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Abstract. We propose a novel approach for quantifying a system’s resis-
tance to unknown-message side-channel attacks. The approach is based
on a measure of the secret information that an attacker can extract from
a system from a given number of side-channel measurements. We provide
an algorithm to compute this measure, and we use it to analyze the re-
sistance of hardware implementations of cryptographic algorithms with
respect to timing attacks. In particular, we show that message-blinding
– the common countermeasure against timing attacks – reduces the rate
at which information about the secret is leaked, but that the complete
information is still eventually revealed. Finally, we compare informa-
tion measures corresponding to unknown-message, known-message, and
chosen-message attackers and show that they form a strict hierarchy.

1 Introduction

Side-channel attacks against cryptographic algorithms aim at breaking cryptog-
raphy by exploiting information that is revealed by the algorithm’s physical ex-
ecution. Characteristics such as running time [12,4,22], power consumption [13],
and electromagnetic radiation [11,24] have all been exploited to recover secret
keys from implementations of different cryptographic algorithms. Side-channel
attacks are now so effective that they pose a real threat to the security of devices
when their physical characteristics can be measured. This threat is not covered
by traditional notions of cryptographic security; however, there is a line of re-
search that investigates alternative models for reasoning about the resistance to
such attacks [6,21,27,14].

Two quantities determine the effort to successfully mount a side-channel at-
tack and recover a secret key from a given system. The first is the computational
power needed to recover the key from the information that is revealed through
the side-channel. The second is the number of measurements needed to gather
sufficient side-channel information for this task. To prove that a system is re-
sistant to side-channel attacks, one must ensure that the overall effort for a
successful attack is out of the range of realistic attackers.

The attacker’s computational power is typically not the limiting factor in
practice, as many documented attacks show [4,7,13,22]. Hence, the security of
a system often entirely depends on the amount of secret information that an
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attacker can gather in his side-channel measurements. Note that the number
of measurements may be bounded – for example, by the number of times the
system re-uses a session key – and must be considered when reasoning about a
system’s vulnerability to side-channel attacks.

A model to express the revealed information as a function of the number of
side-channel measurements has recently been proposed, and it has been applied
to characterize the resistance of cryptographic algorithms against side-channel
attacks [14]. The model captures attackers that can interact with the system by
adaptively choosing the messages that the system decrypts (or encrypts).

However, many attack scenarios only allow for unknown-message attacks,
where the attacker cannot see or control the input that is decrypted (or en-
crypted) by the system. One type of unknown-message attack is timing attacks
against systems that are run with state-of-the-art countermeasures such as mes-
sage blinding. Quantifying the information that a side-channel reveals in such
an attack was an open problem prior to this work.

1.1 Our Contributions

We propose a novel measure for quantifying the resistance of systems against
unknown-message side-channel attacks. This measure Λ captures the quantity
of secret information that a system reveals as a function of the number of side-
channel measurements. Moreover, we provide an explicit formula for Λ when
the number of measurements tends to infinity, corresponding to the maximum
amount of secret information that is eventually leaked.

In order to apply our measure to realistic settings, we provide algorithms
for computing Λ for finite and infinite numbers of measurements, respectively.
We subsequently use these algorithms to formally analyze the resistance of a
nontrivial hardware implementation to side-channel attacks: we show that a
finite-field exponentiation algorithm as used in, e.g., the generalized ElGamal
decryption algorithm, falls prey to unknown-message timing attacks in that the
key is fully determined by a sufficiently large numbers of measurements.

We use this result to analyze message-blinding, which aims at protecting
against timing attacks by decoupling the running time of the algorithm from
the secret. We show that, for the analyzed exponentiation algorithm, message-
blinding only reduces the rate at which information about the secret is revealed,
and that the entire key information is still eventually leaked. This yields the first
formal assessment of the (un-)suitability of message-blinding to counter timing
attacks.

