantics is that of minimal models. These are similar to the sets of for-
mulas true in the usual semantics, but behave differently with respect to negation.
The completeness statement is equivalent to the one with respect to the usual se-
mantics, but this is not formalized. Ilik [31] formalized, essentially, the same result
in Coq, although less abstractly.

Other authors formalized completeness proofs for classical first-order sequent
calculi. Margetson and Ridge [45] formalized, in Isabelle/HOL, a sequent calculus.
Their syntax is that of formulas on negation normal form without first-order func-
tions. They proved the calculus sound and complete with respect to a semantics
on this syntax. Braselmann and Koepke [14, 15] proved, in Mizar, a sequent cal-
culus for first-order logic sound and complete. Schlöder and Koepke [68] proved it
complete even for uncountable languages. Ilik [31] also proved a sequent calculus
complete with respect to a Kripke-style semantics that he, Lee, and Herbelin [32]
introduced for classical first-order logic.

Many completeness proofs follow similar recipes. Blanchette, Popescu, and
Traytel [9, 12] formalized one such recipe, in Isabelle/HOL, as an abstract com-
pleteness proof for first-order logic that is independent of syntax and proof system.
An interesting aspect of the proof is that it uses codatatypes to define and reason
about infinite derivation trees. Their abstract completeness theorem states that
if a proof system has a number of fairness properties, then it is complete in the
following abstract sense: Any formula can either be proved or there exists some in-
finite path in a fair derivation tree of the formula. This means that the user of their
formalization has three things to do in order to get a concrete completeness proof.
First she needs to define a syntax, second she needs to define a fair proof system
and third, she has to interpret the infinite paths as countermodels. The authors
performed this step for a sequent calculus for first-order logic with equality and
sorts. My formalization does not follow this recipe, opting instead for formalizing
semantic trees. Blanchette, Popescu, and Traytel [11, 12] also formalized abstract
soundness results and used them to prove a certain kind of infinite proofs correct.

Breitner and Lohner [17] defined natural deduction in an abstract way that
is independent of syntax and the concrete rules of the system. They then used
the abstract completeness proof by Blanchette, Popescu, and Traytel to prove it
complete in the abstract sense. They also defined a novel graph representation
of proofs, which is also independent of syntax and rules. They proved that any
natural deduction system and the corresponding graph representation can prove
the same theorems. Thus the graph representation is as sound and complete as
the corresponding natural deduction system. They concretely instantiated it with
a propositional logic with only conjunction and implication as well as a first-order
logic with only universal quantification and implication. Breitner [16] used their
graph representation to implement a tool for teaching logic.

For automatic theorem provers, it is not only important that the calculus is
complete, but also that it can be implemented as a program. Ridge and Margetson
[58, 59] verified a prover based on their formalized sequent calculus. Since their
calculus does not contain full first-order terms, it means that they do not need
any machinery such as MGUs to handle them. They also implement the prover as
an OCaml program.

In his master’s thesis, Gebhard [26] formalized several ground resolution cal-
culi in the ΩMEGA proof assistant. A version of this development is available
online in The Theorem Prover Museum [37]. Gebhard proved completeness using

28 Anders Schlichtkrull

induction on the excess literal number. The excess literal number is the number of
occurrences of literals in a set of clauses minus the number of clauses. The tech-
nique was introduced by Anderson and Bledsoe [1] who used it to prove a linear
format for resolution complete. Arguably, semantic trees are a more pedagogical
construction since they so naturally express interpretations, and therefore I prefer
them. Furthermore, Goubault-Larrecq and Jouannaud [27] showed that semantic
trees can actually be used to prove many of the refinements of resolution com-
plete – including linear resolution. Another difference from my formalization is
that Gebhard uses proof planning. Proof plans were introduced by Bundy [18] as
formal specifications of LCF-style tactics, which are functions that can replace a
goal in a proof with zero or more new subgoals. I instead made structured proofs in
the declarative Isar language, which allowed me to write humanly readable proofs
that can be checked by the Isabelle/HOL proof assistant.

Concurrent with this Isabelle/HOL formalization of resolution, an important
step in formalizing automatic theorem provers for first-order logic was taken.
Peltier proved propositional resolution [52] and a variant of the superposition
calculus for first-order logic [53] sound and complete. The superposition calculus
can be seen as a highly efficient generalization of resolution for first-order logic to
first-order logic with equality. Therefore his formalization is representative of the
state of the art in formalizing the theory of automatic theorem proving.

