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Formalizing Ontology Alignment and its
Operations with Category Theory1

Antoine ZIMMERMANN a, Markus KRÖTZSCH b, Jérôme EUZENAT a and
Pascal HITZLER b

a INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot (France)
b AIFB, Universität Karlsruhe, D-76128 Karlsruhe (Germany)

Abstract. An ontology alignment is the expression of relations between different
ontologies. In order to view alignments independently from the language express-
ing ontologies and from the techniques used for finding the alignments, we use a
category-theoretical model in which ontologies are the objects. We introduce a cat-
egorical structure, called V-alignment, made of a pair of morphisms with a com-
mon domain having the ontologies as codomain. This structure serves to design
an algebra that describes formally what are ontology merging, alignment compo-
sition, union and intersection using categorical constructions. This enables com-
bining alignments of various provenance. Although the desirable properties of this
algebra make such abstract manipulation of V-alignments very simple, it is prac-
tically not well fitted for expressing complex alignments: expressing subsumption
between entities of two different ontologies demands the definition of non-standard
categories of ontologies. We consider two approaches to solve this problem. The
first one extends the notion of V-alignments to a more complex structure called
W-alignments: a formalization of alignments relying on “bridge axioms.” The sec-
ond one relies on an elaborate concrete category of ontologies that offers high ex-
pressive power. We show that these two extensions have different advantages that
may be exploited in different contexts (viz., merging, composing, joining or meet-
ing): the first one efficiently processes ontology merging thanks to the possible use
of categorical institution theory, while the second one benefits from the simplicity
of the algebra of V-alignments.

Keywords. Ontology alignment, category theory

Introduction

In its most general form, the term “ontology alignment” can refer to almost any formal
description of the (semantic) relationship between ontologies. A more restricted concep-
tion of the term is used in surveys [6,23] or alignment API [7], that conceive alignments
as pairs of elements of the ontologies2, together with information on the type of the rela-
tion and the confidence in its correctness. An alignment is thus given a set-theoretic defi-

1This work has been partly supported by the European Knowledge Web network of excellence (IST-2004-
507482), by the German Ministry for Education and research (BMBF) under the SmartWeb project, and by the
European Commission under contract IST-2003-506826 SEKT.

2We speak of “elements of an ontology” to refer to arbitrary semantic entities of a given ontology language,
e.g., concepts, relations, or instances.



nition as a set of correspondences. Though perfectly acceptable in applications, it has the
disadvantage of using entities—something local—as the basis of ontology alignment—
something global.

Here we present a complementary approach that treats alignments as first class cit-
izens where locally defined elements are not needed. Our main goal is to build a for-
mal theory of ontology alignments and their associated operations that is independent of
the internal representation language. To achieve this objective, we start from a category-
theoretic definition of ontology alignment that was already sketched in [24,4,15,12,14]:
a pair of morphisms∗ with a common domain. However, none of these works provided
in-depth investigations of this abstract formulation of the alignment problem.

Based on this related work, we build up a framework around the notion of
V-alignments, with an abstract definition of the merge of two ontologies and an algebra
allowing composition, intersection and union of alignments (§2). Then, disposing of a
well-behaved, language-independent infrastructure, concrete alignments must be embed-
ded into it as an example of the generality of our approach. A critical issue is the abil-
ity to express non-symmetrical relations (e.g., a class in one ontology being subsumed
by another class in another ontology) within such theoretical framework. No solution is
given to this problem in all cited papers. The difficulty does not reside in the theoreti-
cal ability to express such relations, but in the manner we should instantiate the abstract
formulation. In §3, we propose two solutions to this problem:

• define a more complex structure for the definition of category theoretic align-
ments, while reusing already existing categories of ontologies;

• design a category—or rather a class of categories—with elaborate morphisms
enabling the expression of complex, non-symmetrical relations.

The former approach, presented in §4, is a re-construction of the framework with
the new notion of W-alignments. The latter solution presents a home-made category of
ontologies that increases the expressivity of morphisms, in comparison to previously
published categories of ontologies (§5). Both approaches have interesting advantages
and constraining drawbacks that we consider in §6.

