
1

Formalizing the Structural Semantics of

Domain-Specific Modeling Languages
ETHAN JACKSON and JANOS SZTIPANOVITS

Institute for Software Integrated Systems, Vanderbilt University

Abstract— Model-based approaches to system design

are now widespread and successful. These approaches

make extensive use of model structure to describe systems

using domain-specific abstractions, to specify and imple-

ment model transformations, and to analyze structural

properties of models. In spite of its general importance

the structural semantics of modeling languages are not

well-understood. In this paper we develop the formal

foundations for the structural semantics of domain specific

modeling languages (DSML), including the mechanisms

by which metamodels specify the structural semantics of

DSMLs. Additionally, we show how our formalization can

complement existing tools, and how it yields algorithms

for the analysis of DSMLs and model transformations.

Index Terms— Model-based Design, Domain Specific

Modeling Languages, Structural Semantics, Metamodel-

ing, Formal Logic, Horn Logic

I. INTRODUCTION

Domain-specific modeling languages (DSMLs) play

an important role in software and system design. They

are essential components of the OMG’s model-driven

architecture (MDA) [76], mature tools exist for con-

structing and utilizing DSMLs [31], [36], [64], and many

methodologies in model-based design, such as platform-

based design [45] and actor-based design [66] exploit the

DSML metaphor [65].

Despite widespread application of DSMLs, many sci-

entific questions remain about their formal properties

[8], [41], [61], which can be loosely grouped into the

structural and behavioral regimes. The structural regime

concerns the specification, representation, and manipula-

tion of models as represented in some domain-specific

syntax. Research in the behavioral regime focuses on the

specification and analysis of domain-specific execution

semantics. Efforts to formalize statecharts [37], [38] and

message sequence charts [3], [39] fit into this regime.

Others have studied the general problem of linking

domain-specific syntaxes with execution semantics [14],

[72].

Anytime a new community adopts DSML-based mod-

eling, its members inevitably desire a precise formaliza-

tion of behaviors for the purposes of verification and

simulation. This evolution can be seen in the hybrid

systems [83], embedded systems [34], and security [55]

communities. However, the immediacy of behavioral

issues has dominated the spotlight, leaving issues in the

structural regime behind.

In all fairness, it is not obvious that the founda-

tions of DSML syntax should differ from that of exist-

ing programming languages. Traditionally, programming

language construction follows a well-defined path [1]:

First, language syntax is defined with an eBNF grammar

[15] and a parser is generated. Second, a type-system

is defined. Third, algorithms are developed that walk

the abstract syntax tree (AST) and check the well-

typedness of the program. The terms “domain-specific”

and “model” do not by themselves indicate that the

procedure should be any different for DSMLs.

The first sign that DSMLs diverge from traditional

language design appears in their specification with meta-

models [5]. Metamodels employ UML-like class dia-

grams to describe rich syntactic constructs with hier-

archical internal structure (aggregation) carrying typed

data (attributes). Metamodeling also focuses attention

to relations (associations) between syntactic entities,

providing n-ary relations over infinite sets. Unlike BNF

grammars, metamodels treat these building blocks as

first-class concepts. Expressive constraint languages,

such as the Object Constraint Language (OCL) [79],

enrich metamodels by supporting expressive constraints

on legal model instances [55]. These observations have

already led many researchers to relate metamodels to

graph grammars, which natively support relations [23],

[60].

The second sign of divergence occurs in the varied ap-

plications of DSMLs syntax, which include model trans-

formations, design space exploration, and correct-by-

construction design. Model transformations [70] trans-

late between domain-specific syntaxes to change ab-

straction levels [32], compose modeling aspects [35],

and relate platform-independent models with platform

specific ones [76]. Modern model transformation lan-

guages utilize extended graphs grammars to capture the

complexities of DSML syntax [23], [60]. Syntax has also



2

been used to perform design space exploration. These

techniques employ syntactic perturbations to generate

optimized variants of models [57], [74]. Again, the

expressiveness of metamodeling constraints facilitates

meaningful design space exploration. This same expres-

siveness can be used to project behavioral properties (e.g.

deadlock freedom) onto the syntactic level [52]. Correct-

by-construction design [33] uses expressive syntactic

rules in conjunction with a suitable behavioral semantics

to statically identify models with bad behavioral prop-

erties. Note that the correct-by-construction approach

differs from static analysis of traditional programming

languages, because DSMLs are a priori designed to

maximize analysis. Programming language static anal-

ysis has historically evolved in the other direction: First,

the language is fixed (e.g. C++), and then reasonable ap-

proaches to static analysis develop, e.g. dataflow analysis

of software [28].

Given the important uses-cases for DSML syntax we

might expect that:

1) There exists a precise mathematical foundation for

metamodeling, model transformations, and DSML

syntax.

2) Tool-independent formal descriptions of modeling

artifacts can be extracted from tool-dependent ar-

tifacts.

3) The formal foundation yields analysis techniques

for DSML syntax, metamodels, and model trans-

formations.

Unfortunately, this is not the current state of affairs.

Metaprogrammable tools (i.e. tools that use metamodels)

and standardized metamodeling languages have evolved

independently from each other, from formalizations of

the metamodeling process, and from formalizations of

model transformations. Here are some examples that

illustrate this:

1) The work on KM3 [54] provides a formal meta-

modeling language for use with graph transforma-

tions, but does not address expressive constraints

incorporated into the source/target languages. Sim-

ilar limitations are present in the VMP [87] formal-

ism used by Viatra2 [17].

2) The mature metaprogrammable Generic Modeling

Environment (GME) [64] and Graph Rewriting

And Transformation (GReAT) tool [29] provide

expressive DSMLs and extensive model transfor-

mation features. However, the precise structural

semantics of tool artifacts depend on (and are

hidden in) the implementation of these complex

tools.

3) Standards such as the UML superstructure [80],

UML infrastructure [78], and Meta-Object Facil-

ity (MOF) [75] do not provide sufficiently rigid

definitions of the DSML process to permit inter-

operability between tools. See [24] for a detailed

example of this phenomenon.

In this paper we explore a bottom-up approach to for-

malizing metamodeling, DSML syntax, and model trans-

formations. By bottom-up, we mean that our approach

does not begin with the concepts of metamodeling or

model transformation, but ends with these. Instead, we

start with a simple formal core capable of expressing

the rich syntaxes of a class D of DSMLs. Each member

of this class is simply called a domain (motivated by

the phrase domain-specific) and each domain D defines

some domain-specific syntax. Next, we define a class

T of functions that relate the syntactic elements of

one domain with the elements of another; this class

represents model transformations. Third, we identify a

special pair (Dmeta, Tmeta) ∈ D × T that together are

capable of generating all domains in the class; this

becomes metamodeling. Finally, we define the classes D
and T using the same underlying mathematical apparatus

based on deductive logic.

With our approach we can formulate important prop-

erties over domains and transformations, including: Do-

main emptiness, domain equivalence, and structure pre-

serving maps.

1) Domain emptiness refers to DSMLs with no legal

syntactic instances. Empty domains are created

when metamodel composition introduces inconsis-

tencies, or when metamodeling constraints contain

mistakes.

2) Two domains are equivalent if they have the same

set of syntactic instances, even though their meta-

models may differ. Domain equivalence provides

a mechanism to compare domains independently

from the metamodeling language.

3) Structure preserving maps refer to model trans-

formations that always rewrite legal syntactic in-

stances to legal syntactic instances.

We have developed a theorem prover called FORMULA

(FORmal Modeling Using Logic Analysis) that calcu-

lates these properties when domains/transformations are

described using Horn logic [53] with stratified negation

[48], [51]. We will not describe the details of FORMULA

here, but show some results of the tool.

Finally, we incorporated our formalization into the

Model Integrated Computing (MIC) tool suite, which has

amassed over a decade of massive modeling efforts rang-

ing from models of the NASA space station [12] to the

sensor and control networks of automotive plants [68].



3

We show in detail how our framework can be connected

to this tried-and-tested DSML-based modeling suite.

This case study illustrates that the bottom-up approach

is flexible enough to adapt to various modeling tools

in the face of competing standards and metamodeling

languages.

This paper is divided into three main sections. Sec-

tion II describes work related to formalizing DSML

syntax. Section III describes our formalism in abstract

terms, i.e. without a particular metamodeling language

or model transformation technology in mind. We build

the key concepts of domains, model transformations,

and metamodeling. We also illustrate how this formalism

yields opportunities for analysis. Section IV presents one

incarnation of our formalism using Horn logic and links

it to the MIC tools. Finally, we conclude in Section V.

II. RELATED WORK

Our view of metamodeling differs from existing ap-

proaches based on an instance semantics [54], [87].

These approaches view metamodels as class-like con-

structs that can be instantiated. A model conforms to

a metamodel if each modeling element is an instance

of a metamodeling concept. A meta-metamodel is a

metamodel whose conforming instances are metamodels.

This top-down approach uses the meta-metamodel to

drive the set of possible metamodels that drives the

sets of possible models. While this approach is certainly

reasonable, it makes it difficult to disassociate models

from the tools and standards used to construct them. The

bottom-up approach is meta-metamodel agnostic, i.e.

domains and transformations exist independently from

any particular metamodeling lanugage.

Formalizations and applications of expressive syntax

have appeared in many different forms. Within the

domain-specific language community, graph-theoretic

formalisms [8], [22], [81] have received the most re-

search attention. However, the majority of work focuses

on graph rewriting systems as a foundation for model

transformations. See [60], [70] for a taxonomy of ex-

isting graph-theoretic model transformation approaches.

The problems of calculating properties of rich syntax,

composing syntax with known properties, and con-

structing design space representations have not received

the same attention from graph-theoretic methods. For

example, the model transformation tool VIATRA [17]

supports executable Horn logic (i.e. Prolog) to specify

transformations, but does not focus on restricting expres-

siveness for the purpose of analysis.

The visibility of UML has driven researchers to for-

malize it semantics. This is a non-trivial task because

UML includes many capabilities (diagrams) including

metamodeling, state machines, activities, sequence charts

(interactions), and use-case diagrams [80]. Approaches

for formalizing UML must tackle the temporal nature

of its various behavioral semantics, necessitating more

expressive formal methods. Well-known tools/methods

such as Alloy [46], B [69], and Z [26] have been

used to varying degrees of success. These approaches

make trade-offs between expressiveness and the degree

of automated analysis. For example, Z and B proofs

typically require interactive theorem provers [6], [10]

and model generation may not be supported. Z or B

formalizations of UML could be a vehicle for studying

rich syntax, but automated analysis is less likely to be

found.

Alloy, like our tool FORMULA, is less expressive than

other methods, thereby supporting automated analysis

[47]; it also has a recently improved model generation

(model finding) procedure [86]. However, the mathe-

matical underpinnings of Alloy are quite different from

our approach: Alloy supports algebraic specifications

through first-order logic with relations over atoms plus

transitive closure. Contrarily, our framework is based

on a non-monotonic extension of Horn logic [51]. One

key difference is that FORMULA specifications can be

executed like standard logic programs [84]. Complexity-

theory also offers a coarse-grained way of comparing

logic programs with other methods [19].

The BNF grammars of traditional programming lan-

guages can be extended to capture richer syntaxes. At-

tribute grammars (AGs) [82] , proposed by Knuth [59],

could be the earliest example of such a mechanism. AGs

allow the productions of a BNF grammar to trigger ac-

tions capable of examining tokens and attaching new data

to tokens. These actions can be specified programmat-

ically, thereby significantly increasing the power of the

grammar. However, calculating properties of languages

specified through AGs depends on the expressiveness of

the actions. Additionally, composing AGs has proved to

be a difficult task [27]. More recently, pluggable type

systems have been studied as a mechanism to compose

the type systems of traditional programming languages

[4].

III. THE FORMAL SEMANTICS OF DOMAINS AND

DOMAIN CONSTRUCTION

We begin by developing a mathematical description of

the structuring primitives commonly found in DSMLs.

Initially, this description, called a domain, shall be inde-

pendent from metamodeling. Intuitively, the domain of a

DSML classifies all the structurally legal (well-formed)



4

Sensor

FFT

Control

Actuator

State
Variables

Sampler

FIFO

FIFO

Read/Write

Abstract Domain

CPU

Bus

Flash
RAMDAC

ADC

C
P
U
 
A
 
c
a
n
n
o
t
 
b
e
 
u
s
e
d

w
i
t
h
 
R
A
M
 
o
f
 
t
y
p
e
 
B
.

Mic

M
o
d
e
l
 
T
r
a
n
s
f
o
r
m
a
t
i
o
n

Out

Hardware Domain

(a)

I n2

I n1

I mag

Real

I mag

Real

FFT

I mag

Real

I mag2

Re al 2

I mag1

Re al 1

Spl i t t e r

I mag

Real

Phas e

Abs

Abs Phas e 1

I mag

Real

Phas e

Abs

Abs Phas e 2

Ab1

Ph1

Ab2

Ph2I mag

Real

(b)

Fig. 1. (a) Example of two domains. (b) A model from a digital signal processing domain.

objects1 of that language. As an example, consider the

circuit board labeled Hardware Domain in Figure 1.a.

This circuit board has a structural semantics where the

language primitives are the the hardware components

(ASICs and cards) that can be plugged into the circuit

board. Each slot in the circuit board encodes a restriction

on the actual ASIC that can be placed in a particular

location. For example, the block labeled CPU encodes

the constraint that a CPU, not a RAM module, must be

placed at that point. Constraints can be more complicated

than simple placement rules. For example, Figure 1.a

also requires that if a CPU of type A is placed on the

board, then a RAM module of type B cannot be placed

on the board. A model realization is a description that

has no remaining degrees of freedom, e.g., every place

on the circuit board has some hardware assigned to

it. In order to avoid confusion, we shall use the term

model realization to indicate some construction that may

or may not satisfy the placement rules. A well-formed

model realization is a model realization that satisfies all

the constraints imposed on its construction. If a model

realization is well-formed then we refer to it simply as

a model. Of course, this usage of the term model is with

1The term object is used with the categorical connotation in mind,

i.e. a category has objects [63]. We are not implying an instance

semantics.

respect to the structural semantics. We do not need to

give any details about what CPUs, RAMs, and buses do

in order to check well-formedness of the circuit boards.

