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Abstract. The widespread interest in refactoring —transforming the source-code of an object-
oriented program without changing its external behaviour— has increased the need for a precise
definition of refactoring transformations and their properties. This paper introduces a graph repre-
sentation of those aspects of the source code that should be preserved by refactorings, and graph
transformations as a formal specification for the refactorings themselves. To this aim, we use type
graphs, forbidden subgraphs, embedding mechanisms, negative application conditions and con-
trolled graph rewriting. We show that it is feasible to reason about the effect of refactorings on
object-oriented programs independently of the programming language being used. This is crucial
for the next generation of refactoring tools.
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1. Introduction

Refactorings are software transformations that restructure an object-oriented program while preserving
its behaviour [8, 17, 18]. The key idea is to redistribute instance variables and methods across the class
hierarchy in order to prepare the software for future extensions. If applied well, refactorings improve the
design of software, make software easier to understand, help to find bugs, and help to program faster [8].

Although it is possible to refactor manually, tool support is considered crucial. Tools such as the
Refactoring Browser support a semi-automatic approach [20], which has also been adopted by industrial
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strength software development environments1 . Other researchers have demonstrated the feasibility of
fully automated tools [3], studied ways to make refactoring tools less dependent on the implementation
language being used [25] and investigated refactoring in the context of UML casetools [1, 24].

Despite the existence of such tools, the notion of behaviour preservation is poorly defined. This is
mainly so because most definitions of the behaviour of an object concentrate on the run-time aspects
while refactoring tools typically restrict themselves to the static description as specified in the source-
code.

Refactoring tools often rely on an abstract syntax tree representation of the source-code and assert
pre- and postconditions before and after transforming the tree [19]. The formal model proposed in this
paper extends the tree-based representation to a graph-based representation that allows one to make
relations (such as method calls and variable accesses) between different program elements explicit as
edges, and that provides a more localised naming scheme for classes, variables and methods. The graph
representation is lightweight because it deliberately omits the details necessary for sophisticated data-
and control flow analysis, since these are necessarily dependent on the programming language. Instead
it focuses on the core concepts present in any class-based object-oriented language –namely classes,
methods and variables– and allows us to verify whether the relationships between them are preserved.
Moreover, it yields a transparent yet formal specification of the refactorings, as direct manipulations of
the graph representation.

This paper presents a feasibility study to see whether graph rewriting and related techniques can be
used to formalise refactorings as well as the properties to be preserved when performing a refactoring.
Section 2 introduces the concept of refactoring by means of a small motivating example and presents
several types of behaviour that should be preserved. In Section 3 we introduce the typed graph represen-
tation of the source code and formalise selected refactorings by graph transformations. In Section 4 we
use this formalisation to guarantee the preservation of well-formedness and certain types of behaviour.
Section 5 discusses tool support issues. Section 6 discusses some open problems. Finally, Section 7
concludes the paper with the lessons we learned from our feasibility study.

2. Motivating example

As a motivating example, this paper uses a simulation of a Local Area Network (LAN) [5]. The example
has been used successfully by the Programming Technology Lab of the Vrije Universiteit Brussel and
the Software Composition Group of the University of Berne to illustrate and teach good object-oriented
design. The example is sufficiently simple for illustrative purposes, yet covers most of the interesting
constructs of the object-oriented programming paradigm (inheritance, late binding, super calls, method
overriding). It has been implemented in Java as well as Smalltalk. Moreover, the example follows an
incremental development style and as such includes several typical refactorings. Thus, the example is
sufficiently representative to serve as a basis for a feasability study.

2.1. Local Area Network simulation

In the initial version there are 4 classes: Packet, Node and two subclasses Workstation and PrintServer.
The idea is that all Node objects are linked to each other in a token ring network (via the nextNode

1see http://www.refactoring.com/ for an overview of refactoring tools
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variable), and that they can send or accept a Packet object. PrintServer and Workstation refine the
behaviour of accept (and perform a super call) to achieve specific behaviour for printing the Packet (lines
18–20) and avoiding endless cycling of the Packet (lines 26–28). A Packet object can only originate
from a WorkStation object, and sequentially visits every Node object in the network until it reaches its
addressee that accepts the Packet, or until it returns to its originator workstation (indicating that the
Packet cannot be delivered).

Below is some sample Java code of the initial version where all constructor methods have been
omitted due to space considerations. Although the code is in Java, other implementation languages could
serve just as well, since we restrict ourselves to core object-oriented concepts only.