1. Related work

In [24], a similar categorical approach is mentioned but not rigorously formalized. [4]
uses morphisms of algebraic specifications3 to define morphisms between ontologies and
say a relation (an alignment in their sense) between ontologies O1 and O2 consists of
an ontology O and a pair of morphisms χ1 : O → O1 and χ2 : O → O2. This is
precisely the definition of V-alignment given below, but it does not provide any means
of representing complex alignments as we do. In [15], a category-theoretic approach
using the information flow theory of Barwise and Seligman [3] is given, with no concrete
representation of alignments. Kent also gives an intuition of the bridge ontology idea in
[16] but he does not formalize it within category theory and only describes the merge of
two ontologies. Information Flow is also the basis of an implemented system called IF-

∗Words marked with a * are category-theoretic terms. Their definition can be found in, e.g., [20,1,19].
3Algebraic specifications are closely related to specifications in institution theory, which we often refer to,

without using it explicitly.



Map [13] designed for automated ontology mapping, but they do not have a categorical
representation for rich alignments. [12] gives a concrete example of a representation
of an alignment in category theory, but since it is so simplistic, it is hard to see the
generality of the approach. Joseph Goguen’s work on institution∗ theory [10], especially
[9,8], advertises the use of colimits∗ for ontology integration. This theory, though not
sufficient to model complex alignments with a V-alignment structure, can be used as a
grounding for our so-called W-alignments. More details on the categorical approach are
given in a survey on ontology mapping [14]. Finally, ontology alignment and schema
matching are closely related. In particular, [5] describes a schema matching algebra that
we partially generalize with our approach. See [21,14,23] for surveys on ontology and
schema mappings in general.

2. Simple alignments

This part presents a categorical formulation of various operations employed when ma-
nipulating different ontologies and alignments. These operations are ontology merging,
alignment composition, alignment union and intersection. They are presented in more
details in [11]. They are but mere application of common categorical constructions to the
abstract alignment structure and will only be sketched here.

Remark: In the remainder, some familiarity with category theory would be useful.
For more details on the basics of category theory, see [20] for an easy yet good introduc-
tion. [1,19] give something more elaborated.

2.1. Category-theoretic alignments

As said before, an ontology alignment is a description of the relationship between two
ontologies. Category theory generalizes the set-theoretic notion of relation, and offers a
definition for a (generalized) relation between two arbitrary objects in a category∗. An
alignment thus corresponds to the diagram given below, where objects∗ O1, O2 and A
are ontologies and π1 and π2 are ontology morphisms∗. In categorical terminology, such
diagram is called a span.

O1 O2

A

π1``AAAAA
π2 >>}}}}}

When the objects O1, O2, A are ontologies and π1, π2 are ontology morphisms, we
call this structure a V-alignment due to the shape of the associated diagram and in order
not to confuse it with the informal notion of alignment. The very same definition is
used in [4,12,14] with different names (ontology relation, ontology alignment, ontology
articulation).

2.2. Merging with V-alignments

Once a V-alignment between two ontologies is known, it is desirable to integrate the
aligned ontologies into a single ontology. This operation, called ontology merging, aims



at uniting heterogeneous specifications into a larger, more precise one which allows
more information sharing. The categorical formalization of V-alignments allows for a
simple description of the merge, and this can be described in terms of the category-
theoretic pushout∗ construction. [15,13,12] give more details about this construction, and
the present paper also discusses this point in §3.

2.3. Algebra for V-alignments

The need for ontology alignment naturally arises when information from many ontolo-
gies is relevant to a given task. However, since the task of constructing alignments is not
an easy one and can hardly be accomplished in a fully automatic fashion, it is reasonable
to store and reuse known alignments. The purpose of this section is to introduce a sound
algebra of V-alignments that allows for essential operations that enable us to compose,
join, and intersect alignments.

These operations are application of general operations over categorical spans, so
interested readers shall refer to [19] for their general properties. They are also more
detailed in [11]. This is why here we present them briefly.

2.3.1. Composing alignments

Composition is a central operation for the reuse of alignments: if we have alignments
between ontologies O1 and O2, and between O2 and O3, then it should be possible to
obtain an alignment of O1 and O3. The definition is the same as the composition of spans
in category theory (see [19]). So it is obtained by the use of the categorical construction
called pullback∗.

