
Distributed and Parallel Databases 7, 199–248 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Formalization of Workflows and Correctness Issues
in the Presence of Concurrency∗

İSMAİLCEM BUDAK ARPINAR budak@srdc.metu.edu.tr
UĞUR HALICI halici@rorqual.cc.metu.edu.tr
SENA ARPINAR nural@srdc.metu.edu.tr
ASUMAN DOĞAÇ asuman@srdc.metu.edu.tr
Software Research and Development Center, Department of Computer Engineering, Middle East Technical
University (METU), 06531, Ankara, Turkey

Recommended by: Ahmed Elmagarmid

Abstract. In this paper, main components of a workflow system that are relevant to the correctness in the
presence of concurrency are formalized based on set theory and graph theory. The formalization which constitutes
the theoretical basis of the correctness criterion provided can be summarized as follows:

• Activities of a workflow are represented through a notation based on set theory to make it possible to formalize
the conceptual grouping of activities.

• Control-flow is represented as a special graph based on this set definition, and it includes serial composi-
tion, parallel composition, conditional branching, and nesting of individual activities and conceptual activities
themselves.

• Data-flow is represented as a directed acyclic graph in conformance with the control-flow graph.

The formalization of correctness of concurrently executing workflow instances is based on this framework by
defining two categories of constraints on the workflow environment with which the workflow instances and their
activities interact. These categories are:

• Basic constraints that specify the correct states of a workflow environment.
• Inter-activity constraints that define the semantic dependencies among activities such as an activity requiring

the validity of a constraint that is set or verified by a preceding activity.

Basic constraints graph and inter-activity constraints graph which are in conformance with the control-flow and
data-flow graphs are then defined to represent these constraints. These graphs are used in formalizing the intervals
among activities where an inter-activity constraint should be maintained and the intervals where a basic constraint
remains invalid.

A correctness criterion is defined for an interleaved execution of workflow instances using the constraints graphs.
A concurrency control mechanism, namely Constraint Based Concurrency Control technique is developed based
on the correctness criterion. The performance analysis shows the superiority of the proposed technique. Other
possible approaches to the problem are also presented.

Keywords: workflow management system, workflow, activity, basic constraint, inter-activity constraint, time
intervals, correctness, concurrency control

∗This work is partially supported by the European Commission, Project No.: DC97-2496MARIFLOW, by the
Middle East Technical University, the Graduate School of Natural and Applied Sciences, Project No.: AFP-97-
07-02-08, and by the Scientific and Technical Research Council of Turkey, Project No.: 197E038.

200 ARPINAR ET AL.

1. Introduction

Today, economic imperatives are forcing enterprises to look for new information technolo-
gies to streamline their business processes. Key requirements include integrating heteroge-
neous information resources of an enterprise, and automating mission-critical applications
that access shared information resources. Many of the activities in these enterprises are of
long-duration and consist of multiple operations executed over (possibly) heterogeneous
systems with very diverse response times. As a consequence of these trends, Workflow
Management Systems (WFMSs) are quickly becoming the technology of choice to imple-
ment large and heterogeneous distributed execution environments where sets of interrelated
activities can be carried out in an efficient and closely supervised fashion [4]. There is also
a standardization effort in this respect. The Workflow Management Coalition (WfMC), an
industry consortium aims at a unified terminology and a standardization of key components
of a workflow management system. The WfMC identified a set of six primitives with which
it is possible to describe control-flow and hence construct a workflow specification [37].

A workflow processis defined as a collection of processing steps (activities) organized to
accomplish some business processes. An activity can be performed by one or more software
systems or machines (e.g., instruments or robots), by a person or a team, or a combination
of these. A workflow process contains a collection of activities and defines the order of
activity invocations or condition(s) under which activities must be invoked (i.e., control-
flow) and also data-flow between the activities. Activities within a workflow can themselves
again be a workflow. Furthermore, an activity may be further composed of several calls to
local systems (such as in multidatabases [29, 32]), and this fact is hidden at the workflow
level.

The activities could betransactionalor non-transactional. Transactional activities are
those that access data controlled by Resource Managers (RMs) with transactional properties
(i.e., ACID). These activities minimally support the atomicity property and maximally
support all ACID properties of traditional transaction models [42]. These activities typically
include those that interact with a DBMS by usingCommitandAbort operations, stored
procedures, and two-phase commit (2PC) activities.

Non-transactional activities access data controlled by RMs without transactional prop-
erties. These non-transactional processing entities include file systems, humans, legacy
systems, HTTP servers, word processors, and spreadsheets. Yet, it may be possible to
introduce some transactional properties to these systems, for example by wrapping non-
transactional RMs to provide transaction and concurrency control services. There is further
work describing how to handle non-transactional activities in [44].

1.1. Correctness issues in WFMSs

As discussed briefly in [28], the person who implements an activity is responsible for ensur-
ing that the activity produces correct results if it is executed alone. However since workflows
are long running processes, having the activities terminate (e.g., commit) within the scope
of a workflow instance is an accepted practice. Thus, the data modified by these activities
becomes accessible to the other activities within the same workflow instance as well as to

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 201

the other workflow instances which may cause inconsistencies due to improper interleav-
ings. Yet many scenarios in the operation of a workflow system require the preservation of
consistency of at least some data items. Therefore the workflow execution must address the
following two correctness concerns: (i) The correctness of concurrent executions of activi-
ties belonging to the same workflow instance; (ii) the correctness of concurrent executions
of activities belonging to different workflow instances.

For example consider anOrder Processingworkflow in a manufacturing enterprise. In
the processing of theOrder Processingworkflow, raw material stock is checked through a
CheckStockactivity to see whether there is enough raw material in the stock to process the
order. If not, the missing raw materials are ordered from external vendors and inserted into
stock through anInsertStockactivity. Yet later in the process when the actual manufacturing
is to start for this workflow instance there may not be enough raw material in the stock to
process this order, because a concurrently running instance of the same or other workflows
might have updated the stock. Of course, executing all these activities within the scope of
a single transaction might have solved these problems but workflow systems are there to
prevent the inefficiency of long-running transactions.

Another example to the data inconsistency problems is as follows: Consider theWithdraw-
Depositactivities of a simple workflow in a bank involving two branches.Withdrawactivity
withdraws the given amount of money from an account at a branch, and theDepositadds
this amount to an account at another branch. Let us considerAudit activities of another
workflow which checks the balance of these accounts. IfWithdraw-Depositactivities and
Auditactivities are interleaved incorrectlyAuditactivities miss the money being transferred
between the two accounts.

The current state of the art for workflows lacks a clear theoretical basis, correctness criteria
and support for consistency of concurrent workflows to handle such problems [59]. In this
paper exactly these issues are addressed. We provide a theoretical basis for the formalization
of workflows, and define a correctness criterion for the consistency of concurrently executing
workflows based on this formalization, and present a concurrency control technique to
provide the correctness.

The main contributions of the paper are as follows:

(1) A workflow in conformance with the control-flow primitives of WfMC model is for-
malized based on set theory and graph theory.

We start by defining a special set whose elements may also be sets, called a nested
hyperSet, and use this set in representing the conceptual groupings of activities in a work-
flow system. The control-flow is imposed on this set by introducing the related edges and
the resulting graph is called hyperNodeGraph. Split and join nodes are introduced into this
graph from where control-flow splits into multiple branches and merges into a single flow
later respectively. Data-flow in a workflow is represented through a simple directed acyclic
graph which is in conformance with the control-flow graph. Having thus set the necessary
background, we provide a formal definition of a workflow.

(2) This formalization is used in defining a correctness criterion for concurrently executing
workflows based on the semantic information available.

202 ARPINAR ET AL.

Workflow activities access resources which denote the set of all objects constituting the
workflow environment. We define correct execution of activities in terms of their input
and output conditions, which are the sets of constraints on the workflow environment.
An input condition may involve two types of constraints: basic constraints that specify
the correct states of a workflow environment and inter-activity constraints that define the
semantic dependencies between activities, such as an activity requiring the validity of a
constraint that is set or verified by a preceding activity. For example a basic constraint can
state that the money being transferred between two branches of a bank through aWithdraw-
Depositworkflow should not be destroyed during this transfer. This basic constraint remains
invalid between the executions ofWithdraw and Depositactivities for obvious reasons.
Furthermore, considerInsertStockactivity in the manufacturing example. Since the resulting
amount of raw materials after the termination ofInsertStockmust remain in the stock until
the beginning of manufacturing process that ordered it, this requirement is represented as
an inter-activity constraint betweenInsertStockand the activity which is responsible from
actual manufacturing process.

The intervals among activities where an inter-activity constraint should be maintained
and the intervals where a basic constraint remains invalid are formalized through the graphs
corresponding to these constraints. These graphs are then used in developing a correct-
ness criterion for interleaved execution of workflows which is formally represented through
a complete execution history. Simply stated, the correctness criterion requires two condi-
tions to hold:

(i) The inter-activity constraints should be preserved in the related intervals by pre-
venting the activities that invalidate these constraints from executing.

(ii) The activities that require the correctness of related basic constraints should be
prevented from executing during the intervals where these constraints do not hold.

(3) A correctness technique, namely Constraint Based Concurrency Control (CBCC) tech-
nique, is developed based on this correctness criterion.

CBCC technique which is based on locking in conjunction with validation, controls activity
interleavings in such a way that two conditions above hold. Note that this locking differs
from database locking fundamentally in a way that the constraints rather than data items are
locked. In this way, the disadvantages of locking data items for long duration transactions
are avoided. The inter-activity constraints are locked during the time interval where they
should remain valid in the shared mode. An activity that falsifies these constraints acquire a
lock in the conflicting mode (i.e., exclusive mode). Through these conflicting locks activities
that falsify inter-activity constraints are prevented from executing. If more than one activity
require the same inter-activity constraint to be true at the overlapping time intervals, their
locks do not conflict. Similarly, activities that falsify the same constraint at the overlapping
time intervals do not conflict either. Note that we use the term “exclusive lock” differently
than its conventional meaning in that, two exclusive locks on the same constraint do not
conflict with each other in our approach.

Some activities on the other handmayfalsify inter-activity constraints depending on the
instantiation of the variables in the constraints and in their parameters. For the activities

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 203

thatmayfalsify inter-activity constraints, we prefer to use an optimistic scheme rather than
locking with the intention of increasing the performance, since there is a probability that
the activity will not falsify these constraints. If these constraints evaluate to true at the end
of an activity, the activity is allowed to terminate, otherwise it is aborted and resubmitted.
Continuing with the example provided, since raw materials may be withdrawn from the
stock by the concurrently executingWithdrawFromStockactivities of some other workflows,
the inter-activity constraint betweenInsertStockand the manufacturing activity may be
invalidated. To prevent this,InsertStockobtains a shared lock on this constraint which will
be released by the manufacturing activity and if aWithdrawFromStockactivity is executed
between them it goes through a validation phase.

However, it is also possible to use a more conservative approach in which activities acquire
locks on the inter-activity constraints theymay falsify in addition to the constraints they
certainly falsify. We call this conservative technique based solely on locking as Constraint
Locking Concurrency Control (CLCC) technique. For example,WithdrawFromStockacti-
vity can obtain an exclusive lock on the inter-activity constraint in CLCC technique instead
of going through a validation phase.

The basic constraints specify the correct states of a workflow environment but they
can be invalidated by an activity to be revalidated later through an activity or through a
set of activities. The activities that require the validity of these basic constraints should
not be allowed to execute in the interval where the basic constraints remain invalid, and
for this purpose exclusive locks are placed on the basic constraints during these intervals
by the activities that falsify these constraints. On the other hand, the activities that require
the validity of the basic constraints acquire locks in the conflicting mode (shared mode).
For example,Withdrawactivity obtains an exclusive lock on the basic constraint which it
falsifies, and this lock is released afterDepositactivity terminates. SinceAudit activity
needs a shared lock on the same constraint, its execution is prevented betweenWithdraw
andDepositactivities. The shared locks of activities which require correctness of the same
basic constraint at the overlapping time intervals do not conflict with each other, and the
same is true for the exclusive locks of activities which falsify the same basic constraint at
the overlapping time intervals.

(4) A performance analysis of the CBCC and CLCC techniques is presented.

A performance comparison of the proposed techniques with some other approaches to
the problem is also presented. The performance analysis performed through simulation
indicates that our techniques result in better performance than the others.

In the work presented in this paper, semantic information about activities and workflow
environment is used. In the case where this semantic information is not available, activities
should be treated as black boxes and since isolation of a whole workflow execution is unac-
ceptable because of performance reasons, smaller units of isolation should be discovered.
The individual activities of a workflow are isolated by concurrency control mechanisms of
local systems, and hence the main concern is to observe the concurrency control require-
ments between these individual activities and satisfy these requirements when required.
These requirements may be determined by checking the data and control-flow dependen-
cies between the activities. These dependencies are available at design-time, and therefore

204 ARPINAR ET AL.

spheres of isolationseach of which includes a subset of activities of a workflow can be de-
termined in advance and correctness of workflows can be guaranteed through the isolation
of these spheres. The approaches that use this idea [7, 49, 55] are explained in Section 2. It
should be noted that these approaches are much more restrictive compared to the techniques
presented in this paper which make use of semantic information.

After setting the research context in the first section, the paper is organized as follows: In
Section 2, the related work is given. In Section 3, we present a motivating example to explain
main concepts of our approach and identify the general workflow features covered by our
model. Section 4 provides formal characterization of workflows in terms of data and control-
flow dependencies. Section 5 defines correctness of concurrently executing workflows and
activities. In Section 6, concurrency control techniques based on this correctness definition
are proposed, and the performance analysis of the techniques is given. Section 7 gives
concluding remarks.

2. Related work

There are some research dealing with the correctness problem of workflows, but neither a
widely accepted correctness notion nor a correctness mechanism have been reported in the
literature. In the following, we confine ourselves to summarizing the related research in
workflow management systems and transaction processing systems. And in spite of this
research, most commercial WFMSs provide very limited capabilities for correctness and
concurrency control issues [52].

In the ConTract model [51, 56], the user is given the sole responsibility for maintaining
the consistency of the database with which activities interact. In order for activities to work
correctly, predicates named as entry and exit invariants are defined to hold on the database.
At run-time, these predicates are verified before and after an activity respectively. If entry
or exit invariant evaluate to false, a conflict resolution algorithm is executed and this may
involve changing values of objects in the predicates in such a way that they are satisfied.
However, an inevitable result may be cancellation of activity and compensation of some
previously terminated activities.

In [14] to ensure data consistency, semantic serializability of workflows is proposed as
the correctness criterion. A human expert declares a compatibility matrix for activities of
a workflow. Compatibility of two activities means that the ordering of two activities in an
execution history is insignificant from an application point of view. If two activities are not
defined as compatible they are in conflict. An execution history is semantically serializable
if an equivalent serial execution exists with the same ordering of conflicting activities.

In [3], the consistency is specified using compatibility relations between sequences of
activities instead of between individual activities. For instance, how different workflow
instances should be interleaved is given as a matrix. The main idea is based on signatures
of workflow instances that they leave on the objects they access. This signature specifies
which other workflows are allowed to access the object.

In Transaction Specification and Management Environment (TSME) [27] using a trans-
action specification language, correctness as well as state dependencies can be specified
between the activities of workflows. Different correctness dependencies such asserializ-
ability, temporal, and cooperative dependenciescan be specified. To define conflicts,

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 205

each object is associated with a conflict table.Serialization dependenciesare specified
as acyclic serialization order dependencies between activities.Temporal order dependen-
ciesare specified by giving specific serialization orders between the activities.Cooperation
between activities is provided by using breakpoints or augmenting conflict tables of shared
objects.

In [7], activities are treated as black boxes and to determine concurrency control require-
ments between activities, data and control-flow dependencies between them are analyzed
at design-time. Using this informationspheres of isolation, each of which involves a sub-
set of activities in a workflow, are determined and the notion of correctness is based on
the isolation of these spheres. Furthermore, a technique to handle correctness of hierarchi-
cally structured workflows consisting of compound activities is proposed in [7]. In [49, 50],
M-serializabilityis defined as a correctness criterion for concurrent execution of workflows.
In this model, related activities of a workflow are grouped intoexecution-atomic units.
M-serializabilityassumes that an activity involves a single site and it requires that activities
belonging to the sameexecution-atomic unitof a workflow have compatible serialization
orders at all sites they access. A similar approach is proposed in [55]. In this work, a set
of activities are grouped into aconsistency unitand traditional correctness techniques are
used to provide serializable execution of this unit.

