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Abstract Due to the pervasiveness of diagrams in human communication and be

cause of the increasing availability of graphical notations in Software 

Engineering, the study of diagrammatic notations is at the forefront 

of many research efforts. The expressive power of these kinds of lan

guages and notations can be remarkably improved by adding extensibil

ity mechanisms. Extensibility, the ability of a notation or a modeling 

language to be extended from its own modeling constructs, is a feature 

that has assumed considerable importance with the appearance of the 

UML (Unified Modeling Language). In this paper, a holistic proposal 

to formally support the evolution of the UML metamodel is presented. 

To attain this aim, an algebraic formalization is provided which leads to 

a seamless formal model of the UML four-Iayer semantics architecture. 

These two characteristics - being holistic and seamless together with re

flection are the most innovative aspects of the research with respect to 

formalizing the UML. In particular, a central role is played by reflection. 

A formal language supporting this feature called Maude is studied and 

put forward as the basis for the formalization of the UML extensibil

ity mechanisms. Since Maude is an executable specification language, 

the final set of formal models can also be used as a UML virtual ma

chine at the specification level. To illustrate the approach, a UML Class 

Diagram prototype is implemented using the Maude interpreter. The 
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integration of this Maude prototype with a UML commercial CASE has 

been developed, in Java, and is currently working. 

Keywords: Extension Mechanism, Algebraic Specification, Maude, UML Evolution, 

Metaprogramming. 

1. INTRODUCTION 

Object-Orientation is one of the most prominent approaches in cur

rent software development. Within this paradigm, the UML [16, 17] is 

the standard 00 notation adopted by the OMG1 and is becoming an 

unavoidable reference in information systems Analysis and Design. 

The UML graphical notation supports extensibility mechanisms by 

me ans of three extension mechanisms: Stereotype, Constraint and Tagged

Value. A stereotype represents a subdass of an existing modeling ele

ment, such as a message, an operation, a dass, a use case, and a data 

type, that may have additional constraints and attributes, that is to 

say, it extends the vocabulary of the UML. A constraint extends the 

semantics of a UML element. A constraint is used to specify conditions 

and propositions that must be fulfilled. The constraint may be written 

in natural language or in a particular constraint language such as OCL 

(Object Constraint Language). The third extension mechanism is the 

tagged value. A tagged value extends the properties of a UML element. 

This allows properties such as attributes in the metamodel and both 

predefined and user-defined tagged values to be attached to a model 

element. 

Although this paper can be read in a self-contained way, it is based 

on the previous formalization of the UML metamodel elements, rela

tionships and diagrams [9, 10]. This research aims at obtaining a whole 

proposal to support the UML extension mechanisms by means of an alge

braic specification, which is in accordance with the four-Iayer metamod

eling architecture on which the UML definition is based [17]. Therefore, 

the semantic framework provided in this paper faces up to the unpre

dictable and changeable nature of the UML, without limiting its ability 

to adapt the UML to the needs of a concrete domain. 

In this paper, we focus on one of the UML diagrams, the Class Di

agram (probably the kind of UML diagrams most widely used among 

software practitioners) to illustrate the approach, but this is applica

ble to any other UML diagram or model. We consider the UML Class 

IThe Object Management Group (OMG) was founded in 1989 by computer companies and 

was formed to create a component-based software marketplace by introducing of standardised 

object software. 
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Diagram within the whole UML notation, in a homogeneous and mod

ular way, whieh makes proving UML inter-model properties possible, in 

addition to those properties related to just one model. 

The rest of the paper is organized as follows: section 2 discusses some 

issues that provide the motivation for our framework . Section 3 intro

duces the main properties of Maude and shows examples that are used to 

present our proposal in the following section, section 4, whieh describes 

a procedure to support the extensibility mechanisms by means of both 

equational and rewriting logie computation. Finally, section 5 presents 

some concluding remarks, lessons learned and an outline of the work to 

be done in the future. 