The following commutative diagram∗ shows two V-alignments 〈A,α1, α2〉 and
〈B, β2, β3〉. The composition is the alignment 〈C,α1 ◦ fA, β3 ◦ fB〉, where 〈C, fA, fB〉
is the pullback of α2 and β2.

O1 O2 O3

A

α1``AAAAA
α2 >>}}}}}

B

β2``AAAAA
β3 >>}}}}}

C

fA``BBBBB
fB >>|||||γ1
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Composition is associative and identity exists, which confirms that the proposed
operation is well-behaved as a composition of alignments.

2.3.2. Intersection and union of alignments

Intersection gives the mutually agreed correspondences of two alignments. Union gath-
ers all asserted relations specified in two alignments. These operations are indeed very
useful in the context of the Semantic Web since they allow a modularization of align-
ments. In this respect, one can give a partial alignment with only part of the relevant
correspondences and expect to retrieve more on the Web when needed.

Figure 1 a. gives the diagram of intersected alignments 〈A, f1, f2〉 and 〈B, g1, g2〉.
Object C together with morphisms kA, kB , h1 and h2 make the limit∗ of the diagram
composed of the two alignments. The resulting alignment is 〈C, h1, h2〉.
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Figure 1. Intersection and union of alignments.

Union is defined via intersection. In order to unify two alignments, one has to know
what is common to both of them. Then the union is the disjoint union of this common part
and the non-common parts. In Figure 1 b., this is done by way of a categorical pushout∗

of 〈kA, kB〉. Morphisms u1 (resp. u2) is obtained by factorizing∗ f1 (resp. f2) through
iA (resp. iB). So informally, we say that union is the pushout of intersection.

These operations are, as expected, commutative and associative.
This algebra concisely formalizes operations combining two or more alignments

provided by different alignment algorithms or experts, either by composing (when there
is no alignment between two related ontologies), joining (union of alignments: if both
algorithms take into account different aspects of ontologies) or meeting them (intersec-
tion of alignments: if on the contrary they should agree for considering correspondences
to be correct).

3. Concretizing V-alignments

In order to apply the previous framework to real cases, it is necessary to instantiate it
with concrete categories. For instance, one can consider the most basic way to describe
relationships between two ontologies: identifying those elements which represent the
same semantic entities. This can be adequately described by a binary relation between
the sets of elements, that is, consider morphisms as functions.

In the literature, the most adapted categories of ontologies are found in institution
theory [10], where specifications∗ (i.e., ontologies in our terms) are mapped with truth-
preserving functions. Notably the language OWL can be described as an institution [17].
Unfortunately, a pair of functions (even structure-preserving), is only adequate to ex-
press equivalence of entities. In many cases, though, the two ontologies to align were de-
signed in such way that some concepts do not have their equivalent in the other ontology,
although several concepts are closely related. For instance, one may find that concept
Woman in ontology O1 is a subclass of Person in ontology O2. In this case, the merge
should contain concepts Person and Woman with a subsumption relation between them
(see Figure 2). However, assuming this is the result of a pushout operation, it is not clear
what the alignment should be.

A pair of functions cannot lead to such a pushout. So the problem of expressing com-
plex alignments requires investigation, and we therefore propose the following solutions
to work out this issue:
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Figure 2. Expressing non-symmetrical relations with V-alignments.

1. Find more complex categories, where objects still are ontologies, but with mor-
phisms able to express other relations;

2. Keep the category simple, and complexify the definition of an alignment using
more elaborate structure;

3. Change the definition of the merge, for example by using different type of col-
imit∗.

The last item implies that the operations defined in §2 are to be abandoned. Since
they are built on well established work, we will not challenge this idea. We first discuss
item (2) in §4, where a new alignment structure is defined on top of the previous one and
leads to an upgrade of the associated infrastructure. Item (1) is considered in §5, which
defines a new category of ontologies where morphisms are family of relations instead of
functions.

4. W-alignments

In this section, we combine existing material into an extended formulation of alignments
that we will suggestively name W-alignments. It corresponds to a categorization of the
notion of bridge axioms. Merging and composing are defined in this framework, but the
algebra suffers from defects.