01 public class Node {

02 public String name;

03 public Node nextNode;

04 public void accept(Packet p) {

05 this.send(p); }

06 protected void send(Packet p) {

07 System.out.println(name + nextNode.name);

08 this.nextNode.accept(p); }

09 }

10 public class Packet {

11 public String contents;

12 public Node originator;

13 public Node addressee;

14 }

15 public class PrintServer extends Node {

16 public void print(Packet p) {

17 System.out.println(p.contents); }

18 public void accept(Packet p) {

19 if(p.addressee == this) this.print(p);

20 else super.accept(p); }

21 }

22 public class Workstation extends Node {

23 public void originate(Packet p) {

24 p.originator = this;

25 this.send(p); }

26 public void accept(Packet p) {

27 if(p.originator == this) System.err.println("no destination");

28 else super.accept(p); }

29 }

This initial version serves as the basis for a rudimentary LAN simulation. In subsequent versions,
new functionality is incorporated incrementally and the object-oriented structure is refactored accord-
ingly. First, logging behaviour is added which results in an ExtractMethod refactoring ([8], p110) and an
EncapsulateVariable refactoring ([8], p206). Then, the PrintServer functionality is enhanced to distin-
guish between ASCII- and PostScript documents, which introduces complex conditionals and requires
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an ExtractClass refactoring ([8], p149). The latter is actually a composite refactoring which creates a
new intermediate superclass and then performs several PullUpVariable ([8], 320) and PullUpMethod
([8], p322) refactorings. Finally, a broadcast packet is added which again introduces complex condition-
als, resolved by means of an ExtractClass, ExtractMethod, MoveMethod ([8], p142) and InlineMethod
([8], p117).

2.2. Selected refactorings

Fowler’s catalogue [8] lists seventy-two refactorings and since then many others have been proposed.
Since the list of possible refactorings is infinite, it is impossible to prove that all of them preserve be-
haviour, even if one would agree on the precise meaning of the phrase “preserve behaviour”. However,
refactoring theory and tools assume that there exists a finite set of primitive refactorings, which can then
freely be combined into composite refactorings.

Below we summarise some frequently used primitive refactorings: RenameVariable, RenameMethod,
EncapsulateVariable, PullUpMethod, PushDownMethod, ExtractMethod and RemoveParameter. The
preconditions for these object-oriented refactorings are quite typical, hence they may serve as represen-
tatives for the complete set of primitive refactorings.

RenameVariable and RenameMethod are used to change the name of a variable or method. This
typically is a global operation that affects the source code in many places, since it requires all references
to the variable or method to be renamed as well.
Precondition. Before renaming the variable or method, the refactoring tool should ensure that the new
name of the variable or method does not collide with existing names in the inheritance hierarchy in any
way.

EncapsulateVariable is used to encapsulate public variables by making them private and providing
accessors. In other words, for each public variable a method is introduced for accessing (“getting”) and
updating (“setting”) its value, and all direct references to the variable are replaced by dynamic calls to
these methods.
Precondition. Before creating the new accessing and updating methods on a class C, a refactoring tool
should verify that no method with the same signature exists in any of C’s ancestors and descendants, C
included. Otherwise, the refactoring may accidentally override (or be overridden by) an existing method,
and then it is possible that the behaviour is not preserved.

PullUpMethod is used to move similar methods in subclasses into a common superclass. This refactor-
ing removes code duplication and increases code reuse by inheritance.
Precondition. When a set of methods with signature m is pulled up into a class C, all method definition
corresponding to this signature that are defined in the direct descendants of C must be removed and re-
placed by a single method definition now defined in C. However, a tool should verify that this method
implementation does not refer to any variables defined in the subclass. Otherwise the pulled-up method
would refer to an out-of-scope variable and then the transformed code would not compile. Also, no
method definition with signature m may exist in C, because a method signature cannot have more than
one definition in the same class.
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PushDownMethod is the opposite of PullUpMethod. It is used to move a method from a superclass to
a selected number of its subclasses, either because it only makes sense there, or to provide a different
implementation of this method in each subclass.
Precondition. (1) The method should not already be implemented in the subclasses to where it is pushed
down to; (2) The method should not refer to attributes that are also defined in one or more of the target
subclasses; (3) The method should not refer to private methods or variables of the containing superclass;
(4) None of the direct subclasses may invoke the method via a super call; (5) The method should not
refer to any variables also defined in the superclass; (6) The method must not be invoked in or through
its defining class.

ExtractMethod is used to extract a fragment of a method implementation into a separate method. It
makes overly long methods smaller, and increases the possibilities for reuse in later iterations. Therefore
ExtractMethod is often the start of a sequence of other refactorings, such as PullUpMethod.
Precondition. (1) The method to be extracted should not already be defined in the inheritance hierarchy;
(2) All variables accessed by the extracted method and which have local scope should be passed as a
parameter; (3) When the last statement of the method definition is an assignment, the programmer may
choose to define the method as a function. In that case, the function returns the right-hand of the last
assignment and the assignment itself is omitted from the method definition.

RemoveParameter is used to remove method parameters that are no longer referenced inside the method
definition.
Precondition. None of the implementations of this method in the class hierarchy should use this param-
eter. Otherwise, the method blocks will not correspond to the same method signatures anymore.

Because it is impossible to discuss in detail how all of the above refactorings can be formalised using
graph transformations, we will restrict ourselves to only two of these refactorings in the remainder of the
paper: EncapsulateVariable and PullUpMethod.

2.3. Behaviour preservation

Since we take a lightweight approach to source code refactoring, we only consider notions of behaviour
preservation that can be detected statically and do not rely on sophisticated data- and control-flow analy-
sis techniques. The general idea is that, for each considered refactoring, one may catalog the behaviour-
related properties that need to be preserved. For the feasibility study of this paper, we concentrate on
three types of behaviour that are important and non-trivial for the selected refactorings. Section 4 dis-
cusses to which extent the selected refactorings preserve these notions of behaviour:

• A refactoring is access preserving if each method implementation accesses at least the same vari-
ables after the refactoring as it did before the refactoring. These variable accesses may occur
transitively, by first calling a method that (directly or indirectly) accesses the variable.