In [8], workflows are treated as multidatabase transactions and a limited form of cor-
rectness is defined. The correctness criterion requires a consistent ordering on serialization
events of activities belonging to a given workflow.

In [47], a formal graph-based workflow model (ADEPT) is presented. However this
work is related with preserving structural correctness of running workflow instances when
their structures are modified.

2.1. Semantics based concurrency control

Although semantics based concurrency control mechanisms do not directly cover work-
flow correctness, they are related to the approach proposed in this paper. Semantics based
concurrency control protocols can be broadly classified into three categories depending on
whether they are based upon the semantics of transactions or upon the semantics of objects
or both as described in [1]: Approaches of Garcia-Molina [25], Lynch [43], Weikum [57],
Beeri [11], Farrag and Ozsu [23] can be classified into first category; works of Harder [33],
Korth and Speegle [41], Herlihy [35], Badrinath and Ramamritham [10] mainly fall into
second category. The works in the third category use the advantages of both approaches to
increase concurrency. In [1], three semantics based correctness criteria are proposed. In [5]
and [13], formal methods to decompose a transaction into smaller units using transaction
and object semantics are described.

3. A motivating example

In this section, an order processing example in a highly automated manufacturing enterprise
is provided using the workflow definition language of METUFlow [7, 17, 30, 38, 39]
(METUFlow project has evolved to MARIFLOW project).

206 ARPINAR ET AL.

Figure 1. Order processing example.

An incoming customer request causes a product order to be created and inserted into an
order entry database byGetOrderandEnterOrderInfoactivities respectively (figure 1). The
next step is to determine required parts to assemble the ordered product byCheckBillof-
Material activity. A part is the physical object which is fabricated in the manufacturing
system. For each part,DetermineRawMaterialactivity is executed to find out the raw
materials required to manufacture that part, and aCheckStockactivity is initiated afterwards
to check stock database for the availability of these raw materials. If the required amounts
of these raw materials do not exist in the stock, they should be ordered from the external
vendors throughVendorOrder(figure 2). After all missing raw materials are obtained,
required raw materials to fabricate the part are withdrawn from the stock to be sent to the
manufacturing cells. This is accomplished byWithdrawFromStockactivity by decrementing
the available amount of the withdrawn raw material (i.e.,quantity(m)) in the stock database.
The required steps to manufacture a part, and the manufacturing cells where these steps
are performed are obtained as a result ofGetProcessPlan. Actual manufacturing activity is
initiated by assigning the work to the corresponding cells for each step inAssign. Finally,
manufactured parts are assembled to form the product that the customer had ordered by the
activity AssembleProduct. Further downstream activities include a billing activity.Billing

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 207

Figure 2. Order processing example (cont.)

itself is another workflow which is responsible for collecting bills of ordered products. The
details ofBilling workflow is explained in Section 5.

We further consider two other workflows defined in the system (figure 3):Warehouse-
AllocationandStockControl. WarehouseAllocationdistributes raw materials among differ-
ent warehouses and reallocates the materials according to demand and delivery schedules.
RetrieveMaterialretrieves the given amount of raw material from the stock of the source
warehouse andUpdateMaterialLocationtransfers these raw materials to the stocks of the
destination warehouses indestList. StockControlworkflow checks the available raw mate-
rials of different types in stocks of all warehouses throughWarehouseEvaluationactivity
and prints a stock report.

4. Formal characterization of workflows

In this paper, we first attempt to formalize the correctness issues of workflow systems
in the presence of concurrency and then provide a correctness technique based on the
theory developed. In order to formalize the correctness issues, we first formalize the related
concepts of workflows.

208 ARPINAR ET AL.

Figure 3. WarehouseAllocation and StockControl workflows.

Currently, specification of workflows is realized through the following types of meth-
ods [45]: Script languages, net-based methods, logic-based methods, algebraic methods,
and event-condition-action (ECA) rules. Most script languages and net-based methods
lack a formally founded semantics. The notable exceptions are state charts [34, 58] and
Petri nets [19, 26]. For a logic-based specification, temporal logic is a commonly used
method [22], e.g., computational tree logic (CTL) is used to define control-flow depen-
dencies [9]. Similarly, ECA rules are used to specify control-flow. As a final remark,
many of these methods do not have either a solid formal foundation or are often not in-
tuitive and hard to understand. Thus, a formal yet simple formalization of workflows is
needed.

A workflow in the most general sense describes groupings of activities that are executed
sequentially or in parallel and defines data that may be exchanged between these activities.
In formalizing a workflow, we define special graphs to express this data and control-flow
information. We first define a hyperSet which represents the groupings of activities in a
workflow and constitutes the basis of the graph to define the control-flow. In order to
introduce control-flow relations between activities, edges are introduced into a hyperSet
and then a graph which is named as a hyperNodeGraph is obtained. Data-flow between the
activities is represented through a simple directed acyclic graph (DAG). Since control-flow
and data-flow should be in conformance with each other, consistency relation between the
graphs that represent them is defined. In our model, control-flow is not permitted to contain
cycles, therefore a hyperNodeGraph is refined to a hyperNodeDAG. In addition, in order
to define activities from where control-flow splits into multiple branches and merges into a
single flow later, split and join nodes are introduced into a hyperNodeDAG, resulting in a
split-join hyperNodeDAG.

Notice that, building the required properties of workflows through graphs in a top-down
fashion with starting with the most general graph and refining it to include further properties
of workflows, provides a formal and clear definition of a workflow. The solid mathematical
and graph theory based foundation of this formalization make it appropriate for developing
a correctness theory and a favorable reference model. It should be noted that, the primitives

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 209

defined by Workflow Management Coalition (WfMC) [37] are taken into consideration in
our model.

In the following, definition of a hyperSet that reflects the groupings of activities is pro-
vided. These groupings of activities are called as execution blocks or conceptual activities.
When proper control-flow edges are imposed on this set, the resulting graph shows the
execution structure of the workflow process.

Definition 4.1(HyperSet). A hyperSet Sis a set whose elements are simple elements or
hyperelements which are simple sets or hyperSets.

Notation: The notationSi ∈ S is used to denote thatSi is an element ofS; the notation
S(εi) is used to denote the elementεi of S; size(S) is used to denote the number of elements
in S; simple(S) andhyper(S) are used to denote the set of simple elements ofSand the set
of hyperelements ofS respectively.Si , which may be a simple element or a hyperelement,
is asubelementof a hyperSetS, denoted asSi ∈ S, iff Si ∈ S or Si ∈ Sj for someSj ∈ S.
The notationε(i1,i2,...,i k−1,i k) is used to denote a subelement which satisfiesε(i1,i2,...,i k−1,i k) ∈
ε(i1,i2,...,i k−1) ∈ · · · ∈ ε(i1,i2) ∈ εi1 ∈ S. We shall drop parentheses and comas between indexes
when it is clear in the notation. Thelevel of set Sis zero; the elementsSi ∈ S are called
level k elementsfor which the parent islevel k− 1 element. The set of base elements of
hyperSetS, denoted asbase(S), is a flat set which contains all the simple subelements ofS.
A hyperSetS is aflat setif it has no hyperelement, that is anySi ∈ S is a simple element.

Observe that elements in a hyperSet are not disjoint. In a workflow system however,
each instantiation of the same activity type should be treated as a new element at each
invocation (e.g., with different set of parameter values). Furthermore, participation of the
same activity instance to more than one execution block is similar to improper nesting of
blocks in a procedural language. For these reasons, anested hyperSetwith disjoint elements
is defined, and it constitutes the nodes of the hyperGraphs to be defined for representing
different components of a workflow.

Definition 4.2(Nested hyperSet). A hyperSet isnestedif base(Si)∩base(Sj) = ∅ for any
Si , Sj ∈ S, whereSi 6∈ Sj or Sj 6∈ Si .

Example 4.1. LetS={a, {c, {b, d}, {d, f }}, {e, {d, f }, {g, h}}}; elements ofSareε1=a,
ε2={c, {b, d}, {d, f }}, ε3={e, {d, f }, {g, h}}; subelements ofS areε21= c, ε22={b, d},
ε23={d, f }, ε31= e, ε32={d, f }, ε33={g, h}, ε221= b, ε222= d, ε231= d, ε232= f , ε321

= d, ε322= f , ε331= g, ε332= h in addition toε1, ε2, ε3; base(S)={a, b, c, d, e, f, g, h};
simple(S)= ε1, hyper(S)={ε2, ε3}; size(S)= 3; size(base(S))= 8. Figure 4 shows this hy-
perSet.S={a, {c, {b, d}}, {e, f, {g, h}}} is a nested hyperSet which is depicted in figure 5.

Having defined a nested hyperSet which represents individual and conceptual activities,
we can now define other components of a workflow. In the definition of a workflow we use
four different graphs, namely a control-flow graph, a data-flow graph, and two constraints
graphs. In a control-flow graph, precedence relations between individual and conceptual
activities are provided, e.g., if an activity should be started after the termination of another

210 ARPINAR ET AL.

Figure 4. A hyperSet.

Figure 5. A nested hyperSet.

activity this is represented by a directed edge from the former activity to the latter activity in
the control-flow graph. In order to represent these control-flow dependencies, we introduce
edges into a nested hyperSet and thus obtain a graph which we call as a hyperNodeGraph.

Data-flow between individual activities occurs if output parameter of an activity is in-
volved in the input parameter of a successor activity in the control-flow. Data-flow is rep-
resented through a simple directed acyclic graph (DAG) in the formalization.

In Section 5, we develop a theory in which an input condition for an activity to execute
correctly is specified in terms of constraints on the workflow environment with which a
workflow and its constituting activities interact. The intervals among activities where a
constraint should be maintained and intervals where a constraint (may) remains invalid
along a workflow execution are formalized using two constraints graphs which are 2-level
hyperGraphs. Although construction and usage of a 2-level hyperGraph are explained in
detail in Section 5, its definition is provided here for the sake of completeness. Furthermore,
to keep the formalization at a general level we also provide the definition of a hyperGraph.

Definition 4.3(HyperGraph, hyperNodeGraph, 2-level hyperGraph). A hyperGraph G=
(S, E) is a directed graph in whichS is a hyperSet and edgesE are defined onS× S∪
{Sa× Sa} for anySa∈ S. Notice that the graph itself can be thought as a node at an abstract
level. Any Sa ∈ S is called anodeandSa∈ S is called asubnode. A hyperNodeGraphis a
hyperGraphG= (S, E), whereS is a nested hyperSet. A 2-level hyperGraph G= (S, E)
is a hyperGraph, where anySa ∈ SsatisfiesSa ⊆ base(S).

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 211

Figure 6. A hyperNodeGraph.

Figure 7. A 2-level hyperGraph.

In the following, these definitions are clarified through examples.

Example 4.2. Let G= (S, E) be a hyperNodeGraph, whereS= {a, b, {c, d, e},
{{g, h}, f }} is a nested hyperSet andE={〈ε3, ε1〉, 〈ε1, ε4〉, 〈ε3, ε4〉, 〈ε2, ε4〉, 〈ε31, ε32〉,
〈ε33, ε32〉, 〈ε42, ε41〉, 〈ε411, ε412〉}. Figure 6 demonstrates this hyperNodeGraph.

Let G= (S, E) be a 2-level hyperGraph, whereS={{a, f }, {c, d}, e, {g, h, f }}, and
E={〈ε2, ε4〉, 〈ε3, ε1〉, 〈ε3, ε11〉, 〈ε11, ε41〉}. This graph is shown in figure 7.

Observe that the difference between a hyperGraph and hyperNodeGraph is that a nested
hyperSet constitutes the nodes of a hyperNodeGraph. Therefore, only edges between the
simple or hyperelements at the same level are possible. In this way, when we use a hyper-
NodeGraph to specify control-flow, anomalies in precedence relations are prevented. For
example, if control splits into several flows and these flows are joined together within a
hyperNode, control-flow can not jump into the middle of such flows from outside of this
hyperNode.

Notice that level of elements inSis not greater than 2 in a 2-level hyperGraphG= (S, E),
i.e., level ofS is 0, level of aSi ∈ S is 1, and level of aSj ∈ Si is 2.

In a workflow, data-flow should be in conformance with its control-flow, that is, there
can be data-flow between two activities only when there is a control-flow between them.
Therefore a directed acyclic graph (DAG) which represents data-flow should be consistent
with the hyperNodeGraph which represents corresponding control-flow. Informally, a DAG

212 ARPINAR ET AL.

is said to be consistent with a hyperNodeGraph iff for any edge between the two nodes of a
DAG, there corresponds an edge between the same nodes or hyperNodes that include them
in the transitive closure of the hyperNodeGraph. Transitive closure of a hyperNodeGraph
G= (S, E), denoted asG∗ = (S, E∗), can be obtained by taking transitive closure of the
simple directed graphs obtained by abstracting the hyperNodes (abstraction of a node in a
hyperNodeGraph is defined later in this section) within every hyperNode of the graph. A
more formal definition can be found in [6].

Furthermore, a 2-level hyperGraph which represents constraints graphs of a workflow
should be consistent with its control-flow. The reason behind this requirement is explained
in Section 5.

Definition 4.4(Consistency with a hyperNodeGraph). A DAG D= (T,V) is said to be
consistentwith a hyperNodeGraphG= (S, E) iff the following condition is satisfied:

• For any〈Ta, Tb〉 ∈V , ∃〈Si , Sj 〉 ∈ E∗, whereSi = Ta or Si = TA such thatTa∈ TA∈ S, and
Sj = Tb or Sj = TB such thatTb∈ TB∈ S.

A 2-level hyperGraphD= (T,V) is said to beconsistentwith a hyperNodeGraphG=
(S, E) iff for any 〈Tk, Tl 〉 ∈V the following condition is satisfied:

• For anyTa ∈ Tk and Tb ∈ Tl , ∃〈Si , Sj 〉 ∈ E∗, whereSi = Ta or Si = TA such thatTa∈
TA∈ S, andSj = Tb or Sj = TB such thatTb∈ TB∈ S.

In the following, we introduce various useful operations on a nested hyperSet and a
hyperNodeGraph. With these operations it becomes possible to focus on a hyperNode re-
presenting an execution block in a control-flow and conversely simplify it when its internals
are not in the scope of our consideration.

A restrictionof a hyperNodeGraphG= (S, E) to one of its subelementsSa∈ S, denoted
asG(Sa), results in a new hyperNodeGraph which involves the node itself, its constituting
simple and hyperNodes if they exist and edges between them. The other nodes and edges
in the hyperNodeGraph are omitted. Figure 8 depicts the restriction of hyperNodeGraph in
figure 6 to nodeε4.

Abstractionof a subelementSa in a nested hyperSetS, denoted asS/Sa, is the replace-
ment of Sa with an abstract simple elementsa in S. Let S={a, b, {c, d, {e, f }}, {g, h}}.
Abstraction of S3={c, d, {e, f }} in S results in S/S3={a, b, s3, {g, h}}, where s3 is
representingS3.

Figure 8. Restriction of the hyperNodeGraph in figure 6 to nodeε4.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 213

Figure 9. The abstraction of nodeε4 in hyperNodeGraph of figure 6.

An abstractionof a nodeSa in a hyperNodeGraphG results in a new graphG/Sa, in
which the node under consideration is replaced with a simple node and every edge involving
the former node is replaced with a new edge involving the simple node. Figure 9 shows the
abstraction of nodeε4 in hyperNodeGraph of figure 6.

Some workflow models assume that, all the structural components (i.e., control-flow)
can be specified in advance. However, in some workflow applications either the number of
activities in a workflow execution or the control-flow dependencies that must be enforced can
not be determined in advance. These cases are named asdomain uncertaintyandstructural
uncertaintyrespectively [54]. Structural uncertainty occurs due to the fact that a workflow
specification can contain a condition to allow selections. Our formalization covers this
type of uncertainty and this is explained later in this section. Domain uncertainty occurs
due to the loops (i.e., iterations) that can occur in a workflow specification. Within a loop
workflow activities are repeated as long as a certain condition holds. However, representing
loops in a control-flow makes the notation used in the correctness theory complicated. This
is due to the fact that each instantiation of an activity within a loop should be treated as a
different element for the correctness. Therefore for the sake of simplicity, we assume that
a control-flow graph does not contain cycles. With this assumption a hyperNodeGraph is
refined to a hyperNodeDAG in the following definition.