A domain gives the necessary information to decide

which model realizations are well-formed and which are

not.

The primitives and placement rules can be applied to

more abstract contexts. The plane labeled Abstract Do-

main in Figure 1.b uses functionally abstract primitives

as the building blocks of the language. For example,

infinite FIFOs, controllers, and sensors are the indivisible

blocks. The FIFOs illustrate relational primitives that

must exist between other parts of the model realiza-

tion. Conceptually, this view of a model realization is

the one taken by platform-based design [85]. It is a

useful conceptualization because it includes relational

constructs and constraints without implying a metamodel

or OOP-like instance semantics. We use this intuition

to formalize the information needed to characterize the

domain of a DSML. A domain is specified by the

following information:

1) Some mathematical structure Υ of concepts, com-

ponents, or primitives from which model realiza-

tions are built,

2) a set RΥ of all possible model realizations,

3) a set of domain constraints C over RΥ.



5

The set RΥ captures all the possible ways that lan-

guage primitives can be composed. The set of well-

formed models realizations is the set of all model re-

alizations that satisfy the domain constraints. One might

wonder why the set of domain constraints is treated as a

first-class concept. Would it be simpler to imagine a set

Rwell
Υ consisting of just well-formed model realizations?

In practice the only finite descriptions of the well-formed

sets are constraint-based descriptions. This can be seen

in classical context-free languages. Take Υ = Σ to be a

finite alphabet, and RΥ = Σ∗ to be the set of all finite

strings over Σ. The domain constraints C are specified

by a BNF grammar or an automaton that accepts only

well-formed strings.

The complex structuring found in DSMLs demands a

flexible form for Υ and a rich mechanism for generating

RΥ. Ideally, Υ should easily capture the commonly used

structural primitives, which can be fairly complex for the

DSMLs. For example, associations, which are relational,

can be contained within some substructure. UML con-

tainment is also a type of association, illustrating that

relations over relations are common. We can see from

graph theory that some new machinery is required even

for the simplest case of hierarchical graphs, where nodes

contain subgraphs [21].

A. Encoding Structuring Primitives

We provide this flexibility by selecting Υ to be a finite

signature and RΥ to be the powerset of the term algebra

over Υ generated by an alphabet Σ. This description

uses the language of universal algebra; see [11] for

detailed discussion of term algebras. We now present an

example to illustrate this approach. This example will

build the necessary intuition for those not familiar with

universal algebra. Figure 1.b shows a model realization

representing a digital signal processing (DSP) system.

We will work backwards from this system to the domain

of all DSP models. To begin, we must extract the

primitive concepts used to build DSP systems.

Examining Figure 1.b, we see that the system has

inputs and outputs at the far left and right side, as well

as a number of DSP primitives (FFT, phase/magnitude

extraction, and signal demultiplexing), which can used

multiple times. The zoomed-in box shows that primitives

have interfaces, which are sets of uniquely identifiable

ports. (Note this is not a toy example. Systems such as

these have been extensively studied [56].) In order to

capture these structuring concepts, we will describe a

set of n-ary function symbols for encoding the modeling

concepts. Informally, function symbols are place-holders

for functions. We use them to encode information with-

out attaching a deeper behavioral interpretation. (Again,

see [11] for more details.) Table I lists the basic concepts

of the DSP domain written as n-ary function symbols.

Υ =



















































insig(X) : X is system-wide input signal

outsig(X) : X is system-wide output signal

prim(X) : X is a basic DSP operation

iport(X, Y ) : X has an input port called Y

oport(X, Y ) : X has an output port called Y

inst(X, Y ) : X is an instance of the DSP

operation Y

flow(X1, Y1, X2, Y2) : Data goes from oport

Y1 on X1 to iport Y2 on X2

TABLE I

SET OF MODELING CONCEPTS FOR DSP DOMAIN.

These function symbols encode the essential structur-

ing primitives of DSP systems. However, just as with

“regular” functions, the symbols must be applied over

some set of objects. These objects are understood as

distinguishable items in the model realizations. For ex-

ample, in Figure 1.b there is a DSP block called FFT. We

capture this by writing prim(FFT), where the name FFT

is a member some underlying alphabet. Mathematically,

prim(FFT) is called a term; it is a combination of

function symbols with alphabets. A model realization is a

set of terms where each term expresses information about

some particular members of the alphabet by applying

the function symbols. Table II shows a partial encoding

of the DSP model as terms2. Notice that terms can

arbitrarily nested, naturally expressing relations over

relations.

Primitives prim(FFT), prim(Splitter), prim(Phase)

Ports
iport(prim(FFT),Real), . . . ,
oport(prim(FFT),Imag)

Inputs insig(In1), insig(In2)
Outputs outsig(Ab1), outsig(Ph1), . . . , outsig(Ph2)

Instances
inst(FFT, prim(FFT)), . . . ,
inst(AbsPhase1, prim(Phase))

Flows
flow(insig(In1), insig(In1), inst(FFT,

prim(FFT)), iport(prim(FFT),Real)), . . .

TABLE II

A PARTIAL ENCODING OF FIGURE 1.B WITH GROUND TERMS.

Working backwards, a model realization is a set of

terms, therefore the set of all model realizations RΥ

contains all possible sets of terms that can be formed

from Υ and an (infinite) alphabet Σ. We will make this

more precise using the language of algebra. Assume an

underlying vocabulary V providing function symbols,

then Υ is a signature – a partial function from function

2In order to simplify the encoding, we assume that every in-

put/output is also a port with the same name as the input/output.



6

names to the non-negative integers: Υ : V → Z+.

The domain of Υ is the subset of function symbols

from V used to encode model realizations; the integer

assigned to each symbol is the corresponding arity of

the function. An Υ-algebra A = 〈A,Υ〉 is a structure

where A is a set called the universe of the algebra, and

Υ is a signature. Each function symbol f in the signature

denotes a mapping f : AΥ(f) → A from an Υ(f)-tuple

of the universe back to the unverse.

Given a signature Υ and an alphabet Σ, there exists

a special algebra TΥ(Σ) called the term algebra over

Υ generated by Σ. The precise definition of the term

algebra is rather technical, so we defer this exposition

to [11]. Instead, we emphasize the elegance of the term

algebra as a construction for RΥ. Definition III.1 shows

how all the terms can be constructed using algebraic

induction.

Definition III.1. Let Υ be a signature and Σ be an

alphabet, then the terms of the term algebra can be

inductively generated.

1) σ ∈ Σ is a term

2) If f ∈ dom Υ and t1, t2, . . . , tΥ(f) are terms, then

f(t1, t2, . . . , tf(Υ)) is a term.

Terms have unique readability3, meaning that two terms

are the same if and only if they are written exactly the

same way. For example, prim(FFT) 6= prim(FFT1)
because the arguments of prim differ between the terms.

Term equality can be easily checked, and we use this

throughout the paper. Let TΥ(Σ) denote the term algebra

over Υ generated by Σ.

Definition III.2. The set of model realizations RΥ for a

signature Υ is:

RΥ = P
(
TΥ(Σ)

)
.

B. Characterizing the Models

The set RΥ contains many model realizations, some

of which do not represent meaningful constructions in

the DSML. For example, the output of signal processing

block should not be wired to the output of another

block, yet RΥ includes realizations with this property.

Erroneous realizations can be eliminated by imposing

additional constraints over RΥ, in the same way as OCL

constraints are added to metamodels.

We formalize constraints using a proof-theoretic ap-

proach, which allows domains to be analyzed using

proof procedures. This general framework requires the

selection of a logic L for writing constraints. Let F(L)

3Notice that unique readability does not hold in most algebras:

x + y = +(x, y) = +(y, x) = y + x.

denote the class of all formulas of the logic L and

ΓL(Ψ) denote the deductive closure of a set of formulas

Ψ ⊂ F(L). The deductive closure contains all the

formulas (finitely) deduced from Ψ using the logic L.

It is also convenient to write Ψ ⊢L φ to indicate that φ

is deducible from Ψ, i.e. φ ∈ ΓL(Ψ).
The domain constraints are a finite set of formulas Θ

from the logic L. These formulas will be used to deduce

if a model realization satisfies the well-formedness crite-

ria of a particular domain. The procedure is as follows:

1) Convert a model realization r (finite set of terms)

into a formula Ψ(r),
2) Calculate the deductive closure ΓL(Ψ(r) ∪Θ),
3) Examine the deductive closure to find if r satisfies

the rules of the domain.

This framework requires minimal assumptions about the

logic L. Namely, that terms can be converted to for-

mulas and the logic contains some form of conjunction.

Formally, there exists a one-to-one inclusion map ι :
TΥ → F(L) assigning a term to a formula of the logic.

Conjunction, denoted ψ ∧ φ , means

∀ψ, φ ∈ F(L) (ψ∧φ) ⊢L ψ and (ψ∧φ) ⊢L φ. (III.1)

∀ψ, φ ∈ F(L) {ψ, φ} ⊢L (ψ ∧ φ). (III.2)

Given a logic with these simple properties, the proce-

dure to decide well-formedness of a model realization is:

Check if some agreed upon formulas are deducible. Or,

check if some agreed upon formulas are not deducible.

It is important to allow both of these styles, as not all

logics are closed under negation. We call the domains

using the former style positive and domains using the

latter style negative.

Definition III.3. A realization r = {t1, t2, . . . , tn}
satisfies domain constraints Θ of a positive domain if:

∃w ∈ TW , ι(t1), ι(t2), . . . , ι(tn),Θ ⊢L w (III.3)

where TW is an agreed upon set of formulas used to

witness the well-formedness of r.

Definition III.4. A realization r = {t1, t2, . . . , tn}
satisfies domain constraints Θ of a negative domain if:

∀m ∈ TM , ι(t1), ι(t2), . . . , ι(tn),Θ 0L m (III.4)

where TM is an agreed upon set of formulas used to

witness the malformedness of r.

For the remainder of the paper let Ψ(r) =
{ι(t1), ι(t2), . . . , ι(tn)}.

The connection between terms and formulas via ι

admits a simple mechanism for constructing positive

and negative domains. Add a new function symbol



7

wellform(·) to the signature Υ, then a model realization

r is well-formed if ∃x ∈ TΥ Ψ(r),Θ ⊢ ι(wellform(x)).
In the case of negative domains augment Υ with a

malform(·) symbol. A model realization is well-formed

if ∀x ∈ TΥ Ψ(r),Θ 0 ι(malform(x)), i.e. if its

impossible to deduce any malform(·) term from r.

Given that terms can be converted to formulas, we may

write that “a term t is derived from a realization r” as a

shorthand for ∃φ ∈ F(L), ι(t) = φ and Ψ(r),Θ ⊢L φ.

A domain has the following parts: An alphabet Σ,

a signature Υ, called the domain signature, a signature

ΥC , called the constraint signature, and a set of con-

straints C for deriving well-formedness. ΥC , an exten-

sion of Υ, contains all the necessary symbols for deriving

well-formedness. By “extension”, we mean that ΥC con-

tains at least the symbols of Υ, while assigning the same

arity to common symbols: ∀f ∈ dom, Υ(f) = ΥC(f).
Domains are subdivided into two disjoint classes: pos-

itive and negative. Positive domains must include the

unary symbol wellform(·) in ΥC ; negative domains

must include the unary function symbol malform(·) in

ΥC .

Definition III.5. A domain D is a 4-tuple of the form

〈Υ,ΥC ,Σ, C〉. Υ and ΥC are signatures with functions

symbols from V , where ΥC is an extension of Υ. Σ is

an alphabet, and C is a finite set of formulas of F(L). A

domain is positive if ΥC(wellform) 7→ 1; it is negative

if ΥC(malform) 7→ 1.

In our framework a domain is the structural semantics

of the a DSML. This scheme permits a simple definition

of equivalence between domains. In the interest of space,

we show this for positive domains.

Lemma III.6. Let models(D) be the set of well-formed

model realizations of the domain D. There exists an

equivalence relation ∼= over positive domains:

D1
∼= D2 if models(D1) = models(D2) (III.5)

It is easy to see that this is a valid equivalence relation,

so we omit the proof. Enforcing a common symbol

wellform(·) makes it possible to compare arbitrary

domains. Realistically, domain equivalence can be com-

puted by examining the ways in which wellform(·)
terms are deduced. Figure 2 illustrates how two domains

can be compared with each other. Consider the case of

two positive domains D1, D2 with identical Υ signatures

and agreeing4 constraint signatures ΥC . The upper plane

shows the well-formed models of each domain as a

4The signatures assign the same arity to symbols of the same name.

P(TΥ(Σ))

Ψ(r1), C1 ⊢L
Ψ(r2), C2 ⊢L

TW = {wellformed(x)|x ∈ TΥ∪ΥC1
∪ΥC2

}

D1

D2

r1

r2

Fig. 2. Two positive domains of same signature are related by the

wellform symbol

subset of the powerset of terms. Each well-formed model

in Di infers one or more terms wellform(x) under the

consequence operator ⊢L, as shown on the lower plane.

Let TW be all the formulas corresponding to terms of

the form wellform(x). Two domains can be compared

by working backwards from TW in the following way:

Check if there exists a model realization r ∈ RΥ

such that ∃w ∈ TW , Ψ(r), C1 ⊢L w, but ¬∃u ∈
TW , Ψ(r), C2 ⊢L u. If there exists such an r, then the

domains cannot be equal because r is well-formed in

the first domain and not in the second. If there does

not exist such an r, then models(D1) ⊆ models(D2).
In this case, check the opposite direction for an r′

such that ¬∃w ∈ TW , Ψ(r′), C1 ⊢L w and ∃u ∈
TW , Ψ(r′), C2 ⊢L u. Again, if no such r′ can be found,

then models(D1) = models(D2). A similar comparison

can be made for negative domains. If an appropriate

style of logic is selected (i.e. an appropriate consequence

relation) then domain equivalence is decidable.

Theorem III.7. Two positive domains D1, D2 are equiv-

alent iff there is no model realization r ∈ RΥi
such that

∃w ∈ TW , Ψ(r), Ci ⊢L w and ∀u ∈ TW , Ψ(r), Cj 0L u

for i = 1, j = 2 and i = 2, j = 1.