We conclude by putting our measure Λ into perspective with information
measures for different kinds of attacker interactions. The result is a formal hier-
archy of side-channel attackers that is ordered in terms of the information they
can extract from a system. We distinguish unknown-message attacks, in which
the attacker does not even know the messages (as in timing attacks against
implementations with message blinding), known-message attacks, in which the
attacker knows but cannot influence the messages, and chosen-message attacks,
in which the attacker can adaptively choose the messages (as is typically the
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case in timing attacks against unprotected implementations). As expected, more
comprehensive attackers are capable of extracting more information in a given
number of measurements. Moreover, we show that this inclusion is strict for cer-
tain side-channels. Clarifying the different attack scenarios will provide guidance
on which measure to pick for a particular application scenario.

1.2 Outline

The paper is structured as follows. In Section 2, we introduce our models of side-
channels and attackers and we review basics of information theory. In Section 3,
we present measures for quantifying the information leakage in unknown-message
attacks. In Section 4, we show how these measures can be computed for given
implementations. We report on experimental results in Section 5 and compare
different kinds of side-channel attacks in Section 6. We discuss related work in
Section 7 and conclude in Section 8.

2 Preliminaries

We start by describing our models of side-channels and attackers, and we briefly
recall some basic information theory.

2.1 Modeling Side-Channels and Attackers

Let K be a finite set of keys, M be a finite set of messages and D be an arbitrary
set. We consider systems that compute functions of type F : K × M → D,
and we assume that the attacker can make physical observations about F ’s
implementation IF that are associated with the computation of F (k, m). We
assume that the attacker can make one observation per invocation of the function
F and that no measurement errors occur. Examples of such observations are the
power or the time consumption of IF during the computation (see [13,20] and
[12,4,22], respectively).

Formally, a side-channel is a function fIF : K × M → O, where O denotes
the set of possible observations. We assume that the attacker has full knowledge
about the implementation IF , i.e., fIF is known to the attacker. We will usually
leave IF implicit and abbreviate fIF by f .

Example 1. Suppose that F is implemented in synchronous (clocked) hardware
and that the attacker is able to determine IF ’s running times up to single clock
ticks. Then the timing side-channel of IF can be modeled as a function f : K ×
M → N that represents the number of clock ticks consumed by an invocation of
F . A hardware simulation environment can be used to compute f .

Example 2. Suppose F is given in a description language for synchronous
hardware. Power estimation techniques can be used to determine a function
f : K ×M → R

n that estimates an implementation’s power consumption during
n points in time (see, e.g., [17] and Section 5.3).
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In a side-channel attack, a malicious agent gathers side-channel observations
f(k, m1), . . . , f(k, mn) for deducing k or narrowing down its possible values.
Depending on the attack scenario, the attacker might additionally be able to see
or choose the messages mi ∈ M : an attack is unknown-message if the attacker
cannot observe mi ∈ M ; an attack is known-message if the attacker can observe
but cannot influence the choice of mi ∈ M ; an attack is chosen-message if the
attacker can choose mi ∈ M .

In this paper, we focus on the open problem of giving bounds on the side-
channel leakage in unknown-message attacks. In Section 6, we will come back to
the distinction between different attack types and formally compare them with
respect to the quantity of information that they can extract from a system.

2.2 Information Theory Basics

Let A be a finite set and p : A → R a probability distribution. For a random
variable X : A → X , we define pX : X → R as pX (x) =

∑
a∈X−1(x) p(a), which

is often denoted by p(X = x) in the literature.
The (Shannon) entropy of a random variable X : A → X is defined as

H(X ) = −
∑

x∈X

pX (x) log2 pX (x) .

The entropy is a lower bound for the average code length of any binary en-
coding scheme for X . An encoding scheme can be seen as a strategy in which
each bit corresponds to a binary test that narrows down the set of the remaining
candidate values. Thus, in terms of guessing, the entropy H(X ) is a lower bound
for the average number of binary questions that need to be asked to determine
X ’s value [5]. If Y : A → Y is another random variable, H(X|Y = y) denotes
the entropy of X given Y = y, i.e., with respect to the distribution pX|Y=y. The
conditional entropy H(X|Y) of X given Y is defined as the expected value of
H(X|Y = y) over all y ∈ Y , namely,

H(X|Y) =
∑

y∈Y

pY(y)H(X|Y = y) .