• A refactoring is update preserving if each method implementation performs at least the same
variable updates after the refactoring as it did before the refactoring.
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• A refactoring is call preserving if each method implementation still performs at least the same
method calls after the refactoring as it did before the refactoring.

Obviously, other useful notions of behaviour preservation can be defined (e.g., type preservation),
but their definition and treatment is outside the scope of this paper.

3. Formalising refactoring by graph transformation

3.1. Program graphs
Definition 3.1. (Graph)
Let Lv be a set of node labels and Le a set of edge labels. A (labeled) graph over Lv and Le is a
4-tuple G = (VG, EG, nlabG, elabG), where nlabG : VG → Lv is the node labeling function and
elabG : EG → Le is the edge labeling function. An edge with label l from node v into node w will be
denoted by v −→

l
w.

Programs are represented by typed, labeled, directed graphs, called program graphs. In a program
graph, software entities (such as classes, variables, methods and method parameters) are represented by
nodes whose label is a pair consisting of a name and a node type. For example, the class Packet is repre-
sented by a node with name Packet and type C (i.e., a C-node). The set Σ = {C,M,MD,V, V D,P,E}
of all possible node types is clarified in Table 1. Method definitions (MD-nodes) have been separated
from their method signatures (M -nodes) because the same method may have many possible definitions
due to late binding and dynamic method lookup. For similar reasons, a distinction has been made be-
tween variable names (V -nodes) and their definition (V D-nodes). MD-nodes and P -nodes (method
parameters) have an empty name.

Relationships between software entities (such as membership, inheritance, method lookup, variable
accesses and method calls) are represented by edges between the corresponding nodes. For example, the
inheritance relationship between the classes Workstation and Node is represented by an edge with type i

(i.e., an i-edge) between the C-nodes Workstation and Node. Edge labels consist of an optional number
and a type. The number is used to distinguish between edges with the same type and the same source
node. This is for example the case with method parameters (p-edges) and (sub)expressions in a method
definition (e-edges). The set ∆ = {l, i,m, t, p, e, c, a, u} of all possible edge types is clarified in Table 1.
For m-edges (membership), the type is often omitted in the figures.

Using this notation, an entire program can be represented by means of a single program graph.
Because the graph representation can become very large, we only display those parts of the graph that
are relevant for the discussion.2 For example, Figure 1 only shows the graph representation of the static
structure of the LAN simulation.

A method definition is represented by a parsetree-like structure consisting of of E-nodes (the ex-
pressions in the parse tree) connected by e-edges. Outgoing edges from E-nodes express information
about method calls and variable references (accesses and updates). For example, Figure 2 represents the
method definitions in class Node. The method definition of send contains a sequence of two expressions,
which is denoted by two numbered e-edges from the MD-node to two different E-nodes. The second
expression nextNode.accept(p) is a subexpression composed of a variable access (represented by an

2In [26], an hierarchical graph approach is proposed to address the problem of visualising large graphs.
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node type description examples
C Class Node, Workstation, PrintServer, Packet
M Method signature accept, send, print

MD Method Definition System.out.println(p.contents)

V Variable name, nextNode, contents, originator

V D Variable Definition public Node nextNode

P Parameter of a method definition p

E (sub)Expression in method definition p.contents

edge type description examples
l : M → MD dynamic method lookup accept(Packet p) has 3 possible method definitions

V → V D variable lookup ...

i : C → C inheritance class PrintServer extends Node

m : V D → C variable membership variable name is defined in Node
MD → C method membership method send is defined in Node

t : V → C variable type String name

M → C method return type String getName()

p : MD → P parameter definition send(Packet p)

M → C parameter type send(Packet p)

e : MD → E expression in method definition System.out.println(p.contents)

E → E subexpression in method definition p.contents

c : E → S (dynamic) method call this.send(p)

a : E → {V | P} variable or parameter access p.contents

u : E → {V | P} variable or parameter update p.originator = this

Table 1. Node type set Σ = {C, M, MD, V, V D, P, E} and edge type set ∆ = {l, i, m, t, p, e, c, a, u}.
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Figure 1. Static structure of LAN simulation
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Figure 2. Method definitions in class Node

E-node with outgoing a-edge to the V -node with label nextNode) followed by a method call with one
parameter (represented by an E-node with outgoing c-edge and e-edge). The actual parameter being
used is the local parameter of the send method definition.

We have deliberately kept the graph model very simple to make it as flexible as possible. By at-
taching specific attributes to the nodes in the graph, one can extend it with language-dependent features.
For example, one can attach visibility attributes to nodes of type C , MD and V D to deal with Java
modifiers (such as static, abstract, protected, final). One can attach attributes to E-nodes to
distinguish between different kinds of parse tree nodes (such as control statements, conditional state-
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ments, assignments, calls, exceptions, actual parameters). In a similar way, other Java-specific features
can be modelled. For some language-specific constructs (e.g., Java interfaces and exception handling)
new types of nodes or edges need to be introduced.