This theorem is a refutation proof against the inclusions

of Lemma III.6. If neither implication can be refuted,

then the domains must be equivalent. Though this paper

is not about theorem proving techniques, we have devel-

oped a solver, FORMULA [51], that implements analysis

on domains.

Figure 3 shows a simplified version of a modeling

problem that we gave to a class of computer science

students. The metamodel of 3.a contains an abstract class



8

Super

Assoc

Class A Class B

(a)

Class A

Assoc

Class B

(b)

Fig. 3. (a) Instances of Class A can be associated with instances

of Class B due to inheritance. (b) Instances of Class A cannot be

connected to instance of Class B.

Super and two sub-classes: Class A and Class B. An as-

sociation class called Assoc can connect instances of type

Super. The students had to determine if an “equivalent”

metamodel could be formed by removing the abstract

super class, and propagating the association down the

inheritance hierarchy. Figure 3.b shows the metamodel

that results from this operation. In this simplified exam-

ple it is easy to see that the two metamodels are not

equivalent, because in the modified metamodel Class A

instances cannot be connected to Class B instances. We

can use Theorem III.7 to prove that this is the case.

The first step is to extract corresponding domains from

each metamodel. (Section III-D covers this extraction

process in detail.) After the domain definitions have been

extracted, Theorem III.7 is applied.

The first step in the proof tries to construct a model

of domain Db (from metamodel b) that is not well-

formed in Da. Not surprisingly, there are few feasi-

ble solutions to the goal and the proof fails. Thus,

either models(Db) ⊂ models(Da) or models(Db) =
models(Da). The second proof tries to refute the in-

clusion models(Da) ⊆ models(Db). This proof goal

yields a satisfiable solution tree and the prover constructs

a solution refuting this inclusion, so it must be that

models(Db) ⊂ models(Da). In fact, the prover con-

structs a concrete model containing an instance of Class

A and an instance of Class B connected by an association

of type Assoc. This concludes the proof that Da ≇ Db.

C. Model Transformations

Model transformations translate the syntactic con-

structs of one domain into the syntactic constructs of an-

other domain. Transformations between DSMLs provide

the foundation for a number of key modeling activities.

These activities include:

1) raising and/or lowering the degree of abstraction.

For example, Model Driven Architecture (MDA)

uses model transformations to provide a bridge

between high-level implementation-independent

models and less abstract implementation-

dependent models. (These are called platform-

independent and platform-dependent models in

MDA.)

2) the specification of DSML behavioral semantics.

A purely structural domain without behavioral

semantics can inherit a behavioral semantics via

a transformation to a well-defined DSML.

3) high-level and analyzable code generators [73].

In the most general sense, a model transformation tool

implements a mapping from model realizations to model

realizations. We call such a mapping an interpretation.

Definition III.8. An interpretation J K is a mapping

from the model realizations of a domain D to the model

realizations of another domain D′.

J K : RΥ 7→ RΥ′ (III.6)

A single domain may have many different interpreta-

tions, and these form a family of mappings (J Kj)j∈J
.

For some model realization r ∈ RΥ, we denote the jth

interpretation of r as JrKj . Mathematically, interpreta-

tions are general enough that they can be used to specify

arbitrary relationships between domains. For example, an

interpretation from domain DX onto StateCharts [40]

attaches a hierarchical concurrent automata semantics to

DX . Similar strategies have been used to affix continuous

time [62], dataflow [67], and hybrid dynamics [42] to

domains. Thus, we will view a domain specific mod-

eling language (DSML) as a domain and its family of

interpretations.

Definition III.9. A domain specific modeling language

(DSML) L is a pair comprised of its domain and

interpretations.

L =
〈
D, (J Kj)j∈J

〉
. (III.7)

Admittedly, not all interpretations are easily specified,

however the model transformation community has shown

that many important interpretations can be specified by

sets of transformation rules. A transformation rule takes

the form L → R where L and R are the left- and

right-hand side of the rule, respectively. The left-hand

side of the rule is a pattern that is matched against the

input model realization. The right-hand side is a pattern

that is instantiated and combined with the output model

realization whenever L matches. A model transformation

generates an output model by applying the rules until

no more rules can be applied. See [18] for a survey of



9

existing model transformation techniques. We wish to in-

corporate model transformations into the algebraic/logic

framework of domains. This is accomplished by speci-

fying transformations rules as formulas that deduce the

elements of the output model realization from the input

model realization. This approach is similar in spirit to

the declarative subset of the VIATRA tool suite [17].

Definition III.10. A transformation T is a three tuple:

T = 〈Υ,Υ′, τ〉 (III.8)

where Υ,Υ′ are disjoint signatures, and τ is a set of

formulas of the same logic L used to specify constraints.

A model realization r ∈ RΥ is transformed to a model

realization r′ ∈ RΥ′ by converting deduced formulas

to terms. A transformation T defines a transformational

interpretation.

Definition III.11. Given a transformation T , a transfor-

mational interpretation J KT is a mapping:

J KT : RΥ → RΥ′ , (III.9)

JrKT 7→ {s ∈ TΥ′ | ι(s) ∈ ΓL(Ψ(r) ∪ τ)}. (III.10)

A transformational interpretation first finds all the for-

mulas that can be deduced from the input r and the

transformation clauses τ . The output realization r′ is

built from the deduced formulas that also correspond to

terms in the TΥ′ .

We now present an example that characterizes the

asynchronous (shuffle) product of two finite state au-

tomata (FSAs) using transformational interpretations. We

use a style of logic, called Horn logic, that is described

in the next section. The input domain contains function

symbols for encoding two parallel automata, and the

output domain contains function symbols for encoding a

single product automaton. For example:

Υ =

{
s1(x), s2(x), initial1(x), initial2(x),
event1(x), event2(x), e1(x, α, y), e2(x, α, y)

(III.11)

Symbols of the form f1 (or f2) are used by the first

(or second) automaton. For example, the s1(x) symbol

encodes the states of the first automaton, while the s2(x)
symbol encodes the states of the second automaton. The

initiali symbols encode the initial states of the automata,

and the eventi symbols encode the event alphabets of

the automata. A transition is of the form ei(x, α, y)
indicating that automaton i transitions from state x to

state y on event α. Similarly, the function symbols of

the product automaton are:

Υ′ =

{
s12(x, y), initial12(x, y),
event12(x), e12(x, α, y)

(III.12)

The transformation formulas τ explain how to deduce

the product automaton from the two concurrent au-

tomata. For example, we know that the event alphabet of

the product automata is the union of the event alphabets

of the smaller automata:

event12(x)← event1(x)

event12(x)← event2(x)

Informally, these formulas state that whenever there is a

term eventi(c) in the input, a term event12(c) is added

to the output, for c ∈ Σ. Effectively, they union the

two event alphabets. Similarly, the (initial) states of the

product automata are the Cartesian product of the (initial)

states of the smaller automata:

s12(x, y)← s1(x), s2(y)

initial12(x, y)← initial1(x), initial2(y)

The asynchronous product represents the situation that

two concurrent automata never transition at the same

time. For example, if there is a transition s
α
−→ s′ in the

first automaton, then the product automaton contains a

transition (s, t)
α
−→ (s′, t) for every state t in the second

automaton. Again, this rule is described with formulas:

e12(s12(x, t), α, s12(y, t))← e1(x, α, y), s2(t)

e12(s12(t, x), α, s12(t, y))← s1(t), e2(x, α, y)

Finally, the conversion from terms to Horn formulas is

simple:

∀t ∈ TΥ ι(t) 7→ (t← true) (III.13)

A term becomes a fact, which is a Horn clause asserting

t to be deducable.

Figure 4.a shows two concurrent automata. These

automata would form the following set of terms (model

realization):

r =






s1(A), s1(B), s1(C), s2(D), s2(E),
initial1(A), initial2(D),
event1(e1), event1(e2), event2(e3),
e1(A, e1, B), e1(A, e2, C), e2(D, e3, E)

(III.14)

Take τ to be the previous formulas, then

JrKT =






s12(A, D), s12(A, E), s12(B, D),
s12(B, E), s12(C, D), s12(C, E),
initial12(A, D), event12(e1),
event12(e2), event12(e3),
e12(s12(A, D), e1, s12(B, D)),
e12(s12(A, D), e2, s12(C, D)),
e12(s12(A, D), e3, s12(A, E)),
e12(s12(B, D), e3, s12(B, E)),
e12(s12(A, E), e1, s12(B, E)),
e12(s12(A, E), e2, s12(C, E)),
e12(s12(C, D), e3, s12(C, E))

(III.15)



10

Figure 4.b shows the resulting product automaton de-

scribed by these terms.

A1

A

B C

A2

e1 e2
D E

e3

(a)
A1xA2

AE BE

CE CD

AD BD

e1

e1e2

e3

e2

e3e3

(b)

Fig. 4. (a) Two concurrent automata (b) Asynchronous product of

two automata.

Model transformations are defined within the same

mathematical framework as domains. This enables anal-

ysis of the interaction between transformations and do-

main constraints. For example, interpretations that pre-

serve the well-formedness rules of domains are particu-

larly important to embedded system design. These struc-

ture preserving maps posses the weakest property that

one would expect a correct transformational semantics

to posses, and are important in correct-by-construction

design [43] [20] [7].

Definition III.12. Let D = 〈Υ,ΥC ,Σ, C〉 and D′ =
〈Υ′,Υ′

C ,Σ, C
′〉 be domains. Let T = 〈Υ,Υ′, τ〉 be a

transformation. The transformational interpretation J KT

is a structure preserving map from D to D′ if:

∀r ∈ RΥ

(
r ∈ models(D)⇒ JrKT ∈ models(D′)

)
.

(III.16)

Even the verification of weak properties is still a major

open problem in the model transformation community.

Our approach allows some of these properties to tran-

scribed into formal logic and then proved with an ex-

istence proof. This is accomplished by first renaming

the constraint function symbols so they are disjoint:

(ΥC − Υ) ∩ (Υ′
C − Υ′) = ∅. In particular, we create

two distinct well-formedness symbols wellform(·) ∈
ΥC and wellform′(·) ∈ Υ′

C . Similarly, the constraint

formulas C and C ′ are rewritten to use the renamed

function symbols. Call the renamed signatures ΥC ,Υ′
C

and the renamed formulas C,C ′. (This renaming scheme

can be done automatically. See [51] for a description of

how FORMULA implements this renaming scheme.)

Given two domains D,D′ and a compatible trans-

formation T , then the renamed formulas force the do-

mains to interact only through the model transforma-

tion. Mathematically we look at the combined formulas:

C ∪ C ′ ∪ τ . If there exists an input model realization

r such that ∃x, Ψ(r), C, C ′, τ ⊢L ι(wellform(x)), but

∀y, Ψ(r), C, C ′, τ 0L ι(wellform′(y)), then T is not

structure preserving. However, if no such r exists then

T is structure preserving. Again, this techniques tries to

refute the implication of Equation III.16

Theorem III.13. Let D, D′, and T be two positive

domains and a transformation as described in Definition

III.12. Then T is structure preserving iff:

∄r ∈ RΥ ∃x ∈ TΥC
(Σ) ∀y ∈ TΥ′

C

(Σ)

Ψ(r), C, C ′, τ ⊢L ι(wellform(x)),

Ψ(r), C, C ′, τ 0L ι(wellform
′(y))

(III.17)

A similar theorem exists for negative domains.

Theorem III.14. Let D, D′, and T be two negative

domains and a transformation as described in Definition

III.12. Then T is structure preserving iff:

∄r ∈ RΥ ∃y ∈ TΥC
(Σ) ∀x ∈ TΥ′

C

(Σ)

Ψ(r), C, C ′, τ 0L ι(malform(x)),

Ψ(r), C, C ′, τ ⊢L ι(malform
′(y))

(III.18)

We now illustrate this proof technique with a concrete

example. A deterministic FSA is an automaton such that

there is no state with two different transitions guarded

by the same event. We can define the domain of de-

terministic concurrent automata by adding the following

malformedness rules:

C =






malform(x)←
e1(x, α, y), e1(x, α, y

′), y 6= y′.

malform(c)←
e2(x, α, y), e2(x, α, y

′), y 6= y′.

(III.19)

The determinism rule can also be defined for product

automata.

C ′ =






malform(s12(x, y))←
e12(s12(x, y), α, s12(x

′, y′)),
e12(s12(x, y), α, s12(x

′′, y′′)),
x′ 6= x′′.

malform(s12(x, y))←
e12(s12(x, y), α, s12(x

′, y′)),
e12(s12(x, y), α, s12(x

′′, y′′)),
y′ 6= y′′.

(III.20)



11

A1

A B
e

A2

C D
e

Fig. 5. Generated counter-example showing that shuffle product

does not preserve determinism.

src

0..*

dst 0..*

0..*
0..*

StartState

fieldAction :

fieldTrigger :

Transition

boolIsAndState :

State

Fig. 6. MetaGME metamodel for HFSM.

We can now prove that the shuffle product is not

structure preserving with respect to these domains. In

another words, we prove that the shuffle product does

not preserve determinism. Of course, this fact is well-

known; the novelty is our reformulation of the problem

as a question of structure preservation between domains.

The proof engine generates a counter example showing

two deterministic automata that yield a non-deterministic

product. Figure 5 shows this counter example. This

example shows that by unifying domains and model

transformations we can apply theorem proving tech-

niques to reason about their composition. Note that this

solution is generated independently from the examples

of Figure 4; only the domain constraints are used.

D. Metamodels and Metamodeling

Domains and interpretations provide the basic foun-

dations for model-based design through DSMLs. In this

section we formalize more advanced DSML design prin-

ciples using our formalization as a foundation. Specifi-

cally, we formalize the metamodeling process by which

new domains are rapidly defined via the construction and

interpretation of metamodels. A metamodel is a model

that belongs to a special DSML called a metamodeling

language. The metamodeling language provides an inter-

pretation that maps metamodels to domains. This process

allows users to concisely “model” their domain, and then

generate the domain concepts and constraints from the

model.

Domains are characterized by UML-like class dia-

grams called metamodels. Figure 6 shows a metamodel

of a hierarchical automata domain. The boxes in the

metamodel are the primitive concepts of the language.