2. MOTIVATION 

The UML notation has received a great deal of criticism since its ap

pearance (some ofwhieh have been recognized by its authors), due to the 

absence of a formal definition. Many problems (ambiguity, inconsistency 

and incompleteness) have been identified in its semanties [1, 7, 24]. The 

UML statie semanties is described by a semi-formal constraint language, 

the object constraint language (OCL) and the UML dynamie semanties 

is expressed in informal English. The formalization of a graphie nota

tion can help to identify and remove these problems and also allows us to 

rigorously verify the system models constructed by that notation. Thus, 

the important goal is to combine the intuitive appeal of visual notations 

with the precision of formal specification languages. 

Concerning extensibility, each extension mechanism implementation 

could show different semanties, resulting in different or ambiguous inter

pretations. In this matter, formal methods (FM) can also play an im

portant role. The formalization of these mechanisms provides a unique 

interpretation and helps to identify and remove any ambiguity. This 

problem was formerly investigated by the authors, putting forward a set 

of extension mechanisms in this case for the object-oriented specification 

language OASIS [23] for whieh an OBJ3 formalization was proposed [25]. 

Formal languages based on logie, such as Z or VDM, permit us to 

suitably describe the structure of a system. On the other hand, formal 

languages based on process algebras, such as CSP or LOTOS, allow us to 

appropriately represent behavior of a system. However, these languages 

do not currently include the ability to directly handle extensibility mech

anisms or specify metaprogramming applications necessary to formalize 

the extension of the UML metamodel. 
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The formal language chosen to implement our proposal is Maude2 , 

a mathematically well-founded language, which is based on equational 

[14] and rewriting [21] logic and in addition is executable. Maude is 

an extension of OBJ3 with a far greater performance. Maude reaches 

an agreement with respect to the structure and the behavior of a sys

tem and, unlike other formal specification languages, offers an excellent 

framework to cope with changes in the UML metamodel at modeling 

time. The rewriting logic reflective framework can be exploited to sup

port the UML metamodel evolution in a natural way. 

Recently, the formalization of UML has been drawing increasingly con

siderable attention from many researchers. The effort of research groups 

has evolved from traditional graphical notations towards the UML no

tation. In this sense, one of the most relevant research groups is the 

pUML3 group. Research directly related to this paper, but using the 

formallanguage Z, has been reported by this group [8, 11]. The primary 

goal of the p UML group is to define precise semantics for the UML nota

tion and develop mechanisms that allow developers to rigorously analyze 

the UML models. One of the key differences between our work and the 

work on formalizing UML in Z by this group is, besides the reflection fea

ture, that Maude specifications are directly executable, thus providing 

rapid prototyping. 

Although there is some research effort directed towards formalizing 

particular extension mechanisms [2], none of them have addressed the 

extensibility of the UML within aglobai framework, as this paper does. 

The most innovative aspects in the UML formalizing approach presented 

in this paper are, in our opinion, firstly the fact of formalizing the UML 

metamodel evolution, and secondly its inclusion into the same formal 

framework as the other three UML architecture layers, thus providing 

a unique modular algebraic specification. Moreover, inasmuch as the 

UML is expected to undergo substantial changes in its semantics in the 

forthcoming years (three vers ions have emerged in the last four years), 

extensibility may playa pivotal role in this endeavor. Our formalizing 

process is holistic (the whole formal model provides integrated support 

for most of the UML diagrams ) and seamless (you can navigate from the 

dynamic semantic aspects at the UML object layer towards the model, 

metamodel and metamodel evolution ones, that is to say, along the UML 

four-layer metamodeling architecture). The holistic approach is pursued 

2Maude interpreter has been available since January 1999 and it is a more powerfullanguage 

than OBJ3. Currently, Maude is freeware and runs under Linux. 

3The pUML group is made up of international researchers and practitioners who are interested 

in providing a precise and well-defined semantics for UML. 



Formally Modeling UML and its Evolution 187 

for unification purposes, that is to say, this integrated formal framework 

permits the user to detect inconsistencies among different views modeled 

by a UML user. For example, a UML collaboration diagram is equivalent 

to a UML sequence diagram, except that the former focuses on the rela

tionship among objects, while the latter emphasizes the time sequence, 

both in an interaction. The Maude executable specification generated 

can also be considered as a formal UML virtual machine, therefore pro

viding the possibility for adeveloper to manipulate and animate the 

UML models. 