Entropy and conditional entropy are related by the equation H(XY) = H(Y) +
H(X|Y), where XY is the random variable defined as XY(k) = (X (k), Y(k)).
The mutual information I(X ; Y) of X and Y is defined as the reduction of
uncertainty about X if one learns Y, i.e., I(X ; Y) = H(X ) − H(X|Y).

3 Information Leakage in Unknown-Message Attacks

In this section, we first propose a novel measure that expresses the information
gain of an unknown-message attacker as a function of the number of side-channel
observations made. Subsequently, we derive an explicit representation for the
limit of this information gain for an unbounded number of observations. This
representation provides a characterization of the secret information that the side-
channel eventually leaks. Moreover, it leads to a simple algorithm for computing
this information.
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3.1 Information Gain in n Observations

In the following, let pK : K → R and pM : M → R be probability distribu-
tions and let the random variables K = idK , M = idM model the random
choice of keys and messages, respectively; we assume that pM and pK are
known to the attacker. For n ∈ N , let On : K × Mn → On be defined by
On(k, m1, . . . , mn) = (f(k, m1), . . . , f(k, mn)), where pKMn(k, m1, . . . , mn) =
pK(k)pM (m1) . . . pM (mn) is the probability distribution on K × Mn. The vari-
able On captures that k remains fixed over all invocations of f , while the mes-
sages m1, . . . , mn are chosen independently.

An unknown-message attacker making n side-channel observations On may
learn information about the value of K, i.e., about the secret key. This infor-
mation can be expressed as the reduction in uncertainty about the value of K,
i.e., I(K; On) = H(K) − H(K|On). An alternative is to use the attacker’s re-
maining uncertainty about the key H(K|On) as a measure for quantifying the
system’s resistance to an attack. Focusing on H(K|On) has the advantage of a
precise interpretation in terms of guessing: it is a lower bound on the average
number of binary questions that the attacker still needs to ask to determine K’s
value [5].

Definition 1. We define Λ(n) = H(K|On) as the resistance to unknown-
message attacks of n steps.

Two measures that are closely related to Λ have been proposed in [8] and [27].
The measure from [8] captures only single measurements, i.e., it corresponds
to Λ(1). The information-theoretic metric from [27] captures multiple measure-
ments, but with respect to stronger, chosen-message adversaries.

The function Λ is monotonically decreasing, i.e., more observations can only
reduce the attacker’s uncertainty about the key. If Λ(n) = H(K), the first
n side-channel observations contain no information about the key. Clearly,
Λ(0) = H(K). If Λ(n) = 0, the key is completely determined by n side-channel
observations.

Since Λ(n) is defined as the expected value of H(K|On = o) over all o ∈ On,
it expresses whether keys are, on the average, hard to determine after n side-
channel observations. It is straightforward to adapt the resistance to accom-
modate worst-case guarantees [14] or to use alternative notions of entropy that
correspond to different kinds of guessing [5]. For example, by using the guessing
entropy instead of the Shannon entropy, one can express the remaining uncer-
tainty about the key in terms of the average number of questions of the kind
“does K = k hold” that must be asked to guess K’s value correctly [18].

In Section 4, we will give an algorithm for computing the resistance Λ(n) to
unknown-message attacks. The time complexity of this algorithm is, however,
exponential in n, rendering computation for large values of n infeasible. To rem-
edy this problem, we will now establish an explicit formula for limn→∞ Λ(n),
which will allow us to compute limits for the resistance without being faced
with the exponential increase in n.
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3.2 Bounds for Unlimited Observations

The core idea for computing the limit of Λ can be described as follows: for a large
number o1, . . . , on of side-channel observations and a fixed key k, the relative
frequency of each o ∈ O converges to the probability pO|K=k(o). Thus, making
an unbounded number of observations corresponds to learning the distribution
pO|K=k. We next give a formal account of this idea.1

Define k1 ≡ k2 if and only if pO|K=k1 = pO|K=k2. Then ≡ constitutes an
equivalence relation on K, and K/≡ denotes the set of equivalence classes. The
random variable V : K → K/≡ defined by V(k) = [k]≡ maps every key to its ≡-
equivalence class. Knowledge of the value of V hence corresponds to knowledge
of the distribution pO|K=k associated with k. Intuitively, an unbounded number
of observations contains as much information about the key as the key’s ≡-
equivalence class. This is formalized by the following theorem.