Superficially, the boxes appear to be classes. However,

this is merely a historical artifact inherited from UML

notation, which has given these boxes the nickname of

“class”. It is important to distinguish metamodel classes

from true classes, which are much more than structur-

ing primitives. True classes have behavioral semantics

describing, among other things, how the flow of control

changes when a method is invoked or when static con-

structors are called. Nonetheless, the “class” metaphor is

convenient and allows metamodels to provide a compact

notation for specifying structure. For example, language

primitives can contain data members (called attributes):

The Transition class has Trigger and Action

attributes, both of type field (or string). The meta-

model also encodes a graph class by associating some

classes with vertices and other classes with edges. The

State and StartState classes correspond to ver-

tices; instances of the Transition class are edges.

The diagram also declares which vertex types can be

connected together, and gives the edge types that can

make these connections. The solid lines passing through

the connector symbol (•) indicate that edges can be

created between vertices, and the dashed line from the

connector to the Transition class indicates that these

edges are instances of type Transition. The diagram

encodes yet more rules: Lines that end with a diamond

(�) indicate hierarchical containment, e.g. State in-

stances can contain other states and transitions. Lines

that pass through a triangle (△) identify inheritance

relationships, e.g. a StartState inherits the properties

of State.

This example illustrates two important points about

metamodeling languages. First, a small metamodel can

define a rich domain that may include a non-trivial

inheritance hierarchy, a graph class, and other concepts

like hierarchical containment and aspects. Metamodels

are concise specifications of complex domains. Second,

the meanings of metamodeling constructs are tedious to

define, and the language appears idiosyncratic to users.

This problem is compounded by the fact that competing

metamodeling languages are “defined” with excessively

long standards: The GME manual [44], much of which

is devoted to metamodeling, is 224 pages. The Meta

Object Facility (MOF) language, an OMG standard used

by MDA and UML, requires a 358 page description [75].

These long natural language descriptions mean that tool

implementations are likely to differ from the standards,

and that the standards themselves are more likely to be

inconsistent or ambiguous.

We hope to alleviate some of these problems by



12

formalizing the metamodeling process. We present a

novel approach to metamodeling semantics by using do-

mains and transformational interpretations as the build-

ing blocks to define metamodeling. A metamodeling

language Lmeta is a DSML with a special interpretation

J Kmeta (called the metamodeling semantics) that maps

models to domains:

Lmeta = 〈Dmeta, (J Kmeta)〉 (III.21)

The domain Dmeta captures the structure of metamod-

els. The transformational interpretation JrKmeta maps

metamodel realizations r to a new domains. There is

one technical caveat: Interpretations, as we have defined

them, map model realizations of one domain to models

realizations of another domain. In order to make a

mapping from models to domains, we need to create

a domain of domains that provides a structural encoding

for domains. A domain of domains is created by con-

structing a special domain DF capable of representing

formulas from F(L). Formally, DF is paired with a

bijection δ : ZV
+×ZV

+×P(F(L))→ DF that maps two

signatures and a set of formulas to a model in the special

domain DF . The notation ZV
+ is the set of all partial

functions from V to Z+, i.e. the set of all signatures. Note

that for the domain of domains we will fix a particular

Σ.

This approach allows us to specify metamodeling

languages transformationally, as shown in Figure 7. The

domain Dmeta represents a metamodeling language with

some arbitrary notation for describing domains (e.g.

UML). Tmeta is a transformation that converts models

in Dmeta to a structural representation of a domain in

DF . The transformation Tmeta encodes the semantics of

the metamodeling language. For example, the metamodel

rm is transformed to the structural representation dm of

a domain by applying the transformational interpretation

JrmKTmeta . The actual domain defined by a metamodel

is recovered by the inverse function δ−1 that recovers a

domain from a structural representation in DF . Thus, the

domain defined by the metamodel rm is discovered by

applying δ−1(JrmKTmeta). Our formalization also allows

us to describe the notion of metacircularity precisely.

Intuitively, a metamodeling language is metacircular if

there exists a metamodel in the language that defines

the language. Formally, a metamodeling language is

metacircular if there exists a well-formed metamodel

rmm such that Dmeta
∼= δ−1(JrmmKTmeta). The meta-

model rmm is called the meta-metamodel, as shown in

Figure 7. This can be imagined geometrically: The set of

all well-formed metamodels forms a decision boundary

in RΥmeta
. A metamodeling language is metacircular if

there exists a metamodel that reconstructs the decision

boundary of the metamodeling language.

Finally, our view of metamodeling bares resemblance

to the construction of the category of small categories

in category theory [63]. The main differences are:

1) Domains are intentionally concrete, and so they are

not as general as arbitrary categories. Equivalently,

the class of domains can be viewed a sub-class of

small categories.

2) We will formalize J KTmeta and DF so that they

are described within a mathematical framework

supporting constructive theorem proving.

3) We provide an explicit mechanism for describ-

ing domains via the objects of a single domain

(Dmeta).

We point this out for the readers interested in category

theory. There are certainly interesting categorical views

that arise from this work, though these are outside the

scope of this paper.

E. Applications of Structural Semantics

We have provided a structural semantics for DSMLs,

which formalizes a fundamental set of modeling activi-

ties. For the remainder of this paper we examine how our

structural semantics can be applied to existing modeling

tools. This is important for several reasons: First, by

applying our semantics to a mature modeling framework,

we show that our mathematical apparatus is sufficiently

powerful to describe current modeling practice. Second,

we can use a concrete formalization to link modeling

tools with the analysis techniques presented earlier in

this section. For example, after formalizing a particular

metamodeling language of some tool, we can extract

tool-independent characterizations of domains. These

domains can be analyzed, composed, transformed, used

for design-space exploration, etc... In order to make this

more than just an exercise, we apply our formalism to

the well-known Model-Integrated Computing (MIC) tool

suite [58].

IV. FORMALIZING MODEL-INTEGRATED

COMPUTING

The MIC tool suite is a tried-and-tested DSML-based

modeling framework that has evolved over a decade of

development. Its primary components are a metamod-

eling language called MetaGME, a metaprogrammable

modeling environment called the Generice Modeling

Environment (GME), and a feature-rich model trans-

formation framework called the Graph Rewriting And

Transformation (GReAT) engine. The MIC tool suite

has been used to model complex and diverse systems



13

Dmeta

metamodel

meta-metamodel

rm

rmm

Tmeta

DF

dm

dmm

δ−1(dm)

δ−1(dmm)

Dm = 〈Υ, ΥC , Σ, C〉

D′
meta = 〈Υ′, Υ′

C , Σ, C ′〉

Dmeta
∼= δ−1(dmm)

metacircularity

Fig. 7. Abstract view of the metamodeling process

ranging from the software systems of the NASA space

station to the sensor and data fusion networks of the

Saturn automobile plant. In order to formalize the MIC

tool suite, we must create a concrete instantiation of our

structural semantics for each component within MIC.

Additionally, we must create an interface from the MIC

tools to the formal definitions. For example, it should

be possible to read a metamodel created with MetaGME

and extract the corresponding domain definition. Simi-

larly, it should be possible to read a model constructed

within GME and check its conformance against a tool-

independent domain definition. In this section, we il-

lustrate the formalization process for a subset of the

MetaGME metamodeling language. In the interest of

space, we do not present the formalization of GReAT,

though we do mention how such a formalization fits into

the overall picture.

We now present a formalized and tool-independent

MIC framework called MiniMeta. As the name implies,

MiniMeta is a scaled-down version of MIC. MiniMeta

uses a simplified metamodeling language called Mini-

MOF, which is similar to the OMG’s own scaled-down

metamodeling language called essential meta-object fa-

cility (eMOF) [77]. In this sense, MiniMOF can be

viewed as capturing the core features found among meta-

modeling languages. MiniMeta also provides a model

transformation language called MiniGReAT, though we

do not describe MiniGReAT here. However, during the

formalization of MiniMeta it becomes apparent that

MiniGReAT reuses all of the framework, except for

one component that would have to be defined from

scratch. This reuse is possible because we have defined

domains and transformations within the same mathe-

matical framework. Generating a transformation from

a transformation model is not a significantly different

process than generating a domain from a metamodel.

A key parameter of our structural semantics is the style

of logic used to express constraints and transformations.

We select a form of Horn logic with negation to specify

constraint and transformation formulas in MiniMeta.

This logic is both expressive and supports constructive

theorem proving [49]. The next subsection describes this

style of logic and discusses its expressiveness. After

selecting the logic, we must construct a “domain of

Horn domains” DH that contains a model for each

domain definition with constraints as Horn formulas.

This special domain is coupled with the structural rep-

resentation function δ, which is a bijective map from

domain definitions to models of DH.

Figure 8 shows the architecture of the MiniMeta

framework. The MiniMOF language contains two parts:

the domain Dmeta and a transformational interpretation

J Kmeta. Dmeta characterizes the syntax of metamodels.

For example, the upper-left blue circle is a metamodel

rm, which is a set of terms from the term algebra of

Dmeta. Assuming rm satisfies the constraints of Dmeta,

then JrmKmeta yields a Horn model hm. This Horn

model is the domain defined by rm, but encoded as a

model realization of DH. In order to recover the actual

domain, δ−1 is applied to hm resulting in the domain

Dm = 〈Υ,ΥC ,Σ, C〉. A similar procedure occurs for

MiniGReAT, except that MiniGReAT has its own syntax

for transformations (Dtrans) and its own transforma-

tional interpretation onto DH (J Ktrans). Recall that δ−1

yields two signatures and a set of Horn formulas. In the

case of transformations, we interpret the two signatures

as the source and target signatures Υ,Υ′, instead of

the model and constraint signatures Υ,ΥC . Similarly,

the formulas are interpreted as the set of transformation

formulas τ , instead of the constraint axioms C. We have



14

MiniMeta Architecture

MiniGReAT

〈Dtrans, J Ktrans〉
MiniMOF

〈Dmeta, J Kmeta〉

Horn Domain

Structural Conversion

δ−1

rm ⊂
TΥmeta

(Σ)
rt ⊂

TΥtrans
(Σ)

Dm =
〈Υ,ΥC ,Σ, C〉

Tt =
〈Υ,Υ′, τ〉

Fig. 8. The architecture for the MiniMeta Framework.

implemented this in a recent toolset called BAM [50].

The MiniMeta architecture builds a metamodeling

and a model transformation facility using the funda-

mental concepts of domains and model transformations.

Furthermore, all of the components of MiniMeta are

specified within a compatible mathematical framework.

There is only one point in the process where we leave

the mathematical framework of term algebras and con-

sequence operators; this occurs at the conversion from

Horn models to domains, i.e. within δ. However, we shall

show by example that δ is sufficient simple as to not

complicate analysis of the overall framework. Finally,

the framework results in domain and transformation

definitions that are independent from the languages used

to specify them. The blue puzzle pieces in Figure 8

represent a domain and transformation generated via

this process. The generation process yields stand-alone

entities, which can be further composed.

A. Review of Horn Logic, Extensions, and Expressive-

ness

First, let us review some basic definitions, begin-

ning with basic Horn logic. Formulas are built from

terms with variables and logical connectives. There are

different approaches for distinguishing variables from

constants. One way is to introduce a new alphabet Σv

that contains variable names such that Σ ∩ Σv = ∅.
The terms TΥC

(Σ) are called ground terms, and con-

tain no variables. This set is also called the Herbrand

Universe denoted UH . The set of all terms, with or

without variables, is TΥC
(Σ∪Σv), denoted UT . Finally,

the set of all non-ground terms is just UT − UH . A

substitution φ is term endomorphism φ : UT → UT that

fixes constants. In another words, if a substitution φ is

applied to a term, then the substitution can be moved to

the inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A

substitution does not change constants, only variables,

so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT

unify if there exists a substitution φ that make the terms

identical φs = t, and of finite length. (This implies the

occurs check [88] is performed.) We call φ the unifier

of s and t. The variables that appear in a term t are

vars(t), and the constants are const(t).
A Horn clause θ is a formula of the form h ←

t1, t2, . . . , tn where h is called the head and t1, . . . , tn
are called the tail (or body). We write Tθ to denote the set

of all terms in the tail. The head only contains variables

that appear in the tail, vars(h) ⊆
⋃

i vars(ti). A clause

with an empty tail (h←) is called a fact, and contains no

variables. Recall that these clauses will be used only to

calculate model properties. This is enforced by requiring

the heads to use those function symbols that do not

encode model structure, i.e. every head h = f(t1, . . . , tn)
has f ∈ (ΥC − Υ). (Proper subterms of h may use

any symbol.) This is similar to restrictions placed on

declarative databases [71].

We slightly extend clauses to permit disequality con-

straints. A Horn clause with disequality constraints

has the form h ← t1, . . . , tn, (s1 6= s′1), (s2 6=
s′2), . . . , (sm 6= s′m), where si, s

′
i are terms with no new

variables vars(si), vars(s
′
i) ⊆

⋃
i vars(ti). We can now

define the meaning of a Horn clause. The definition we

present incorporates the Closed World Assumption which

assumes all conclusions are derived from a finite initial

set of facts I . Given a set of Horn clauses Θ, the operator

Γ̂ is called the immediate consequence operator, and is

defined as follows:

Γ̂(X,Θ) = X∪{
φ(hθ)

∣∣∣∣
∃φ, θ, φ(Tθ) ⊆ X and

∀(si 6= s′i)θ ∈ θ, φsi 6= φs′i

}
(IV.1)

where X is a set of facts known facts, φ is a substitution,

and θ is a clause in Θ. Notice that the disequality

constraints force the substitutions to keep certain terms

distinct. The deductive closure of Horn logic is calcu-

lated by repeatedly applying Γ until no new facts are

derived. Nonrecursive Horn logic adds the restriction that

the clauses of Θ can be ordered θ1, θ2, . . . , θk such that

the head hθi
of clause θi does not unify with any tail

t ∈ Tθj
for all j ≤ i. This is a key restriction; without it,

the logic can become undecidable. Consider the recursive

clause Θ = {f(f(x)) ← f(x)}. Then {f(c1)} ⊢Θ

{f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes

an infinite number of distinct terms. The transformation

clauses for the shuffle product and the constraints for

deterministic automata are instances of this non-recursive

Horn logic.



15

Pure Horn logic imposes too much of a restriction on

the structure of domains. We can extend Horn logic by

introducing a pseudo-negation that is commonly called

negation-as-failure (NAF). This extension allows terms

in the tail to be “negated”, e.g. h ← ¬t, which is

interpreted as h can be proved if t cannot be proved.