3. DEALING WITH RIGOR AND 

METAPROGRAMMING ASPECTS IN 

MAUDE 

In order to help us understand the next section, some basic not ions 

regarding the formalism used are presented. Maude evolved from OBJ3, 

so we will briefly describe some of the differences between the underlying 

formalism in OBJ3 and Maude. The Maude features will be illustrated 

with some of the definitions and the algebraic specifications used later 

in Section 4. A detailed description of order-sorted equationallogic [14] 

and rewriting logic [21] can also be found in any book related to the 

topic (e.g. [13]). 

Extensibility by reflection (the ability of a logic to be interpreted 

in itself) is exploited in Maude so that the basic functionalities of the 

language Core Maude, are extended by reflection to Full Maude. Next, 

both aspects of the language will be presented. 

3.1. BASIC ASPECTS: CORE MAUDE 

Maude [4] is a formal language that supports both equa

tional and rewriting logic computation. Maude is an extension of OBJ3 

which is based on equationallogic and provides parameterized program

ming, multiple inheritance, and a Zarge-grain programming technique, 

to support the scalability of the specification and appropriately manage 

the complexity of a system. Maude's equationallogic called membership 

equationaZ logic extends OBJ3's equationallogic by supporting member

ship axioms, a generalization of sort constraints in which a term is as

serted to have a certain sort if a condition is satisfied. Maude's functional 

modules are theories in membership equationallogic. For example, fig

ure 1 shows a functional module, where the abstract syntax of a type in 

UML is described. A type comprises a name, a list of attributes and a 

list of operations. The sort Type, the constructor type and the query op

eration typeAttribute are declared in the functional module TYPE (Jmod 
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stands for functional module, in Maude). This last operation takes one 

argument, an element of sort Type, and yields its list of attributes. The 

sorts TypeName, AttributeList and OperationList are declared, respec

tively, in the modules TypeName, AttributeList and OperationList, which 

are imported by protecting declarations. 

(fmod TYPE is sort Type. 

protecting TYPENAME . *** Importing the module TYPENAME, 

protecting ATTRIBUTELIST . *** the module ATTRlBUTELIST 

protecting OPERATIONLIST . *** and the module OPERATIONLIST 

op type: TypeName AttributeList OperationList -> Type 

op typeAttribute : Type -> AttributeList . 

op typeName : Type -> TypeName . 

var TN : TypeName . var AL : AttributeList . 

var OL : OperationList . 

eq typeAttribute (type (TN, AL, OL)) = AL . 

eq typeName (type (TN, AL, OL)) = TN . 

endfm) 

Figure 1 Algebraic specification of a UML type 

The second kind of module in Maude, system module, is based on 

rewriting logic. For the sake of space, this one is not shown in this 

paper. Core Maude also supports hierarchies of system modules and un

parameterized functional modules by using the importation of modules. 

The functional module META-LEVEL implements the reflection. This 

property of rewriting logic allows us to represent any finitely presented 

rewrite theory R by means of a particular rewriting theory, the univer

sal theory U. Rewriting logic is also a good logical framework in which 

other logics can be represented [20], thus endowing Maude with high 

expressive power. 

3.2. ADVANCED ASPECTS: FULL MAUDE 

The basic functionality of the language, Gore Maude, is extended by 

reflection to Full Maude. Full Maude, which is written in Core Maude, 

is a metaprogramming application that includes object oriented modules 

(system modules with some syntactic sugar so as to allow us to specify 

concurrent object oriented systems), parameterized modules, views and 

module expressions in the OBJ style. 

As an example, an extract of an object-oriented module called P ER

SaN is shown in figure 2. The declaration of a class named Person with 

two attributes called name of sort Qid (quoted identifier) and age of 

sort MachineInt (machine integer) is introduced by the key word dass. 

The message declarations are introduced by the keyword msg (message 



Formally Modeling UML and its Evolution 189 

changingAge) or msgs if multiple messages with the same arity are de

fined. The labeled rewrite rules, which are introduced by the keyword 

rl (rule), specify in a declarative way the behavior associated with the 

messages. For instance, the rule labeled changingAge specifies the be

havior of person objects, which may receive messages to change its age. 