Theorem 1. Let K, V and On be defined as above. Then

lim
n→∞H(K|On) = H(K|V) . (1)

The proof of Theorem 1 can be found in the full version of this paper
[1]. A straightforward calculation shows that, for uniformly distributed keys,
H(K|V) = 1

|K|
∑

B∈K/≡
|B| log2 |B|. Consequently, Theorem 1 enables us to

compute limn→∞ H(K|On) from the sizes of the ≡-equivalence classes. This is
illustrated by the following example.

Example 3. Let n ∈ N, K = {0, 1}n, M = {1, . . . , n}, and O = {0, 1}. Consider
the function f : K × M → O defined by f(k, m) = km, where k = (k1, . . . , kn).
Theorem 1 implies that H(K|V) captures the information about k that f even-
tually leaks to an unknown-message attacker. For computing H(K|V), observe
that for k1, k2 ∈ K, pO|K=k1 = pO|K=k2 if and only if the number of 1-
bits in k1 and k2 is equal, i.e., if k1 and k2 have the same Hamming weight.
The number of n-bit values with Hamming weight h is given by

(
n
h

)
. Hence,

limn→∞ H(K|On) = 1
2n

∑n
h=0

(
n
h

)
log2

(
n
h

)
.

4 Computing the Resistance to Unknown-Message
Attacks

In this section, we show how Λ(n) and limn→∞ Λ(n) can be computed for given
implementations IF of cryptographic functions F . For this, we first need a rep-
resentation of the side-channel f = fIF ; second, we need to compute Λ from this
representation.
1 For probabilities, this is a consequence of the law of large numbers. We are not aware

of a corresponding result for the conditional entropy.
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4.1 Determining Time Consumption

We focus on implementations in synchronous (clocked) hardware and we assume
that the attacker can determine the system’s time consumption up to single
clock ticks. We use the hardware design environment Gezel [25] for describing
circuits and for building up value table representations of f . Here, the value
f(k, m) is the number of clock ticks consumed by the computation of F (k, m) and
can be determined by the simulation environment. Specifications in the Gezel

language can be mapped into a synthesizeable subset of Vhdl, an industrial-
strength hardware description language. The mapping preserves the circuit’s
timing behavior within the granularity of clock ticks. In this way, the guarantees
obtained by formal analysis translate to silicon implementations.

We next show how Λ(n) can be computed from the value table representation
of f .

4.2 Computing Λ(n)

For computing Λ(n) we first show how Λ(n) = H(K|On) can be decomposed into
a sum of terms of the form pO|K=k(o), with k ∈ K and o ∈ O. Subsequently, we
sketch how this decomposition can be used to derive a simple implementation
for computing Λ(n).

We have the following equalities

H(K|On) = −
∑

o∈On

pOn(o)
∑

k∈K

pK|On=o(k) log2 pK|On=o(k) (2)

pK|On=o(k) =
pOn|K=k(o)pK(k)

pOn(o)
(3)

pOn(o) =
∑

k∈K

pOn|K=k(o)pK(k) (4)

pOn|K=k(o1, . . . , on) =
n∏

i=1

pO|K=k(oi) , (5)

where (3) is Bayes’ formula and (5) holds because, for a fixed key, the obser-
vations are independent and identically distributed. Furthermore, for uniformly
distributed messages, pO|K=k(o) = |{m | f(k, m) = o)}|/|M |, which can be
computed using the value table representation of f given by Gezel.

