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Abstract. Hybrid logic is modal logic enriched with names for worlds.
We formalize soundness and completeness proofs for a Seligman-style
tableau system for hybrid logic in the proof assistant Isabelle/HOL. The
formalization shows how to lift certain rule restrictions, thereby simpli-
fying the original un-formalized proof. Moreover, the completeness proof
we formalize is synthetic which suggests we can extend this work to prove
a wider range of results about hybrid logic.
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1 Introduction

Hybrid logic extends ordinary modal logic with nominals, a special sort of propo-
sitional symbol true at exactly one world. Nominals, and the satisfaction oper-
ators they give rise to, make hybrid logic well-suited for different applications
ranging from temporal logic [4] to epistemic logics for social networks [22]. The
description logics underlying the Web Ontology Language and applications in
biomedical informatics [16] can also be seen as forms of hybrid logic [2].

ST is a sound and complete tableau system for hybrid logic. It is known to
terminate when five restrictions are imposed on the rules, and one key rule is split
into three cases [5]. Two completeness proofs exist for ST, a synthetic one that
does not cover the rule restrictions [17] and a complex translation-based proof
that does [5]. In this paper we modify ST and three of its restrictions slightly, and
use the proof assistant Isabelle/HOL to show that we can lift these restrictions
by (a) formally proving the admissibility of their unrestricted versions, and (b)
formalizing a synthetic completeness proof for the modified calculus.

Isabelle is a generic proof assistant and Isabelle/HOL is its instance based
on higher-order logic [20]. Proof assistants like Isabelle provide tools to express
mathematical statements and proofs in a formal language that can be mechan-
ically verified; all proofs presented here have been checked in this manner. The
full formalization, 4396 lines, is available in the Archive of Formal Proofs which
keeps refereed submissions up to date with the current Isabelle version [13].
The formalization was developed for the first author’s MSc thesis [15]. We chose
Isabelle/HOL because it is the proof assistant we know best.
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2 Syntax and Semantics

The well-formed formulas of basic hybrid logic are defined as follow. We use the
letter x for propositional symbols and i, a and b for nominals.

φ, ψ ::= x | i | ¬φ | φ ∨ ψ | ♦φ | @iφ

The language is interpreted on Kripke models M, consisting of a frame (W,R)
and a valuation of propositional symbols V . Here W is a non-empty set of worlds
and R is a binary accessibility relation between them. To interpret the nominals
we use an assignment g mapping nominals to elements of W ; if g(i) = w then
we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= x iff w ∈ V (x)
M, g, w |= i iff g(i) = w
M, g, w |= ¬φ iff M, g, w �|= φ
M, g, w |= φ ∨ ψ iff M, g, w |= φ or M, g, w |= ψ
M, g, w |= ♦φ iff for some w′, wRw′ and M, g, w′ |= φ
M, g, w |= @iφ iff M, g, g(i) |= φ

An expression of the form @iφ is called a satisfaction statement, and such state-
ments are true iff φ is true at the world denoted by nominal i. Note two important
special cases: @ia says that the nominals i and a denote the same world, and
@i♦b says that the world denoted by i has access to the world denoted by b.

3 A Seligman-Style Tableau System

Many proof systems for hybrid logic exist; see Blackburn et al. [5] for discussion.
These typically work by manipulating only formulas prefixed by satisfaction
operators, which gives a global flavour to proofs, however the tableau system
we formalize here manipulates arbitrary formulas. It is an adaptation of system
ST, due to Blackburn et al. [5], which was inspired by Jeremy Seligman’s local
natural deduction and sequent calculus systems for hybrid logic [23,24].

The tableau rules are based on a subdivision of tableau branches into blocks.
Each pair of blocks is separated by a horizontal line and the first formula on each
block is a nominal dubbed the opening nominal. The intuition is that the formu-
las on a block are true in the world denoted by its opening nominal. We assume
that the initial block, like the rest, is always named (this is our first modification
of the original ST system). This assumption simplifies the formalization, as we
can now model all blocks as lists of formulas paired with an opening nominal,
and a branch as a list of blocks. If Θ is a branch and φ occurs on an i-block
in Θ then we say that φ occurs at i in Θ. We occasionally refer to the opening
nominal of a block as its name or type.