10.2 Beyond Completeness of First-Order Logic

There are also results that go beyond completeness of first-order logic. An early
such result is Shankar’s formalization [70, 71], in Nqthm, of Gödel’s first incom-
pleteness theorem. Raffalli [56] proved, in Phox, parts of the second incompleteness
theorem. His proof is very abstract and thus relies on strong assumptions about
codings of formulas. He does not provide an explicit coding and thus does not
prove these assumptions. Paulson [49–51] did not take any shortcuts and managed
to formalize the entirety of both Gödel’s incompleteness theorems with a concrete
coding of formulas based on hereditarily finite set theory.

Harrison [29] proved the soundness and consistency of HOL Light. He did this
in two ways. First, he added an extra axiom to HOL Light that assumes the
existence of a very large cardinal, and with this he was able to prove the unaltered
HOL Light sound and consistent. Secondly, in unaltered HOL Light he proved the
soundness and consistency of HOL Light altered by removing its axiom of infinity.
Kumar, Arthan, Myreen, and Owens [39] extended Harrison’s result by proving, in
HOL4, soundness and consistency of HOL Light with definitions. Their approach
is a bit different from Harrison’s. Instead of adding an axiom describing a large
cardinal to HOL4, their soundness proof assumes a specification of set theory.
Additionally, they synthesize a verified implementation of the inference rules of
their definition of HOL Light. A similar result is Davis and Myreen’s soundness
proof [23], in HOL4, of the Milawa theorem prover.

10.3 IsaFoL

This formalization is part of IsaFoL [33], the Isabelle Formalization of Logic, which
is a project that brings together researchers of logic from many institutions. In

Formalization of the Resolution Calculus for First-Order Logic 29

the project we aim to develop libraries of lemmas and methods for formalizing
research on logic. In addition to this formalization of logic, several other results
have emerged from the project.

This paper is an example of IsaFoL catching up with classical unformalized
results in Isabelle/HOL. Likewise, Jensen, Villadsen, and I [35, 36] formalized an
axiomatic system that forms the kernel of a proof assistant for first-order logic
with equality by Harrison [30]. In addition to the advantages of having a formal
companion to Harrison’s chapter on the proof assistant, the formalization also en-
abled us to build a certified prover based on the calculus. Other efforts in this
direction are the work due to Blanchette, Traytel, Waldmann, and me [66] on a
formalization of a resolution prover for first-order logic, as well as the formaliza-
tions of many ground calculi including SAT solvers and propositional resolution
due to Blanchette, Fleury, and Weidenbach [7].

Additionally we develop new results in conjunction with formalizing them.
Several term-orders have been formalized by Becker, Blanchette, Waldmann, and
Wand [3] as well as Blanchette, Waldmann, and Wand [13]. These could serve as
a basis for a higher-order superposition calculus. Villadsen and I [67] formalized
a propositional paraconsistent logic with infinitely many truth values. Lammich
wrote and verified a program that checks the certificates of satisfiability and un-
satisfiability that SAT solvers can generate [40,41].

11 Conclusion

This paper describes a formalization of the resolution calculus for first-order logic
as well as its soundness and completeness. This includes formalizations of the
substitution lemma, Herbrand’s theorem, and the lifting lemma. As far as I know,
this is the first formalized soundness and completeness proof of the resolution
calculus for first-order logic.

The paper emphasizes how the formalization illustrates details glossed over in
the paper proofs. Such details are necessary in a formalization. For instance it
shows the jump from satisfiability by an infinite path in a semantic tree to satis-
fiability by an interpretation. It likewise illustrates how and when to standardize
clauses apart in the completeness proof, and the lemmas necessary to allow this.
Furthermore, the formalization combines theory from different sources. The proofs
of Herbrand’s theorem and completeness are based mainly on those by Chang and
Lee [19], while the proof of the lifting lemma is based on that by Leitsch [43]. The
existence proof of MGUs for unifiable clauses comes from IsaFoR [34].

The formalization is part of the IsaFoL project [33] on formalizing logics. When
the project was started in 2015, we hoped it would attract other researchers to
join and formalize their results by using and extending the library. It seems that
we have had success with this since the number of authors in the project has more
than tripled since then.

Proof assistants take advantage of automatic theorem provers by using them
to prove subgoals. This formalization is a step towards mutual benefit between
the two areas of research. Formalizations in proof assistants can help automatic
theorem provers by contributing a highly rigorous understanding of their meta-
theory.

30 Anders Schlichtkrull

Acknowledgements

I would like to thank Jørgen Villadsen, Jasmin Christian Blanchette, and Dmitriy
Traytel who supervised me in making the formalization. I would also like to thank
Jørgen, Jasmin, John Bruntse Larsen, Andreas Halkjær From, and the anonymous
referees for their valuable feedback on the paper.