3.2. Well-formedness constraints

We need to impose constraints on the graph representation in order to guarantee that the program
graphs are well-formed in the sense that they correspond to syntactically correct programs. These well-
formedness constraints are essential to fine-tune our graph notation to a particular programming language
(in this case Java). We use two mechanisms to express these constraints: a type graph and graph expres-
sions.

Definition 3.2. (Type Graph)
The notion of a type graph (or graph schema) is formally defined in [4, 7]. Informally, a type graph
is a labelled graph over node type set Σ and edge type set ∆ (see Table 1). This type graph expresses
restrictions on the program graphs that are allowed. A program graph is well-formed only if there exists
a graph morphism into the type graph: a node mapping and edge mapping that preserves sources, targets
and labels. For the labels, only the type component is taken into account. Figure 3 displays the type
graph needed for our particular program graph representation.
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Figure 3. Type Graph

The numbers 1 associated with the incoming l-edge and outgoing m-edge of node MD express the
additional constraints that, in a program graph, each node of type MD may have at most one incoming
l-edge and at most one outgoing m-edge.

In addition to the type graph, we need a mechanism to express constraints that exclude illegal con-
figurations in a graph. Some typical examples of such well-formedness constraints are given below:

WF-1 No two variables with the same signature can be defined a class.

WF-2 No two methods with the same signature can be implemented in a class.

WF-3 An expression in a method definition in a class cannot refer to variables that are defined in its
descendant classes.
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WF-4 An expression in a method definition cannot refer to the method parameters belonging to another
method definition.

These well-formedness constraints can be expressed by graph expressions. Formally, graph expres-
sions and their occurrences are defined as follows:

Definition 3.3. (Graph expression)
1. A graph expression GE is a graph (VGE , EGE) over Σ and all regular expressions over ∆.

2. Let G be a program graph. An occurrence of GE in G is a mapping oc : VGE → VG such that

• for each node v of VGE , nlabGE(v) is the type of oc(v)

• for each edge v −→
exp

w of GE, there is a path p from oc(v) into oc(w) in G such that word(p) ∈

L(exp), where L(exp) is the language of the regular expression exp and word(p) is the sequence
of types corresponding to the edges of p.

An example of such a graph expression GE is shown in Figure 4. 1 −→
e∗

2 is one of its three edges.
Its edge label e∗ is a regular expression over edge type set ∆. There are two occurrences, oc1 and oc2,
of this graph expression GE in the graph G of Figure 2. These occurrences are given by the following
mappings from VGE to VG:

v oc1(v) v oc2(v)

1 1 1 4

2 2 2 5

3 3 3 6

For oc1, there is a path p from node 1 to node 2 in G consisting of three consecutive e-edges. Hence,
word(p) = e3 ∈ L(e∗)

MD
 P


       e*


E

a


1.p


1
 3


2


Figure 4. An example graph expression

The constraints WF-1 through WF-4 can now be expressed formally by requiring that a program
graph may not contain occurrences of the graph expressions of Figure 5. For each of these constraints,
one only has to exclude injective occurrences. Note that this use of graph expressions can be viewed as a
shorthand for the mechanism of forbidden subgraphs: one may associate with a graph expression the set
of all graphs in which that graph expression does not occur, and then consider those graphs as forbidden
subgraphs.
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The graph expression for WF-3 contains edges that represent regular expressions over ∆. Edge
1 −→

e∗
2 denotes a parsetree traversal to an arbitrary subexpression in the method parsetree, 2 −→

a|u 3 denotes
an access or update to a variable from within that subexpression, and 3 −→

lmi+
4 denotes that the variable

is defined in a subclass of the given class.
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Figure 5. Well-formedness constraints expressed as graph expressions representing forbidden subgraphs

3.3. Expressing refactorings by graph productions

Programs are represented by program graphs, and thus refactorings are transformations of program
graphs. In the theory of graph rewriting, such transformations result from the application of prede-
fined rules, called graph productions. Such a graph production is specified by means of a left-hand side
(LHS) and a right-hand side (RHS). The LHS is used to specify which parts of the initial graph should
be transformed, while the RHS specifies the result after the transformation.

Often, a graph production can be applied to different parts of a graph, leading to different occurrences
(or matches) of the graph production’s LHS. In this paper, we use parameterised graph productions that
contain variables for labels. Each parameterised production may be viewed as a specification of an
infinite set of productions in the algebraic approach to graph rewriting [6, 14]. In order to take into
account the context in which a production is applied, the production is equipped with an embedding
mechanism similar to the one of [11]. This embedding mechanism specifies how incoming and outgoing
edges are redirected. 3 A concrete instance of this production can be obtained by filling in the variables
of the parameterised graph production with concrete values and extending the LHS and RHS of the
production with a concrete context.

For most refactorings, it does not suffice to apply a single graph production. Instead, these refactor-
ings need to be expressed as a combination of several graph productions. To control the order in which
these productions have to be applied, we need the mechanism of controlled graph rewriting (also known
as programmed or regulated graph rewriting) that has been studied in, e.g., [2, 13, 22].