Definition 4.5(HyperNodeDAG). A hyperNodeDAGis a hyperNodeGraphG= (S, E) in
which the abstraction of all elements results in a simple DAG, and this is recursively valid
for anySa∈ S.

Example 4.3. The hyperNodeGraph in figure 6 is a hyperNodeDAG.

Recall that, a 2-level hyperGraph representing constraints graphs of a workflow should
be consistent with the control-flow graph. Since we use a hyperNodeDAG to represent the
control-flow, if a 2-level hyperGraph is consistent with this graph it should be acyclic also
intuitively, i.e., it should contain no cycles involving its hyperNodes or simple nodes. In
this case we name this graph as a 2-level hyperDAG. A definition of a 2-level hyperDAG is
provided in [6].

In the following we provide a path definition for a hyperNodeDAG.

214 ARPINAR ET AL.

Definition 4.6(A path in a hyperNodeDAG). In a hyperNodeDAGG= (S, E), a path
is a sequence(e1, e2, . . . ,ek) of edges such thatei =〈si , si+1〉 ⇔ 〈Si , Si+1〉 ∈ E, where
i = 1, . . . , k andsi , si+1 are the abstractions of the nodesSi , Si+1∈ S respectively. A path
connecting the nodess1 andsk+1 is denoted as〈s1, sk+1〉-path.

A path definition makes it possible to identify a sequence of individual and conceptual
activities which are executed one after another. For example, consider the conditional
branches in a workflow specification. The possible flows between a split activity and a join
activity can be specified as a set of paths between these activities.

In the following definition, we distinguish initial, final, first, and last nodes of a hyper-
NodeDAG. These nodes shall correspond to the specialized activities of a workflow. Initial
and final nodes are simple nodes for which hyperNodes that include them and themselves
have no predecessors and no successors respectively. Furthermore, if there is a unique
initial or a unique final node they are called as first and last nodes respectively. As we
provide later in this section, we require a control-flow to include unique initial and final
activities, i.e., it should include a first and a last activity.

Definition 4.7(Initial , final, first, last nodes). A simple nodeεin ∈ Sof a hyperNodeDAG
G= (S, E) is called initial , if indegree(εin)= 0, and for anySa such thatεin∈ Sa, in-
degree(Sa)= 0. A simple nodeεfin∈ Sof a hyperNodeDAGG= (S, E) is calledfinal, if out-
degree(εfin)= 0, and for anySa such thatεin∈ Sa, outdegree(Sa)= 0. If initial (final) node
of a hyperNodeDAGG= (S, E) is unique, it is thefirst (last) node ofS, denoted asε f (εl).

As mentioned previously, workflow activities can be executed sequentially or in parallel.
In representing control-flow, the node where the control splits into multiple parallel activities
is referred to assplit node. The node where control merges into one activity is referred to
asjoin node. We introduce split and join nodes into a hyperNodeDAG definition to model
these issues; the resulting graph is called a split-join hyperNodeDAG.

Definition 4.8(Split, join nodes, split-join hyperNodeDAG). A split nodeof a hyper-
NodeDAGG= (S, E) is a simple nodeS(εs) (i.e.,εs∈ S) for which indegree(εs) ≤ 1 and
outdegree(εs) > 1. A join nodeof G= (S, E) is a simple nodeS(ε j) (i.e., ε j ∈ S) for
which indegree(ε j) > 1 andoutdegree(ε j) ≤ 1. A split-join hyperNodeDAG G= (S, E)
is a hyperNodeDAG for which the following conditions hold:

• There exist a first and a last element.
• If there is a split element this must be the first element, and there must correspond a join

element to this, and this should be the last element.
• For any restrictionG(Sa), whereSa∈ S the conditions above hold.

In a control-flow graph, a split node from where control splits into two or more flows
in order to execute activities in parallel is called anand-split node. After the termination
of all activities involved in these flows, control merges into a join activity and execution
continues from this activity. A split node where a decision is made upon which branch
to take when encountered with multiple branches is called anor/xor-split node. Some of

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 215

the branches following an or-split node, and exactly one of the branches following an xor-
split node are selected for execution. This selection may depend on a condition. In our
model, truth value of a condition is determined by an or/xor-split node (i.e., activity) and
according to this value a branch (or some branches) are selected for execution. In this case,
we name this condition as atest conditionand associate it with the branch for which it is
verified. More specifically, ifs is an or/xor-split node andj is the corresponding join node,
each of the branches between them is represented through a path betweens and j , i.e.,
〈s, j 〉-pathi , and if a test conditionT is used to select a branch, we label the corresponding
〈s, j 〉-pathi with T . If a condition is not associated with a path we assume that its label
is true, i.e., corresponding branch is selected for execution unconditionally. Furthermore,
since some of the branches are selected for parallel execution starting from an or-split node,
at least one of the test conditions of these branches should be true at a time. Similarly,
exactly one of the test conditions of the branches following an xor-split node should be
true.

Having defined adequate tools and setting the necessary background, a formal definition
of a workflow can be provided. A workflow is defined as a 5-tuple with elements representing
its activities, control and data-flow and constraints graphs.

Definition 4.9(Workflow). A workflow Wis a tupleW= (N,CF,DF, IC,BC), where

• N is a nested hyperSet whosebase(N)= T ∪ S∪ J ∪ { f, l } whereT is the set ofindi-
vidual activities, S is the set ofsplit activities, J is the set ofjoin activities, and f andl
are thefirst andlast activitiesrespectively, and they are the virtual activities indicating
the start and termination of a workflow respectively.
• CF= (N, ECF, L , TC) is a labeled split-join hyperNodeDAG onN corresponding to

the control-flow. The labelsL is a mapping fromS to {and, or, xor} representing the
types of split nodes. The labelsTC is a mapping from every〈s, j 〉-path in CF to
{T1, T2, . . . , Ti , . . . , Tn}, wheres∈ Sis an or/xor-split activity,j ∈ J is the corresponding
join activity, andTi is a test condition. The following condition holds for every〈s, j 〉-path
starting from a common or/xor-split activitys: If L(s)= or then

∨outdegree(s)
i = 1 TC(〈s, j 〉-

pathi) ≡ true, and if L(s)= xor then
∨outdegree(s)

i = 1
TC(〈s, j 〉-pathi) ≡ true, where

∨
denotes xor operator.
• DF= (T, EDF) is a DAG indicating thedata-flowsuch thatDF is consistent withCF.
• IC= (VIC, EIC, LIC) is a labeled 2-level hyperDAG representinginter-activity constraints

graph.
• BC= (VBC, EBC,CLBC,VLBC) is a labeled 2-level hyperDAG representingbasic con-

straints graph.

In the following an example is provided to clarify the definition of workflow.

Example 4.4. Figure 10 demonstrates a sample labeled split-join hyperNodeDAG which
corresponds to a control-flow. In this graph,N={a, b, {c, d, e, f, g, {h, i, j, k, l },m}, n},
andT ={b, d, e, f, g, i, j, k}, S={c, h}, J={l ,m}, f =a, l = n. Furthermore,L(c)=
xor, L(h)= and, and TC(〈c,m〉-path1)= T1, TC(〈c,m〉-path2)= T2, TC(〈c,m〉-path3)

= T3.

216 ARPINAR ET AL.

Figure 10. A labeled split-join hyperNodeDAG.

In the above workflow definition, main components of a workflow are formalized. Other
properties of workflows such as assignment of agents to activities, assignment of users to
roles etc. are not taken into account in the formalization, since they are out of the scope
of the main focus of this work. Last two components of a workflow definition, namely
inter-activity constraints graph (IC) and basic constraints graph (BC) constitute our basic
building blocks to develop a correctness theory for a concurrent execution of workflows.
Semantics and construction of these graphs are discussed in the following section.

5. Correctness of activities and workflows

In this section, we formalize the workflow correctness in the presence of concurrency. A
workflow involves several activities each of which is performed by an agent. These activities
access resources which denote the set of all objects constituting the workflow environment.
We define the correct execution of activities in terms of their input and output specifi-
cations which are the set of constraints on the workflow environment. These constraints
can be classified into two categories in general, namely basic constraints and inter-activity
constraints which are formally defined as first-order logic formulas. The constraints that
should be satisfied when an activity starts constitute the input condition of the activity.
An output condition of an activity on the other hand imposes a constraint upon the work-
flow environment in which a workflow system must find itself after the execution of this
activity.

In order to represent an interleaved execution of workflows we introduce a complete
execution history and use the input and output conditions to define the correctness of
this history. A complete execution history is correct if input condition of every activity
involved in this history is correct when the activity starts and if the basic constraints that
hold when the history starts also hold at the end of the history. We then provide a theorem
which states that a complete execution history is correct if the inter-activity constraints are
preserved in the required intervals and activities that require correctness of related basic
constraints are prevented from executing during the intervals where these constraints do not
hold. Inter-activity constraints and basic constraints are represented through inter-activity
constraints graph and basic constraints graph which are used in formalizing the intervals

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 217

among activities where an inter-activity constraint should be maintained and the intervals
where a basic constraint remains invalid respectively.

In the following, we provide some basic definitions and notations used in representing
activity and workflow semantics and in defining the correctness of workflows. We begin
by defining the state of the workflow environment.

Definition 5.1(Workflow environment, state of the workflow environment). Let RM=⋃n
i=1 RMi be the set of transactional and non-transactional resource managers involved

in a workflow system. The set of all variables (objects) controlled byRMi is denoted
by Oi . O= ⋃n

i=1 Oi denotes the set of all objects of theworkflow environment, and
dom(oi) represents the domain of an objectoi . A state(orvaluation) of a workflow environ-

ment is a functionSt : O → St∀, whereSt∀ =×size(O)

i=1 dom(oi)= dom(o1)dom(o2) · · ·
dom(osize(O)), and× denotes the cartesian product. We useSt∀ to represent the set of all
possible states.

An activity t is a mapping fromSt∀ to St∀, i.e., t : St∀ → St∀. The resulting workflow
environment state after an activityt is applied to stateSt is denoted ast(St). However, this
definition of an activity is not sufficient for our purposes since we require some semantic
knowledge to define correctness of activities. Activity semantic is defined in terms of
constraints on the workflow environment as mentioned previously.

As specification languages, first-order logic has been the dominant choice for the expres-
sion of constraints. Therefore, to represent constraints over the objects of the workflow
environment we useFirst-Order Logic(FOL) formulas which are denoted by calligraphic
lettersA, . . . ,Z. More information on FOL formulas can be found in [24].

Notation: LetF be a FOL formula andStbe a particular state of the workflow environment.
We use notationSt |= F to mean thatF is true for the stateSt. If F is false inSt this is
represented asSt 6|= F . We denote the set of states that satisfy a formulaF asF(St), i.e.,
F(St)={St | St |= F}. The set of objects (variables) involved in a formulaF is represented
asO(F).

Now, we can give the formal definition of a workflow activity in terms of its parameters,
objects accessed, and its specification.

Definition 5.2(Activity). An activity t is a tuplet = (IP,OP,RS,WS,AS), whereIP is the
set of input parameters, OP is the set ofoutput parameters, RSis the set ofobjects read
by t, WSis the set ofobjects updated by t, ASis theactivity specification.

In the above definition, we assume thatWS⊆ RS. The last item, specification of an
activity, is clarified through the following definition.

Definition 5.3(Specification of an activity). A specification of an activity tis a tuple
AS(t)= (It ,Ot), where It and Ot are the set of FOL formulas onO (i.e., objects of the
workflow environment).It ≡

∧
i It,i , whereIt,i ∈ It , is called theinput specificationor

218 ARPINAR ET AL.

input conditionof t andOt ≡
∧

jOt, j , whereOt, j ∈Ot , is called theoutput specification
or output conditionof t .

In the above definition,It (Ot) is obtained by taking conjunction of all formulas in the
set It (Ot). An activity is said to becorrectwith respect to a specificationAS(t)= (It ,Ot)

if any terminating execution oft starting from an initial stateStsatisfyingIt ends in some
final stateSt′ = t (St) satisfyingOt , i.e., (∀St∈St∀) : ((St |= It) ⇒ (t (St) |= Ot)). The
activities are assumed to be correct and deterministic by intuition. More information about
formal specification of programs (e.g., activities) can be found in Hoare [36], and Dijkstra’s
works [16]. Related work includes modal and temporal logics [22].

An output condition of an activity imposes a constraint upon the workflow environment
in which workflow system must find itself after the execution of this activity. The following
example demonstrates this situation.

Example 5.1. The output condition ofWithdrawFromStock(shortly tWFS) activity whose
purpose is to withdrawrequired raw materials of typemi from the stock is defined as
follows:

OtWFS ≡ (quantity(mi)
′ = quantity(mi)− required(mi)). (1)

OtWFS states that available amount ofmi is decremented byrequired(mi).

The input condition characterizes the set of all initial states such that the termination of an
activity will leave the system in a final state satisfying the output condition. In other words,
input condition of an activity represents the states of the workflow environment in which
the activity can be executed correctly. Depending on the validity of the input condition, the
following three possibilities can occur [16]: (1) Activation oft leads a final state satisfying
Ot ; (2) activation oft leads a final state satisfying¬Ot ; (3) activation oft does not lead a
final state, i.e., activity fails to terminate properly. Since an activityt is designed correctly
and it is executed in isolation, if its input condition is satisfied then the execution oft
yields in first possibility. However, if the input condition is not satisfied the execution
of t may result in any of three possibilities. What constitutes the input condition of an
activity is described later after possible constraints in a workflow system are introduced.
The following is an example to input condition of an activity.

Example 5.2. Input condition oftWFSactivity states that sufficient amount of raw material
of typemi should be available in the stock:

ItWFS ≡ (quantity(mi) ≥ required(mi)). (2)

Note that, in order to satisfy the output condition in Formula 1, this input condition must
be true prior to execution oftWFS.

Intuitively, the following conditions should hold to execute an activityt correctly:

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 219

• t should read consistent (correct) values of objects in a workflow environment; hence,
these consistent values should be displayed to the users and/or used to update other (or
same) objects.
• If the correct execution of an activity depends on the validity of constraints that are set

or verified by preceding activities, these constraints should still be valid prior to the
execution oft .

In the following, we discuss these two conditions in detail. We start by describing what
should be understood from correctness of a workflow environment. Correct states of a
workflow environment are represented through basic constraints.

Definition 5.4(Basic constraints). A basic constraintBi is a FOL formula defined on the
objects of the workflow environment. The set of all basic constraints are represented as
B and called as thebasic constraints of the workflow system. B ≡ ∧

i Bi , whereBi ∈ B,
partition the set of all possible statesSt∀ into two disjoint sets,B(St) andSt∀−B(St). First is
the set ofcorrect statesin which all basic constraints hold, and second is the set ofincorrect
statesin which one or more basic constraints are violated.

Thus, basic constraints specify the correct states of the workflow environment as the
following examples demonstrate.

Example 5.3. Suppose that a basic constraint of the stock databases in the order processing
example is defined as follows:

B1 ≡
(

w∑
j = 1

quantity(mi, j)=Mi

)
, (3)

wherequantity(mi, j) represents the amount of raw materialmi in the stocks of warehouse
j , andw is the total number of different warehouses in the enterprise. Total amount of raw
materialmi currently residing at the stocks is denoted asMi . Notice that,B1 does not prevent
entering new raw materials of typemi into stocks or withdrawing them for production; yet
B1 implies that “raw materials should neither be created or destroyed during the transfer of
these raw materials between the stocks of different warehouses by aWarehouseAllocation
workflow”.

Example 5.4. Suppose that balance of unpaid bills of a customer has a predefined upper
limit. Thus, a basic constraint is defined as follows:

B2 ≡ ((∀ci ∈ customerList) : (unpaidBalance(ci) ≤ Ui)), (4)

wherecustomerListdenotes the customers of the manufacturing enterprise, andunpaid-
Balance(ci) andUi denote the balance of unpaid bills and the upper limit of a particular
customerci respectively.B2 implies that “orders invoked by a customer should not cause
an overdraft”.