4.1. Categorical formulation of bridge axioms

Let us start with the example from §3: consider two OWL-ontologies O1 and O2 that
contain the atomic concepts Woman and Person , respectively. Assuming that none of
the ontologies contains both concepts, it is not possible to express the intended subsump-
tion of Woman and Person with V-alignments in a common category of ontologies
where concepts are mapped to equivalent concepts.

In such cases, the relation is nonetheless expressible in the ontology language but
cannot be represented with the vocabulary of any of the two ontologies. So the idea is
to externalize the assertion “Woman v Person” in another ontology. These external
assertions are called bridge axioms (described from a logical point of view in e.g., [18]).
As observed in the introduction, alignments described as sets of bridge axioms give a
local description of the correspondences between two ontologies. In order to conform to
the categorical paradigm, we must first give a globalized definition of these axioms.



We do this by representing bridge axioms in form of an additional bridge ontology.
The fact that certain concepts of the aligned ontologies occur within the bridge ontology
is captured by V-alignments between the bridge and each of the aligned ontologies. We
thus arrive at the following definition:

Definition 4.1 (W-alignment) A W-alignment between two ontologies O1 and O2 is a
triple 〈B,A1, A2〉 where B is a bridge ontology and A1 and A2 are two V-alignments
between O1 and B and between O2 and B, respectively.

The following diagram depicts the situation, which also serves to illustrate why the
above terminology was chosen. Note also that we do not impose any restrictions on the
bridge ontology B. In particular B could contain axioms that are related to neither O1

nor O2.

O1 B O2

A1

>>}}}}}

aaBBBBB

A2

==|||||

``AAAAA

Based on this categorical formulation, here we give a suitable definition for merging
of ontologies that are aligned with a W-alignment.

Definition 4.2 Given two ontologies O1 and O2 and a W-alignment between them, the
merge of O1 and O2 is defined to be the colimit∗ of the alignment diagram. More explic-
itly, this colimit M is computed by successive pushouts as in Figure 3.

M

O+
1

>>|
|

|

O+
2

``B
B

B

O1

>>|
|

|
B

``A
A

A
>>}

}
}

O2

``B
B

B

A1

=={{{{{

aaCCCCC

A2

=={{{{{

aaCCCCC

Figure 3. Merging with W-alignments.

Intuitively, O+
1 and O+

2 represent the original ontologies O1 and O2 extended with
axioms and elements that enable us to express their alignment as a simple V-alignment.
This idea is not entirely new, and in [16] O+

1 and O+
2 have been called portal ontolo-

gies, referring to their specific role in making the knowledge of each of the ontologies
accessible to the other one.

Since this merge is obtained by successive pushouts, this operation for W-alignments
is in the same class of complexity as merging with V-alignments.



Example 4.3 A more demonstrative example consists in expressing the semantic con-
nection between a n-ary relation and its reification with only binary relations. For in-
stance, property “sells” relates a seller to a buyer and to an object (3-ary relation)
in the first ontology. The second ontology has a class “Sale” that has three properties
“hasSeller”, “hasBuyer” and “hasObject”. The bridge ontology will contain the axiom
R(x, y, z) ⇔ ∃tS(t) ∧ r1(t, x) ∧ r2(t, y) ∧ r3(t, z). The first V-alignment matches R
with “sells” and the second matches S, r1, r2, r3 with “Sale”, “hasSeller”, “hasBuyer”,
“hasObject”, respectively. The merge will contain both the relation and its reification,
together with the axiom.

4.2. Composing W-alignments

A full-featured algebra for W-alignments, along the lines of §2.3, would be compli-
cated and unintuitive. However, we can easily describe a useful operation for composing
W-alignments.

Definition 4.4 Consider ontologies O1, O2, and O3 with W-alignments as in Figure 4.
The composition of the W-alignments of Figure 4 is described as follows:

• The bridge ontology B is obtained as the merge of the bridge ontologies B1 and
B2, according to the W-alignment 〈O2, A2, A3〉,

• the V-alignment of O1 and B is 〈A1, f1, b1 ◦ g1〉, and
• the V-alignment of O3 and B is 〈A4, g4, b3 ◦ f4〉.

B

O1 B1

b1
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y
y

y
y

y
y

O2

b2
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b3

bbE
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E
E

O3

A1

f1aaBBBBB
g1 ==|||||

A2

f2aaBBBBB
g2 ==|||||

A3

f3aaBBBBB
g3 ==|||||

A4

f4aaBBBBB
g4 ==|||||

Figure 4. Composing W-alignments.