The rew (rewrite) command is used to rewrite a term representing a 

configuration of a concurrent object system: when a person called John 

with object identifier (01) 1 receives a message changingAge (1, 15), 
value 15 becomes its attribute age. The subsort relationship MachineInt 

< Oid is introduced, indicating that machine integers can be viewed 

as object identifiers. All object-oriented modules implicitly include the 

CONFIGURATIONpredefined functional module which defines the ba

sic concepts of concurrent object systems. Some of these definitions are 

left unspecified such as the sort Oid, completed and used in the module 

Person. Other examples can be found in Maude's documentation [4]. 

(omod PERSON is 

protecting QID . 

protecting MACHINE-INT . 

subsort Machinelnt < Oid . 

dass Person I name : Qid, age : Machinelnt . 

msg changingAge : Oid MachineInt -> Msg . 

var 01 : Oid. var QI : Qid. vars MI, MI2 : Machinelnt . 

rl [changingAge] : changingAge (01, M12) < 01 : Person I 
name: QI, age : MI > => < 01 : Person I name: QI, age : MI2 > . 

endom) 

(rew< 1 : Person I name: 'John, age : 14 > 

< 2 : Person I name: 'Peter, age : 24 > changingAge (1, 15) .) 

Result Configuration : < 1 : Person lage : 15 , name: 'John > 

< 2 : Person lage : 24 , name : 'Peter > 

Figure 2 Specification in Full Maude of an object-oriented module named PERSON 

As seen above, Maude like other formal languages is helpful in spec

ifying both the structure and the behavior of a system. However, the 

outstanding and distinguishing feature of Maude, on which our proposal 

is based, is refiection. This characteristic has been efficiently imple

mented in Maude through its META-LEVEL module, and has a great 

practical interest in Software Engineering, thus providing the possibility 

of building both specifications of concrete models and CASE tools sup

porting notation evolution, with rigor and homogeneity based on asolid 

scientific foundation. 
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3.3. TAKING ADVANTAGE OF THE 

REFLECTIVE PROPERTIES 

Rewriting logic is reflective [5]. This means that there is a rewrite 

theory called universal theory U that can represent any rewrite theory 

R (including U itself) as a term R, any terms t, t1 in Rasterms t and 

t1, and any pair (R, t) as a term (R, t), in such a way that the following 

equivalence is satisfied: 

R r t -t t1 {:} U r (R, t) -t (R, t1) 

Subsequently, an extract of the signature of U is presented in which 

terms and functional modules are reified as elements of the data types 

Term and FModule. Figure 3 shows the operators used to represent a 

term of any sort and a functional module. 

fmod META-LEVEL is sort FModule . 

subsort Qid < Term. *** to represent variables 

subsort Term < TermList . 

op { _ } _: Qid Qid -> Term. *** constants by pairs [constant, sort] 

op _ [ _] : Qid TermList -> Term. *** operators (operator, subterms) 

op _,_: TermList TermList -> TermList [assoe] . *** list of terms 

op error* : -> Term . 
op fmod-is _______ endfm : Qid ImportList SortDecl 

SubsortDeclSet OpDeclSet VarDeclSet MembAxSet EquationSet -> FModule . 

Figure 3 Operators of the universal theory U to represent terms 

The declaration of subsorting Qid < Term is used for representing 
variables as quoted identifiers. The first operator, { _ } _, is used to 

represent constants by pairs (constant and sort of the constant), both 

in quoted form. The next operator, _ [ _ ], denotes the recursive con

struction of term out of subterms. The first argument represents the 

top operator in quoted form, and the second argument represents the 

list of subterms. Finally, the operator term concatenation is declared. 

On the other hand, a functional module is metarepresented by means of 

eight elements: a name (sort Qid), a list of imported modules (sort Im

portList), a sort declaration (sort SortDecl), a set of subsort declarations 

(sort SubsortDeclSet), a set of operator declarations (sort OpDeclSet), 

a set of variable declarations (sort VarDeclSet), a set of membership 

axioms (MembAxSet), and a set of equations (EquationSet). The de

scription of these sorts is omitted here, but it can be found in Maude's 

documentation [4]. 
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In order to illustrate the meta-representation of a term, the module 

TYPE defined in figure 1 is used. A term of sort TypeName and its 

meta-representation (figure 4) are shown as an example. 