EncapsulateVariable

Figure 6 shows the parameterised productions needed to express the refactoring
EncapsulateVariable(var,getter,setter). Here var, getter, setter are formal parameters, to be replaced

3A similar but more visual mechanism is available in the graph rewriting tools PROGRES [23] and Fujaba [15].
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production incoming edges outgoing edges

P1 (a, 1) → (a, 1) (t, 1) → (t, 1), (1.p, 2), (t, 3)

(u, 1) → (u, 1) (l, 1) → (l, 1)

P2 (a, 1) → (c, 3) (m, 0) → (m, 0), (m, 4), (m, 5)

(u, 1) → (c, 2) (t, 1) → (t, 1)

Figure 6. Graph productions with embedding table for refactoring EncapsulateVariable(var,getter,setter)

by concrete names in order to obtain concrete productions. Using the mechanism of controlled graph
rewriting, the EncapsulateVariable refactoring is expressed by the graph productions P1, P2 of Figure 6,
where the application of those productions is controlled by the state-transition diagram of Figure 7: first
P1 must be applied, and then P2 must be applied repeatedly for each of the possible occurrences of its
LHS.

P
1

[success]
 P
2


[failure]


Figure 7. Specifying the order of productions P1 and P2.

In Figure 6, the LHS and RHS are separated by means of an arrow symbol. All nodes are numbered.
Nodes that have a number occurring in both the LHS and the RHS are preserved by the rewriting (e.g.,
node 1). Nodes with numbers that only occur in the LHS are removed, and nodes with numbers that only
occur in the RHS (e.g., nodes 2 and 3 in P1) are newly created.

Figure 6 also specifies the embedding mechanism for both productions P1 and P2. For example, for
P1, the item (t, 1) → (t, 1), (1.p, 2), (t, 3) means that the return type of method getter and the argument
type of method setter are the same as the type of variable var. In P2, (a, 1) → (c, 3) means that each
access of the variable var (represented by an incoming a-edge to node 1) is replaced by a method call
to the getter method (represented by an incoming c-edge to node 3). (m, 0) → (m, 0), (m, 4), (m, 5)
means that the method definitions (nodes 4 and 5) that correspond to the getter and setter methods must
be implemented in the same class as the one to which the variable definition (node 0) belongs.

Figure 8 shows the concrete production instance EncapsulateVariable(name,getName,setName) that
may be applied to the graph of Figure 2, in the context of the LAN example. When applying the produc-
tion, the two gray E-nodes in Figure 8 match the gray E-nodes of Figure 2. In this particular example, P2
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is only applied once, because there is only one definition for variable name. In other situations, however,
there can be more than one definition of the same variable in the inheritance chain. If this is the case, P2

will be applied repeatedly, and the refactoring will introduce accessor methods in each class where the
encapsulated variable is defined.
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Figure 8. Graph production instance EncapsulateVariable(name,getName,setName) obtained from the parame-
terised production of Figure 6

PullUpMethod

The second refactoring to be expressed as a set of parameterised graph productions with embedding
mechanism is PullUpMethod(parent,child,name). It moves the implementation of a method name in
some child class to its parent class, and removes the definitions of the method name in all other chil-
dren of parent. Again, we need to use controlled graph rewriting to express the transformation as a
combination of two parameterised productions P1 and P2 (see Figure 9). P1 moves the definition of
method name one level higher in the inheritance hierarchy (i.e., from child to parent), and can only
be applied if it is immediately followed by an application of P2. This second production removes the
definition of method name from another subclass of parent, and has to be applied for each possible
occurrence of its LHS. Therefore, the application order of P1 and P2 can also be specified by the state-
transition diagram in Figure 7.

3.4. Refactoring preconditions

As explained in Subsection 2.2, each refactoring has to ensure that the well-formedness constraints re-
main valid, and has to satisfy a number of additional conditions, called refactoring conditions. For
example, in the presence of inheritance, a refactoring should avoid accidental method overriding, i.e.,
a newly introduced method definition or variable definition does not override (resp. is not overridden
by) an existing definition in a superclass (resp. subclass). (RC-1)

All these constraints can be expressed in a natural way as preconditions or postconditions on the
graph production. For efficiency reasons, it is desirable to use preconditions instead of postconditions.
This avoids having to undo the refactoring if it turns out that the constraints are not met. Formally,
preconditions can be defined by using graph rewriting with negative application conditions [9, 10]. It has
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production incoming edges outgoing edges

P1 ∀ (τ, n) ∈ ∆ × {1, 2, 3, 4}:
(τ, n) → (τ, n)

∀ (τ, n) ∈ (∆ × {1, 2, 3, 4}) \ {(m, 3)}:
(τ, n) → (τ, n)

P2 ∀ (τ, n) ∈ ∆ × {1, 3, 4, 5}:
(τ, n) → (τ, n)

∀ (τ, n) ∈ ∆ × {1, 3, 4, 5}:
(τ, n) → (τ, n)

Figure 9. Graph productions P1 and P2 with embedding table for refactoring PullUpMethod(parent,child,name).
In P2, a method definition (node 6) is removed, which implies that its contained parse tree can be garbage collected.

also been shown in [10] that postconditions can be transformed into equivalent preconditions for a graph
production.
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Figure 10. Negative preconditions for production P1 of EncapsulateVariable refactoring
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Figure 11. Negative preconditions for production P1 of PullUpMethod refactoring

PullUpMethod

Figure 11 presents two negative preconditions for PullUpMethod, or more specifically, for its subpro-
duction P1. The condition on the left specifies that the method name to be pulled up should not yet
be defined in parent, and the condition on the right specifies that the method definition to be pulled up
should not refer to (i.e., access or update) variables outside the scope of the parent.