This definition formalizes the fact that we know there is a relation of O1 and O3,
given by means of an intermediate ontology O2. In order to describe this with a single
bridge ontology, we integrate both of the involved bridges with O2. This construction
has the advantage that it faithfully captures all information that is available about the
composed alignment.

However, there is a major problem with the above definition: by deriving bridge ax-
ioms from the ontologies B1, B2, and O2, we incorporate all their embedded information
into the new bridge ontology. But this set of bridge axioms might be highly redundant for
the given purpose: it may involve axioms of O2 that are neither related to O1 nor to O3.
Another pathological case is when O2 is the disjoint union of O1 and O3, while O1 and
O3 are not related at all. In this case, we would rather wish the composed bridge ontology
to be empty, instead of containing the whole information of all involved ontologies.



Overcoming this difficulty at the concrete level relates to the problem of finding
a minimal non-redundant set of axioms that yields a given set of desired (or relevant)
conclusions. Unfortunately, logical languages tend to be highly non-local in this respect.

Other operations like intersection and union suffer from the same kind of deficiency:
there is neither canonical nor intuitive definition that satisfies the notion they are sup-
posed to cover. We therefore omit their mentioning in this paper, and prefer to focus on
a different approach that relies on a newly proposed category of ontology.

5. Improved category of ontologies

The other possible solution consists in using elaborate morphisms capable of express-
ing complex alignments with V-alignments alone. We describe here an enhanced cate-
gory of ontologies, that we name Ont+, which has ontologies as objects and particularly
elaborate morphisms.

Definition 5.1 (Morphisms) A morphism f : O1 → O2 in Ont+ is a set of triples
〈e1, e2, R〉 such that:

• e1 and e2 are syntactic entities (concepts, relations, individuals, etc.) from on-
tologies O1 and O2 respectively,

• R denotes a relationship that holds between e1 and e2 (e.g., subsumption, equiv-
alence, temporal relations, etc.). The set of available relations will be denoted
R.

This category is defined modulo the set of available relations R. So, there is a
category of ontologies with relations such as subClass , superClass , equivalentClass ,
disjointClass , partiallyOverlappingClass . Besides, the set of relations startsString ,
endsString , startedByString , etc. forms another category. Moreover, the types of enti-
ties that can appear in the triples is very dependent on the kind of relations in R.

Example 5.2 In order to envision the possibilities of such morphisms, we can give the
following examples of correspondences, were the syntactical entities are compound enti-
ties: 〈A1 tB1, C2 uD2, subClass〉 or 〈concat(name, surname), fullname, eqString〉.

The categorical composition operation associated to these morphisms is thus de-
fined:

Definition 5.3 (Composition) Let f : O1 → O2 and g : O2 → O3 be two morphisms in
Ont+. The composition of f and g, noted g ◦ f is the set of triples 〈e1, e3, R〉 such that
there exist e2, R1, R2 such that 〈e1, e2, R1〉 ∈ f , 〈e2, e3, R2〉 ∈ g and R = φ(R1, R2)
with φ : R×R → R given by a composition table, such as the one given in Example 5.4.

The small figure below gives the intuition of this definition: if an entity e2 is related
to entities in ontologies O1 and O3, then there should be some kind of relation between
e1 and e3. This relation depends on the relationship between e2 and the other entities, and
is expressed by the function φ. It corresponds to the composition of relational constraints,
as found in temporal [2] or spatial algebras [22].
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Example 5.4 In the following composition table, = is equality, ⊂ is strict inclusion, ⊃
is strict containment, ⊥ is disjointness and G is overlapping with partial disjointness.

R2

R1 = ⊂ ⊃ ⊥ G

= {=} {⊂} {⊃} {⊥} {G}
⊂ {⊂} {⊂} {=,⊂,⊃,⊥, G} {⊥} {⊂,⊥, G}
⊃ {⊃} {=,⊂,⊃, G} {⊃} {⊃,⊥, G} {⊃, G}
⊥ {⊥} {⊂,⊥, G} {⊥} {=,⊂,⊃,⊥, G} {⊂,⊥, G}
G {G} {⊂, G} {⊃,⊥, G} {⊃,⊥, G} {=,⊂,⊃,⊥, G}

Table 1. Table of composition for Example 5.4.