220 ARPINAR ET AL.

These examples demonstrate that basic constraints require activities to be designed and/or
arranged properly in a control-flow in order to rationally update a workflow environment, so
that these basic constraints are not violated during their execution. For example, activities of
Billing workflow should be designed properly, so that balance of unpaid bills of a customer
does not cause an overdraft. The restrictions induced by basic constraints in the design of
a workflow are clarified later in this section through Definition 5.9.

Some activities require that some of the basic constraints must hold to execute them
correctly. Thus these basic constraints are involved in the input conditions of these activities.
The set of basic constraints to be involved in the input condition of an activityt is denoted
asB(t), and defined as follows:

(∀Bi ∈ B) : ((O(Bi) ∩ RS(t) 6= ∅)⇒ (Bi ∈ B(t))). (5)

According to Formula 5 if an object involved in a basic constraintBi is also an element of
the read set oft (i.e.,RS(t)),Bi is included in the input condition oft . So activityt accesses
correct states of objects in the workflow environment; otherwiset may produce incorrect
results or update workflow environment erroneously.

The following example demonstrates a case in which a basic constraint is included in the
input condition of an activity.

Example 5.5. Consider the basic constraintB1 (Formula 3), andStockControlworkflow
and itsWarehouseEvaluation(shortly tWE) activity which evaluates the available raw ma-
terials of typemi in the stocks of all warehouses. This information is printed as a report
later. SinceO(B1) ∩ RS(tWE)=

⋃w
j=1 quantity(mi, j), (i.e., all quantity(mi) objects inw

warehouses)B1 should be an element of basic constraints involved in the input condition of
tWE, i.e.,B1∈ B(tWE). SincetWE should see a correct state related to amount of raw material
mi in the stocks andB1 describes the corresponding set of correct states,B1 must hold for
the correct execution oftWE activity.

Assume that an incorrect state is also acceptable for a particularWarehouseEvaluation
activity. Hence a report about approximate quantity of a raw material in the stocks is
allowed. In this case, basic constraintB1 can be excluded fromB(tWE) although implied by
the Formula 5. In this way, flexibility in the specification of incorrect but acceptable states
for an activityt can be achieved. This approach resembles theisolation levelsprovided by
some database management systems [31].

Although activities are usually execution-atomic (i.e., isolated) steps by their nature,
there may be semantic dependencies between them that must be observed and preserved.
For example, an activity may cause that a constraint to be satisfied on the workflow environ-
ment after its termination, and a successor activity may be executed with the assumption of
the validity of this constraint. Furthermore, another activity may evaluate a constraint and
determine its truth value, and this value may be used in the workflow specification to allow
branching. Activities relying on the selected branch are likely to require validity of the
constraint associated with their branch when they are executing. Both cases impose depen-
dencies between activities. We represent such dependencies between individual activities
as a set of inter-activity constraints on the workflow environment.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 221

Definition 5.5(Inter-activity constraints). Let W= (N,CF,DF, IC,BC) be a workflow,
andti andt j be the particular activities of this workflow, i.e.,ti ∈ base(N), t j ∈ base(N).
Theinter-activity constraintsbetweenti andt j , denoted asC{ti ,t j }, is a set of constraints on
the workflow environment which satisfy the following conditions:

(1) ti precedest j in CF.
(2) (∀D ∈C{ti ,t j }) : (D ∈ It j).
(3) (∀D ∈C{ti ,t j }, ∃F ∈Oti) : (F ⇒ D).

In the above definition, if a constraintF in the output condition of a preceding activityti
implies a constraintD in the input condition of a successor activityt j , the latter constraint
is included in the set of inter-activity constraints between these two activities. Note that
we require implication instead of equivalence between constraintsF , andD. This is due
to the fact that, validity ofF already guarantees the validity ofD, andD is the constraint
that is involved in the input condition of the successor activity. Thus the inclusion of the
less restrictive constraintD in the set of inter-activity constraints is enough.

Notation: If the conditions in Definition 5.5 hold we say that constraintD is emanating
from activity ti and incoming toactivity t j . We use these terms to provide the reader the
ability to pictorially imagine the constraint relations between activities. The set of inter-
activity constraints incoming to and emanating from an activityt j are denoted asCin(t j)

andCout(t j) respectively and defined as follows:Cin(t j)=
⋃

i C{ti ,t j }, Cout(t j)=
⋃

k C{t j ,tk}.
We denote the set of all inter-activity constraints in a workflow asC, i.e.,C= ⋃ j Cin(t j)=⋃

j Cout(t j).

The following examples present some inter-activity constraints in the order processing
example.

Example 5.6. ConsiderCheckStock(shortlytCS) andWithdrawFromStock(tWFS) activities.
tCS checks whether the required amount of raw material of typemi (i.e., required(mi)) to
manufacture a particular part is available in the stock. Thus the current value ofquantity(mi)

(e.g.,n) is determined and using this value the missing raw materials (i.e.,missing(mi))
that should be ordered from external vendors are calculated. Ordered raw materials
are inserted into stock throughInsertStock(tIS) activity of VendorOrderworkflow. Thus
the output condition oftCS, and input and output conditions oftIS are defined as follows:

OtCS ≡ ((quantity(mi)= n) ∧ (missing(mi)= required(mi)− n)), (6)

ItIS ≡ (quantity(mi) ≥ n), (7)

OtIS ≡ ((quantity(mi)
′ = quantity(mi)+missing(mi))

∧ (quantity(mi)
′ ≥ required(mi))), (8)

wherequantity(mi)
′ is the new quantity ofmi whentIS is completed. Since output condition

of tCS implies input condition oftIS, i.e.,OtCS⇒ ItIS, and output condition oftIS implies
input condition oftWFS (Formula 2), i.e.,OtIS ⇒ ItWFS, the constraints(quantity(mi)≥ n),

222 ARPINAR ET AL.

and(quantity(mi) ≥ required(mi)) are included in the setsC{tCS,tIS}, andC{tIS,tWFS} respec-
tively. In other words, ifn particular materials of typemi are available intCS, at least
this amount of material should be available in the correspondingtIS also, soquantity(mi)

becomes larger than or equal torequired(mi) after the insertion of missing materials into
stock. Required(mi) materials should remain in the stock, soItWFS holds whentWFS is
executed. Notice that(quantity(mi) ≥ n) is an element ofCin(tIS), andCout(tCS), and
(quantity(mi) ≥ required(mi)) is an element ofCin(tWFS), andCout(tIS). Furthermore, both
of these constraints are elements ofC.

The following is also an example from order processing workflow to further clarify
inter-activity constraints.

Example 5.7. ConsiderGetProcessPlanworkflow, and itsSelectBestCells(tSBC) activity.
tSBCevaluates the manufacturing cells in the factory and selects the required number of the
best qualified cells to manufacture a particular part. Thus,

OtSBC ≡ ((∀celli ∈ qualifiedCells, ∀cellj ∈ (cells− qualifiedCells)) :

(rank(celli) ≥ rank(cellj))), (9)

wherequalifiedCells, andrank(celli) denote the set of selected cells, and rank of a particular
cell respectively. Therank is obtained by evaluating qualifications, workload, capacity, etc.
of a particular cell.Cells denotes the set of all operational cells in the factory. Since the
selected best cells should remain so until the work is actually assigned to them in the
correspondingAssign(tA) activities, the input condition of atA activity for celli should
be defined as follows:

ItA(celli)
≡ ((∀cellj ∈ (cells− qualifiedCells)) : (rank(celli) ≥ rank(cellj))). (10)

SinceOtSBC⇒ ItA(celli)
, Formula 10 should be an element ofC{tSBC,tA(celli)}.

In order to represent inter-activity constraints graphically in a workflow, we use a special
graph, namelyinter-activity constraints graphwhich is a labeled 2-level hyperDAG defined
in Section 4. In this way, inter-activity constraints can be represented in the way control
and data-flow are represented.

Let W= (N,CF,DF, IC,BC) be a workflow; inter-activity constraints between the ac-
tivities of W are represented as a labeled 2-level hyperDAGIC= (VIC, EIC, LIC), whereVIC

andEIC denote the nodes and edges respectively.VIC is a hyperSet, and for anySa ∈VIC,
Sa ⊆ base(N), and for any〈Sa, Sb〉 ∈ EIC, Sa ∈ base(N) andSb ⊆ base(N). LIC are the
labels of the edges and it is a mapping from the edges inEIC to the inter-activity con-
straints inC. For a given set of inter-activity constraints between activity pairs, if there is
a constraintF betweenti andt j , this is represented through an edge〈ti , t j ,F〉 in IC. If a
constraintF emanating from an activityti is incoming to more than one activity, these ac-
tivities are grouped into a hyperSetS(ti ,F) and this situation is represented through the edge
〈ti , S(ti ,F),F〉. The following example demonstrates the construction of an inter-activity
constraints graph.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 223

Figure 11. Inter-activity constraints graph.

Example 5.8. Let C={F1,F2,F3,F4,F5,F6,F7}, and C{t1,t2} = {F1}, C{t1,t3} = {F1},
C{t2,t4} = {F2,F3,F4}, C{t2,t5} = {F3,F4}, C{t3,t5} = {F5}, C{t3,t6} = {F5}, C{t4,t5} = {F6},
C{t7,t8} = {F7}. Therefore, as explained above,t2 and t3 are grouped into a hyperSet and
〈t1, {t2, t3},F1〉 is included inIC. Eventually,IC corresponding toC is obtained as depicted
in figure 11.

Note thatIC is consistent with control-flow graph (CF) due to Condition 1 of Defini-
tion 5.5.

An inter-activity constraints graph can be simplified by removing redundant edges from
it. In general if an edge covers another edge in an inter-activity constraints graph and
constraint of the former edge implies the constraint of the latter edge, the latter edge can be
removed from the graph. This is due to the fact that if first inter-activity constraint is valid
between the executions of activities in its source and sink, validity of second constraint
is automatically guaranteed. Furthermore, some inter-activity constraints can be removed
from an inter-activity constraints graph through human intervention. If invalidity of an
inter-activity constraint is acceptable for a particular activity, the edge corresponding to
this constraint can be excluded from the graph by a workflow designer. This is similar to
exclusion of some basic constraints from the input condition of an activity. Details of the
simplification process and elimination of constraints are provided in [6].

We use an inter-activity constraints graph to develop a correctness criterion for workflows.
Since inter-activity constraints contribute to the input condition of an activity, constraints
in anIC graph should be preserved between the nodes of the graph during execution of the
workflow since only activities are isolated not the whole workflow.

Up to this point, we have definedbasic constraintsandinter-activity constraints. Having
defined these two types of constraints, we can now formally provide the semantic of an
input condition of an activityt as follows:

It ≡
(∧

i

Bi

)
∧
(∧

j

F j

)
∧
(∧

k

Gk

)
, (11)

224 ARPINAR ET AL.

Figure 12. Relations between inter-activity, basic, and extensional constraints.

whereBi ∈ B(t), andF j ∈Cin(t), andGk ∈G(t). Intuitively, input condition of an activity
is the conjunction of the basic constraints, inter-activity constraints, and constraints inG(t)
which are required to execute this activity correctly.G(t) is composed of a set of constraints
to executet correctly which are not included in neither inB(t) nor inCin(t) as depicted in
figure 12. Therefore, constraints inG(t) refer to state information which is not transferred
from preceding activities or can not be represented through basic constraints. For example,
considerWithdrawFromStockactivity (shortlytWFS) and its input condition which is defined
in Formula 2. Furthermore, suppose that aCheckStockactivity is not placed before it in the
control-flow; therefore quantity of missing materials can not be determined and inserted
into stock before the execution oftWFS. In this case,(quantity(mi) ≥ required(mi)) is not
in B(tWFS) andCin(tWFS). This type of constraints are called as anextensional constraints,
and included in the setG(t) as depicted in figure 12.

Later in this section we discuss the cases in which the constraints in the input condition
of an activity are violated and therefore its correct execution is sacrificed. To detect these
violations we are interested in whether an activity maintains a constraint. The following
definition is provided to formalize this issue.

Definition 5.6(Preserve function). Let t be an activity andF be a FOL formula on the
workflow environment.Preserve(t, F) is a three-valued function which is defined as
follows:

(1) Preserve(t,F)= true (1) if (∀St∈ St∀) : ((St |= F)⇒ (t (St) |= F)). In this case we
say that “t preservesF”.

(2) Preserve(t,F)= false(0) if (∀St∈St∀) : ((St |= F)⇒ (t (St) 6|= F)). In this case we
say that “t falsifies (or invalidates)F”.

(3) Preserve(t,F)=may be(1/2) if (∃St∈St∀) : ((St |= F) ⇒ (t (St) 6|= F)). In this
case we say that “t may falsify (or may invalidate)F”.

Intuitively, Preserve(t,F)= 0 or 1/2 requires thatW S(t)∩O(F) 6= ∅. Result ofPre-
serve(t,F) is not always binary since the effects of an activity on the state of the workflow
environment may depend on the actual values of its input parameters and/or the current

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 225

values of variables inO(F). Thus an activity may not falsify some of the constraints
depending on the actual instantiation of these parameters and variables. The following is a
simple example to demonstrate this situation.

Example 5.9. Let F1 ≡ (x1 < x2), andF2 ≡ (x1 = x2), andt1= increment(x2), t2 =
decrement(x1), t3= increment(x1), t4= decrement(x2). Assume thatdom(x1), anddom(x2)

are equal to the same totally ordered set with respect to a relation<. Preserve(t,F1)= 1 for
t ∈ {t1, t2}; Preserve(t,F1)= 1/2 for t ∈ {t3, t4}; Preserve(t,F2)= 0 for t ∈ {t1, t2,
t3, t4}.

According to the approach described above, we would like to check activities to see
whether they always preserve a constraintF . But, the recent results in the related literature
show that it is almost impossible to automatically determine the value ofPreservefor a given
activity and a constraint. As noted in [12], for transactions specified asselect-project-join
expressionsof relational algebra and constraints specified as FOL formulas, it isundecidable
to check if a given transaction preserves a given constraint. Therefore, we simply assume
that a workflow system administrator and/or workflow designers can specify the value of
Preserve(t,F).

As discussed previously, basic constraints specify the correct states of the workflow en-
vironment. Invalidation of basic constraints may be permissible by the individual activities;
yet this situation imposes some restrictions (1) on the execution of the workflow in which
an activity that invalidates (or may invalidate) a basic constraint resides, and (2) on the
execution of activities which require accessing correct states. Since basic constraints rep-
resent these correct states, if they are violated during a workflow execution they should be
resatisfied again prior to the termination of this execution. Otherwise the workflow envi-
ronment is left in an incorrect state. Therefore, a workflow should be designed properly
so that, if it includes an activity which falsifies (or may falsify) a basic constraint then it
should include another activity (or possibly a set of activities) which certainly guarantees
revalidation of this basic constraint. Furthermore, if the same basic constraint is involved
in the input condition of another activity, execution of this activity should be prevented
between the executions of former and latter activity (or activities). To capture these issues
we have defined a validating set of activities for a basic constraint.

Definition 5.7(And, or-validating sets). Let W= (N,CF,DF, IC,BC) be a workflow,
andB be the set of basic constraints of the workflow system. Furthermore, letti ∈ T , where
VS⊂ T , andT represents the individual activities inN. VS is anand-validating set for
B ∈ B if the following conditions hold:

(1) Preserve(ti ,B)= 0 or 1/2.
(2) (∀t j ∈VS) : (ti precedest j in CF).
(3)

∧
jOt j ⇒ B, wheret j ∈VS.

(4) (∀t j ∈VS) : (
∧

kOtk 6⇒ B), wheretk ∈ (VS− t j).

VSis anor-validating set forB ∈ B if the following conditions hold:

226 ARPINAR ET AL.

(1) Conditions 1, and 2 above.
(2) (∀t j ∈VS) : (Ot j ⇒ B).

Informally, VSis an and-validating set forB if B is a basic constraint which is (or may be)
invalidated byti , and validated collectively by the elements ofVS. Condition 4 guarantees
that execution of activities in a subset of an and-validating setVSis not a sufficient condition
for the validation ofB, and thereforeVSis the minimum set of activities to validateB. If
the execution of at least one element of a set of activities (VS) is a sufficient condition for
the validation ofB we callVSas the or-validating set forB.