To prove that PullUpMethod preserves well-formedness constraint WF-2 it suffices to show that an
application of P1 or P2 to a graph containing no occurrences of WF-2 cannot result in a graph in which
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WF-2 does occur. Assume, to the contrary, that a new occurrence of WF-2 is created in a step using
P1. Clearly one has to consider only occurrences of WF-2 that overlap with the RHS of the production.
Taking into account the node labels, and the fact that each MD has exactly one incoming l-edge and
only one outgoing m-edge, the overlap must consist of either node 1, node 4, nodes 1 and 4, or nodes 1,
3 and 4. It immediately follows from the form of the embedding relation that all edges incident to nodes
1 and 4 are preserved, and thus the first three possibilities would imply that an occurrence of WF-2 was
present already before he rewriting, contradicting the assumption. The last case, where nodes 1, 3 and 4
would belong to an occurrence of WF-2, is excluded by the first negative precondition for P1 (left part
of Figure 11), which states that the method to be pulled up should not yet exist in the parent class. To
see that no new occurrences of WF-2 can be created by applying production P2, it suffices to see that the
effect of P2 is simply the removal of a node together with all its incident edges.

Well-formedness constraints WF-1, WF-3 and WF-4 can be proven in a similar way for PullUp-
Method. Intuitively, well-formedness constraint WF-1 is preserved since it does not introduce or redirect
any variables or variable definitions. Constraint WF-3 is preserved thanks to the precondition on the right
of Figure 11, and constraint WF-4 is preserved because the refactoring does not introduce or change any
method definition.

EncapsulateVariable

Figure 10 presents the negative preconditions needed in order for EncapsulateVariable to satisfy refac-
toring constraint RC-1. The conditions specify that no ancestor or descendant of the class containing var
define a method with name setter. Two similar negative application conditions are needed for the getter
method.

Without giving a formal proof, well-formedness constraint WF-1 is preserved since Encapsulate-
Variable does not introduce or move any variables or variable definitions. Constraint WF-2 is preserved
thanks to the preconditions of Figure 10, in the special case where i∗ is the empty word: by disallowing a
definition of method setter (or getter) in the class of the encapsulated variable, we guarantee that such a
method definition can be safely introduced by the transformation without giving rise to multiple method
definitions for setter (or getter) in the same class. Constraint WF-3 is preserved because Encapsulate-
Variable only introduces a new variable access and update to a variable that is defined by the class itself.
Hence, it doesn’t affect variables defined in descendant classes. Constraint WF-4 is preserved because
the method parameter of the setter method is only referred to from within its own method definition.

4. Preservation of behaviour

In this section we combine the formalisation of refactorings of Subsection 3.3 with a technique to express
the fact that certain occurrences of graph expressions are preserved. In particular, we consider certain
types of behaviour preservation that can be detected statically.

4.1. Types of behaviour preservation

The types of behaviour preservation informally introduced in Subsection 2.3 can be expressed formally
using the definition of graph expressions of Subsection 3.2: the idea is that for each occurrence of a
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graph expression that is present before a rewriting, there must be a corresponding occurrence after the
rewriting.

The graph expression MD −→
?∗a

V −→
l

V D can be used to express the property of access preserva-
tion. It specifies all possible access paths from a method definition (MD-node) to a variable (V -node)
defined in a V D-node. Access preservation means that, for each occurrence of MD −→

?∗a
V −→

l
V D

in the initial graph to be rewritten, there is a corresponding occurrence of this graph expression in the
resulting graph. In a similar way, we can express update preservation by means of the graph expression
MD −→

?∗u
V −→

l
V D.

Graph expression MD −→
e∗c

M −→
l

MD formalises the property of call preservation. For each
method definition (MD-node) that performs a method call (c-edge) to some signature (M -node) that is
implemented by some method definition (MD-node) in the initial graph, there should still be a call to
the same method definition in the resulting graph.

4.2. Preserving occurrences of a graph expression

In order to relate occurrences before and after the rewriting, one needs to introduce a tracking function
tr. Part of tr is specified together with each production, whereas the remaining part of tr is simply the
identity function on the part of the graph that is not rewritten. Formally one has the following:

Definition 4.1. (Tracking function)
Let GE be a graph expression, let G and H be program graphs and let tr : VG → VH be a node mapping.
Then tr preserves GE if, for each occurrence oc of GE in G, tr ◦ oc is an occurrence of GE in H . In
order to construct the tracking functions for graph rewriting steps, each production is equipped with its
own function trp mapping the nodes of the LHS into those of the RHS. In a rewriting G → H , using
production p, the tracking function tr : VG → VH is defined by

tr(v) =

{

v, if v is a node of the part of VG that is not rewritten.
trp(v), if v belongs to the part of VG that is rewritten.

For refactoring PullUpMethod of Figure 9, the tracking functions are defined as follows. For pro-
duction P1, trP1

is the identity function. For production P2, the tracking function is illustrated in Figure
12. trP2

(1) = 1, trP2
(3) = trP2

(6) = 3, trP2
(4) = 4, and trP2

(5) = 5.