References

1. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a new
technique for establishing completeness. J. ACM 17(3), 525–534 (1970)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
3. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth–Bendix

orders for lambda-free higher-order terms. Archive of Formal Proofs (2016). http://
isa-afp.org/entries/Lambda_Free_KBOs.shtml, Formal proof development

4. Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer (2012)
5. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs (2007).

http://isa-afp.org/entries/FOL-Fitting.shtml, Formal proof development
6. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers.

J. of Autom. Reason. 51(1), 109–128 (2013)
7. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework with learn,

forget, restart, and incrementality. In: N. Olivetti, A. Tiwari (eds.) IJCAR 2016, LNCS,
vol. 9706, pp. 25–44. Springer (2016)

8. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly
modular (co)datatypes for Isabelle/HOL. In: G. Klein, R. Gamboa (eds.) ITP 2014,
LNCS, vol. 8558, pp. 93–110. Springer (2014)

9. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of For-
mal Proofs (2014). http://isa-afp.org/entries/Abstract_Completeness.shtml, Formal
proof development

10. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: A proof
assistant perspective. In: K. Fisher, J. Reppy (eds.) ICFP’15, pp. 192–204. ACM (2015)

11. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract soundness. Archive of Formal
Proofs (2017). http://isa-afp.org/entries/Abstract_Soundness.shtml, Formal proof
development

12. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and Completeness Proofs by Coin-
ductive Methods. J. Autom. Reason. 58(1), 149–179 (2017)

13. Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of recursive path orders for
lambda-free higher-order terms. Archive of Formal Proofs (2016). http://isa-afp.org/
entries/Lambda_Free_RPOs.shtml, Formal proof development

14. Braselmann, P., Koepke, P.: Gödel completeness theorem. Formaliz. Math. 13(1), 49–53
(2005)

15. Braselmann, P., Koepke, P.: A sequent calculus for first-order logic. Formaliz. Math. 13(1),
33–39 (2005)

16. Breitner, J.: Visual theorem proving with the Incredible Proof Machine. In: J.C.
Blanchette, S. Merz (eds.) ITP 2016, LNCS, vol. 9807, pp. 123–139. Springer (2016)

17. Breitner, J., Lohner, D.: The meta theory of the Incredible Proof Machine. Archive of
Formal Proofs (2016). http://isa-afp.org/entries/Incredible_Proof_Machine.shtml,
Formal proof development

18. Bundy, A.: The use of explicit plans to guide inductive proofs. In: E. Lusk, R. Overbeek
(eds.) CADE-9, LNCS, vol. 310, pp. 111–120. Springer (1988)

19. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving, 1st edn.
Academic Press, Inc. (1973)

20. Coen, M., Slind, K., Krauss, A.: Theory unification. Isabelle. http://isabelle.in.tum.
de/library/HOL/HOL-ex/Unification.html. Accessed 13 December 2017

21. Coen, M.D.: Interactive program derivation. Ph.D. thesis, University of Cambridge (1992).
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-272.html

22. Corbin, J., Bidoit, M.: A rehabilitation of Robinson’s unification algorithm. In: IFIP
Congress, pp. 909–914 (1983)

http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/Abstract_Completeness.shtml
http://isa-afp.org/entries/Abstract_Soundness.shtml
http://isa-afp.org/entries/Lambda_Free_RPOs.shtml
http://isa-afp.org/entries/Lambda_Free_RPOs.shtml
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isabelle.in.tum.de/library/HOL/HOL-ex/Unification.html
http://isabelle.in.tum.de/library/HOL/HOL-ex/Unification.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-272.html

Formalization of the Resolution Calculus for First-Order Logic 31

23. Davis, J., Myreen, M.O.: The reflective Milawa theorem prover is sound (down to the
machine code that runs it). J. Autom. Reason. (2015)

24. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer (1994)
25. Fitting, M.: First-Order Logic and Automated Theorem Proving, Second Edition, 2nd

edn. Springer (1996)
26. Gebhard, H.: Beweisplanung für die Beweise der Vollständigkeit verschiedener Resolutions-

kalküle in ΩMEGA. Master’s thesis, Saarland University (1999)
27. Goubault-Larrecq, J., Jouannaud, J.P.: The blossom of finite semantic trees. In:

A. Voronkov, C. Weidenbach (eds.) Programming Logics: Essays in Memory of Harald
Ganzinger, LNCS, pp. 90–122. Springer (2013)

28. Harrison, J.: Formalizing basic first order model theory. In: J. Grundy, M. Newey (eds.)
TPHOL’s 1998, LNCS, vol. 1497, pp. 153–170. Springer (1998)