The decomposition in (2)-(5) of H(K|On) into a combination of terms of
the form pO|K=k(o) and pK(k) for k ∈ K and o ∈ O can be expressed by list
comprehensions. This is illustrated by the following code snippet in Haskell [3].
Here, pO computes pOn(o) according to (4) and (5) from a list of observations
obs, a list representation keys of K, and an array p that stores the values
pO|K=k(o):

pO obs = sum [ product [ p!(o,k) | o <- obs ]| k <- keys ]
/ length keys
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The computation of Λ(n) according to (2) and (3) can be encoded in a similarly
concise way. We have implemented this in Haskell and use this implementation
to perform experiments in Section 5.

4.3 Computing limn→∞ Λ(n)

From Theorem 1 it follows that limn→∞ Λ(n) = H(K|V), where V(k) =
[k]≡ and k1 ≡ k2 if and only if pO|K=k1 = pO|K=k2 . We have H(K|V) =
1

|K|
∑

B∈K/≡ |B| log2 |B| for uniformly distributed keys. Hence, for computing
H(K|V) it suffices to determine the sizes of the ≡-equivalence classes.

The equivalence classes of an equivalence relation form a partition of the rela-
tion’s domain. We compute the partition of K corresponding to ≡ by refinement.
For this, consider the equivalence relations ≡o defined by k1 ≡o k2 if and only if
pO|K=k1(o) = pO|K=k2(o). Clearly, k1 ≡ k2 if and only if ∀o ∈ O.k1 ≡o k2.

For partitioning a set B ⊆ K with respect to ≡o, group together all k ∈ B
with the same value of pO|K=k(o). For refining a given partition P of K with
respect to ≡o, partition all B ∈ P according to ≡o. Finally, for computing the
partition corresponding to ≡, successively refine the partition {K} with respect
to all o ∈ O. The following Haskell program implements this idea:

partKeys keys obs = foldr refineBy [keys] obs
where refineBy o part = concat (map (splitBlockByObs o) part)

Here, the refinement of a block by an observation is accomplished by the function
splitBlockByObs. The function refineBy applies this procedure to every block
in a given partition. The function partKeys refines the partition [keys] by all
observations in the list obs.

Finally, we can compute H(K|V) = 1
|K|

∑
B∈K/≡ |B| log2 |B| from the parti-

tion part returned by partKeys:

entropy part = sum [ b * logBase 2 b | x <- bs ] / sum bs
where bs = map length part

We use this simple prototype implementation in our experiments below.

5 Experimental Results

We now report on a case study where we analyze the implementation of a circuit
for exponentiation in finite fields with respect to its resistance to timing attacks.
Finite-field exponentiation is relevant, for example, in the generalized ElGamal
encryption scheme [19]. Furthermore, we show how this result can be used for
evaluating state-of-the-art countermeasures to timing attacks.

5.1 Timing Analysis of a Finite-Field Exponentiation Algorithm

We have analyzed a Gezel implementation of the finite-field exponentiation al-
gorithm from [10]. It takes two arguments m and x and computes mx in F2w . The
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Fig. 1. Resistance of a finite-field exponentiation algorithm to unknown-message timing
attacks

exponentiation is performed by square-and-multiply, where each multiplication
corresponds to a multiplication of polynomials. The entire algorithm consists of
three nested loops.

Computing Λ(n) with the implementation presented in Section 4 is expen-
sive and does not scale to large values of n and operands of large bit-widths.
To overcome this problem, we use the following approximation technique: we
parameterize each algorithm by the bit-width w of its operands. Our working
assumption is that regularity in the values of Λ for w ∈ {2, . . . , wmax} reflects
the structural similarity of the algorithms. This permits the extrapolation to
values of w beyond wmax. To make this explicit, we will write Λw to denote that
Λ is computed on w-bit operands.

Results of the Analysis The results of our analysis are given in Figure 1. The bit-
width w of the operands is depicted along the horizontal axis and the entropy
is depicted along the vertical axis. The different curves represent Λw(n) for
n ∈ {0, 1, 2, 3, ∞}.