4.3. Behaviour preserving refactorings

PullUpMethod

To show call preservation for PullUpMethod, one has to prove that the productions P1, P2 of Figure 9
preserve the graph expression GE = MD −→

e∗c
M −→

l
MD. It is clearly sufficient to prove the preserva-

tion of the subexpressions GE1 = MD −→
e∗c

M and GE2 = M −→
l

MD. Moreover, the construction of
the tracking function implies that one needs to consider only occurrences of GE1 and GE2 separately.
Also, it implies that one must only consider those occurrences GE1 and GE2 that overlap with the LHS
of the productions, because only for the nodes in that overlap the tracking function may differ from the
identity.

First consider GE1. For both P1 and P2, one has to consider a number of cases for the possible over-
lap of an occurrence of GE1 and the LHS. In each of them, a simple inspection of the embedding relation
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Figure 12. Construction of the tracking function for P2 of PullUpMethod

suffices to see that occurrences of GE1 are preserved. Note that all nodes on the path corresponding to
the edge of P1 have label E, and hence do not overlap with the LHS of P1 or P2.

P1-a Node 1 of GE1 corresponds to node 3 of P1, and node 2 of GE1 does not correspond to node 4
of P1. Since the embedding of P1 simply preserves outgoing e-edges of node 3, it follows that the
occurrence is preserved.

P1-b Nodes 1 and 2 of GE1 correspond to nodes 3 and 4 of P1. The embedding of P1 preserves outgoing
e-edges of node 3 and incoming c-edges of node 4. It follows that the occurrence is preserved.

P1-c Node 1 of GE1 does not correspond to a node of P1, but node 2 of GE1 corresponds to node 4 of
P1. This time it is sufficient to see that the embedding preserves incoming c-edges of node 4.

P2-a Node 1 of GE1 corresponds to node 3 of P2, and node 2 of GE1 does not correspond to node 4 of
P2. This case is analogous to P1-a.

P2-b Nodes 1 and 2 of GE1 correspond to nodes 3 and 4 of P2. This case is analogous to P1-b.

P2-c Node 1 of GE1 corresponds to node 6 of P2, and node 2 GE1 does not correspond to node 4 of
P2. Now one needs the fact that a correct application of PullUpMethod can take place only if the
syntax trees under nodes 3 and 6 of P2 are isomorphic: if there exists an occurrence of GE1 where
node 1 corresponds to node 6 of P2, then there exists also an occurrence of GE1 where node 1
corresponds to node 3 of P2. Thus, since the tracking function maps node 6 to node 3, and since
the embedding mechanism preserves outgoing nodes of node 3, the occurrence is preserved. (Note,
that one might be less restrictive for PullUpMethod by allowing a weaker form of equivalence for
the syntaxtrees under node 3 and 6. However, this would not change the reasoning.)

P2-d Nodes 1 and 2 of GE1 correspond to nodes 6 and 4 of P2. One may use the same reasoning as in
P2-c, and the fact that the embedding preserves incoming c-edges of node 4.

P2-e Node 1 of GE1 does not correspond to a node of P2, but node 2 of GE1 corresponds to node 4 of
P2. This case is analogous to P1-c.
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As a second step of our proof, we have to consider all possible cases for GE2.

P1-a’ If node 1 of GE2 corresponds to node 4 of P1 and node 2 of GE2 does not correspond to a node
of P1, then it suffices to see that the embedding of P1 preserves outgoing l-edges of node 4.

P1-b’ If node 2 of GE2 corresponds to node 3 of P1, then it follows from the the fact that each MD-
node has at most one incoming l-edge that node 1 of GE2 must correspond to node 4 of P1. It
follows from the form of the RHS of P1 that the occurrence is preserved.

P2 For the overlap of an occurrence of GE2 and the LHS of P2, there are four cases to consider, all of
which are analogous to P1-a’ or P1-b’.

Since both P1 and P2 preserve GE, one may conclude that PullUpMethod is call preserving. In a
similar way, we can show access preserving and update preserving. Note that, in case P2-c of the above
proof, we explicitly relied on the fact that all method definitions that are affected in the subclasses must
be isomorphic. If this is not the case, the refactoring will not be behaviour preserving.
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MD
 e*
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 setter 
M
c
 2


MD
 e*
 MD
l
 4

E
e
 7


var 
V
u
 1


Figure 13. Update preservation for EncapsulateVariable(var,getter,setter)

EncapsulateVariable

We only give an informal discussion of update preservation for EncapsulateVariable, because the proof
is similar to the one above. It suffices to show that the graph expression MD −→

?∗u
V −→

l
V D is preserved

by each method definition MD that updates the variable var that is being encapsulated. It follows from
the form of the graph productions P1 and P2 of Figure 6 that this is the case. This is illustrated in
Figure 13, that shows how a direct update of var is replaced by a slightly longer path that still preserves
the graph expression MD −→

?∗u
V . The graph productions do not change anything to occurrences of graph

expression V −→
l

V D. Access preservation can be shown in a similar way. Call preservation is also
trivial since the refactoring does not change any method calls or method definitions. (It does add new
method signatures and method definitions, but this does not affect existing method calls.)