29. Harrison, J.: Towards self-verification of HOL Light. In: U. Furbach, N. Shankar (eds.)
IJCAR 2006, LNCS, vol. 4130, pp. 177–191. Springer (2006)

30. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge Univer-
sity Press (2009)

31. Ilik, D.: Constructive completeness proofs and delimited control. Ph.D. thesis, École
Polytechnique (2010). https://tel.archives-ouvertes.fr/tel-00529021/document

32. Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure Appl. Log.
161(11), 1367–1378 (2010)

33. IsaFoL authors: IsaFoL: Isabelle Formalization of Logic. https://bitbucket.org/isafol/
isafol. Accessed 13 December 2017

34. IsaFoR developers: An Isabelle/HOL formalization of rewriting for certified termination
analysis. http://cl-informatik.uibk.ac.at/software/ceta/. Accessed 13 December
2017

35. Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Verification of an LCF-style first-order prover
with equality. In: Isabelle Workshop 2016 Associated with ITP 2016 (2016)

36. Jensen, A.B., Schlichtkrull, A., Villadsen, J.: First-order logic according to Harrison.
Archive of Formal Proofs (2017). http://isa-afp.org/entries/FOL_Harrison.shtml,
Formal proof development

37. Kohlhase, M.: Theorem prover museum – OMEGA theories – folders: propositional-logic,
resolution, proof-theory, prop-res. https://github.com/theoremprover-museum/OMEGA/
tree/master/theories. Accessed 13 December 2017

38. Krauss, A.: Partial and nested recursive function definitions in higher-order logic. J.
Autom. Reason. 44(4), 303–336 (2010)

39. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order logic:
Semantics, soundness, and a verified implementation. J. Autom. Reason. 56(3), 221–259
(2016)

40. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: L. de Moura (ed.) CADE-
26, LNCS, vol. 10395, pp. 237–254. Springer (2017)

41. Lammich, P.: The GRAT tool chain. In: S. Gaspers, T. Walsh (eds.) SAT 2017, LNCS,
vol. 10491, pp. 457–463. Springer (2017)

42. Leitsch, A.: On different concepts of resolution. Math. Log. Q. 35(1), 71–77 (1989)
43. Leitsch, A.: The Resolution Calculus. Springer (1997)
44. Manna, Z., Waldinger, R.: Deductive synthesis of the unification algorithm. Sci. Comput.

Program. 1(1), 5–48 (1981)
45. Margetson, J., Ridge, T.: Completeness theorem. Archive of Formal Proofs (2004). http:

//isa-afp.org/entries/Completeness.shtml, Formal proof development
46. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer (2014)
47. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-

Order Logic. Springer (2002)
48. Paulson, L.C.: Verifying the unification algorithm in LCF. Sci. Comput. Program. 5(2),

143–169 (1985)
49. Paulson, L.C.: Gödel’s incompleteness theorems. Archive of Formal Proofs (2013). http:

//isa-afp.org/entries/Incompleteness.shtml, Formal proof development
50. Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for the theory

of hereditarily finite sets. Rev. Symb. Log. 7(03), 484–498 (2014)
51. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal

Isabelle. J. Autom. Reason. 55(1), 1–37 (2015)
52. Peltier, N.: Propositional resolution and prime implicates generation. Archive of

Formal Proofs (2016). http://isa-afp.org/entries/PropResPI.shtml, Formal proof
development

https://tel.archives-ouvertes.fr/tel-00529021/document
https://bitbucket.org/isafol/isafol
https://bitbucket.org/isafol/isafol
http://cl-informatik.uibk.ac.at/software/ceta/
http://isa-afp.org/entries/FOL_Harrison.shtml
https://github.com/theoremprover-museum/OMEGA/tree/master/theories
https://github.com/theoremprover-museum/OMEGA/tree/master/theories
http://isa-afp.org/entries/Completeness.shtml
http://isa-afp.org/entries/Completeness.shtml
http://isa-afp.org/entries/Incompleteness.shtml
http://isa-afp.org/entries/Incompleteness.shtml
http://isa-afp.org/entries/PropResPI.shtml

32 Anders Schlichtkrull

53. Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs (2016).
http://isa-afp.org/entries/SuperCalc.shtml, Formal proof development

54. Persson, H.: Constructive completeness of intuitionistic predicate logic. Ph.D.
thesis, Chalmers University of Technology (1996). http://web.archive.org/web/
19970715002824/http://www.cs.chalmers.se/~henrikp/Lic/