We can draw the following conclusion from our data: the first timing obser-
vation reveals almost half of the secret information about the key. Subsequent
observations reduce the uncertainty at a significantly slower rate. In the long run,
however, the entire key information is leaked. Hence the circuit is vulnerable to
unknown-message timing attacks.

5.2 Implications for the Security of Message-blinding

Timing attacks typically rely on the fact that the attacker can choose the input
m ∈ M and can measure the corresponding running time. Message-blinding,
the state-of-the art countermeasure against timing attacks, renders this type of
attack impractical by decoupling the algorithm’s running time from m. Message-
blinding has been proposed for exponentiation modulo n [12], but it can directly
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Fig. 2. Resistance of a finite-field exponentiation algorithm to chosen-message timing
attacks

be applied to exponentiation in the field F2w . We illustrate message-blinding for
the common case of RSA.

Example 4. Consider an RSA decryption x = mk mod n, where m is chosen
by the attacker, x the plaintext, n the modulus and k the secret key. Message-
blinding decouples the running time of the exponentiation from m: in the blinding
phase one computes m · re mod n, where r is random and relatively prime to n,
and e is the public key. The result of the decryption is (m · re)k = x · r mod n,
which yields x after unblinding, i.e., after multiplication with r−1 mod n.

The belief that message-blinding is secure is based on the assumption that the
blinding and unblinding steps do not introduce new side-channels, and that
m · re is sufficiently random. Analyzing the resistance of an exponentiation
algorithm with respect to unknown-message attackers and uniformly distrib-
uted messages thus corresponds to analyzing the implementation with idealized
message-blinding and with respect to chosen-message attacker.

This correspondence enables us to use Λ for evaluating the quality of message-
blinding as a countermeasure for timing attacks against the finite-field exponen-
tiation circuit from Section 5.1. Figure 2 is based on data from [14] and depicts
the resistance of the same exponentiation algorithm with respect to chosen-
message attacks. Here, Φw(n) denotes the remaining uncertainty after n steps
of a chosen-message attack. The value Λw(n) − Φw(n), i.e., the difference be-
tween the curves in Figures 1 and 2, gives a formal account of what is gained
by applying message-blinding as a countermeasure, namely that the information
is leaked at a significantly slower rate. Figure 1 shows that limn→∞ Λ(n) = 0.
This implies that, even with message-blinding applied, the timing side-channel
eventually leaks the entire key information. To our knowledge, this is the first
formal analysis of a countermeasure against timing attacks.
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5.3 On Formal Bounds for Power Analysis Attacks

Our measure Λ can also be applied to analyze the resistance of systems to power
analysis attacks. As a proof of concept, we have applied our model to compute the
resistance of a hardware implementation of an AES SBox with respect to power
analysis attacks. The results can be found in the full version of this paper [1].

However, the formal bounds derived for power analysis attacks have to be
carefully translated to real-world situations. First, power models typically ab-
stract from certain electrical effects [17] so that formal bounds derived using
such models (including ours) do not take into account attackers that exploit
these elided effects. Second, in many attack scenarios, the attacker can observe
the device’s power consumption as a function of time. This function is typically
approximated by the vector of the power measurements at n fixed time instants.
In our model, such an approximation can be captured by a side-channel of type
f : K × M → R

n. Bounds derived from this approximation do not take into
account attackers that measure the power consumption at other points in time.

6 A Hierarchy of Side-Channel Attackers

In this section, we formally relate unknown-message, known-message and chosen-
message attackers with respect to the information that they can extract from a
given side-channel f : K × M → O. The main purpose of this comparison is a
unified presentation that simplifies the task of picking the appropriate measure
for a given attack scenario.

The result of the comparison is as expected: chosen-message attackers are
stronger than known-message attackers, which are stronger than unknown-
message attackers. All inclusions are shown to be strict. Before we formally
state and prove this result, we begin with definitions of the resistance to known-
message and chosen-message attacks.