Thus, negation is equivalent to the failure of inference

of certain terms. It turns out that this small change has a

resounding affect on the corresponding theory, placing it

in realm of non-monotonic logic [13] [30]. In the interest

of space, we shall leave the reader with this informal

description of negation-as-failure.

Finally, we allow term restrictions to be placed on

domains. A term restriction forces all well-formed mod-

els to use a finite set of terms of the form f(. . .) that

are explicitly enumerated. For example, if a domain

has a signature Υ = {(f, 1), (g, 2)}, and we wish to

place term restrictions on f , then we may write ∀m ∈
models(D), {f(x)|f(x) ∈ m} ⊆ {f(c1), f(c2)}. This

restriction indicates that if a model m is well-formed

then every term of the form f(x) ∈ m has either

x = c1 or x = c2 for c1,c2 ∈ Σ. We will simplify

this notation by writing restrict(f, {f(c1), f(c2)}).
Note that Horn logic has already been implemented in

programming languages like Prolog [16], usually with

the SLD resolution algorithm [2]. For simple problems,

like checking model well-formedness, we can directly

use these existing tools. However, most of the analysis

problems we encounter (e.g. domain equivalence) require

more sophisticated tools. The theorem prover FORMULA

was developed for analyzing DSMLs. Prolog also in-

cludes an implementation of NAF, but it must be used

carefully as it may be unsound. However, we haven

taken care to ensure that our descriptions can be soundly

evaluated by Prolog implementations of NAF.

The expressiveness of nonrecursive Horn logic with

negation determines the domains and transformations

that can be expressed within this incarnation of our

structural semantics. In turns out that it is non-trivial to

quantify the expressiveness of this extended form. Since

this logic is non-monotonic, it cannot be described as a

simple subset of first order logic (which is monotonic) as

we normally expect. A more effective way to measure the

expressiveness is via complexity theory, i.e. by the class

of problems that have polynomial time reductions to a

set of extended Horn formulas. Non-monotonicity can

be formalized in different ways, and this yields various

complexity results. However, for the nonrecursive case

the following result typically holds: Given a term t, an

initial set of terms I , and set of clauses Θ determining

if I,Θ ⊢ t is PSPACE-complete under stratified nega-

tion. This complexity class includes the NP-complete

problems and the problem of membership in context-

sensitive languages. See [19] for an in depth discussion

of complexity results in logic programming. These re-

sults show that nonrecursive Horn logic extended with

negation provides an expressive foundation.

B. Defining the MiniMOF Domain

In this section we formalize the domain of MiniMOF

metamodels, Dmeta. The MiniMOF notation is based

on the Unified Modeling Language (UML), which is

also standardized by the OMG. This notation supports

the following essential concepts: classes, associations,

attributes, containment, and inheritance. Since UML is

usually drawn in a graph-like notation, we will imagine

that metamodel syntax is composed from vertex-like

and edge-like concepts. (The actual encoding may be

more complicated than just unary and binary relations.)

Table III lists the vertex-like primitives. The first column

describes the primitives and any rules dictating the use

of those primitives. The second column depicts a typical

use-case of the primitives using UML-like notation. Ta-

ble IV provides similar data for the edge-like primitives.
These tables describe how primitives are composed

into metamodels, but they do not describe how meta-
models encode domains. This will be defined transfor-
mationally in Section IV-D. At this point we are only
describing the constraints on metamodel structure; this is
done by characterizing the malformed metamodels using
the malform symbol. Some constraints are easy to de-
scribe: For example, attributes have a type field indicat-
ing the data type of the attribute. This field must take one
of the following values: {bool,string,enum}. Such
a constraint is specified by placing a term restriction on a
unary type symbol, where each term of the form type(·)
indicates a legal type.

restrict

(
type,

{
type(bool),

type(string), type(enum)

})

The term restriction states that every occurrence of

type(x) must have x ∈ {bool,string,enum}. The

incidence property on an association endpoint is another

example of a term restriction – An association endpoint

can be either a source or destination.
A more interesting constraint comes from the acyclic

nature of inheritance, or, more precisely, from the nature
of cycles themselves. The constraint that an inheritance
hierarchy has no cycles, is actually an infinite list of
Horn constraints: no self-loops, no cycles of length two,
no cycles of length three,. . ., ad infinitum. For analysis
purposes the logic should be acyclic (no recursion), but
this prevents a faithful rendering of properties with an
infinite number of distinctly different (non-isomorphic)
forms. The reader familiar with logic programming
might recall that cycle checking can be easily specified in



16

Vertex Primitives MiniMOF

Class
A class is primitive part of a metamodel that can have Contain-

ment, Attribute Containment, Association Endpoint, Inheritance

edges incident on it. Every class has a name.

src dst

Containment

Inheritance

Attribute
Containment

Association
Endpoint

ClassName

Association Class
An association class is a primitive on which a Containment,

Association, Attribute Containment, and Inheritance edges can

be incident. Every association class has a name.

Containment

Inheritance

Attribute

Containment

Association

ClassName

Attribute Class
An attribute class is a primitive on which Attribute Containment

edges can be incident. Every attribute class has a name and a

type which can be boolean, string, or enumeration. Attribute

classes of type enumeration may have a list of enumeration

values.

Attribute

Containment

{Item1, Item2, Item3, Item4}EnumList:

{Bool, String, Enum}Type :

ClassName

Connector
A connector has exactly two Association Endpoint edges and

one Association edge incident on it.

src

dst

Association
Endpoint

Association

TABLE III

TABLE OF VERTEX PRIMITIVES FOR MINIMOF METAMODELS

Prolog via a combination of lists and recursion. However,
this increase in expressiveness leads to undecidability
[9]. Thus, the only way to properly encode an acyclic
inheritance hierarchy is to approximate the “no cycles”
constraint for a finite range of cycle lengths from 1 to n.
Let the symbol inheritance(x, y) denote an inheritance
edge from x to y. This auxiliary symbol is placed in the
constraint signature ΥC . Similarly, let ipath3(x, y, z) ∈
ΥC and ipath4(x, y, z, w) ∈ ΥC indicate directed in-
heritance paths of length three and four. The following
axioms calculate inheritance paths of these lengths:

ipath3(x, y, z)← inheritance(x, y), inheritance(y, z),

(x 6= y 6= z)

ipath4(x, y, z, w)← ipath3(x, y, z), inheritance(z, w),

(w 6= x 6= y 6= z)

An inheritance path of length three is made up of
two inheritance edges across three distinct vertices. The
disequality constraints x 6= y 6= z require the vertices

in the path to be distinct. Three such constraints are
needed to ensure that all three vertices are distinct. The
four-path is defined by the presence of a three-path and
a new edge that extends the three-path by one unique
vertex. This process can be continued to define any path
of finite length. A cycle of length n > 2 is defined by
the presence of a path of length n and an inheritance
edge that connects the end of the path to the beginning.
The definitions for icycle1, icycle2, icycle3 and icycle4
are shown below:

icycle1(x) ← inheritance(x, x)

icycle2(x, y) ← inheritance(x, y), (x 6= y)

icycle3(x, y, z) ← ipath3(x, y, z), inheritance(z, x)

icycle4(x, y, z, w) ← ipath4(x, y, z, w), inheritance(w, x)

Finally, an inheritance hierarchy is malformed



17

Edge Primitives MiniMOF

Containment

An edge that must terminate on a Class.

Class_A

Class_B

Attribute Containment

An edge that must start on an Attribute Class.

{Item1, Item2, Item3, Item4}EnumList :

{Bool, String, Enum}Type :

Attribute_B

Class_A

Association
An edge that must start on a Connector and end

on an Association Class.

Class

Association Endpoint
An edge that must start on a Connector and end on

an Association Class. Association endpoints have a

incidence that can be either source or destination.

srcClass

Inheritance
An edge that cannot form a directed cycle consist-

ing only of inheritance edges.

Class_A

Class_B

TABLE IV

TABLE OF EDGE PRIMITIVES FOR MINIMOF METAMODELS

(imalform) if there is any such cycle.

imalform(icycle1(x)) ← icycle1(x)

imalform(icycle2(x, y)) ← icycle2(x, y)

imalform(icycle3(x, y, z)) ← icycle3(x, y, z)

imalform(icycle4(x, y, z, w)) ← icycle4(x, y, z, w)

The remaining constraint axioms for MiniMOF are

listed in Appendix III. Table VI describes the function

symbols used to encode the vertex-like primitives and

lists the constraint axioms associated with each primitive.

Table VII provides the same information for edge-like

primitives. These tables constitute a complete and tool-

independent specification of the legal MiniMOF meta-

models. However, before metamodels can be transformed

into domains, a precise definition of the domain of Horn

domains (DH) must be constructed.

C. DH - The Domain of Horn Domains

In this section we formalize the domain of Horn

domains. In order to accomplish this, we fix some

parameters:

1) There is a fixed vocabulary V of function symbols.

The signatures of every domain have function

symbols from V .

2) There is a fixed alphabet Σ. Every domain uses

this alphabet to form the term algebra TΥ(Σ).
3) The fixed alphabet contains the positive integers

Z+ ⊂ Σ.

Furthermore, there exists some subset of Σ, called ΣF ,

that is bijectively related to the vocabulary of function

symbols of V , via a bijection δf . This bijection allows a

function symbol to be translated into a constant, for the

purpose of representation. A similar bijection δV must

exist between a subset of Σ, called ΣV , and the set

of variable names used by the class of Horn formulas

FHorn. Choose Σ so that ΣF ∩ ΣV = ∅.

Given these parameters, we must construct a domain

DH = 〈ΥH,ΥH
C ,Σ, C

H〉 with models that represent

the two signatures and constraints of domains specified

with Horn axioms. This must be done so that there

exists a bijection δ, called the structural representation

function, that maps a domain X to a model δ(X) ∈
models(DH). The inverse map δ−1 recovers the domain



18

from a model of DH. Table V (Appendix III) lists the

function symbols of ΥH that encode these elements, as

well as the constraints CH on the composition of these

symbols. The table also informally describes the result of

inverting each term in a Horn model back into a element

of a domain definition, via δ−1.
There are a few constraints not listed in Table V that

cannot be defined within the restricted Horn logic of
Section IV-A. These three constraints require additional
operators that calculate the successor of an integer (+1)
and compute subterms (⊑). The first constraint requires
the arity of a mapn(x, . . .) term to match the arity of
the function symbol x over which map is applied.

malform(mapn(x, y1, . . . , yn−1))←

mapn(x, y1, . . . , yn−1), def(t, x, y), (n 6= y + 1)

The second constraint requires that variables introduced
in the head of a clause must have been introduced in the
tail of the clause. To express this constraint we introduce
a subterm relation ⊑ such that a term t′ is a subterm of
a term t if t′ appears in an argument of t or an argument
of some subterm of t.

vargood(v, x)← axiom(x, h), tail(x, t), (var(v) ⊑ h),
(var(v) ⊑ t)

malform(axiom(x, h))← axiom(x, h), (var(v) ⊑ h),
¬vargood(v, x)

The final constraint prohibits negation in the head of a
clause, as negation does not have meaning in the head.

malform(axiom(x, h))← axiom(x, h), (neg(h′) ⊑ h)

Though these axioms are not written in the strict Horn

logic that we previously defined (Section IV-A), they do

not significantly impact algorithms that deduce formal

properties of domains. In fact, this gap can be closed by

extending ΥH to encode these two additional operators.

However, we omit this in the interest of space.

Let FHorn be the set of all Horn formulas. The

relationship between Horn models and domains is for-

malized by a mapping δ : ZV
+ × ZV

+ × P(FHorn) →
models(DH) from a domain (signatures and constraints)

to a model of the Horn domain. This mapping is defined

by a structural induction over

an arbitrary domain D = 〈Υ,ΥC ,Σ, C〉 (See Definition

IV.1).

Definition IV.1. The structural representation function δ
is given by the following induction:

1)

δ(Υ,ΥC , C) 7→ δ(Υ) ∪ δ(ΥC) ∪ (
⋃

s∈C

δ(s))

2)

δ(Υ) 7→
⋃

f∈ domΥ

def(sig, δf (f),Υ(f))

3)

δ(ΥC) 7→
⋃

f∈ domΥ

def(con, δf (f),Υ(f))

4) si ∈ C, si =




H ← ¬L′

1, . . . ,¬L
′
m,

L1, . . . , Ln, (vj1 6= vj2),
. . . , (vjk

6= vjk
)





δ(si) 7→






axiom(i, δ(H)) ∪⋃
L′∈si

tail(i, neg(δ(L′)) ∪⋃
L∈si

tail(i, δ(L)) ∪⋃
(v 6=u)∈si

tail(i, neq(δ(v), δ(u)))
5) δf(t1, t2, . . . , tn) 7→ mapΥ(f)+1(δf (f), δ(t1), . . . , δ(tn))

6) δ(x) 7→ var(δv(x)) where x is a variable. δ(c) 7→ c

where c is a constant.

Domains viewed as two signatures and a family of

axioms, have an equivalence (=) between them that

only takes into account the equivalence of their notation:

Di = Dj if Υi = Υj , ΥCi
= ΥCj

, and Ci = Cj . This

equivalence is a weaker form of equivalence that requires

both sets of constraints to be written in exactly the same

way. It holds that (Di = Dj) ⇒ (Di
∼= Dj), but the

converse does not hold.

Lemma IV.2. Fix Σ, V , δf , and δV . The representation

function δ is a one-to-one and onto function from do-

mains with Horn axioms to the set of well-formed Horn

models DHorn(ΥHorn, CHorn).

We briefly sketch the proof. By our construction, the

variables and function symbols of a domain are bijec-

tively mapped to members of Σ. From this encoding, it

is clear that δ−1(δ(X)) = X , which establishes that δ is

one-to-one:

δ(X) = δ(Y )⇒

δ−1(δ(X)) = δ−1(δ(Y ))⇒

X = Y

Also, it is clear that a horn model mX ∈ models(D
H)

encodes some domain X such that ∃X, δ(X) = mX .

Thus, δ is one-to-one and onto, so it is a bijection and

the inverse δ−1 is also a bijection.