Notation: We denote the set of basic constraints which are (or may be) invalid betweenti
and activities of an and-validating setVSasSB{ti ,VS,and}. The set of basic constraints which
are (or may be) invalid betweenti and at least one activity of an or-validating setVS is
denoted asSB{ti ,VS,or}.

In the following, we clarify these definitions through examples.

Example 5.10. Consider theWarehouseAllocationworkflow in figure 3. Output conditions
of RetrieveMaterial(tRM), andUpdateMaterialLocation(tUML) activities of aWarehouse-
Allocationworkflow are defined as follows:

OtRM(w j)
≡ (quantity(mi, j)

′ = quantity(mi, j)− n), (12)

OtUML(wk)
≡ (quantity(mi,k)

′ = quantity(mi,k)+ lk), (13)

wherew j represents the source warehouse, andwk represents a warehousek in destList,
i.e., wk ∈ destList, and

∑size(destList)
k= 1 lk= n. Since aftern raw materials of typemi are

withdrawn from the stock of warehousej ,B1 (Formula 3) is no longer true of the workflow
environment state. However,B1 is resatisfied after the termination of the corresponding
tUML activities which distribute withdrawn amount to stocks at different warehouses in
destList. In this casetUML(wk) activities for each warehousek constitute an and-validating
set forB1, since after the termination of all activities in this setB1 is satisfied again, and
thereforeSB{tRM(w j),∪size(destList)

k= 1 tUML(wk),and} = {B1}.

The following is an example to an or-validating set for a basic constraint.

Example 5.11. ConsiderBilling workflow and itsUpdateUnpaidBalance(tUUB), Reject-
Shipping(tRS), andMoreCredit(tMC) activities (figure 2). Their output conditions are defined
as follows:

OtUUB ≡ (unpaidBalance(ci)
′ = unpaidBalance(ci)+ b) (14)

OtRS ≡ ((unpaidBalance(ci)
′ = unpaidBalance(ci)− b)

∧ (orderStatus= rejected)) (15)

OtMC ≡ ((U′i =Ui + c) ∧ (U′i ≥ unpaidBalance(ci))), (16)

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 227

whereU′i denotes the new upper limit aftertMC is terminated. If a customerci does not
pay the bill of an ordered product, her/his balance of unpaid bills (i.e.,unpaidBalance(ci))
is updated intUUB activity (Formula 14 above). SincePreserve(tUUB,B2)= 1/2, basic
constraintB2 (Formula 4) may be invalid at this moment. In this case either shipping of
ordered product is rejected (or delayed) andunpaidBalance(ci) is decremented intRSactivity
(Formula 15), or if responsible branch of the enterprise grants more credit to this customer,
her/his upper limit (Ui) is incremented intMC activity, thusUi ≥ unpaidBalance(ci) holds
(Formula 16). Observe thatB2 is certainly satisfied after the termination of eithertRS or
tMC activity. ThereforetRS and tMC activities constitute an or-validating set forB2, and
SB{tUUB,{tRS,tMC},or} = {B2}.

As the previous examples demonstrate activities of an and/or-validating set guarantee
revalidation of a basic constraint. Yet to achieve this, there is a prerequisite which is a
natural outcome of our definition of activity semantic: Input conditions of activities of an
and/or-validating set should hold when they are executed. Only in this way Condition 3
for an and-validating set, and Condition 2 for an or-validating set in Definition 5.7 can
be satisfied. To achieve this, required inter-activity constraints between the activity which
(may) invalidate a basic constraint and activities in the corresponding validating set should
be preserved. The following example demonstrates this requirement.

Example 5.12. In the manufacturing example, a product is composed of parts and parts
are further composed of raw materials. Therefore consistency of technical data, i.e., design
information belonging to a product and its constituting parts is an essential requirement
in a manufacturing process. To state this, a basic constraint of the system is defined as
follows:

B3 ≡ ((∀prodi ∈ products, ∀partj ∈ parts) : ((partj ∈ P(prodi))

⇒ Consistent(design(prodi), design(partj)))). (17)

According toB3, design of a product, i.e.,design(prodi), should be consistent with de-
signs of its constituting parts, i.e.,design(partj), wherepartj ∈ P(prodi). Let UpdatePart-
Design(shortlytUPartD) andUpdateProductDesign(tUProdD) be two activities whose output
conditions are defined as follows:

OtUPartD ≡ ((design(partj)
′ = design(partj)+1)

∧Consistent(design(prodi)+ F(1), design(partj)
′)) (18)

OtUProdD ≡ ((design(prodi)
′ = design(prodi)+ F(1))

∧Consistent(design(prodi)
′, design(partj))) (19)

wheredesign(partj)
′ and design(prodi)

′ represent new designs.tUPartD changes design
of a part by1, and tUProdD updates corresponding product through a functionF(1), so
that the consistency of designs for product and its part is achieved again aftertUProdD, i.e.,
OtUProdU ⇒ B3. In order to get the above result, however, input condition oftUProdD should

228 ARPINAR ET AL.

include the constraintConsistent(design(prodi) + F(1), design(partj)). That is, prior to
execution oftUProdD, change made indesign(partj) must remain the same (i.e., no other
activities change the design of the part), so update ofdesign(prodi)by F(1) should make the
design of product consistent with its part again. Note that, the output condition oftUPartD also
includes this constraint since this part is redesigned with the assumption that the product
design will change accordingly. As a result, the constraintConsistent(design(prodi) +
F(1), design(partj)) is included in the set of inter-activity constraints betweentUPartD, and
tUProdD, i.e., it is an element ofC{tUPartD,tUProdD}.

In Definition 5.7, it is assumed that if a basic constraint is (or may be) invalidated by a
previously executed activity, its revalidation is guaranteed by successor activities in control-
flow. However, this invalidation can be prevented through the execution of a preceding
activity or a set of activities. More precisely, ifPreserve(t,B)= 1/2 invalidation ofB
by the execution oft can be prevented by the execution of some preceding activities in
control-flow, thusOt ⇒ B [6]. The details are omitted here due to space limitations.

The presented examples provide sufficient guidance for workflow designers, so if their
workflow specification includes an activity which (may) invalidates a basic constraint they
should also include other activities conforming to the definitions of validating sets or prevent
this invalidation by placing preceding activities.

We formally represent and/or-validating sets and intervals at which the basic constraints
are (or may be) invalid during the execution of a workflowW, through a labeled 2-level
hyperDAGBC= (VBC, EBC,CLBC,VLBC), whereVBC, andEBC represent nodes, and edges
respectively.VBC is a hyperSet, and for anySa ∈VBC, Sa ⊆ T and for any〈Sa, Sb〉 ∈ EBC,
Sa ∈ T andSb ⊆ T . Recall thatT is the set of individual activities ofW. CLBC andVLC are
the labels of edges inEBC; CLBC is a mapping fromEBC to negated elements ofB, where
B is the set of basic constraints of the workflow system, andVLBC is a mapping fromEBC

to {and, or} denoting the types of validating sets.EBC is constructed through the use of
following principles:

• (∀B ∈ B) : ((B ∈SB{ti ,VS,and})⇒ (〈ti ,VS,¬B, and〉 ∈ EBC)).
• (∀B ∈ B) : ((B ∈SB{ti ,VS,or})⇒ (〈ti ,VS,¬B, or〉 ∈ EBC)).

According to these principles, ifVS is an and-validating set or an or-validating set forB
this situation is represented by the edges〈ti ,VS,¬B, and〉 and〈ti ,VS,¬B, or〉 respectively.
Note that ifVSincludes more than one activity it is represented as a hyperSet inBC. If VS
has one element, this element is represented with a simple node, and since type ofVS(i.e.,
and/or) is immaterial in this case, label of the edge incoming toVSrepresenting its type is
omitted. FurthermoreBC is consistent with control-flow graph (CF) due to Condition 2 of
Definition 5.7. The following example demonstrates the construction of a basic constraints
graph using the principles above.

Example 5.13. Let B={B1,B2,B3,B4,B5,B6,B7}, and SB{t1,{t2,t3},and} = {B1},
SB{t2,{t4,t5},or} = {B2,B3}, SB{t3,t6} = {B4,B5}, SB{t5,t6} = {B5}. The corresponding basic con-
straints graphBC is depicted in figure 13.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 229

Figure 13. Basic constraints graph.

We use basic constraints graph in conjunction with inter-activity constraints graph to
develop the notion of correct execution of workflows. To define a correctness criterion we
need the definition of a complete execution history of workflow instances. In the following,
the definition of a complete execution of a workflow is provided which is then used in
defining the history.

In Section 4, control-flow of a workflow is formalized as a labeled split-join hyper-
NodeDAG. In this graph, or/xor-split nodes cause some activities of the workflow not to
take place in the actual execution. This is due to the fact that after the execution of an
or/xor-split node a decision is made upon which branch to take. To define the parts of
a workflow which are actually executed at run-time, namely a complete execution of a
workflow, the following algorithm is provided. In this algorithm,G= (TG, EG, LG,TCG)

is a labeled split-join hyperNodeDAG which is local to the algorithm itself. The split-join
hyperNodeDAGCE= (NCE, ECE) is the resulting complete execution graph for a given
control-flow graph,CF= (N, ECF, L ,TC).

Algorithm 5.1 (Complete execution generation algorithm).

procedure PathGenerate(G):
begin

1. f ← first(G/ε1/ε2 . . . /εsize(TG)), where G= (TG, EG, LG,TCG);
2. l ← last(G/ε1/ε2 . . . /εsize(TG));
3. if f is a split nodethen
4. caseLG(f) of

begin
5. and : for every〈 f, l 〉-path⊆ EG do ECE← ECE ∪ 〈 f, l 〉-path;
6. or : for some〈 f, l 〉-path⊆ EG do ECE← ECE ∪ 〈 f, l 〉-path;
7. xor : for exactly one〈 f, l 〉-path⊆ EG do ECE← ECE ∪ 〈 f, l 〉-path;

end
8. elseECE← ECE ∪ 〈 f, l 〉-path

end

230 ARPINAR ET AL.

program main:
begin

1. NCE← ∅, ECE← ∅;
2. PathGenerate(CF);
3. for every nodeεCE ∈ NCE andεCE ∈ hyper(N) do
4. PathGenerate(CF(εCE))

end

The procedurePathGenerateaccepts a labeled split-join hyperNodeDAGG as an input.
In Steps1 and 2, each hyperNode ofG is replaced with an abstract simple element; thus
it results in a simple DAG. First and last elements of the DAG are assigned tof and l
respectively. Iff is anand-split nodeall paths connecting it tol are included inCE; if f is
anor-split nodesome of the paths connecting it tol are included inCE; if f is anxor-split
nodeexactly one of the paths connecting it tol is included inCE. If f is not a split node,
single〈 f, l 〉-path is included inCE.

The main program which calls procedurePathGenerateis also provided above. After
initialization, this main program executesPathGeneratefor control-flow, CF. For every
nodeεCE included inCE after this step (i.e.,εCE ∈ NCE), if this node corresponds to
a hyperNode inCF, PathGenerateis called with the restriction ofCF to this node (i.e.,
CF(εCE)) as the input. The program executes until there is no element inCEcorresponding
to a hyperNode inCF. In this way, a complete execution is generated in a top-down fashion.

In the following, a complete execution of a workflow is formally defined as an outcome
of the main program above.

Definition 5.8(Complete execution of a workflow). Let W= (N,CF,DF, IC,BC) be a
workflow, andCF= (N, ECF, L ,TC) be its control-flow, whereCF itself is thought as a
single node at an abstract level. AComplete Execution of Wdenoted asCE= (NCE, ECE)

is a split-join hyperNodeDAG which can be generated through the Complete Execution
Generation Algorithm (Algorithm 5.1).

Notice that there could be many complete executions that can be generated from the
control-flow graph using Algorithm 5.1. The following example demonstrates the genera-
tion of a complete execution from a given control-flow.

Example 5.14. Consider the control-flow graph (CF) in figure 10. One of the complete
executions that is generated fromCF, e.g.,CE1= (NCE1, ECE1), can be defined as follows:
NCE1={a, b, {c, g, {h, i, j, k, l },m}, n}, andECE1={〈a, b〉, 〈b, ε3〉, 〈ε3, n〉, 〈c, g〉, 〈g, ε33〉,
〈ε33,m〉, 〈h, i 〉, 〈h, j 〉, 〈h, k〉, 〈i, l 〉, 〈 j, l 〉, 〈k, l 〉}, whereε3={c, g, {h, i, j, k, l },m}, and
ε33={h, i, j, k, l }.

As stated previously, basic constraints can be violated during a workflow execution; yet
as one of the essential conditions to preserve them all complete executions must satisfy the
criteria given in the following definition.

Definition 5.9(Validation complete control-flow). Let W= (N,CF,DF, IC,BC) be a
workflow, and BC= (VBC, EBC,CLBC,VLBC) be its basic constraints graph.CF is a

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 231

Validation Complete Control-Flowif the following conditions hold for every complete
executionCEi = (NCEi , ECEi) of W:

(1) (∀〈t,VS,¬B, and〉 ∈ EBC) : ((t ∈ base(NCEi))⇒ (VS⊆ base(NCEi))).
(2) (∀〈t,VS,¬B, or〉 ∈ EBC) : ((t ∈ base(NCEi))⇒ (VS∩ base(NCEi) 6= ∅)).

Conditions 1 and 2 state that if an activity (t) does not preserve a basic constraint (i.e.,
Ot 6⇒B), then every complete execution (CEi) including this activity must contain activities
which validate this basic constraint again (i.e., activities of the corresponding and-validating
set or at least one activity of corresponding or-validating set). This property must be en-
sured by the workflow designers. Note that, ifPreserve(t,B)= 1/2 and invalidation of
B is prevented by the preceding activities thenOt ⇒ B. In this case,t is not placed
in BC.

The following example clarifies the definition above.

Example 5.15. WarehouseAllocation(Example 5.10), andBilling (Example 5.11) work-
flows have validation complete control-flows, since intuitively every complete execution of
WarehouseAllocationworkflow includes the activities in

⋃size(destLit)
k= 1 tUML(wk) if it includes

tRM(w j), and every complete execution ofBilling workflow includes eithertRSor tMC activity
in the caseB2 is falsified bytUUB.

A workflow environment can be left in an incorrect state due to incorrect interleavings
during the execution of activities of the same or different workflows even these individual
workflows have validation complete control-flows. Furthermore inter-activity constraints
can be invalidated and therefore input conditions of some activities may be false when they
are executed. Both situations sacrifice the correctness of workflows. Before introducing a
correctness notion, we provide a formal definition of concurrent execution of workflows,
namely a complete execution history of workflows. To specify interleavings of workflows
and their constituting activities clearly in this definition, time intervals are associated with
them during execution.

Assuming a model consisting of a fully ordered set of points (instants) of time, a time
intervalTI is an ordered pair of points which represents its endpoints, i.e.,TI= [START(TI),
END(TI)], whereSTART(TI) andEND(TI) denote the start-point and end-point ofTI respec-
tively. Two relations between the time intervals, namelyintersectandcoverare presented
in Table 1. In this table,TIi andTI j represent two arbitrary time intervals.TIi andTI j

intersect, which is denoted asTIi ∩ TI j 6= ∅, if they have at least a common point of time.
If TIi coversTI j this is denoted asTIi ⊃ TI j . These relations are used later in this section.
More information about time intervals and relations between them can be found in [2].

Table 1. Relations defined on time intervals.

Relation Condition

TIi andTI j intersect ¬(END(TIi) < START(TI j))∧¬(END(TI j) < START(TIi))

TIi coversTI j (START(TIi) < START(TI j))∧ (END(TI j) < END(TIi))

232 ARPINAR ET AL.

After introducing time intervals and required relations among them, the following defi-
nition of the complete execution history of workflows is presented.

Definition 5.10(Complete execution history of workflows). A Complete Execution History
CH= (TCH, ECH, LCH) defined over a set of complete workflow executionsCE={CE1,

CE2, . . . ,CEn}, whereCE1,CE2, . . . ,CEn are generated from control-flows of a set of
workflowsW={W1,W2, . . . ,Wm}, is a labeled split-join hyperNodeDAG, where

• TCH=
⋃n

i=1 NCEi ∪ {sCH, jCH}, wheresCH and jCH denote the split and join nodes of
CH respectively, andsCH, jCH are equal tofCH and lCH (first and last nodes ofCH)
respectively.
• ECH= (

⋃n
i=1 ECEi) ∪ (

⋃n
i=1{〈sCH, NCEi 〉, 〈NCEi , jCH〉}).