The rules are given in Fig. 1: the first three are propositional, the three below
are for working with the blocks, and the four to the right apply to the hybrid
logic connectives. The input to the rule is given above the vertical line and the
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output below it. Above every input formula, we write the opening nominal of
the block it occurs on. Similarly, the opening nominal of the output block is the
first thing below the line. If the opening nominals match, then the output block
may be the same as an input block. In the formalization we model the rules as
an inductively defined set of branches that have closing extensions.
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1 i is fresh, φ is not a nominal.
2 i is not fresh.

Fig. 1. Tableau rules.

Consider the (¬¬) rule: if ¬¬φ occurs on an a-block and the current block is
an a-block, then φ is a legal extension of the branch. For the Nom rule, nominal i
occurs at both a and b, so they must denote the same world and copying φ from
a b-block to the current a-block is legal. Here we also differ from the original
ST: we do not require the shared nominal i to occur on the current block as
this would be a problem for our Strengthening Lemma in Sect. 4. The GoTo rule
allows us to change perspective from one world to another by starting a new
block with an opening nominal that already occurs somewhere on the branch.

A branch closes if the same formula occurs on the same type of block both
positively and negatively, and a tableau closes if all its branches do. If a closed
tableau can be obtained starting from the branch Θ, then we write � Θ. If Θ
is a branch and the current block has opening nominal a, then we write the
extension of Θ by φ as φ −a Θ to resemble the extensions in Fig. 1.

The original ST has five restrictions, called R1-R5 [5]. Restriction R3 is
unnecessary in our system since it applies to an omitted rule that names the
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initial block. Restriction R4 forbids applying GoTo twice in a row and formal-
izing it is left for future work. Here are our adaptations of the three remaining
restrictions:

R1 The output of a rule must include a formula new to the current block type.
R2 The (♦) rule can only be applied to input ♦φ on an a-block if it is not already

witnessed on a.
R5 (@) and (¬@) can only be applied to premises i and @iφ (¬@iφ) when the

current block is an i-block.

The formula φ is new to a in Θ if φ does not occur at a in Θ. A formula ♦φ
is witnessed at a in Θ if for some witnessing nominal i, both ♦i and @iφ occur
at a in Θ. The original R2 restriction states that the (♦) rule cannot be applied
twice to the same formula occurrence, but formalizing this would require keeping
track of previous rule applications. We already keep track of the branch so we
prefer the R2 presented here. Our version of the @-rules already satisfy the R5
restriction.

4 Main Results

Theorem 1 (Soundness). If � Θ where Θ consists of just ¬φ on an i-block
and i does not occur in φ, then φ is valid.

Proof. Similar to the original soundness proof by Blackburn et al. [5]. ��
The following lemma allows us to derive rules unrestricted by R1:

Lemma 1 (Strengthening). If an extension is not new then it is redundant.
That is, if � φ −a Θ and φ occurs at a in Θ then � Θ.

Proof. The existing φ can be used as rule input in place of the extension. ��
To lift R2 we use the following substitution lemma where φσ and Θσ are

obtained from φ and Θ, respectively, by replacing every nominal i with σ(i).

Lemma 2 (Substitution). Let σ be a substitution function whose domain and
codomain coincide. If � Θ then � Θσ.

Proof. By induction on the derivation of � Θ for arbitrary σ. In the (♦) case we
assume that ♦φ occurs at a in Θ and need to derive � Θσ from � (@iφ−a ♦i−a

Θ)σ′ where i is some nominal fresh to Θ and we get to pick σ′.
By assumption, ♦φ is unwitnessed at a in Θ but since the substitution can

collapse formulas, ♦(φσ) may be witnessed in Θσ by some witnessing nominal j.
In this case, where restriction R2 prevents us from applying the (♦) rule, we let
σ′ = σ(i := j) in the induction hypothesis. Since i occurs only in the extension
the rest of the branch is unaffected by this choice, Θ(σ(i := j)) = Θσ, but now
the extension occurs elsewhere at a and the Nom rule justifies it. ��
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Lemma 3 (Unrestricted (♦)). If ♦φ occurs at a in Θ, i is fresh and φ is not
a nominal then we can derive � Θ from a witnessing extension � @iφ−a♦i−aΘ.