Property 5.5 The composition is associative iff φ is associative.

The associativity of φ is not a severe constraint because all usual relations in descrip-
tion logics, temporal and spatial reasoning have associative composition tables. More-
over, in order to have the identity morphism,Rmust contain equality. Given these some-
what reasonable constraints, Ont+-morphisms together with ontologies as objects form
a category. Relations in R are not restricted to the ontology language. So, for example,
two OWL4 ontologies can be related with temporal or spatial relations, as well as fuzzy
ones.

This category has strong advantages with regard to its expressivity and the elegance
of the V-alignment algebra that can still be applied here. Additionally, independently
from V-alignments, they are, alone, composable and tunable. However, they have a major
drawback: pushouts does not generally coincide with the expected merge. In next section,
we further discuss advantages, drawbacks and potential interest of both approaches.

6. Discussion

Both of the two solutions proposed have pros and cons. On the one hand, the representa-
tion of W-alignments is less intuitive as V-alignments and demands a prior understand-
ing of V-alignments. Moreover, manipulating W-alignments necessitates a reconstruc-
tion of the infrastructure available with V-alignments. This infrastructure has a defective
algebra: no identity alignment, no canonical union and intersection. Another counter-
intuitive property of W-alignments is the capability to use axioms in the bridge ontology
that do not relate to any of the aligned ontologies. These drawbacks make W-alignments
inappropriate to build new alignments out of existing ones, so they do not fit for highly

4http://www.w3.org/TR/owl/



distributed semantic applications. On the other hand, W-alignments can express very rich
alignments, such as relations between a n-ary property and its reification. Moreover, it is
built upon the same principle as simple alignment: colimits serve for ontology integra-
tion. This is a strong advantage because, for instance, the category of OWL ontologies is
cocomplete [17], i.e., all pushouts exist in this category. So they are well-suited for the
merging of ontologies.

Working at the concrete category level leads to different and complementary results.
Certain correspondences are hard to express (e.g., reification of n-ary relation), but the
enhanced category has the advantage of separating the alignment language—which ap-
pears in the morphisms—from the ontology language—which appears in the objects. As
long as the relations verify loose constraints, the complexity of relations can be arbi-
trarily increased, offering possibilities like fuzzy relations or other uncommon relations,
without interfering with the ontology language. Besides, they benefit from the algebra
described in §2, which makes them easy to manipulate at an abstract level. But when
the category gets more complex, allowing expression of non-symmetrical relations, the
merge does not always coincide with the pushout. However, the alignment algebra is
adequate for abstracting modular ontology alignment applications thanks to the oper-
ation of composition, intersection and union. Finally, complicated structure similar to
W-alignments could also be constructed on top of them.

7. Conclusion

Finding suitable categorical representations of alignments is the ultimate goal of our
work.

To address this issue, the present paper (1) provides a formalization of several oper-
ations on ontologies and ontology alignments relying on simple category-theoretic con-
structions that is consistent with previous published category-theoretic representation of
ontology alignment and integration; (2) shows that this simple formalization does not al-
low to account for expressive alignments; (3) proposes two attempts to repair this, which
can represent complex semantic relationships within category theory: (3.a) a categorical
formulation of the notion of bridge axioms and (3.b) a proposal for a concrete category
of ontologies improving the expressivity of formerly proposed categories. In both cases,
we study the repercussion of each contribution to the original algebra mentioned in (1)
above.

Both approaches show the lack of expressivity in existing work with respect to se-
mantic relationship. They offer partial solutions to the problem. We presented the advan-
tages of each solution. Though both approaches have interesting benefits, we are leaning
toward the second one because we think it can lead to a more general theory of ontol-
ogy alignment and coordination. Of course, the morphisms we presented have to be con-
nected to the semantics of the ontologies. Our future investigation aims at providing an
abstract model theory with such complex morphisms, along the line of institution theory
which encompasses both syntax and semantics. Doing this, we will be able to design
a legitimate semantics for ontology alignment and distributed systems, while so far, no
common agreement exists on such a semantics.
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