• LCH is the labels of the nodes, i.e., each node is labeled with its time intervalTI. For
a simple nodeS, TIS= [start(S), end(S)], wherestart(S) andend(S) denote the time
instants when the activity is started and terminated respectively. For a hyperNodeS,
TIS= [min(START(TISi)),max(END(TISi))], whereSi is a simple or a hyperNode ofS
(i.e., Si ∈ S).

In the following definition, a correctness criterion for a complete execution history of
workflows is presented. In this definition, a correct complete execution history is charac-
terized by referring to the properties of the workflow environment state at particular time
instants. Intuitively, for an infinite sequenceτ = 0, 1, 2, . . . of time instants there is a corre-
sponding sequenceSt0,St1,St2, . . . of workflow environment states. The notationSteventis
employed to denote a particular workflow environment state at the time instant with which
theeventis associated. For example,Ststart(t) denotes the state when activityt is started. If
a constraintF holds at the time instant at whicheventoccurs, this situation is represented
asStevent |= F .

Definition 5.11(Correct complete execution history). A Complete Execution History
CH= (TCH, ECH, LCH) is correct if the following conditions hold:

(1) (∀t ∈ base(TCH)) : (Ststart(t) |= It).
(2) (Ststart(fCH) |= B) ⇒ (Stend(lCH) |= B), where fCH andlCH are the first and last nodes

of CH respectively, andB= ∧i Bi whereBi ∈ B, and B is basic constraints of the
workflow system.

Condition 1 states that when an activityt involved in the history is started its input
condition It should hold. Notice that since the individual activities are isolated, valid-
ity of their input conditions when they are started is a sufficient condition to execute
them correctly. According to Condition 2, if the basic constraints of the workflow sys-
tem are true when the history is started they should be true after the termination of the
history.

After defining a correctness notion for a complete execution history of workflows the ways
correctness can be sacrificed are illustrated in the following paragraphs. If the execution of

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 233

activities of workflows are interleaved, correctness of a complete execution history can be
violated in two ways:

• Input condition of an activityt may be false whent is executed (i.e.,Ststart(t) 6|= It).
• Although basic constraints are true when the complete execution history is started, they

may be false when it is terminated (i.e.,Stexecute(lCH) 6|= B).

Input condition of an activity (Formula 11) can be violated in three ways: (1) An inter-
activity constraintF ∈Cin(t), or (2) a basic constraintB ∈ B(t), or (3) an extensional
constraintG ∈G(t) may not be true whent is executed. The following two examples
demonstrate the first case.

Example 5.16. Consider theCheckStock(tCS), InsertStock(tIS), andWithdrawFromStock
(tWFS) activities, and the inter-activity constraintsF1 ≡ (quantity(mi) ≥ n), andF2 ≡
(quantity(mi) ≥ required(mi)) given in Example 5.6. Remember thatF1∈C{tCS,tIS}, and
F2∈C{tIS,tWFS}. Since raw materials of typemi may be withdrawn from the stock by the
concurrently executingtWFS activity of some other workflows,F1, andF2 may be invali-
dated between thetCS, andtIS activities, and correspondingtWFS activity. This situation is
depicted in the following:

Suppose thattCS1 seesn= 75 raw materials in the stock andrequired(mi)= 125; therefore
50 raw materials are ordered from vendors and inserted into stock throughtIS1 activity.
After this, if a tWFS2 activity of another instance ofOrderProcessingworkflow withdraws
30 raw materials of same type, input condition oftWFS1 (i.e.,quantity(mi) ≥ 125) is invali-
dated.

Example 5.17. ConsiderSelectBestCells(tSBC) andAssign(tA) activities, and the inter-
activity constraintF3 ≡ ((∀cellj ∈ (qualifiedCells)) : (rank(celli) ≥ rank(cellj))) defined
in Example 5.7. Recall thatF3∈C{tSBC,tA(celli)}. Since othertA activities might concurrently
assign a work to a preselected cells they can invalidateF3. This situation is depicted as
follows:

234 ARPINAR ET AL.

Suppose that available cells are evaluated intSBC1, andcell1 andcell2 are selected. IftA2(cell1)

assigns a heavy work tocell1, and degrades its previously assessedrank, cell1 may become
a worse selection for the assignment of the work intA1(cell1). Thus input condition oftA1(cell1)

may be invalid when it is executed.

The following example demonstrates a situation in which a basic constraint involved in
the input condition of an activity is falsified.

Example 5.18. Consider Examples 5.5 and 5.10, and note that basic constraintB1 is
false betweenRetrieveMaterial(w j) (shortlytRM(w j)), and correspondingUpdateMaterial-
Location(wk) (tUML(wk)) activities for everywk ∈ destList. If a WarehouseEvaluation(tWE)
activity is executed between these activities it executes incorrectly, since its input condition
includesB1. This situation is demonstrated in the following:

Suppose thattRM1(w1) retrieves 1200 raw materials of typemi from the stock of warehouse
w1 and these materials are distributed to stocks of warehousesw2, andw3 throughtUML1(wk)

activities. If tWE2 activity is executed between them it misses the raw materials being trans-
ferred and an incorrect amount of raw materialmi is reported.

The preceding examples demonstrate the possible violations of input conditions. Now,
we discuss the cases in which basic constraints may remain false after the termination of a
complete execution history.

Note that validation completeness (Definition 5.9) is an essential requirement to preserve
basic constraints in a complete execution history, thus if a basic constraint is invalidated by
an activity it is revalidated by the execution of activities in its validating set. Yet to achieve
this, the input conditions of activities in the validating set must hold when they are executed
(Example 5.12). If input conditions of activities in a validating set are falsified, revalidation
of a basic constraint fails. Thus, although workflows having validation complete control-
flows are involved in a complete execution history, a workflow environment can be left
in a state where basic constraints do not hold. The following example demonstrates this
situation.

Example 5.19. Suppose that a basic constraintB5 is defined as follows:

B5 ≡ ((∀celli ∈ cells) : (((capacityMode(celli)=Normal)

⇒ (workload(celli) ≤ Ci)) ∨ ((capacityMode(celli)=Max)

⇒ (Ci < workload(celli) ≤ MAXi)))) (20)

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 235

The intuition behind this constraint is as follows: A manufacturing cell (celli) can work
in normal (Normal) or maximum (Max) capacity modes. Ifcelli works inNormalmode,
its workload should be equal or less than a predetermined upper limitCi . In Max mode,
its workload should be betweenCi andMAXi . Employing cells inNormal load is more
desirable, and transferring a part of a workload to other available cells is possible. Consider
the following executions of related activities:

Assume thatMAX1= 500,C1= 300, and current workload ofcell1 is 400. TransferWork1
(cell1) (shortly tTW1(cell1)) transfers a part ofcell1’s workload (i.e., 150) to other available
cells. In this case,B5 is invalidated andChangeMode1(cell1) (tCM1(cell1)) should be executed
to change mode ofcell1 from Max to Normal. Notice that to guarantee validation ofB5,
inter-activity constraint

F4 ≡ (workload(cell1) ≤ C1) (21)

must hold whentCM1(cell1) is executed. Thus,cell1 works in Normal capacity mode with
workload= 250, and thereforeB5 is revalidated after the termination oftCM1(cell1). This
situation is similar to one presented in Example 5.12. Consider the executions of activ-
ities which belong to another workflow instance. Suppose thatAssign2(cell1) (tA2(cell1))
assigns a work tocell1 in amount of 200, and therefore the resultingworkload is 450.
Since this workload requiresMax capacity modetCM2(cell1) is executed to validateB5, and
capacityMode(cell1) is madeMax. Note that the activities presented belong to workflows
having validation complete control-flows. At the end of these executions, the resulting
capacityModeis Normal and currentworkload is equal to 450. ThusB5 is still invalid.
This is due totA2(cell1) is invalidatedF4 which is required for the correct execution of
tCM1(cell1).

As discussed through the preceding examples, although individual activities of a work-
flow are executed in isolation, workflow correctness may be violated due to improper
interleavings. Thus, proper concurrency control mechanisms are required to ensure correct-
ness of a complete execution history. A concurrency control mechanism can guarantee that
when t j is executedIt j is true if it does not permit any activity that falsifies constraints
in C{ti ,t j } to be executed betweenti and t j for different ti s. Furthermore, if a basic con-
straint involved inIt j is invalidated by a previously executed activity, execution oft j should
be delayed until this basic constraint is satisfied again by the activities of corresponding
validating set. Revalidation of a basic constraint can be ensured by the validation complete-
ness property, and guaranteeing correctness of input conditions of activities in a validating
set.

236 ARPINAR ET AL.

Extensional constraints (i.e.,G(t j)) involved in the input condition of an activity may be
falsified by the activities which are terminated even before the beginning of workflow in
which t j participates, and remain invalid for an uncertain time. Therefore, ensuring their
validity like inter-activity or basic constraints through a concurrency control mechanism is
not possible. A possible way to achieve this is that, a workflow designer places preced-
ing activities in the control-flow to check these constraints, and if they evaluate to false
either they are validated by proper activities ort j is excluded from the execution history
through conditional branches. PlacingCheckStockand InsertStockactivities before the
WithdrawFromStockis an example to the first case. In this way, extensional constraints can
be transformed to inter-activity constraints and their validity can be ensured like other con-
straints. If this design requirement is not taken into consideration by workflow designers,
activity itself should verify extensional constraints, and if they evaluate to false, the activity
should be removed from the execution history (e.g., by aborting it).

The essential design requirements which provide for the correctness of a complete exe-
cution history of workflows and hence must be ensured by the workflow designers can be
summarized as follows: (1) Control-flow of workflows must be validation-complete; (2)
proper inter-activity constraints must be introduced between the activities which invalidate
and later revalidate a basic constraint; (3) extensional constraints must be transformed to
inter-activity constraints, thusG(t j)=∅.

Theorem 5.1 provides the concurrency control requirements explained above in a formal
manner. To specify the intervals where the basic constraints are (or may be) invalid,
and where inter-activity constraints should be preserved at run-time in the theorem, time
intervals (TIE) are associated with the edges of a basic constraints graph (BC), and inter-
activity constraints graph (IC) in the following:

◦ If E is an edge of anIC then,TIE = [START(TIsource(E)),END(TIsink(E))], i.e., TIE is
denoted by the start of time interval associated with the source node and end of time
interval associated with the sink node ofE.
◦ If E is an edge of aBC, andVLBC= andthen,TIE = [START(TIsource(E)),END(TIsink(E))].
◦ If E is an edge of aBC, andVLBC= or then,TIE = [START(TIsource(E)),min(END(TISi))],

andSi ∈ sink(E), i.e.,TIE is denoted by the start of time interval associated with the source
node, and minimum end-point of time intervals associated with the elements of the sink
node ofE. This is due to the fact that once an activity insink(E) is terminated, validity
of a basic constraint is ensured.

Theorem 5.1 (Correctness of a complete execution history).Let CH= (TCH, ECH, LCH)

be a complete execution history defined over a set of complete executions CE={CE1,CE2,

. . . ,CEn}, where CE1,CE2, . . . ,CEn are generated from a set of workflows W={W1,W2,

. . . ,Wm} having validation complete control-flows. Wi ∈W is represented as Wi = (Ni ,

CFi ,DFi , ICi ,BCi),where ICi = (VICi , EICi , LICi),and BCi = (VBCi , EBCi ,CLBCi ,VLBCi).
CH is correctif the following conditions hold:
(1) Ststart(fCH) |= B.
(2) (∀Wi ∈W, ∀E ∈ EBCi , ∀tx ∈ base(TCH)) : (TIE ∩ (

⋃
x{TItx | ¬CLBCi (E)∈ Itx })=∅).

(3a) (∀Wi ∈W, ∀E∈EICi , ∀tx ∈base(TCH)) : (TIE∩(
⋃

x{TItx |Preserve(tx, LICi (E))=0})
=∅).

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 237

(3b) (∀Wi ∈W, ∀E ∈ EICi , ∀tx ∈ base(TCH)) : (((Preserve(tx, LICi (E))= 1/2) ∧ (TIE ∩
TItx 6= ∅))⇒ (Stend(tx) |= LICi (E))).

In the following, these conditions are explained to clarify them.

(1) Basic constraints (i.e.,B ≡∧i Bi , whereBi ∈ B) should hold when complete execu-
tion history (CH) is started (i.e., when its first activity,fCH, is started).

(2) If E=〈t j ,VS={tk, tl , . . .},CLBCi (E)=¬Bn,VLBCi (E)= and/or〉 is an edge inBCi

(whereBCi a basic constraints graph of a workflowWi ∈W), and if¬CLBCi (E)=Bn

is involved in the input condition of another activitytx (i.e.,Bn ∈ Itx), time intervals
associated withE (TIE) andtx (TItx) should not intersect.

(3a) If E=〈t j , {tk, tl , . . .}, LICi (E)=F〉 is an edge inICi (whereICi is an inter-activity
constraints graph of a workflowWi ∈W), and if another activitytx falsifiesF (i.e.,
Preserve(tx,F)= 0), TIE andTItx should not intersect.

(3b) If E=〈t j , {tk, tl , . . .}, LICi (E)=F〉 is an edge inICi , and tx may falsify F (i.e.,
Preserve(tx,F)= 1/2),F should be still valid whentx is terminated. Notice that, iftx
does not participate inCH (e.g., by removing it fromCH), this condition automatically
holds.

Proof: To prove this theorem, we show that if the conditions stated in Theorem 5.1 are
true, the conditions in the definition of a correct complete execution history (i.e., Definition
5.11) hold.

(1) As a first step, it is proved that(∀t ∈ base(TCH)) : (Ststart(t) |= It) is true. Assume that
(∃tx ∈ base(TCH)) : (Ststart(tx) 6|= I tx). To achieve this, at least one of the conditions
below should hold:

◦ Ststart(tx) 6|= Bi , whereBi ∈ B(tx).
◦ Ststart(tx) 6|= F j , whereF j ∈Cin(tx).
◦ Ststart(tx) 6|= Gk, whereGk ∈G(tx).

Remember that the constraints constituting an input condition are the elements ofB(tx) ∪
Cin(tx) ∪ G(tx) (Formula 11). Trivially, Condition 2 of Theorem 5.1 prevents first case;
second case is not possible due to Conditions 3a and 3b. It is guaranteed that the last case
does not occur by workflow design.

(2) In this step, it is proved that (Ststart(fCH) |= B) ⇒ (Stend(lCH) |= B) holds. First part
of the formula is true by assumption (i.e., Condition 1 of Theorem 5.1). Assume that
Stend(lCH) 6|= B; to achieve thisOtx 6⇒ B should hold for atx ∈ base(TCH). In this
case, however, activities of an and/or-validating set are present inCH due to validation
completeness property (Definition 5.9). It has been already proved that validity of input
conditions of activities in a validating set are guaranteed. Thus,B is certainly validated
prior to the termination ofCH by these activities.

Thus, if the conditions of Theorem 5.1 are true, correctness ofCH is guaranteed. 2

238 ARPINAR ET AL.

6. Constraint based concurrency control (CBCC) mechanism

In this section, aConstraint Based Concurrency Control(CBCC) mechanism for workflows
based on the correctness notion developed in Section 5 is proposed.

In Section 5 it is shown that, if the conditions of Theorem 5.1 hold, correctness of a
complete execution history of workflows is guaranteed. Validity of these conditions can
indeed be guaranteed through aConstraint Based Concurrency Controlmechanism to
control activity interleavings in such a way that inter-activity constraints are preserved and
accesses to workflow environment on which the basic constraints do not hold are prevented.
In this mechanism, activities acquire and release locks on inter-activity and basic constraints
in two different modes, and certain inter-activity constraints are evaluated within an activity.
To achieve this, CBCC mechanism employees three stages for the execution of an activity:
(1) Locking stage before the actual execution of an activity; (2) Certification (evaluation)
stage before the actual termination of an activity; (3) Lock releasing stage after an activity
terminates. Activities acquire locks on the relevant constraints in the locking stage by
issuing lock requests to CBCC mechanism. The lock compatibility table for inter-activity
and basic constraints is given in Table 2. “Y” means that the locks do not conflict and “N”
means the locks conflict.