6.1 Known-Message and Chosen-Message Attacks:

We define the resistance to known-message attacks along the lines of Definition
1, where we express that the attacker knows the messages by conditioning the
entropy of K on Mn. Here, Mn models the n independent choices of messages
from M .

Definition 2. We define Δ(n) = H(K|OnMn) as the resistance to known-
message attacks of n steps.

Note that Δ is an average-case measure, as H(K|OnMn) is the expected re-
maining uncertainty about K if the values of On and Mn are known. It can be
adapted to accommodate worst-case guarantees by replacing the expected value
by the minimal value over all n-tuples of messages or observations.

A measure for the resistance to chosen-message attacks has been defined in
[14]. We next give a short account of this definition. A chosen-message attack is
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formalized as a tree whose nodes are labeled with subsets of K. In this tree, an
attack step is represented by a node v together with its children. The label A of v
is the set of keys that could have led to the attacker’s previous observations. The
labels of the children of v form a partition of A. We require that this partition is
of the form {A∩ f−1

m (o) | o ∈ O} for some m ∈ M , where fm(k) = f(k, m). This
corresponds to the attacker’s choice of a query m. By observing o, the attacker
can narrow down the set of possible keys from A to A′ = f−1

m (o) ∩ A. The child
of v with label A′ is the starting point for subsequent attack steps.

Definition 3 ([14]). An attack strategy against f is a triple (T, r, L), where
T = (V, E) is a tree, r ∈ V is the root, and L : V → 2K is a node labeling with
the following properties:

1. L(r) = K, and
2. for every v ∈ V , there is an m ∈ M with {L(v) ∩ f−1

m (o) | o ∈ O} = {L(w) |
(v, w) ∈ E}.

An attack strategy is of length l if T has height l.

A simple consequence of requirements 1 and 2 is that the labels of the leaves of
an attack strategy a = (T, r, L) form a partition Pa = {L(v) | v is a leaf of T }
(the induced partition) of K. We denote by Va the random variable that maps
k ∈ K to its enclosing block in Pa.

Definition 4 ([14]). We define Φ(n) = min{H(K|Va) | a is of length n} as the
resistance to chosen-message attacks of length n.

6.2 Comparing Side-Channel Attackers

The following theorem gives a formal account of the intuition that more com-
prehensive attackers can extract more information from a system.

Theorem 2. Let f : K × M → O be a side-channel. Then, for all n ∈ N,

Φ(n) ≤ Δ(n) ≤ Λ(n) .

Proof. Conditioning on Mn does not increase the entropy, hence we have
Δ(n) = H(K|OnMn) ≤ H(K|On) = Λ(n) for all n ∈ N. For showing
Φ(n) ≤ Δ(n), let (m1, . . . , mn) = argminm∈Mn H(K|On(Mn = m)) and ob-
serve that H(K|On(Mn = m)) ≤ H(K|OnMn). Define a as the attack strategy
where, for each node of distance i from the root, the message mi is chosen as
a query. A simple calculation shows that H(K|Va) =

∑
B∈P p(B)H(K|Va =

B) = H(K|On(Mn = (m1, . . . , mn))) holds, where P is the partition of K
given by

⋂n
i=1{f−1

mi
(o) | o ∈ O}. Here, ∩ denotes the intersection of parti-

tions, which is defined by Q ∩ Q′ = {B ∩ B′ | B ∈ Q, B′ ∈ Q′}. Then
Φ(n) ≤ H(K|Va) = H(K|On(Mn = (m1, . . . , mn))) ≤ H(K|OnMn) = Δ(n),
which concludes this proof.

The inequalities in Theorem 2 are strict for some side-channels f , as the following
example shows.
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Example 5. Let K = {1, 2, 3, 4}, M = {m1, m2}, O = {1, 2}, and f : K×M → O
such that f−1

m1
(1) = {1, 2} and f−1

m2
(1) = {2, 3}. With a uniform distribution

on K, Φ(1) = 1 and Φ(n) = 0, for n > 1. According to Theorem 1, Λ(n) is
bounded from below by H(K|V). With a uniform distribution on M , we have
pO|K=1 = pO|K=3, hence Λ(n) ≥ H(K|V) = 1

2H(K|V = [1]≡) = 1
2 . We have

limn→∞ Δ(n) = 0, but Δ will not reach its limit for a finite n as, e.g, Mn =
(m1, m1, . . . , m1) is a possible choice of messages. Hence, Φ(n) < Δ(n) < Λ(n)
for the given f and large enough n.