D. MiniMOF Transformation onto DHorn

We now described the transformation Tmeta from

MiniMOF metamodels to Horn models: Tmeta =
〈ΥMiniMOF ,ΥH, τmeta〉. For the purposes of illustra-

tion, we will make this transformation as simple as

possible: Every class named x in the input metamodel

becomes a unary function symbol x(n) in the Horn

model, where the single argument n indicates that an

object called n is an instance of x. For example, the

automata metamodel in Figure 6 contains a class called

state (i.e. the term class(state)). This term will



19

be translated to a term in the Horn model that adds

a unary function symbol state to the domain signa-

ture: def(sig,state, 1). Similar to classes, associa-

tion classes become ternary function symbols x(n, s, d),
where the first argument n is the name of association

instance, the second argument s identifies the source of

the association, and the third argument d identifies the

destination of the association. Attribute classes become

binary function symbols x(c, v), where the first argument

c identifies the object containing the attribute instance

and the second argument v identifies the value of the

attribute instance. The transformation contains the fol-

lowing clauses:

τmeta ⊃






def(sig, x, 1)← class(x)
def(sig, x, 2)← attribute(x, y)
def(sig, x, 3)← assocClass(x)

Converting metamodeling elements to function sym-
bols is the simple part of the transformation. The core
of the transformation must produce domain constraints
that faithfully implement the metamodel. For example,
a model is malformed if it assigns an improper value
to an enumeration attribute. In order to introduce this
constraint, we generate a function symbol enumvalue,
that contains all the enumeration values for all enu-
meration attributes using term restrictions. Additionally,
for each enumeration attribute, we generate a constraint
consisting of a head and two tail terms that requires each
attribute instance to use one of the enumerated values.
These are generated with the following transformation:

def(sig,enumvalue, 2)← attribute(x,enum).

axiom
(
enum(x, y),map3(enumvalue, x, y)

)
←

enum(x, y), attribute(x,enum).

axiom

(
attribute(x,enum),

malform(map3(x, var(y), var(z)))

)
←

attribute(x,enum).

tail
(
attribute(x,enum),map3(x, var(y), var(z))

)
←

attribute(x,enum).

tail

(
attribute(x,enum),

neg(map3(enumvalue, x, var(z)))

)
←

attribute(x,enum).

Assume that the IsAndState attribute of Figure 6
is a enumeration containing the constants andState

and orState. The metamodeling transformation would
produce the following encoding of the this attribute in

the Horn model:

def(sig,IsAndState, 2), def(sig,enumvalue, 2),
axiom(enum(IsAndState,andState),
map3(enumvalue,IsAndState,andState)),

axiom(enum(IsAndState,orState),
map3(enumvalue,IsAndState,orstate)),

axiom(attribute(IsAndState,enum),
malform(map3(IsAndState, var(y), var(z)))),

tail(attribute(IsAndState,enum),
map3(IsAndState, var(y), var(z))),

tail(attribute(IsAndState,enum),
neg(map3(enumvalue,IsAndState, var(z))))

Finally, applying the inverse representation function
yields the following axioms:

{(IsAndState, 2), (enumvalue, 2)} ⊂ Υ

restrict





enumvalue,




enumvalue(IsAndState,
andState),

enumvalue(IsAndState,
orState)










malform(IsAndState(y, z))← IsAndState(y, z),
¬enumvalue(IsAndState, z)

Appendix I lists some additional rules of the MiniMOF

transformation. This completes the full formalization of

the MiniMOF metamodeling facility. We would have to

repeat a similar formalization for the graph transforma-

tion language MiniGReAT. First, the domain DGReAT

would be defined, and then a transformation TGReAT

would transform models to transformations via the Horn

Domain. However, formalizing MiniGReAT does not

require any new techniques, so we omit its description.

E. Implementing MiniMeta with GME/GReAT

MiniMeta is a formally specified and tool-independent

framework that reflects much of the key functionality

found in the MIC tool suite. In this section we implement

an interface from MIC to MiniMeta. This has several

advantages: First, the mature MIC tool suite can be used

to describe MiniMeta objects. This is more convenient

than writing signatures, axioms, and terms. Second, this

illustrates that existing metaprogrammable tools can be

used to host new frameworks, like MiniMeta, without

rewriting tools. Third, system modelers can perform their

usual modeling activities without expertise in formal

methods. Nonetheless, formal specifications can be ex-

tracted from their work.

The first feature to implement is a model editor for

constructing MiniMOF metamodels and for checking

well-formedness of metamodels. GME already provides

a metamodeling facility, called MetaGME, that con-

verts a metamodel into a domain-specific model editor.



20

We desire a domain-specific model editor for building

MiniMOF metamodels, and this can be achieved by

building a MetaGME metamodel of the MiniMOF do-

main. This is something like a meta-metamodel, but the

meta-metamodel is written in a different metamodeling

language than the one it is describing. Figure 10 shows

the MetaGME metamodel of MiniMOF. The notation of

MetaGME is similar to that of MiniMOF, so the informal

meaning of this metamodel should match the reader’s

intuition. We will not attempt to prove that the MetaGME

metamodel is equivalent to our description of MiniMOF,

as MetaGME does not have such a formalization. Rather,

this problem shall be circumvented completely.

Upon construction of the MiniMOF metamodel, a new

model editor can be generated. Figure 11.a shows a Mini-

MOF metamodel built with the generated model editor.

This particular metamodel describes a dataflow domain

similar to that of Figure 1.b. Thus, GME can be used to

construct MiniMOF-like objects. However, these GME

objects must be linked to true MiniMOF metamodels

(which are subsets of the MiniMOF term algebra). We

accomplish this by extending GME with an extraction

component that converts a MiniMOF metamodel within

GME into the set of terms encoding that metamodel.

The terms are loaded into an embedded Prolog engine

along with the formal definition of the MiniMOF domain

(transcribed into Prolog syntax). The SLD resolution

procedure of Prolog is used to formally prove that the

metamodel within GME is well-formed. Prolog works

well for this task, because it only has to reason about

a single model (i.e. a fixed set of terms), as opposed to

an entire domain. Additionally, GME includes a COM-

based extension mechanism, so it is simple to add this

component to the model editor. Prolog also provides a

foreign language interface, allowing the Prolog engine

to be embedded into the extraction component. Figure 9

shows the implementation of the metamodel authoring

facility. This architecture bridges the gap between the

implementation of MIC and the formalization of Mini-

Meta, without reauthoring either framework.

Figure 11.b shows the analysis component applied to

the MiniMOF metamodel in Figure 11.a. The Translation

to definite clauses list shows the conversion of the

MiniMOF metamodel into terms (also called definite

clauses in Prolog). Each of the translated terms is

added to the knowledge base of the Prolog engine. The

proving engine is then queried to prove malform(x). If

this cannot be proved, then the metamodel realization

is well-formed. If malform(x) can be proved then

the metamodel realization is malformed. In this case,

all solutions are displayed to this user; each solution

identifies some problem in the metamodel. Figure 11.b

shows that the engine is unable to prove malform(x),
so the metamodel realization is well-formed. If the meta-

model is modified by creating an inheritance cycle from

Interface to Input, then the Prolog engine detects

this error. Figure 12 shows how this inheritance cycle

was correctly detected by the extraction component.

This implementation illustrates that existing tools can

be readily used to build a formal metamodel authoring

facility. Additionally, our tool architecture introduces

a new level of flexibility not found in the existing

metaprogrammable tools, because the MiniMOF domain

is not hard coded into GME and can be easily modified.

Supporting competing metamodeling frameworks within

the same tool set is an important issue raised in [25],

and we address it in our implementation of MiniMeta

with MIC.

The next part of the MiniMeta/MIC framework gen-

erates domain definitions and modeling environments

from MiniMOF metamodels constructed within GME.

This generation process creates three artifacts. First,

a mathematical definition of the domain is generated.

Second, a GME modeling environment is generated

from the metamodel. Third, an extractor component is

attached to the newly generated modeling environment.

This component extracts a set of terms from model

realizations constructed within the modeling environ-

ment, and checks these terms against the mathematical

definition of the domain. Figure 13 shows this process in

detail; the blue objects are generated by the framework.

A MiniMOF metamodel mX is constructed within the

MiniMOF environment of GME. After mX has been

checked for correctness, the domain generation facility

can be applied. The first step is a conversion of mX into

a set of terms that are loaded into the Prolog engine.

See arrow 1 of Figure 13. The metamodeling transfor-

mation TMeta (Section IV-D) is also loaded into the

Metamodeling Facility

GME Extractor

MetaGME metamodel

of MiniMOF MiniMOF Editor Embedded Prolog Engine

Translated Terms

MiniMOF Definition

MetaGME Interpreter COM Interface Foreign Language Interface

Fig. 9. Detailed view of metamodel authoring facility with

MetaGME, GME, and and embedded Prolog Engine.



21

Prolog engine, and a Horn model hX is calculated. The

Horn model hX is passed to the inverse representation

function δ−1 that produces the domain definition in a

pure mathematical notation and in Prolog notation. This

process produces a tool-independent definition of domain

X as defined by metamodel mX .

In addition to the domain definition, the MIC tools can

be used to generate a modeling editor for domain X . This

accomplished by a GReAT transformation that converts

the MiniMOF metamodel mX into a MetaGME meta-

model m′
X . GME reads this metamodel and generates a

new modeling environment for domain X . Arrow 2 in

the figure illustrates this process. Since we do not expect

GME to enforce our formal MiniMeta semantics, there is

no need to formalize the transformation from MiniMOF

to MetaGME. At this point, a tool-independent definition

of domain X has been generate and a tool-dependent

modeling environment for domain X has been generated.

The final step in the generation process creates a new

extractor component that links these two entities. This is

arrow 3 in the figure. The extractor component attaches

to GME and converts domain X model realizations into

set of terms that are checked against the formal definition

generated in step 1. In this way, model realizations of

domain X can be constructed and checked against the

formal definition of X .

Fig. 10. A MetaGME metamodel of the MiniMOF Domain.

Figure 14 shows the domain generation component

applied to the MiniMOF metamodel of Figure 11. The

list labeled Input Model shows the translation of the DSP

metamodel into terms. Below this list are options for

selecting the types of objects generated by the compo-

nent. If all of the options are checked, then the domain

generator performs the entire process described above.

The lists on the right-hand side show the terms in the

generated Horn model. Appendix II shows the generated

Prolog definition of the DSP domain after applying δ−1.

After the domain generator completes, domain models

(a) (b)

Fig. 11. (a) A MiniMOF metamodel in GME of DSP domain.

(b) Translation of metamodel to definite clauses and verification that

metamodel is well-formed, using a Prolog engine.

Fig. 12. Results of well-formedness proof after inheritance cycle is

added to DSP metamodel.

can be constructed using GME. Figure 15 shows a DSP

model created within GME using the generated modeling

environment. As was the case with metamodeling, the

extractor tool is attached to the generated modeling

environment. This tool loads the formal definition of the

domain into a Prolog engine and converts the domain

model into terms, which are then checked for well-

formedness. Figure 16 shows the result of activating

the well-formedness checking tool on the DSP model of

Figure 15. The tree-view labeled Translation to Definite

Clauses shows the translation of each model element into

a corresponding set of terms. The tree is organized ac-

cording to the model hierarchy as represented by GME.

Interestingly, the tool reports that the model is mal-

formed. This occured because we augmented the DSP

metamodel with an additional constraint that disallows a

short-circuit of an input with an output. The connection

from In2 to Out2 is such a short-circuit. This is made

possible by directly annotating MiniMOF metamodels

with Horn constraints. Figure 17 shows the annotated

constraint in the DSP metamodel. After the domain gen-

erator converts the diagrammatic part of the metamodel

into Horn clauses, it adds any annotations to the domain

definition. Our approach combines the advantages of

metamodeling with constraint languages in a consistent



22

Domain Generation Facility

MIC Tools Generator

MetaGME MiniMOF

MiniMOF to MetaGME (GReAT)

Domain X

Environment

Translated Terms

MiniMOF Transformation

Embedded Prolog Engine
Conversion δ

−1

3Translated Terms

Embedded Prolog Engine

Domain X Definition

X-Domain Extractor

1

m
′

X

2
mX

hX

Fig. 13. Implementation of the domain generation facility using

MetaGME, GME, GReAT, and an embedded Prolog engine.

Fig. 14. Invocation of the domain generator component.

fashion. All of the features get translated into the same

underlying formalism. In summary, MiniMeta is able to

capture many of the core features of a mature DSML-

based modeling framework in a mathematically precise

manner. Additionally, MiniMeta can be connected to

existing tools facilitating its immediate application.

V. DISCUSSION AND CONCLUSION

In this paper we explored the structural foundations

of domain-specific modeling languages. We developed

a generic structural semantics that addresses structural

domain constraints, model transformations, and meta-

modeling in a consistent fashion. We also applied our

approach to a tried-and-tested DSML-based modeling

framework called MIC, and this resulted in the MiniMeta

framework. We showed that our structural semantics can

capture the essential functionality of these tools, but

do so in a mathematically precise manner. This opens

Fig. 15. An example DSP model created within GME

Fig. 16. Results of checking the DSP model against the formal

domain definition

the door for formal analysis; several examples of which

where shown in the paper. Beyond this, we implemented

MiniMeta using MIC, and in doing so combine the

advantages of each.

Our work has some interesting implications on current

model-based tool suites. It is well-known that the basic

concepts (classes, associations, etc...) in metamodeling

languages are not sufficient to encode more complex

structural constraints. The typical solution used by meta-

modeling tools is to annotate metamodels with a con-

straint language like OCL (Object Constraint Language).

However, this is often done without a precise notion

of composition between metamodeling and constraints.

With our approach, metamodels are translated into con-

straints, so additional constraints can be injected di-

rectly into the resulting interpretation of the metamodel.

This provides a consistent and compositional view of

metamodels and constraint annotations: They are just

two different ways of describing domain constraints.

Additionally, Horn logic extended with negation seems

suitable for this purpose in that it is both expressive and

there exists a large body of work in constructive theorem

proving for this style of logic.



23

Fig. 17. Annotation of the DSP metamodel with an additional

constraint

Existing approaches to metamodeling have taken an

“instance semantics” perspective, wherein the elements

of a DSML are “instances” of objects in the meta-

model. This view binds all DSMLs to the particular

presentation of the metamodeling language, making it

difficult to achieve tool interoperability and evolution.