Proof. If ♦φ is already witnessed at a in Θ then use Lemma 2 to make i coincide
with the existing witnessing nominal and justify the extension by Nom. ��

If Θ consists of blocks B1, B2, . . . , Bn, let Blocks(Θ) = {B1, B2, . . . , Bn}.
The substitution lemma allows us to prove the following:

Lemma 4 (Branch structure). Given infinitely many nominals, we can add,
contract and rearrange blocks: If � Θ and Blocks(Θ) ⊆ Blocks(Θ′) then � Θ′.

Proof. By induction on the derivation of � Θ for arbitrary Θ′. ��
Lemma 5 (Unrestricted (@) (and (¬@))). If � φ−aΘ, @iφ occurs at b in Θ
and i occurs at a then � Θ.

Proof. Figure 2 shows the derivation where each new branch to the right is known
by Lemma 4 to still have a closing extension. ��
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Fig. 2. Deriving the unrestricted (@) rule.

Theorem 2 (Completeness). If φ is valid then � Θ where Θ consists of a
single block with φ on it.

Proof. Essentially a modification of the proof for ST by Jørgensen et al. [17],
since our system is similar, and we have proved we can lift our restrictions. ��

We remark that the completeness proof is an example of what are known
as synthetic approaches to completeness [11,25], which involve reasoning about
maximal consistent sets and their properties. However the completeness proof
for ST distinguishes itself by using maximal sets of entire blocks rather than
plain formulas. One component of the proof is a definition of when such a set
of blocks is a Hintikka set and thus satisfiable [17]. In the formalization [13] we
precisely formulate this definition in the formal language of Isabelle/HOL and
in doing so we discovered a shortcoming in the definition given by Jørgensen et
al. Essentially, their requirement on propositional symbols fails to take so-called
equivalence of nominals into account, making their model valuation incompatible
with their model existence result.
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5 Related Work

Linker formalizes in Isabelle/HOL a semantic embedding of a spatio-temporal
multi-modal logic designed for reasoning about motorway traffic which includes a
hybrid logic-inspired at-operator [18]. Linker and Hilscher give a sound labelled
natural deduction proof system for a version of the logic without the hybrid
extension [19]. Doczkal and Smolka formalize hybrid logic with nominals but no
special operators in constructive type theory using the proof assistant Coq. They
do not define a proof system but give algorithmic proofs of small model theo-
rems and computational decidability of satisfiability, validity, and equivalence of
formulas [10]. The present work appears to be the first proof system for hybrid
logic with a formalized completeness proof.

Formalizations of completeness proofs in Isabelle exist for, among others, a
tableau system and a one-sided sequent calculus for first-order logic [14], a nat-
ural deduction system for first-order logic [3], a Hilbert system for epistemic
logic [12], and the first-order resolution calculus [21]. Blanchette et al. give
abstract proofs of soundness and completeness that can be instantiated for a
range of Gentzen and tableau systems for various flavors of first-order logic [7].
Moreover, Blanchette gives an overview of the formalized metatheory of various
logical calculi and automatic provers in Isabelle [6].

6 Future Work

We are currently working on restricting the GoTo and Nom rules to ensure ter-
mination; previous (un-formalized) work has shown via translation to and from
a different system that completeness can be preserved and that the resulting
system is terminating [5]. We would like to show termination directly via a
decreasing length argument in the style of Bolander and Blackburn’s work on an
internalized labelled tableau system [8]. Given a sound, complete and terminat-
ing system we want to verify an algorithm based on it and use it as a decision
procedure for basic hybrid logic. Moreover, as the completeness proof that we
formalized is based on reasoning about maximal consistent sets and their proper-
ties, it should be possible to extend it to other key results for hybrid logic which
have been proved by similar forms of reasoning, notably interpolation results [1].

7 Conclusion

We have presented a tableau system for basic hybrid logic whose soundness and
completeness has been formalized in Isabelle/HOL. Moreover, we have shown
how to lift certain restrictions on the rules so that an existing completeness
proof could be formalized and applied. The fact that the completeness proof we
formalized is a synthetic proof suggests that it can be extended to a number of
other key results for hybrid logic that can be found in the literature.
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