tn = typeName (type ( 'Person, attribute ('Male, 'Bool) attribute 

('Age, 'Integer,), operation ('Ineome, parameter ('date, 'Date), 'Integer) ) ) 

tn= 'typeName [ 'type [{ "Person} 'Qid , ' __ [ 

'attribute [ { "Male} 'Qid , { "Bool } 'Qid] , 

'attribute [ { "Age } 'Qid , {" Integer } 'Qid]] , 

'operation [ { "Ineome} 'Qid, 'parameter [{ "date} 'Qid, { "Date} 'Qid], { 

"Integer} 'Qidllll 

Figure 4 Term of sort TypeName and metaterm of sort Term 

Maude draws efficiently on reflection which can be exploited in meta

programming applications such as the present work proposes. In such 

applications rewrites and reductions at both high level (universal theory 

U) and low level (rewrite theory R) may be necessary. Although all 

rewrites and reductions may be done at high level, we should be aware 

that a single step of rewriting at low level involves many rewriting steps 

at high leveL Notice that the terms and the modules including equations, 

operations and constant symbols at the low level are metarepresented at 

the high level (see figure 4). The reduction of a term as the one given in 

said figure (tn) at the high level (tn), leads to describing new equations, 

operations and constant symbols in the universal theory U and a number 

of reductions at the high leveL 

In order to increase the efficiency of metalevel computations, descent 

functions such as meta-reduce, meta-apply and meta-rewrite are defined 

in a metalevel theory M, which is an extension of the universal theory 

U. As an example, a metareduction by using the function meta-reduce 

is shown: 

Maude> (red meta-reduee (TYPE, up(TYPE, tn)) .) 

Result Term : { "Person } 'Qid 

where the function meta-reduce takes two arguments: the first argument 

is the meta-representation of the module TYPE obtained by means of 

the constant called TYPE declared in the importation of the module 

META-LEVEL[TYPEj (high level). The second argument is the meta

representation of a term tn of sort TypeName (figure 4) included in the 

module TYPE (low level). The meta-representation of the term tn in 

the module TYPE is obtained by means of the up command. 



192 

4. TOWARDS A HOLISTIC 

FORMALIZATION OF THE UML 

Is it actually feasible to define the semantics for all of the UML no

tation and its architecture? According to the pUML group, the answer 

is unknown until semantics for all UML is constructed [19]. In addition, 

we must take into consideration the existing problems, referred to in 

section 2, in relation with the current version of the notation. In spite 

of this situation, many efforts are being made in the direction of offering 

formal models for that, as mentioned in said section. 

We know that trying to formalize a (complex) notation in these cir

cumstances is not an easy task, but, in particular, the formal framework 

that we report in this paper, can cope with the current semantics of 

UML, and it also serves as a basis for its future versions. This is due to 

the fact that this framework includes the metametamodel of UMLj but 

there is a limitation: we assume that the UML four-layer metamodeling 

architecture (explained below) is conserved. Only in the case that its 

architecture changes, the formal framework should change too. 

Subsequently, three approaches to formalize a graphical notation like 

UML are presented. One of these approaches is chosen and tailored 

to the UML four-layer metamodeling architecture. Finally, the formal 

specification supporting our selection is carried out. 

4.1. CHOOSING A FEASIBLE 

FORMALIZING APPROACH 

Extension mechanisms provide additional information included in the 

UML metamodel, that is, metainformation. If formalizing a graphical 

notation is intended, representing both the metainformation and its evo

lution should be taken into account. According to the metainformation 

that can be represented, three approaches are distinguished: 

1 Modeling strategy. The formalization is carried out by means of 

a translational strategy, that is to say, by translating each UML 

modeling element to some formalism element. 

2 Metamodeling strategy. The formalism is used to specify the lan

guage metamodel. 

3 Meta-metamodeling strategy. The formalism is used to specify the 

language metamodel and its evolution. 

In the first approach a correspondence between each modeling ele

ment in the graphical notation and some particular expressiveness, fea

ture or construct in the formal language is established [3, 12]. Each 
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UML diagram corresponds to a formal specification in the formalism. 

For example, if an algebraie language such as Larch, OBJ3 or Maude 

is used, an attribute or an operation of a dass can be denoted as an 

operation symbol in the formal language. Therefore, an algebraie spec

ification corresponds to a domain model (figure 2 shows an example of 

this approach). 