5. Tool support

In order to validate our results in practice, we need to implement at least three aspects: converting Java
code into a graph, applying refactoring transformations to this graph, and verifying preconditions and
invariants in the graph representation.

A converter from Java source code into the graph representation of Section 3.1 has been implemented
in Java by Jessie Dedecker during a programming project.

To specify and execute refactorings as graph productions we identified two graph transformation tools
that seemed to satisfy most of our needs: PROGRES [21, 23] and Fujaba [15, 12]. Because the latter
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tool is tightly integrated with Java, and its user interface is easier to learn than the one of PROGRES, we
used Fujaba to implement our initial ideas.

Figure 14. Screenshot of the Fujaba tool

A screenshot of the Fujaba tool is given in Figure 14. It shows how to express the type graph as
a UML class diagram. By expressing type edges as UML associations, we can easily express cardi-
nality constraints on them. By expressing type nodes as UML classes, we can exploit the subclassing
mechanism to avoid redundancy. The two graph transformations EncapsulateField and PullUpMethod
were implemented in a way that is very similar to the specification in Section 3.3. Only the embedding
mechanism used in this paper was specified in a more graphical way, by using optional nodes.

The well-formedness constraints and refactoring preconditions of this paper were more difficult
(though not impossible) to express in Fujaba. An alternative would be to express and validate these
constraints with OCL, the standard object constraint language that comes with UML [16]. OCL con-
straints can be used to express invariants, pre- and postconditions. However, due to the limitations of the
UML metamodel, not all constraints that we need can be expressed in this way, especially if we want to
deal with constraints that require information that is only visible in the method parse trees.

6. Open Problems

When we tried to specify the refactorings ExtractMethod and PushDownMethod, we encountered a num-
ber of problems related to the parse trees contained in a method definition. To guarantee behaviour
preservation of PullUpMethod, we needed to assume a notion of isomorphism between the parse trees
of the method definitions in the subclasses. Also in PullUpMethod, we saw the need to remove method
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definitions together with its entire containing parse tree. For PushDownMethod (not expressed in this
paper), we need to make several copies of a method definition, including the entire method parse tree.
Thus, there is a need for more sophisticated techniques (such as hierarchical graphs [7] and automatic
garbage collection) that tackle the inevitable complexity of large graphs.

An open question concerns the expressiveness of our proposed formalism. The refactorings as well
as the types of behaviour preservation we studied, are realistic and well documented. It remains to
be seen whether the notion of type graphs, graph expressions, embedding mechanisms, and controlled
parameterised graph transformations are sufficient to specify all possible refactorings as well as more
sophisticated notions of behaviour preservation.

A central topic in future work will be the implementation of tools that automate a variety of tasks
related to refactoring:

• Detect, for a given (behaviour preservation) property and graph transformation, whether or not the
property is preserved by the transformation. If not, provide additional feedback on why this is the
case and how this may be resolved.

• Check, for a given graph transformation, whether its preconditions “subsume” the well-formedness
constraints. If this is the case, the well-formedness constraints don’t have to be checked again
after applying the transformation. A further step would involve an automatic translation of the
well-formedness constraints into specific preconditions for each refactoring.

• Compare the preconditions of refactorings to determine whether they are parallel independent
[10]. If they are, they can be serialised in any order. This is a useful property for the composition
of primitive refactorings into a sequence [19], because it allows us to change the order in the
sequence without affecting the overall end result. As such, the transformation sequence may be
optimized, in much the same way as database tools perform query optimisations. This is crucial
for the performance and usability of next generation refactoring tools.

Similar to what has been described in [25], we will also study the impact of language specific features
on the proposed approach. The current type graph is sufficiently language independent to deal with
refactorings of simple Java and Smalltalk programs. Because Smalltalk is dynamically typed, t-edges
are not needed there. On the other hand, the type graph is too simple to express some language-specific
constructs and their associated refactorings. For example, Java interfaces require the introduction of a
new node type in the type graph, and Java exception handling requires the introduction of a new edge
type in the type graph. Additionally, new well-formedness constraints and refactoring transformations
may be needed to cope with these language-specific constructs.

7. Conclusion

This paper investigated the feasibility of using graph transformations as a formal specification for refac-
toring. Based on the specification of a number of typical refactorings we conclude that this formalism
is indeed suitable for specifying the effect of refactorings, because (i) graphs can be used as a language-
independent representation of the source code; (ii) graph transformation rules are a concise and precise
way to specify the source-code transformations implied by a refactoring; (iii) the formalism allows us to



T. Mens, N. Van Eetvelde, D. Janssens, S. Demeyer / Formalising Refactorings 1021

prove that refactorings preserve certain kinds of behaviour that can be inferred statically from the source
code.

In order to achieve our goal, we had to combine a number of existing graph rewriting mechanisms and
techniques. Type graphs and graph expressions made it possible to express well-formedness constraints
in a natural way. The specification of infinite sets of productions was facilitated by using parameterisation
and an embedding mechanism. The application of graph productions was restricted by using negative
application conditions and controlled graph rewriting. All these techniques are provided by state-of-the-
art graph rewriting tools such as PROGRES [23] and Fujaba [15].
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