We conclude that chosen-message attackers, known-message attackers, and un-
known message attackers form a strict hierarchy in terms of the information that
they can extract from a given side-channel.

7 Related Work

While there has been substantial work in information-flow security on detecting
or quantifying information leaks, there are no results for quantifying the infor-
mation leakage in unknown-message attacks. Lowe [15] quantifies information
flow in a possibilistic process algebra by counting the number of distinguishable
behaviors. Clarkson et al. [9] develop a model for reasoning about an adaptive
attacker’s beliefs about the secret, which may be right or wrong. The information
measure proposed by Clark et al. [8] is closely related to ours, however, it is not
applicable to side-channel attacks as it does not capture multiple computations
with the same key.

There is a large body of work on side-channel cryptanalysis, in particular
on attacks and countermeasures. However, there are only a few approaches that
give theoretical bounds on what side-channel attackers can, in principle, achieve.
Chari et al. [6] are the first to investigate methods for proving hardware im-
plementations secure with respect to power attacks. They propose a generic
countermeasure for power attacks and prove that it resists a given number of
side-channel measurements. Micali et al. [21] propose physically observable cryp-
tography, a mathematical model that aims at providing provably secure cryp-
tography on hardware that is only partially shielded.

The model of Micali et al. has been been specialized to a framework for the
evaluation of side-channel attacks by Standaert, Malkin, and Yung [27] (hence-
forth called the SMY-model), with applications described in [26,16,23]. An analy-
sis with the SMY-model is based on the probability distribution of the attacker’s
side-channel measurements. These distributions can be obtained from real mea-
surement data, which ensures the validity of the analysis. The SMY-model uses
two largely independent metrics for the evaluation of systems. The information-
theoretic metric considers only non-adaptive chosen-message adversaries and
is not given a direct interpretation in terms of security. The security metric
characterizes the security of a system in terms of the success rate for recovering
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the correct key when applying a given algorithm (e.g., Bayesian classification)
to the measurement data. In this way, an analysis with the SMY-model yields
meaningful assertions about the effectiveness of the chosen algorithm, but not
necessarily worst-case bounds.

By contrast, our metrics abstract from any concrete statistical analysis tech-
nique and explicitly consider the way the attacker interacts with the system.
This enables us to derive sound worst-case bounds for what can, in principle,
be achieved in a side-channel attack. Clearly, such formal bounds are practically
relevant only if they are based on a valid system model. For power analysis,
the practical implications of the bounds derived using our model require further
investigation (see Section 5.3). For timing analysis, the number of clock ticks
provides a reasonable and deterministic abstraction of time. For this application
domain, our metrics offer the advantage of quantitative bounds that are sound
with respect to arbitrary statistical analysis techniques and different kinds of
attacker interactions.

8 Future Work and Conclusions

We have presented a novel approach to quantify the secret information that is re-
vealed to unknown-message side-channel attackers. We have applied it to analyze
the vulnerability of a finite-field exponentiation algorithm to unknown-message
timing attacks. In particular, we have used it to perform the first formal analysis
of message-blinding as a countermeasure against timing attacks. Finally, we have
given a formal account of the intuition that more comprehensive attackers can
extract more information from a given side-channel.

As future work, we plan to investigate whether techniques for entropy esti-
mation [2] can be used to approximate the value of Λ for implementations with
operands of larger bit-widths. Another possibility for future work is to investi-
gate whether Λ can be approximated by language-based techniques, e.g., by a
type system. This would enable us to derive bounds for systems with larger or
infinite state spaces. Finally, it is an open problem to determine information-
theoretic bounds for systems that incorporate common components such as cache
architectures.
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