In this approach, a change in the model leads to a change in the 

formal specification, following a manual or automatie procedure based 

on the correspondence previously obtained. If a new modeling element 

such as a stereotype is induded in the graphieal notation, some formal 

language mechanisms are used to describe both its syntax and semanties, 

so enriching the formal-informal correspondence. In order to obtain this 

goal, analysts must search for suitable features in the formal language 

that best fit the new element and then modify the formal specification 

[2]. Therefore, the evolution of the metamodel is not formally supported 

in the initial specification. 

In the second approach, the language metamodel is represented by a 

formal specification [8, 9, 15]. In an algebraic framework such as Maude, 

the graphie al notation syntax is described by what we call the syntactic 

specijications4 , incorporating the statie semanties by means of equations 

or axioms in the syntactie specifications (figure 1). The graphieal nota

tion dynamie semanties (for example, specifications representing objects) 

are expressed by semantic specijications5 whieh use the syntactie spec

ifications previously obtained so as to maintain the consistency in the 

system state. In a similar way, the same role is played by the concepts 

of descriptor and instance element used by the pUML group [19]. 

As an example, the metamodeling strategy applied to the UML Class 

Diagrams is shown in figure 5. A partieular problem model is initially 

depieted by a UML dass diagram from the functional requirements pre

viously elicited. Then, this model is transformed and represented in an 

alternative and equivalent way by means of a formal term of the quotient 

term algebra of the syntactie theory signatures, that is to say, the inter

pretation of the signature. In turn, the instance of a model corresponds 

to a formal term of the quotient term algebra of the semanties theory 

signatures that can also be represented by a term or by the elements of 

the problem. Terml ... Termn, Termm are formal terms oft he (syntactie 

or semantie theories) corresponding term algebras or formal interpreta-

4 A syntactic theory is a module that represents the syntax and static semantics of the UML 
model elements. 

5 A semantic theory is a module that represents the dynamic semantics of the UML model 
elements 
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tion models; ErrorMessage and canonicalTerml ... canonicalTermm are 

formal terms of the quotient term algebra, which is the minimal formal 

interpretation model. For instance, in the top part of figure 5, a num

ber of different incorrect UML dass diagrams are firstly trans la ted to 

the same number of, corresponding, formal terms of the term algebra. 

Then, as all of them are erroneous, they are converted (or reduced, in 

algebraic terminology) to a unique, minimal term with the same seman

tics, in this case the term ErrorMessage from the quotient term algebra. 

In the same way, as seen in the bottom part of figure 5, objects and 

relationships among objects can also be dealt with. 

However, in the second approach, if a new graphical notation mod

eling element, such as a stereotype, is induded in the UML, as seen in 

the previous approach, the analysts must search for some formal lan

guage mechanisms to express its syntax and semantics and then modify 

the initial formal specification. Therefore, the evolution of the UML 

metamodel is not formally supported either. 

THE UML METAMODEL PROBlEM MODELS 

UML Clas. Diagram algebra CIass Di"8J'aID algebra Di"8J'aID 
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r- ---·.i I I (g::g) } 
: Reduoed di . of th represcn!8l1on 
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on 

i - - - - - -- -- - ;M----__ 1 

I SEMAN11C among objcct. retauonsrups among obJ Graphical 

i THEORIES -.2. ,..........., rcpresentation : :t 1 I .1 Al' 1 I oftheobjectS 

UML _dyn_ wn_ ic..... ennl Termn Tennl Tennm Fonnal . 
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T 

* Graphical * 1 I 1 I 

Re<luced objects of the of the obJect5 

UML objects algebra 

Figure 5 Formalizing the UML metamodel 
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The third approach deals with the issue of evolution in its two di

mensions (modeling and metamodeling). Two levels are proposed to 

formalize a modeling language. The lower level formally specifies the 

graphical notation syntax and semantics, that is to say, its metamodel. 

This level supports the evolution of the model, in such a way that a dass, 

an object or whatever modeling element may be induded in the system 

represented by a term (in the same way as the second approach). The 

higher level formally supports the evolution of the language metamodel 

and enables us to establish properties that must be satisfied by this 

metamodel. In this level the modules defined to represent the language 

metamodel are reified as formal terms in such a way that elements such 

as a dass, a relationship or a constraint may be induded in the meta

model, therefore extending the notation. This is the approach chosen in 

our research. 