An inter-activity constraintF can be locked by an activitytx in one of the following
modes:

• Shared: This mode of lock is acquired whentx intends to preserveF until a set of other
activities terminate, i.e.,F ∈Cout(tx).
• Exclusive: This mode is used whentx falsifiesF , i.e., Preserve(tx,F)= 0. All inter-

activity constraints in a workflow management system which are falsified bytx constitute
the setF(tx). Note that not only inter-activity constraints within a workflow in whichtx
resides, but also all inter-activity constraints of other workflows are considered for this
set.

If F is to be preserved in the interval between activityt j and a set of activities{tk, tl , . . .},
and if another activitytx that falls in this interval falsifiesF , tx should be delayed until
F is unlocked by the every activity in{tk, tl , . . .}. Therefore, the shared lock taken byt j

conflicts with the exclusive lock taken bytx, as indicated in Table 2. Furthermore ifF is
to be preserved in the interval between activitiest j and{tk, tl , . . .}, and againF is to be
preserved in another interval betweentm and{tn, to, . . .}, both t j andtm lock F in shared
mode and clearly there is no need for these shared locks to be in conflict, as indicated

Table 2. The lock compatibility table for inter-activity and basic constraints.

Existing
Mode
Requested Shared Exclusive

Shared Y N

Exclusive N Y

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 239

in Table 2. Note that we use the term “exclusive lock” differently than its conventional
meaning in that, two exclusive locks on the same constraint do not conflict with each other
in our approach as opposed to traditional exclusive locks.

It should be noted that some of the inter-activity constraintsmay befalsified bytx, i.e.,
Preserve(tx,F)= 1/2, which constitute the setL F(tx). For the activities that may falsify
inter-activity constraints, we prefer to use an optimistic scheme rather than locking with
the intention of increasing the performance, since there is a probability that the activity
will not falsify these constraints. If a constraint in this set is already locked in shared mode
to be maintained whentx is executed, this constraint is evaluated in the certification stage
and if it evaluates to false,tx is rolled back and resubmitted to workflow management
system.

A basic constraintB can be locked bytx in one of the following modes:

• Shared: If tx requires the correctness ofB, i.e.,B ∈ B(tx), a shared lock is acquired.
• Exclusive: If tx invalidates (or may invalidate)B, i.e.,B ∈ (⋃VSSB{tx,VS,and/or}), an ex-

clusive lock is required.

An activity tx (may) falsify a basic constraintB to be revalidated by the activities of and/or-
validating sets as explained in Section 5. Therefore the activities that require the correctness
ofB in this interval should not be allowed to execute. For this reason,tx obtains an exclusive
lock onB. On the other hand the activity that requires the correctness ofB acquires a shared
lock. The shared lock conflicts with the exclusive lock as indicated in Table 2. It is clear
that the activities that require correctness ofB do not conflict with each other.

6.1. CBCC algorithms

In this section, the algorithms employed by CBCC mechanism are described. In these
algorithms, data structuresIC, BC for every workflow, andB(tx), F(tx), LF(tx) for every
activity are required. AConstraint Editor in conjunction with a first-order constraint
specification language [12, 15] can be used by an administrator and/or workflow designers
to define these data structures.

6.1.1. Algorithm for activity start. Any activity tx needs an exclusive lock for every inter-
activity constraint it falsifies to start (Steps1 and 2 ofAlgorithm 6.1). This is possible
only when there is no other activity that has a shared lock onF ; in other words no other
activity wants to preserveF . Furthermore,tx also needs to acquire shared locks for all
the basic constraints involved in its input condition (i.e.,B(tx)) (Steps3 and 4). A lock
for a constraintB in B(tx) is granted totx if there is no invalidating activity that has an
exclusive lock onB. After this step, every inter-activity constraint emanating fromtx in
the inter-activity constraints graph (IC) (i.e., elements ofCout(tx)) are locked in the shared
mode inSteps5 and 6.tx can acquire a shared lock onF ∈Cout(tx) if no other invalidating
activity for F has an exclusive lock onF . Recall thatF may be incident to more than
one activity, and these activities are grouped into a hyperSetS(tx,F). This is represented
by the edge〈tx, S(tx,F),F〉 in IC. SinceF should be preserved until the termination of

240 ARPINAR ET AL.

all the activities in the hyperSetS(tx,F), it is necessary to obtain a shared lock for each
of the activities in this set, i.e.,size(S(tx,F)) locks are acquired. A conflicting lock can
then only be allowed when all these locks are released. InSteps7–10, exclusive locks
are acquired on the basic constraints which are invalidated bytx which is only possible if
there are no shared locks onB. That is, sincetx is invalidatingB, there should not exist
any activity that requires the correctness ofB. If VS is an and-validating set forB and
if it contains more than one activity,tx acquires an exclusive lock onB for each activity
of VS, that is the number of locks acquired issize(VS). If VS is an or-validating set,tx
acquires a single lock since the termination of the first activity ofVSguarantees validity
of B.

Inter-activity constraints whichmay be falsified bytx, i.e., LF(tx) are handled in an
optimistic manner. Note that all the constraints inLF(tx) may not be active, that is, it may
be the case that for some constraints inLF(tx), there is no activity requiring these constraints
to hold. We include all the active constraints inActiveICSset and all the constraints in this
set are already locked in the shared mode. The intersection ofLF(tx) andActiveICSsets
gives us the set of constraints denoted asALF(tx), that are both active whentx has started
and also has to be validated whentx terminates (Step11). Since new shared locks can
be acquired on the elements ofLF(tx) − ActiveICSby other activities before the activity
terminates, constraints inPLF(tx)= LF(tx)−ActiveICS(i.e., non-active constraints which
are inLF(tx)) are locked in exclusive mode. Furthermore, operations inStep11 are executed
atomically (i.e., in a critical section). In this way, further constraints that may be falsified
by tx are prevented from becoming active after the set of constraints that will be validated
are determined.

Algorithm 6.1 (Algorithm for activity start).

begin
1. for everyF ∈ F(tx) do
2. ExclusiveLock(F);
3. for everyB ∈ B(tx) do
4. SharedLock(B);
5. for everyF ∈ Cout(tx) do
6. SharedLock(F) with Counter= size(S(tx,F));
7. for everyB ∈ (⋃VSSB{tx,VS,and}) do
8. ExclusiveLock(B) with Counter= size(VS);
9. for everyB ∈ (⋃VSSB{tx,VS,or}) do
10. ExclusiveLock(B);

11.

ALF(tx)← (LF(tx) ∩ ActiveICS);
PLF(tx)← (LF(tx)− ActiveICS);
for everyF ∈ PLF(tx) do

ExclusiveLock(F)

end

After successfully acquiring all the necessary locks as indicated in theAlgorithm6.1, an
activity can be scheduled for execution.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 241

6.1.2. Algorithm for activity end. An activity terminates when all of its operations are
complete. But prior to termination, an evaluation algorithm (Algorithm6.2) is executed to
check whether an active inter-activity constraint is falsified by the execution of this activity.
This is achieved inStep1 by evaluating the constraints inALF(tx) in parallel by the routine
EvalInParallel; once a constraint evaluates tofalse, EvalInParallelterminates immediately
and returnsfalse. In this case, the activitytx is rolled backed and resubmitted to workflow
management system. Note that all the locks acquired bytx should be released. IfALF(tx)
is empty,Algorithm6.2 is not executed.

Algorithm 6.2 (Algorithm for activity end).

begin
1. if (EvalInParallel(ALF(tx))= false) then
2. Rollback(tx), Resubmit(tx)

end

6.1.3. Algorithm for activity post-processing.After an activitytx is terminated, all locks
acquired bytx on the constraints inPLF(tx), F(tx), andB(tx) are released inSteps1 and 2,
3 and 4, and 5 and 6 ofAlgorithm 6.3 respectively. Inter-activity constraints incident to
tx (i.e., Cin(tx)) which are locked by other activities are released inSteps7 and 8. Iftx
is in an and-validating set (VS) of a basic constraintB, one of the previously acquired
exclusive locks by the invalidating activity ofB is released inSteps9 and 10. Iftx is the first
terminating activity of an or-validating set, a corresponding lock is releasedSteps11 and 12.

Algorithm 6.3 (Algorithm for activity post-processing).

begin
1. for everyF ∈ PLF(tx) do
2. Unlock(F);
3. for everyF ∈ F(tx) do
4. Unlock(F);
5. for everyB ∈ B(tx) do
6. Unlock(B);
7. for everyF ∈ Cin(tx) do
8. Unlock(F);
9. for everyB ∈ (⋃ti

SB{ti ,VS,and}) where tx ∈ VS or tx =VSdo
10. Unlock(B);
11. for everyB ∈ (⋃ti

SB{ti ,VS,or}) where tx = first(VS) do
12. Unlock(B)

end

6.2. Correctness of the CBCC mechanism

To prove that a complete execution history (CH) generated by CBCC mechanism is correct
we show that the conditions of Theorem 5.1 hold forCH. The following properties about

242 ARPINAR ET AL.

time intervals are used in the proof. Note that⊃ and∩ denote cover and intersect relations
between the time intervals respectively.

• ((TIi ⊃ TI j) ∧ (TI j ∩ TIk 6= ∅))⇒ (TIi ∩ TIk 6= ∅).
• ((TIi ⊃ TI j) ∧ (TIi ∩ TIk=∅))⇒ (TI j ∩ TIk=∅).

Theorem 6.1. Any complete execution history(CH) generated by CBCC mechanism is
correct.

Proof:

(1) Condition 1 of Theorem 5.1 holds due to the assumption.
(2) Assume that Condition 2 of Theorem 5.1 does not hold; henceTIE ∩ TItx 6= ∅ in CH

for an edgeE=〈t j ,VS={tk, tl , . . .},¬Bn, and/or〉 in BCi , and an activitytx where
Bn ∈ B(tx) ⊆ Itx . The interval between the time when an exclusive lock onBn is
acquired with counter byt j and the time when the last of these locks are released
is denoted asTIXL(Bn)

E in the case whereVSis an and-validating set. Same notation is
used to denote the interval between the time instances where a single lock is acquired
by t j and released by the first activity of an or-validating setVS. Similarly, the interval
between the time when a shared lock is acquired and released onBn by tx is denoted
asTISL(Bn)

tx . Since activities acquire locks before they start and release after they com-
plete,TIXL(Bn)

E ⊃TIE andTISL(Bn)
tx ⊃TItx . Since exclusive and shared locks on a basic

constraint conflict, it is guaranteed thatTIXL(Bn)
E ∩TISL(Bn)

tx =∅. Yet, due to first prop-
erty above((TIXL(Bn)

E ⊃TIE) ∧ (TIE ∩TItx 6= ∅)) ⇒ (TIXL(Bn)
E ∩TItx 6= ∅). Further-

more, according to second property,((TISL(Bn)
tx ⊃ TItx)∧ (TISL(Bn)

tx ∩TIXL(Bn)
E =∅))⇒

(TItx ∩TIXL(Bn)
E =∅). Observe that the right hand sides of two formulas contradict

each other; hence our presumption is false and Condition 2 of Theorem 5.1 holds.
(3a) We start with proving that ifPreserve(tx,F)= 0 thenTIE ∩TItx =∅ is guaranteed

in CH for an edgeE=〈t j , {tk, tl , . . .},F〉 in ICi . We denote the interval between
the time when a shared lock onF is acquired with counter byt j and the time when
the last of these locks are released asTISL(F)

E . Similarly, the interval between the time
when an exclusive lock is acquired and released onF by tx is denoted asTIXL(F)

tx .
Again,TISL(F)

E ⊃TIE andTIXL(F)
tx ⊃TItx . Since exclusive and shared locks on an inter-

activity constraint conflict, it is ensured thatTISL(F)
E ∩TIXL(F)

tx =∅. With the similar
observations as in Condition 2 of this proof, Condition 3a of Theorem 5.1 holds.

(3b) We conclude with proving that ifPreserve(tx,F)= 1/2, TIE ∩TItx 6= ∅ impliesF
holds aftertx is terminated. Depending on the execution sequences oft j andtx two
possibilities can occur:

• t j acquires a shared lock onF beforetx acquires an exclusive lock onF :F is
certainly logged intoALF(tx) and if tx falsifiesF , EvalInParallel(ALF(tx)) returns
falseandtx is removed fromCH (i.e., rolled backed); henceTIE ∩ TItx =∅.
• tx acquires an exclusive lock onF beforet j acquires a shared lock onF : t j can not

lockF in shared mode afterStep11 ofAlgoritm6.1 and beforetx terminates, since
tx already lockedF in exclusive mode inStep11. HenceTIE ∩ TItx =∅.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 243

Thus, a complete execution history generated by CBCC mechanism is correct.2

6.3. Discussion

There are several alternatives to implement a constraint based concurrency control mecha-
nism. In the following, some of these alternatives are discussed:

• Conservative. In this approach, activities that are certainly or likely to falsify basic
and inter-activity constraints are determined in advance (i.e., in design-time), and pos-
sible invalidations of inter-activity constraints and accesses to states on which the basic
constraints do not (or may not) hold are prevented conservatively. For example, pro-
posed CBCC mechanism can be classified into this category if activities try to acquire
locks on the inter-activity constraints which they may falsify in addition to constraints
which they certainly falsify inSteps1 and 2 ofAlgorithm 6.1. AlsoStep11 of Algo-
rithm 6.1, andAlgorithm6.2 become unnecessary in this case. Since this conservative
technique is based solely on locking, we call it as theConstraint Locking Concurrency
Control(CLCC) mechanism. In CLCC mechanism, constraints themselves are no longer
necessary, but can be represented through some simple data items just for locking pur-
poses. It should also be noted that, if such a technique is not implemented in a workflow
system, it is possible to acquire locks manually on virtual data items using the same
principles.
• Optimistic. In this approach, activities validate their input conditions. This requires

additional operations for the verification of these conditions. Optimistic technique is very
similar to concurrency control mechanism of ConTract model [56]; however the input
conditions we check are well-defined interms of inter-activity and basic constraints. If
input condition of an activity evaluates to false, a conflict resolution algorithm can be
executed to correct the input condition violation or to relax the requirements in the input
condition. An inevitable result may be abortion of the activity and compensation of some
previously terminated activities.
• Dynamic-conservative. The approach employed by the CBCC mechanism can be clas-

sified into this category.

In the optimistic technique, if conflict resolution algorithm requires rollback of the ac-
tivity this may cause (possibly cascading) compensation of previously terminated activities
which may be a very costly process [40, 48]. In addition, overhead of validation of every
input condition should not be ignored. CLCC and CBCC techniques guarantee that input
condition of an activity is true when it is executed; thus neither input condition validation
nor compensation of other activities to resolve conflicts are required in these techniques. In
addition, CBCC mechanism provides some activities to be executed and terminated if they
pass certification process although these activities and consequently successor activities
would be blocked by the CLCC mechanism. Furthermore, in the optimistic technique it
is necessary to check the constraints themselves; however in CLCC mechanism these con-
straints can be represented by some simple data items just for locking purposes. In CBCC
mechanism on the other hand, only the inter-activity constraints which may be falsified

244 ARPINAR ET AL.

by the activities are needed in the validation phase. In Section 6.4, a comparison of the
performance characteristics of these techniques is provided.

It should be noted that, proposed CBCC and CLCC mechanisms may result in dead-
locks like any other locking-based concurrency control mechanism, since activities may be
blocked indefinitely. Therefore, special algorithms are required to handle deadlocks. There
are three well known types of methods for handling deadlocks: prevention, avoidance,
and detection and resolution [46]. We have developed a deadlock avoidance technique
for CBCC and CLCC mechanisms in which potential deadlock situations are detected in
advance (i.e., in design-time) and it is ensured that they will not occur at run-time by im-
posing additional restrictions on the interleavings of activities. Since concurrency control
dependencies among activities are known in advance, possible deadlock situations can be
detected in design-time in CBCC and CLCC mechanisms. Detailed explanation and formal
foundation of this approach are presented in [6] due to space limitations.