55. R. Sekar, I.V.R., , Voronkov, A.: Term indexing. In: Handbook of Automated Reasoning,
vol. 2, pp. 1853–1964 (2001)

56. Raffalli, C.: Krivine’s abstract completeness proof for classical predicate logic. https:
//github.com/craff/phox/blob/master/examples/complete.phx (2005, possibly earlier).
Accessed 13 December 2017

57. Riazanov, A., Voronkov, A.: Vampire. In: H. Ganzinger (ed.) CADE-16, LNCS, vol. 1632,
pp. 292–296. Springer (1999)

58. Ridge, T.: A mechanically verified, efficient, sound and complete theorem prover for
first order logic. Archive of Formal Proofs (2004). http://isa-afp.org/entries/
Verified-Prover.shtml, Formal proof development

59. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover
for first order logic. In: J. Hurd, T. Melham (eds.) TPHOL’s 2005, LNCS, vol. 3603, pp.
294–309. Springer (2005)

60. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965)

61. Robinson, J.A.: The generalized resolution principle. Mach. intell. 3, 77–93 (1968)
62. Ruiz-Reina, J.L., Mart́ın-Mateos, F.J., Alonso, J.A., Hidalgo, M.J.: Formal correctness of

a quadratic unification algorithm. J. Autom. Reason. 37(1), 67–92 (2006)
63. Schlichtkrull, A.: Formalization of resolution calculus in Isabelle. Master’s thesis, Technical

University of Denmark (2015). https://people.compute.dtu.dk/andschl/Thesis.pdf
64. Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. In:

J. Blanchette, S. Merz (eds.) ITP 2016, LNCS, vol. 9807, pp. 341–357. Springer (2016)
65. Schlichtkrull, A.: The resolution calculus for first-order logic. Archive of Formal Proofs

(2016). http://isa-afp.org/entries/Resolution_FOL.shtml, Formal proof development
66. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalization of Bach-

mair and Ganzinger’s simple ordered resolution prover. https://bitbucket.org/isafol/
isafol/src/master/Ordered_Resolution_Prover/. Accessed 13 December 2017

67. Schlichtkrull, A., Villadsen, J.: Paraconsistency. Archive of Formal Proofs (2016). http:
//isa-afp.org/entries/Paraconsistency.shtml, Formal proof development

68. Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable languages.
Formaliz. Math. 20(3), 199–203 (2012)

69. Schulz, S.: System description: E 1.8. In: K. McMillan, A. Middeldorp, A. Voronkov (eds.)
LPAR-19, LNCS, vol. 8312, pp. 735–743. Springer (2013)

70. Shankar, N.: Proof-checking metamathematics. Ph.D. thesis, University of Texas (1986)
71. Shankar, N.: Metamathematics, Machines, and Gödel’s Proof. Cambridge University Press

(1994)
72. Slind, K.: Reasoning about terminating functional programs. Ph.D. thesis, Technical

University of Munich (1999). https://mediatum.ub.tum.de/?id=601660
73. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix comple-

tion. In: F. van Raamsdonk (ed.) RTA ’13, LIPIcs, vol. 21, pp. 287–302. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik (2013)

74. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS
version 3.5. In: R.A. Schmidt (ed.) CADE-22, LNCS, vol. 5663, pp. 140–145. Springer
(2009)

75. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof documents.
In: Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz, C. Paulin (eds.) TPHOL’s 1999, LNCS,
vol. 1690, pp. 167–183. Springer (1999)

http://isa-afp.org/entries/SuperCalc.shtml
http://web.archive.org/web/19970715002824/http://www.cs.chalmers.se/~henrikp/Lic/
http://web.archive.org/web/19970715002824/http://www.cs.chalmers.se/~henrikp/Lic/
https://github.com/craff/phox/blob/master/examples/complete.phx
https://github.com/craff/phox/blob/master/examples/complete.phx
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
https://people.compute.dtu.dk/andschl/Thesis.pdf
http://isa-afp.org/entries/Resolution_FOL.shtml
https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/
https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/
http://isa-afp.org/entries/Paraconsistency.shtml
http://isa-afp.org/entries/Paraconsistency.shtml
https://mediatum.ub.tum.de/?id=601660

	Introduction
	Overview
	Isabelle
	Clausal First-Order Logic
	Substitutions and Unifiers
	The Resolution Calculus
	Herbrand Interpretations and Semantic Trees
	Semantic Trees
	Herbrand's Theorem

	Completeness
	Lifting Lemma
	The Formal Completeness Proof
	Standardizing Apart
	Resolving Falsified Clauses
	The Derivation
	Further Completeness Theorems

	Discussion
	Related Work
	Formalizations of Proof Systems for First-Order Logic
	Beyond Completeness of First-Order Logic
	IsaFoL

	Conclusion