4.2. SEAMLESS FORMALIZING THE UML 

FOUR-LAYER METAMODEL 

ARCHITECTURE 

UML currently provides lightweight extensibility by means of stereo

types, constraints and tagged values. Therefore, a formal language en

dowed with enough expressiveness to specify new modeling mechanisms 

at specifying time is required. The key idea in our approach focuses on 

using reflection to represent the evolution of the metamodel. Although 

any formal language endowed with reflection could be used, the Maude 

language shall be employed for the reasons mentioned in previous sec

tions. Table 1 shows the correspondence between the UML conceptual 

framework and the formal framework that we propose. 

Table 1 Representing in Maude the four-layer metamodeling architecture of UML 

The UML layer 

Meta-metamodel 

Metamodel 

Model 

User objects 

Maude formallayer 

The module META-LEVEL 

Syntactic and semantic specifications 

Terms (of syntactic specifications) 

Terms (of semantic specifications) 

Example 

MetaCIass, MetaOperation 

Class, Operation 

Person, Name, Age 

<John, 14>, <Joy, 34> 

The UML user objects layer allows a particular domain to be de

scribed. This layer lies on terms of the semantic specifications. For 
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instance, specific objects such as John and his age, 14, can be repre

sented in this layer. 

The UML modellayer permits diagrams to be defined in terms of the 

concepts represented in the UML metamodel. Problem domain concepts 

such as person, name and age can be formally represented by terms of 

syntactic specifications. 

The UML metamodel layer aims at obtaining the conceptual frame

work to specify domain models and its evolution, that is to say, the 

syntactic and semantic rules on how to construct correct UML dass dia

grams belong to the metamodel layer (as an example you can see figure 

1). On the other hand, the application of these UML dass diagrams to 

describe concrete systems (for instance the subterm representing a type 

name of a domain model shown in figure 4) belongs to the modellayer. 

Transformations of diagrams can be supported by means of equations. 

Thus, semantically equivalent diagrams, which are simpler than the orig

inal ones, can be obtained. This layer is represented by the syntactic and 

semantic specifications. Concepts such as class, attribute, association, 

operation are formalized in the syntactic specifications and link, object 

and value are formalized in the semantic specifications. The UML meta

model also contains rules, constraints and model usage aspects which 

can be expressed in Maude. 

Finally, the UML metametamodeling layer (the UML highest abstrac

tion level) presents the language for defining the UML metamodel and its 

evolution. An extension of the module META-LEVEL covers the meta

metamodeling layer. This allows the UML to be customized and adapted 

to the analyst's modeling requirements or to the other methodologies de

velopment process [6] and to develop UML evolving CASE tools. The 

formalization of this layer also enables us to establish properties that 

must be satisfied by the UML metamodel. Therefore, the formalizing 

approach presented here complies with the UML meta-metamodellayer 

framework 

4.3. FORMALIZATION USED 

As a first step towards applying the metamodel extension process, the 

formalization of a subset of UML will be shown. The abstract syntax of 

an attribute in UML is described. An attribute is represented by means 

of a name and a type. The sort Attribute, the constructor attribute and 

the query operations typeName and attributeName are defined in the 

functional module ATTRIBUTE (figure 6, belonging to the syntactic 

specification layer in table 1). These operations take one argument, an 

attribute, and yield its name and its type, respectively. 
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(fmod ATTRlBUTE is sort Attribute. 

protecting ATTRIBUTENAME . 

protecting TYPENAME . 

op attribute: AttributeName TypeName -> Attribute. 

op typeName : Attribute -> TypeName . 

op attributeName: Attribute -> AttributeName . 

var NA : AttributeName . var NT : TypeName . 

eq typeName (attribute (NA, NT» = NT . 

eq attributeName (attribute (NA, NT» = NA . 

endfm) 

Figure 6 Algebraic specification of a UML attribute 

The next step is to define an extension of the module META-LEVEL 

to deal with the meta-metamodel UML layer (see table 1). The op

erations addSorts, addOperation, replaceOperation, addVariable, addE

quation and removeEquation are defined to allow the modification of 

functional modules (figure 7). 