Our approach eliminates this binding by building meta-

modeling from domains and transformations. A domain

is a stand-alone mathematical entity that characterizes

all the well-formed and malformed model realizations

belonging to that domain. A metamodeling language

generates domains, but after this generation process the

domains are self-sufficient. Our tools also reflect this

generality – The definitions of the MiniMeta domain

and the transformation process are lists of axioms. These

axioms can be changed at anytime without affecting the

implementation of MiniMeta within MIC, and without

affecting any legacy domains. This approach can be used

to implement DSML-based modeling tools that do not

rely on hard-coded metamodeling languages.

VI. ACKNOWLEDGMENTS

Special thanks to Dr. Constantine Tsinakis. His exper-

tise in Universal Algebra and his clarity of explanation

helped to improve the algebraic presentation of this

work. Also, special thanks to all the reviewers whose

careful inspection lead to many improvements. This

work was supported in part by the National Science

Foundation (NSF award #CCR-0225610 and #CCF-

0424422), the Air Force Office of Scientific Research

(AFOSR award #FA9550-06-0312).

APPENDIX I

PARTIAL MINIMOF TRANSFORMATION

The axioms below calculate which types can contain
other types, including containment capabilities endowed
by inheritance edges. These axioms handle containment

of both classes and association classes.

axiom(containment(x, ipath(h, y)),
map3(cancontain, var(x), var(y)))←

containment(x, y), ipath(h, y).

tail(containment(x, ipath(h, y)),map2(x, var(x)))←
containment(x, y), class(x), ipath(h, y).

tail(containment(x, ipath(h, y)),
map4(x, var(x), var(z), var(w)))←

containment(x, y), assocClass(x), ipath(h, y).

tail(containment(x, ipath(h, y)),map2(h, var(y)))←
containment(x, y), class(h), ipath(h, y).

These axioms are similar to the inheritance cycle
equations of the MiniMOF domain. They are added to
the domain description to prevent containment cycles.

axiom(cloop,malform(map3(contains,
var(x), var(x))))← true.

tail(cloop,
map3(contains, var(x), var(x)))← true.

axiom(ccycle2,malform(
map3(contains, var(x), var(y))))← true.

tail(ccycle2,
map3(contains, var(x), var(y)))← true.

tail(ccycle2,
map3(contains, var(y), vvar(x)))← true.

The entire MiniMOF transformation is specified with

about 200 transformation axioms. These axioms handle

all the ways that containment, associations, attributes,

and inheritance interact.

APPENDIX II

EXAMPLE OF GENERATED DOMAIN IN PROLOG

%% Signature symbols

:- dynamic

output/1, dSPObject/1,

interface/1, input/1,

malform/1, enumvalue/2,

dataType/2, contains/2,

ccyle3/2, cancontain/2,

iOConn/3, cpath3/3,

canconn/3.

%% Enumeration attribute values

enumvalue(’DataType’,’Bool’).

enumvalue(’DataType’,’String’).

enumvalue(’DataType’,’Int’).

enumvalue(’DataType’,’Real’).



24

%% Domain constraints

%% Attributes

malform(dataType(Y,V)) :- dataType(Y,V),

dataType(Y,W), (V \== W).

malform(dataType(Y,V)) :- dataType(Y,V),

\+interface(Y), \+input(Y),

\+output(Y).

malform(iOConn(N,X,Y)) :- iOConn(N,X,Y),

\+canconn(’IOConn’,X,Y).

%% Connection rules

canconn(’IOConn’,X,Y) :- interface(X),

interface(Y).

canconn(’IOConn’,X,Y) :- input(X),

interface(Y).

canconn(’IOConn’,X,Y) :- output(X),

interface(Y).

canconn(’IOConn’,X,Y) :- interface(X),

input(Y).

canconn(’IOConn’,X,Y) :- interface(X),

output(Y).

canconn(’IOConn’,X,Y) :- input(X),

input(Y).

canconn(’IOConn’,X,Y) :- input(X),

output(Y).

canconn(’IOConn’,X,Y) :- output(X),

input(Y).

canconn(’IOConn’,X,Y) :- output(X),

output(Y).

%% Containment rules

malform(contains(X,Y)) :- contains(X,Y),

\+cancontain(X,Y).

cancontain(X,Y) :- iOConn(X,Z,W),

dSPObject(Y).

cancontain(X,Y) :- interface(X),

dSPObject(Y).

cancontain(X,Y) :- dSPObject(X),

dSPObject(Y).

cancontain(X,Y) :- input(X),

dSPObject(Y).

cancontain(X,Y) :- output(X),

dSPObject(Y).

malform(dataType(Y,Z)) :- dataType(Y,Z),

\+enumvalue(’DataType’,Z).

malform(contains(X,X)) :- contains(X,X).

malform(contains(X,Y)) :- contains(X,Y),

contains(Y,X).

cpath3(X,Y,Z) :- contains(X,Y),

contains(Y,Z), (X \== Y),

(X \== Z), (Y \== Z).

ccycle3(X,Z) :- cpath3(X,Y,Z),

contains(Z,X).

malform(ccycle3(X,Y)) :- ccycle3(X,Y).

%% Additional annotations

malform(iOConn(X,Y,Z)) :- iOConn(X,Y,Z),

contains(X,W), contains(Y,W),

contains(Z,W).

APPENDIX III

MINIMOF DOMAIN

Table V describes the Horn domain for representing

domains with constraints in Horn logic. Please see tables

VI and VII on the following pages for a description of the

function symbols and constraint axioms of the MiniMOF

domain.



25

The Horn Domain

Define. def(x, y, z) defines a function symbol y with arity z in a signature x. If the same

symbol appears in multiple signatures, then the arity of the symbol must be the same in

every signature. There may be two signatures, one for Υ (sig) and one for ΥC (con).

{(def, 3), (sigtype, 1)} ⊂ ΥH

restrict(sigtype, {sigtype(sig), sigtype(con)})
malform(def(x, y, z))← def(x, y, z) ∧ def(x′, y, z′), (z 6= z′)
malform(x, y, z)← def(x, y, z),¬sigtype(x)

The inverse representation function δ−1 of a term def(x, y, z) yields a symbol definition of

the form (y, z) ∈ Υx.

Mapn. mapn(x, y1, y2, . . . , yn−1) converts an n-ary term to prenix form. The symbol name

x must be defined with a def . The domain definition provides a finite number k of map

symbols.

{(map2, 2), . . . , (mapk, k)} ⊂ ΥH

malform(map2(x, y1))← map2(x, y1),¬def(t, x, z)
...

malform(mapk(x, y1, . . . , yk−1))← mapk(x, y1, . . . , yk−1),¬def(t, x, z)

The inverse representation function δ−1 on mapn(x, y1, . . . , yn−1) yields a literal of

the form δ−1
f (x)(δ−1(Y1), . . . , δ

−1(y1)).

Axiom/Tail. axiom defines the head of an axiom and assigns it a unique identifier. tail adds

a tail literal to an axiom by referring to the axiom’s unique identifier. Each tail must be

added to an axiom that has been defined with axiom. Every axiom identifier must be unique.

{(axiom, 2), (tail, 2)} ∈ ΥH

malform(tail(x, y))← tail(x, y),¬axiom(x, z)
malform(axiom(x, y))← axiom(x, y), axiom(x, z), (y 6= z)

Given axiom(x, h) and tails tail(x, t1), . . . , tail(x, tm), the inverse representation

function δ−1 yields a clause with the corresponding head and all tails conjuncted together:

δ−1(h)← δ−1(t1), . . . , δ
−1(tm).

Neg/Neq/Var. neg(x) indicates the negation of literal x. neq(x, y) indicates the disequality

x 6= y. var(x) indicates that x is a variable.

{(neg, 1), (neq, 2), (var, 1)} ⊂ ΥH

The inverse representation function δ−1 of neg(x) yields the negated term ¬δ−1(x)
and neq(x, y) yields the disequality δ−1(x) 6= δ−1(y). Finally, δ−1(var(x)) yields a

variable δ−1
v (x).

TABLE V

ENCODING OF CONCEPTS IN THE HORN DOMAIN.



26

Encoding for Vertex Symbols

Class. class(x) denotes a class named x.

(class, 1) ∈ Υ

Association Class. assocClass(x) denotes an association class named x.

(assocClass, 1) ∈ Υ

Attribute Class. attribute(x, y) denotes an attribute named x of type y. enum(x, y)
indicates that attribute x can take the enumerated value y.

{(attribute, 2), (enum, 2)} ⊂ Υ
restrict(type, {type(bool), type(string), type(enum)})

An attribute must have a proper type. Also, an attribute cannot have an enum list,

unless it is an enum attribute.

malform(attribute(x, y))← attribute(x, y),¬type(y)
malform(enum(x, y))← enum(x, y),¬attribute(x, z)
malform(enum(x, y))← enum(x, y), attribute(x, z), (z 6= enum)

Connector. connector(x) denotes a connector named x. A connector is good (conngood(x))
if it has the appropriate edges, and every connector must be good.

(connector, 1) ∈ Υ, (conngood, 1) ∈ ΥC

conngood(w)←

(
connector(x), assocEnd(x, y,src),
assocEnd(x, z,dst), association(x,w)

)

malform(connector(x))← connector(x),¬conngood(x)

TABLE VI

ENCODING OF MINIMOF VERTEX PRIMITIVES



27

Encoding for Edge Symbols

Containment. containment(y, x) denotes the containment relationship of y in x. A

Containment edge must terminate on a Class. It may begin on another Class or Association

Class.

(containment, 2) ∈ Υ
malform(containment(y, x))← containment(y, x),¬class(x)
malform(containment(y, x))← containment(y, x),¬class(y),¬assocClass(y)

Attribute Containment. attrCont(y, x) indicates an attribute containment relationship of

y in x. An attribute containment edge must begin on an Attribute. It may terminate on a

Class or Association Class.

(attrCont, 2) ∈ Υ
malform(attrCont(y, x))← attrCont(y, x),¬attribute(y)
malform(attrCont(y, x))← attrCont(y, x),¬class(x),¬assocClass(x)

Association. association(x, y) denotes an association relationship from Connector x to

Assocation Class y. This is the only relationship allowed.

(association, 2) ∈ Υ
malform(association(x, y))← association(x, y),¬connector(x)
malform(association(x, y))← association(x, y),¬assocClass(y)

Association Endpoint. assocEnd(x, y, z) indicates an association endpoint relation from

Connector x to Class y with incidence z. z must a member of the closed unary relation

incidence.

{(assocEnd, 3), (incidence, 1)} ⊂ Υ
restrict(incidence, {incidence(src), incidence(dst)})
malform(assocEnd(x, y, z))← assocEnd(x, y, z),¬connector(x)
malform(assocEnd(x, y, z))← assocEnd(x, y, z),¬class(y)
malform(assocEnd(x, y, z))← assocEnd(x, y, z),¬incidence(z)

Inheritance. inheritance(y, x) indicates the inheritance relationship y inherits from x. An

inheritance relationship can start and end on a Class or Association Class. There should be

no directed cycles consisting only of inheritance edges.

(inheritance, 2) ∈ Υ, (imalform, 1) ∈ ΥC

malform(inheritance(y, x))← inheritance(x, y),¬class(x),¬assocClass(x)
malform(inheritance(y, x))← inheritance(x, y),¬class(y),¬assocClass(y)
malform(imalform(x))← imalform(x)

See Section IV-B for the definition of axioms concerning imalform.

TABLE VII

ENCODING OF MINIMOF EDGE PRIMITIVES



28

REFERENCES

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers:

Princiles, Techniques, and Tools. Addison-Wesley, 1986.

[2] AÏT-KACI, H. Warren’s Abstract Machine: A Tutorial Recon-

struction. MIT Press, 1991.

[3] ALUR, R., ETESSAMI, K., AND YANNAKAKIS, M. Inference

of message sequence charts. In Proceedings of the Interna-

tional Conference on Software Engineering (ICSE 00) (2000),

pp. 304–313.

[4] ANDREAE, C., NOBLE, J., MARKSTRUM, S., AND MILL-

STEIN, T. A framework for implementing pluggable type

systems. SIGPLAN Not. 41, 10 (2006), 57–74.

[5] ATKINSON, C., AND KÜHNE, T. Model-driven development: A

metamodeling foundation. IEEE Software 20, 5 (2003), 36–41.

[6] BANACH, R., AND FRASER, S. Retrenchment and the b-toolkit.

In ZB 2005: Formal Specification and Development in Z and

B, 4th International Conference of B and Z Users (april 2005),

pp. 203–221.

[7] BENVENISTE, A., CASPI, P., EDWARDS, S., HALBWACHS,

N., GUERNIC, P. L., AND DE SIMONE, R. The synchronous

languages twelve years later. Proceedings of the IEEE 91, 1

(2003), 64–83.

[8] BÉZIVIN, J., AND GERBÉ, O. Towards a precise definition of

the omg/mda framework. In Proceedings of the 16th Conference

on Automated Software Engineering (ASE 01) (2001), pp. 273–

280.

[9] BÖRGER, E. Unsolvable decision problems for prolog pro-

grams. In Computation theory and logic (London, UK, 1987),

Springer-Verlag, pp. 37–48.

[10] BRUCKER, A. D., RITTINGER, F., AND WOLFF, B. HOL-

Z 2.0: A proof environment for Z-specifications. Journal of

Universal Computer Science 9, 2 (Feb. 2003), 152–172.

[11] BURRIS, S. N., AND SANKAPPANAVAR, H. P. A Course in

Universal Algebra. Springer-Verlag, 1981.

[12] CARNES, J. R., MISRA, A., AND SZTIPANOVITS, J. Model-

integrated toolset for fault detection, isolation and recovery

(fdir). In ECBS ’96: Proceedings of the IEEE Symposium

and Workshop on Engineering of Computer Based Systems

(Washington, DC, USA, 1996), IEEE Computer Society, p. 356.

[13] CHAN, D. An extension of constructive negation and its

application in coroutining. In Proceedings of NACLP, The MIT

Press (1989), 447–493.