6.4. Performance analysis

In this section, a performance comparison of the CBCC, CLCC mechanisms and optimistic
technique which is similar to concurrency control mechanism of ConTract model [56] is
given. The simulation is realized in GPSS [53]. In the experiments, average response
time of a workflow instance (avgResTime) is measured by averaging response times of
10 workflow instances. Response time is defined as the time between the generation and
termination of a workflow instance.

In the simulation, there are a total of 10 different basic and inter-activity constraints in
the system. It should be noted that, the total number of constraints are kept small so that
the possibility of conflicts among activities is high. In this way, the performances of the
methods can be observed in a very high conflict case. For each activity, the number of
constraints that should be considered (i.e., locked or evaluated) is randomly chosen from
the interval [0–maxCons] wheremaxConsdenotes the maximum number of constraints per
activity and is given a priori. In the CLCC mechanism, each activity tries to obtain a lock
on all of its constraints. Note that, some of the constraints whichmaybe falsified by an
activity are evaluated at the activity end instead of being locked in the CBCC mechanism.
The evaluation cost per constraint is taken as constant for simplicity (i.e., 5 simulation time
units). If a constraint evaluates to false the activity is aborted and restarted later. In the
optimistic technique, the constraints are evaluated when the activity starts and once a con-
straint evaluates to false the activity is aborted and preceding activities are compensated.
The result of the evaluation is randomly determined as true or false with the probability of
70 and 30% respectively. It should be noted that this fraction favors the optimistic tech-
nique rather than the CBCC mechanism, because in the CBCC mechanism a small fraction
of constraints goes through the validation as opposed to all constraints in the optimistic
method. Also in favor of the optimistic technique, the compensation cost is chosen as
close to the maximum duration of just one activity, i.e., 50 simulation time units, although
in reality this cost is much higher since compensation of more than one activity is more
probable.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 245

Figure 14. Average response times for different maximum number of constraints per activity.

The graph in figure 14 shows the average workflow instance response times (avgResTime)
of three techniques for different maximum number of constraints per activity (maxCons).
The experiment results can be summarized as follows:

All techniques provide their bestavgResTimeswhenmaxConsis small, i.e., in [0–2].
This is expected since whenmaxCons< 2 the probability of conflicts among activities is
low, and consequently the number of blocked or compensated activities is small.

When maxCons≥ 2, CBCC and CLCC techniques provide betteravgResTimesthan
optimistic technique. For example, whenmaxConsis equal to half of the total number of
constraints in the system (e.g., around 5),avgResTimeprovided by the optimistic technique
becomes worse than two times ofavgResTimeprovided by CBCC mechanism, i.e., 1884
vs. 4306 simulation time units. This is due to fact that, the number of compensated activities
increases in the optimistic technique with the increasing number of constraints (maxCons)
which implies higher rate of conflicts. In CBCC mechanism, however, abortion of an activity
does not lead to compensation of previous activities, only the activity itself is retried later.

WhenmaxCons= 2, CBCC mechanism starts to perform better than CLCC mechanism.
For example, whenmaxCons≥ 3, CBCC mechanism provides approximately 25% faster
avgResTimethan CLCC technique. Since not all the constraints are locked in the CBCC
mechanism, the probability of delays due to locking is lower than that of CLCC mechanism.
This difference becomes more visible whenmaxConsis larger.

Performance results presented indicate that the CBCC mechanism results in lower average
workflow instance response times in almost all cases except when maximum number of
constraints that should be considered per activity (maxCons) is very small (e.g., 1) or such
a constraint does not exist. IfmaxConsis small,avgResTimesprovided by the compared
techniques are almost the same.

After observing that the performance of the optimistic technique is not good in a high
conflict case, additional experiments are conducted to compare the performances of CBCC

246 ARPINAR ET AL.

and CLCC techniques for different evaluation costs. These experiment results are presented
in [6].

7. Conclusions

Concurrency control aspects of workflow systems is addressed in this work, which is very
important for some workflow applications where mission critical operations require the
consistent view of the execution environment [21].

The fundamental issue of correctness criterion specific to workflow systems is defined
through inter-activity constraints and basic constraints by using the semantic workflow
information available at design-time. A concurrency control technique, namely Constraint
Based Concurrency Control (CBCC) mechanism, based on this criterion is defined which
uses the concept of locking in conjunction with validation with a fundamental difference
from the database locking: the constraints rather than data items are locked. We have shown
that, with a proper constraint locking and validation mechanism, the inter-activity constraints
that should remain valid are preserved, and the activities that need basic constraints to hold
are prevented from executing in the intervals where these constraints do not hold. It is
also possible to use a more conservative approach in which the activities acquire locks
instead of going through a validation phase. We call this technique as Constraint Locking
Concurrency Control (CLCC) mechanism. These techniques are simple to implement, and
the performance analysis indicates that the suggested techniques have better performance
than an optimistic approach based on the constraints (similar to ConTract [56]).

Providing flexibility and preserving correctness are somewhat conflicting aims. In the
suggested techniques a workflow designer introduces constraints to provide for the correct-
ness of workflows. However when the correctness is not an issues for parts of a workflow, it
is possible to have a more flexible system. When a workflow designer does not require the
correctness to be preserved, some of the constraints may not be enforced. In this respect,
it is possible to apply an isolation mechanism similar to isolation levels in databases [31]
by allowing the workflow designer to customize the constraints graphs according to the
correctness requirements of workflow application. For these reasons, we believe that the
CBCC and CLCC techniques have practical importance.

References

1. D. Agrawal, A.E. Abbadi, and A.K. Singh, “Consistency and orderability: Semantics-based correctness
criteria for databases,” ACM TODS, vol. 18, no. 3, September 1993.

2. J. Allen, “Maintaining knowledge about temporal intervals,” Com. ACM, vol. 26, no. 11, November 1983.
3. G. Alonso, D. Agrawal, and A.E. Abbadi, “Process synchronization in workflow management systems,” 8th

IEEE Symposium on Parallel and Distributed Processing, 1996.
4. G. Alonso and H.-J. Schek, “Research issues in large workflow management systems,” in Proc. of NSF Work-

shop on Workflow and Process Automation in Information Systems: State-of-the-Art and Future Directions,
A. Sheth (Ed.), Athens, Georgia, May 1996.

5. P. Ammann, S. Jajodia, and I. Ray, “Applying formal methods to semantic-based decomposition of transac-
tions,” ACM TODS, vol. 22, no. 2, June 1997.

6. I.B. Arpinar, “Formalization of workflows and correctness issues in the presence of concurrency,” Ph.D. thesis,
Dept. of Computer Eng., Middle East Tech. Univ., November, 1998.

7. I.B. Arpinar, S. (Nural) Arpinar, U. Halici, and A. Dogac, “Correctness of workflows in the presence of
concurrency,” Next Generation Info. Tech. and Sys., Israel, July 1997.

FORMALIZATION OF WORKFLOWS AND THEIR CORRECTNESS ISSUES 247

8. P.A. Attie, M.P. Singh, E. Emerson, A. Sheth, and M. Rusinkiewicz, “Scheduling workflows by enforcing
intertask dependencies,” Dist. Sys. Engineering, vol. 3, no. 4, pp. 222–238, December 1996.

9. P.A. Attie, M.P. Singh, A. Sheth, and M. Rusinkiewicz, “Specifying and enforcing intertask dependencies,”
in Proc. of the 19th Intl. Conf. on VLDB, September 1993.

10. B. Badrinath and K. Ramamritham, “Semantics-based concurrency control: Beyond commutativity,” in Proc.
of Intl. Conf. on Data Engineering, February 1987.

11. C. Beeri, P.A. Bernstein, and N. Goodman, “A model for concurrency in nested transaction systems,” Journal
of the ACM, vol. 36, no. 2, 1989.

12. M. Benedikt, T. Griffin, and L. Libkin, “Verifiable properties of database transactions,” ACM PODS 1996,
Montreal, Canada.

13. A.J. Bernstein and P.M. Lewis, “Transaction decomposition using transaction semantics,” Distributed and
Parallel Databases, vol. 4, pp. 25–47, 1996.

14. Y. Breitbart, A. Deacon, H.J. Schek, A. Sheth, and G. Weikum, “Merging application-centric and data-centric
approaches to support transaction-oriented multi-system workflows,” ACM SIGMOD Record, vol. 22, no. 3,
September 1993.

15. S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca, “Automatic generation of production rules for integrity
maintenance,” ACM TODS, vol. 19, no. 3, September 1994.

16. E.W. Dijkstra, A Discipline of Programming, Prentice-Hall: Englewood Cliffs, NJ, 1976.
17. A. Dogac, E. Gokkoca, S. Arpinar, P. Koksal, I. Cingil, I.B. Arpinar, N. Tatbul, P. Karagoz, U. Halici, and

M. Altinel, Design and Implementation of a Distributed Workflow Management System: METUFlow, in
Advances in Workflow Management Systems and Interoperability, Springer Verlag, 1998.

18. A. Dogac, L. Kalinichenko, M.T. Ozsu, and A. Sheth (Eds.), Advances in Workflow Management Systems
and Interoperability, Springer Verlag, 1998.

19. J.A. Ellis and G.J. Nutt, “Modeling and enactment of workflow systems,” 14th Intl. Conf. on Application and
Theory of Petri Nets, 1993.

20. A.K. Elmagarmid (Ed.), Database Transaction Models for Advanced Applications, Morgan Kaufmann Pub-
lishers: San Mateo, CA, 1992.

21. A. Elmagarmid and W. Du, Workflow Management: State of the Art vs. State of the Market, in Advances in
Workflow Management Systems and Interoperability, Springer Verlag, 1998.

22. E.A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical Computer Science, J. van Leeuwen
(Ed.), Elseiver 1990.

23. A. Farrag and M.T. Ozsu, “Using semantic knowledge of transactions to increase concurrency,” ACM TODS,
vol. 14, no. 4, December 1989.

24. M. Fitting, First Order Logic and Automated Theorem Proving, Springer Verlag: NY, 1990.
25. H. Garcia-Molina, “Using semantic knowledge for transaction processing in a distributed database,” ACM

TODS, vol. 8, no. 2, June 1983.
26. H.J. Genrich, “Predicate/transition nets,” in Advances in Petri Nets, Springer, 1986, p. 254.
27. D. Georgakopoulos, M. Hornick, and F. Manola, “Customizing transaction models and mechanisms in a

programmable environment supporting reliable workflow automation,” IEEE Trans. on Knowledge and Data
Eng., 1995.

28. D. Georgakopoulos, M. Hornick, and A.P. Sheth, “An overview of workflow management: From process
modeling to workflow automation infrastructure,” Distributed and Parallel Databases, vol. 3, pp. 119–153,
1995.

29. D. Georgakopoulos, M. Rusinkiewicz, and A.P. Sheth, “Using tickets to enforce the serializability of multi-
database transactions,” IEEE TKDE, vol. 6, no. 1, 1994.

30. E. Gokkoca, M. Altinel, I. Cingil, N. Tatbul, P. Koksal, and A. Dogac, “Design and implementation of
a distributed workflow enactment service,” in Proc. of Intl. Conf. on Cooperative Information Systems,
Charleston, USA, June 1997.

31. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann Publishers:
San Mateo, CA, 1993.

32. U. Halici, I.B. Arpinar, and A. Dogac, “Serializability of nested transactions in multidatabases,” Intl. Conf.
on Database Theory (ICDT ’97), Greece, January 1997.

33. T. Harder, “Handling hot spot data in DB-sharing systems,” Info. Sys., vol. 13, no. 2, 1988.

248 ARPINAR ET AL.

34. D. Harel et al., “Statemate: A working environment for the development of complex reactive systems,” IEEE
Transactions on Software Engineering, vol. 16, no. 4, April 1990.

35. M.P. Herlihy and W.E. Weihl, “Hybrid concurrency control for abstract data types,” J. Comput. Syst. Sci.,
vol. 43, no.1, August 1991.

36. C. Hoare, “An axiomatic basis for computer programming,” Com. ACM, vol. 12, no. 10, October 1969.
37. D. Hollinsworth, “The workflow reference model,” Technical Report TC00-1003, Workflow Management

Coalition, December 1994. Accessible via: http://www.aiai.ed.ac.uk/WfMC/
38. P. Karagoz, S. Arpinar, P. Koksal, N. Tatbul, E. Gokkoca, and A. Dogac, “Task handling in workflow man-

agement systems,” Intl. Workshop on Issues and Applications of Database Technology, Berlin, June 1998.
39. P. Koksal, S. Arpinar, and A. Dogac, “Workflow history management,” ACM Sigmod Record, vol. 27, no. 1,

March 1998.
40. H.F. Korth, E. Levy, and A. Siberschatz, “A formal approach to recovery by compensating transactions,” in

Proc. of the 16th VLDB Conf., Brisbane, Australia, 1990.
41. H.F. Korth and G. Speegle, “Formal aspects of concurrency control in long-duration transaction systems using

the NT/PV model,” ACM TODS, vol. 19, no. 3, 1994.
42. N. Krishnakumar and A. Sheth, “Managing heterogeneous multi-system tasks to support enterprise-wide

operations,” Distributed and Parallel Databases, vol. 3, no. 2, pp. 155–186, April 1995.
43. N.A. Lynch, “Multilevel atomicity: A new correctness for database concurrency control,” ACM TODS, vol. 8,

no. 4, pp. 484–502, December 1983.
44. J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh, “WebWork: METEOR2’s web-based workflow

management system,” Journal of Intel. Info. Sys., vol. 10, no. 2, March 1998.
45. P. Muth, D. Wodtke, J. WeiBenfels, G. Weikum, and A.K. Dittrich, “Enterprise-wide Workflow Management

based on State and Activity Charts,” in Advances in Workflow Management Systems and Interoperability,
Springer Verlag, 1998.

46. M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, 2nd edition, Prentice Hall: Engle-
wood Cliffs, New Jersey, 1998.

47. M. Reichert and P. Dadam, “ADEPTflex—Supporting dynamic changes of workflows without loosing control,”
Journal of Intel. Info. Systems, vol. 10, no. 2, pp. 93–129, 1998.

48. M. Rusinkiewicz, A. Cichocki, A. Sheth, and G. Thomas, “Bounding the effects of compensation under
multi-level serializability,” Dist. and Parallel Databases, vol. 4, no. 4, October 1996.

49. M. Rusinkiewicz and A.P. Sheth, “Transactional workflow management systems,” in Proc. of Advances in
Database and Information Systems, ADBIS’94, Moscow, May 1994.

50. M. Rusinkiewicz and A.P. Sheth, “Specification and execution of transactional workflows,” Modern Database
Systems: The Object Model, Interoperability and Beyond, W. Kim (Ed.), ACM Press: New York, NY, 1995,
pp. 592–620.

51. F. Schwenkreis, “A formal approach to synchronize long-lived computations,” in Proc. of the 5th Australasian
Conf. in Information Systems, Melbourne, 1994.

52. A. Sheth, D. Georgakopoulos, S.M.M. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf,
Report from the NSF Workshop on Workflow and Process Automation in Information Systems. Accessible
via: http://lsdis.cs.uga.edu/activities/

53. I. Stahl, Introduction to Simulation with GPSS, Prentice Hall, 1990.
54. J. Tang and S.-Y. Hwang, “Handling uncertainty in workflow applications,” in Proc. of 5th Intl. Conf. on Info.

and Knowledge Engineering, CIKM’96, Maryland, November, 1996.
55. J. Tang and J. Veijalainen, “Transaction-oriented workflow concepts in inter-organization environments,” Intl.

Conf. on Information and Knowledge Management, Baltimore, 1995.
56. H. Waechter and A. Reuter, The ConTract Model, in Database Transaction Models for Advanced Applications,

Morgan Kaufmann Publishers: San Mateo, CA, 1992, chap. 7.
57. G. Weikum, “Principles and realization strategies of multilevel transaction management,” ACM TODS, vol.

16, no. 1, 1991.
58. D. Wodtke and G. Weikum, “A formal foundation for distributed workflow management based on state charts,”

in Proc. of 6th Intl. Conf. on Database Theory, Greece, January 1997.
59. D. Worah and A. Sheth, “What do advanced transaction models have to offer for workflows?,” Intl. Workshop

on Adv. Transaction Models and Architectures, India, August 1996.