[14] CHEN, K., SZTIPANOVITS, J., NEEMA, S., EMERSON, M.,

AND ABDELWAHED, S. Toward a semantic anchoring infras-

tructure for domain-specific modeling languages. In Proceed-

ings of the Fifth ACM International Conference on Embedded

Software (EMSOFT’05) (September 2005).

[15] CHOMSKY, N. On certain formal properties of grammars.

Information and Control 2, 2 (1959), 137–167.

[16] COLMERAUER, A., AND ROUSSEL, P. The birth of prolog. In

HOPL Preprints (1993), pp. 37–52.

[17] CSERTÁN, G., HUSZERL, G., MAJZIK, I., PAP, Z., PATAR-

ICZA, A., AND VARRÓ, D. Viatra - visual automated transfor-

mations for formal verification and validation of uml models.

In ASE (2002), pp. 267–270.

[18] CZARNECKI, K., AND HELSEN, S. Feature-based survey of

model transformation approaches. IBM Syst. J. 45, 3 (2006),

621–645.

[19] DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A.

Complexity and expressive power of logic programming. ACM

Comput. Surv. 33, 3 (2001), 374–425.

[20] DE ALFARO, L., AND HENZINGER, T. A. Interface-based

design. In In Engineering Theories of Software Intensive

Systems, proceedings of the Marktoberdorf Summer School,

Kluwer (2004), Kluwer.

[21] DREWES, F., HOFFMANN, B., AND PLUMP, D. Hierarchical

graph transformation. J. Comput. Syst. Sci. 64, 2 (2002), 249–

283.

[22] EHRIG, H., EHRIG, K., PRANGE, U., AND TAENTZER, G.

Fundamental theory for typed attributed graphs and graph

transformation based on adhesive hlr categories. Fundam.

Inform. 74, 1 (2006), 31–61.

[23] EHRIG, H., PRANGE, U., AND TAENTZER, G. Fundamental

theory for typed attributed graph transformation. In ICGT

(2004), pp. 161–177.

[24] EMERSON, M., SZTIPANOVITS, J., AND BAPTY, T. A mof-

based metamodeling environment. Journal of Universal Com-

puter Science 10, 10 (October 2004), 1357–1382.

[25] EMERSON, M. J., SZTIPANOVITS, J., AND BAPTY, T. A mof-

based metamodeling environment. J. UCS 10, 10 (2004), 1357–

1382.

[26] EVANS, A., FRANCE, R. B., AND GRANT, E. S. Towards

formal reasoning with uml models. In In Proceedings of the

Eighth OOPSLA Workshop on Behavioral Semantics.

[27] FARROW, R., MARLOWE, T. J., AND YELLIN, D. M. Compos-

able attribute grammars: support for modularity in translator

design and implementation. In POPL ’92: Proceedings of

the 19th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (1992), pp. 223–234.

[28] FOSDICK, L. D., AND OSTERWEIL, L. J. Data flow analysis in

software reliability. ACM Comput. Surv. 8, 3 (1976), 305–330.

[29] GABOR KARSAI, ADI AGRAWAL, F. S. On the use of

graph transformations for the formal specification of model

interpreters. Journal of Universal Computer Science 9, 11

(November 2003), 1296–1321.

[30] GELFOND, M., AND LIFSCHITZ, V. The stable model seman-

tics for logic programming. In ICLP/SLP (1988), pp. 1070–

1080.

[31] GENERIC MODELING FRAMEWORK TEAM. GMF Documen-

tation, http://wiki.eclipse.org/, 2007.

[32] GIRSCHICK, M., KÜHNE, T., AND KLAR, F. Generating

systems from multiple levels of abstraction. In Proceedings of

the Trends in Enterprise Application Architecture (TEAA 2006)

(2006), pp. 127–141.

[33] GÖSSLER, G., GRAF, S., MAJSTER-CEDERBAUM, M. E.,

MARTENS, M., AND SIFAKIS, J. Ensuring properties of

interaction systems. In Program Analysis and Compilation

(2006), pp. 201–224.

[34] GRAF, S., OBER, I., AND OBER, I. A real-time profile for uml.

STTT 8, 2 (2006), 113–127.

[35] GRAY, J. G., AND ROYCHOUDHURY, S. A technique for

constructing aspect weavers using a program transformation

engine. In AOSD (2004), pp. 36–45.

[36] GREENFIELD, J. Using domain-specific languages, patterns,

frameworks, and tools to assemble applications. In SPLC

(2004), p. 324.

[37] HAMON, G., AND RUSHBY, J. An operational semantics for

stateflow. Proceedings of the conference on Fundamental

Approaches to Software Engineering (FASE’04) Volume 2984

of LNCS (2005), 229–243.

[38] HAREL, D., AND KUGLER, H. The rhapsody semantics of

statecharts (or, on the executable core of the uml) - preliminary

version. In SoftSpez Final Report (2004), pp. 325–354.

[39] HAREL, D., KUGLER, H., AND PNUELI, A. Synthesis revis-

ited: Generating statechart models from scenario-based require-

ments. In Formal Methods in Software and Systems Modeling

(2005), pp. 309–324.

[40] HAREL, D., AND NAAMAD, A. The statemate semantics of

statecharts. ACM Transactions Software Engineering Method-

ologies 5, 4 (1996), 293–333.



29

[41] HAREL, D., AND RUMPE, B. Meaningful modeling: What’s

the semantics of ”semantics”? IEEE Computer 37, 10 (2004),

64–72.

[42] HENZINGER, T. A. The theory of hybrid automata. In Pro-

ceedings of the International Conference on Logic in Computer

Science (LICS 96) (1996), pp. 278–292.

[43] HENZINGER, T. A., KIRSCH, C. M., SANVIDO, M. A., AND

PREE, W. From control models to real-time code using giotto.

Control Systems Magazine 2, 1 (2003), 50–64.

[44] INSTITUTE FOR SOFTWARE INTEGRATED SYSTEMS. GME 5

User’s Guide, http://www.isis.vanderbilt.edu/, 2005.

[45] J. BURCH, R. PASSERONE, A. S.-V. Modeling techniques in

design-by-refinement methodologies. In Integrated Design and

Process Technology (June 2002).

[46] JACKSON, D. A comparison of object modelling notations:

Alloy, uml and z. Tech. rep., August 1999.

[47] JACKSON, D. Automating first-order relational logic. In

SIGSOFT FSE (2000), pp. 130–139.

[48] JACKSON, E., SCHULTE, W., AND SZTIPANOVITS, J. The

power of rich syntax for model-based deveopment. Tech. Rep.

MSR-TR-2008-86, ftp://ftp.research.microsoft.com/pub/tr/TR-

2008-86.pdf, 2008.

[49] JACKSON, E., AND SZTIPANOVITS, J. Constructive techniques

for meta- and model-level reasoning. In Proceedings of MOD-

ELS’07.

[50] JACKSON, E. K., AND SCHULTE, W. Compositional modeling

for data-centric business applications. In Proceedings of the

Workshop on Software Engineering (SC 2008) (2008).

[51] JACKSON, E. K., AND SCHULTE, W. Model generation for horn

logic with stratified negation. In Proceedings of the IFIP WG

6.1 International Conference Formal Techniques for Networked

and Distributed Systems (FORTE 2008) (2008), pp. 1–20.

[52] JACKSON, E. K., AND SZTIPANOVITS, J. Correct-ed through

construction: A model-based approach to embedded systems

reality. In ECBS (2006), pp. 164–176.

[53] JACKSON, E. K., AND SZTIPANOVITS, J. Constructive tech-

niques for meta- and model-level reasoning. In Proceedings of

the 10th International Conference on Model Driven Engineer-

ing Languages and Systems (MoDELS 2007) (2007), pp. 405–

419.

[54] JOUAULT, F., AND BÉZIVIN, J. Km3: A dsl for metamodel

specification. In FMOODS (2006), pp. 171–185.

[55] JÜRJENS, J. Sound methods and effective tools for model-based

security engineering with uml. In ICSE ’05: Proceedings of the

27th international conference on Software engineering (New

York, NY, USA, 2005), ACM Press, pp. 322–331.

[56] KAHN, G., AND MACQUEEN, D. B. Coroutines and networks

of parallel processes. In IFIP Congress (1977), pp. 993–998.

[57] KAKITA, S., WATANABE, Y., DENSMORE, D., DAVARE, A.,

AND SANGIOVANNI-VINCENTELLI, A. L. Functional model

exploration for multimedia applications via algebraic operators.

In ACSD (2006), pp. 229–238.

[58] KARSAI, G., SZTIPANOVITS, J., LEDECZI, A., AND BAPTY,

T. Model-integrated development of embedded software. Pro-

ceedings of the IEEE 91, 1 (January 2003), 145–164.

[59] KNUTH, D. E. The genesis of attribute grammars. In In

Proceedings of Attribute Grammars and their Applications

(1990), pp. 1–12.

[60] KÖNIGS, A., AND SCHÜRR, A. Multi-domain integration

with mof and extended triple graph grammars. In Language

Engineering for Model-Driven Software Development (2004).

[61] KÜHNE, T. Matters of (meta-) modeling. Software and Systems

Modeling (SoSyM) 5, 4 (December 2006), 369–385.

[62] LARSEN, K. G., AND NIEBERT, P., Eds. Formal Modeling and

Analysis of Timed Systems: First International Workshop, FOR-

MATS 2003, Marseille, France, September 6-7, 2003. Revised

Papers (2003), vol. 2791 of Lecture Notes in Computer Science,

Springer.

[63] LAWVERE, W. F., AND SCHANUEL, S. H. Conceptual Math-

ematics : A First Introduction to Categories. Cambridge

University Press, October 1997.

[64] LEDECZI, A., MAROTI, M., BAKAY, A., KARSAI, G., GAR-

RETT, J., THOMASON, C., NORDSTROM, G., SPRINKLE, J.,

AND VOLGYESI, P. The generic modeling environment. Work-

shop on Intelligent Signal Processing (May 2001).

[65] LEE, E. A., AND NEUENDORFFER, S. Actor-oriented models

for codesign: Balancing re-use and performance. Formal

Methods and Models for Systems, Kluwer (2004).

[66] LEE, E. A., NEUENDORFFER, S., AND WIRTHLIN, M. J.

Actor-oriented design of embedded hardware and software

systems. Journal of Circuits, Systems, and Computers 12, 3

(2003), 231–260.

[67] LEE, E. A., AND PARKS, T. M. Dataflow process networks.

Proceedings of the IEEE (may 1995), 773–799.

[68] LONG, E., MISRA, A., AND SZTIPANOVITS, J. Increasing

productivity at saturn. IEEE Computer 31, 8 (1998), 35–43.

[69] MARCANO, R., AND LEVY, N. Using b formal specifications

for analysis and verification of uml/ocl models. In In Workshop

on consistency problems in UML-based software development.

5th International Conference on the Unified Modeling Language

(2002), pp. 91–105.

[70] MENS, T., GORP, P. V., VARRÓ, D., AND KARSAI, G. Apply-

ing a model transformation taxonomy to graph transformation

technology. Electr. Notes Theor. Comput. Sci. 152 (2006), 143–

159.

[71] MINKER, J. Logic and databases: A 20 year retrospective. In

Logic in Databases (1996), pp. 3–57.

[72] MULLER, P.-A., FLEUREY, F., AND JÉZÉQUEL, J.-M. Weav-

ing executability into object-oriented meta-languages. In MoD-

ELS (2005), pp. 264–278.

[73] NEEMA, S., KALMAR, Z., SHI, F., VIZHANYO, A., AND

KARSAI, G. A visually-specified code generator for

simulink/stateflow. In VL/HCC (2005), pp. 275–277.

[74] NEEMA, S., SZTIPANOVITS, J., KARSAI, G., AND BUTTS, K.

Constraint-based design-space exploration and model synthesis.

In EMSOFT (2003), pp. 290–305.

[75] OBJECT MANAGEMENT GROUP. Meta Object Facility Spec-

ification v1.4, http://www.omg.org/docs/formal/02-04-03.pdf,

2002.

[76] OBJECT MANAGEMENT GROUP. MDA Guide version 1.0.1,

http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[77] OBJECT MANAGEMENT GROUP. Meta Object Facility (MOF)

2.0 Core Specification, http://www.omg.org/docs/ptc/03-10-

04.pdf, 2003.

[78] OBJECT MANAGEMENT GROUP. Unified Modeling Language:

Infrastructure version 2.0, 3rd revised submission to OMG RFP,

http://www.omg.org/docs/ad/00-09-02.pdf, 2003.

[79] OBJECT MANAGEMENT GROUP. Object Constraint Language

v2.0, http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[80] OBJECT MANAGEMENT GROUP. Unified Mod-

eling Language: Superstructure version 2.1.1,

http://www.omg.org/docs/formal/07-02-06.pdf, 2007.

[81] OREJAS, F., EHRIG, H., AND PRANGE, U. A logic of graph

constraints. In FASE (2008), pp. 179–198.

[82] PAAKKI, J. Attribute grammar paradigms—a high-level

methodology in language implementation. ACM Comput. Surv.

27, 2 (1995), 196–255.

[83] PINTO, A., CARLONI, L. P., PASSERONE, R., AND

SANGIOVANNI-VINCENTELLI, A. L. Interchange format

for hybrid systems: Abstract semantics. In HSCC (2006),

pp. 491–506.



30

[84] PRZYMUSINSKI, T. C. Every logic program has a natural

stratification and an iterated least fixed point model. In PODS

’89: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems (New York, NY,

USA, 1989), ACM, pp. 11–21.

[85] SANGIOVANNI-VINCENTELLI, A., CARLONI, L., BERNARDI-

NIS, F. D., AND SGROI, M. Benefits and challenges for

platform-based design. In Proceedings of the Design Automa-

tion Conference (DAC’04) (June 2004).

[86] TORLAK, E., AND JACKSON, D. Kodkod: A relational model

finder. In In Proceedings of the 13th International Conference

on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2007) (2007), pp. 632–647.

[87] VARRÓ, D., AND PATARICZA, A. Vpm: A visual, precise and

multilevel metamodeling framework for describing mathemat-

ical domains and uml (the mathematics of metamodeling is

metamodeling mathematics). Software and System Modeling

2, 3 (2003), 187–210.

[88] WEIJLAND, W. P. Semantics for logic programs without occur

check. In ICALP (1988), pp. 710–726.