A functional module is metarepresented by terms of sort FModule 

(figure 3), included in the predefined META-LEVEL module. With the 

module declaration protecting META-LEVEL[ATTRIBUTE}, the con

stant ATTRIBUTE of sort Module (supersort of Fmodule to metarep

resent system modules) is declared, and a new equation making the 

constant ATT RIB UT E equal to the metalevel representation of the user

defined module with name ATTRIBUTEpreviously declared is included 

(figure 6). This constant will be used to extend the meta-representation 

of the module ATTRIBUTE. 

Note that in this section we are focusing on the technical aspects of 

the underlying formal models. The practical use of this research assumes 

that a software tool is available, to hide these ugly equations, operations 

and constants symbols from their users. A prototype of this tool is al

ready working [10], which takes UML diagrams edited by Rational Rose 

(in XMI format) and pro duces their equivalent formal representation, 

and an accompanying process model has also been defined [22]. 

4.4. EXAMPLE OF CHANGEABILITY 

EXTENSION 

In order to gain insight into our approach, an example illustrating 

how to extend the UML Class Diagrams is presented. In particular, a 

new attribute, named changeability, is included in the UML metamodel 

metaclass Attribute. This property specifies whether the value of an 

attribute may be modified after the object has been created. With this 
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(fmod META-LEVEL-EXTENSION is protecting META-LEVEL(ATTRIBUTE] . 

*** Add a set of sorts 
op addSorts : FModule QidSet -> FModule . 

*** Add an operation 
op addOperation : FModule Qid QidList Qid AttrSet -> FModule . 

*** Replace an operation of a module identified by its name (second argument) 

op replaceOperation : FModule Qid Qid QidList Qid AttrSet -> FModule . 

*** Replace an operation from a set of operation declarations 

op repOper : OpDeciSet Qid Qid QidList Qid AttrSet -> OpDeciSet . 

*** Add a variable declaration 

op addVariable : FModule Qid Qid -> FModule . 

*** Add an equation. 
op addEquation : FModule Term Term -> FModule . 

*** Remove an equation 
op removeEquation : FModule Equation -> FModule . 

*** Remove an equation from a set of equations 
op remEquation : EquationSet Equation -> EquationSet . 

var QS : QidSet. var QSl : QidSet. var QI : Qid. var QI1 : Qid . 

var QI2 : Qid. var QI3 : Qid. var QI4 : Qid. var OpName : Qid . 

var IL : ImportList . var SD : SortDecl. var SSDS : SubsortDeciSet . 

var ODS : OpDeciSet. var VDS : VarDeciSet. var MAS : MembAxSet . 

var EqS : EquationSet. var EQ : Equation. var EQl : Equation . 

var TEl: Term. var TE2 : Term var AS : AttrSet. var ASI : AttrSet . 

var QL : QidList. var QLl : QidList 

eq addSorts (fmod QI is IL sorts (QS) . SSDS ODS VDS MAS EqS endfm, QSl) 

= fmod QI is IL sorts(QS ; QSl) . SSDS ODS VDS MAS EqS endfm. 

eq addOperation (fmod QI is IL SD SSDS ODS VDS MAS EqS endfm, 

QI1, QL, QI2, AS) 

= fmod QI is IL SD SSDS ODS op QI1 : QL -> QI2 [AS] .VDS MAS EqS endfm. 

eq replaceOperation (fmod QI is IL SD SSDS ODS VDS MAS EqS endfm, 

OpName, QI1, QL, Q12, AS) = fmod QI is IL SD SSDS 

repOper (ODS ,OpName, QI1, QL, Q12, AS) VDS MAS EqS endfm. 

eq repOper (op QI3 : QLl -> QI4 [ASl] . ODS, OpName, QI1, QL, Q12, AS) 

= if QI3 == OpName then op QI1 : QL -> QI2 [AS] .ODS 

else op QI3 : QLl -> QI4 [ASl] . repOper (ODS, OpName, QI1, QL, Q12, AS) fi . 

eq addVariable (fmod QI is IL SD SSDS ODS VDS MAS EqS endfm, QI1, Q12) 

= fmod QI is IL SD SSDS ODS VDS var QI1 : QI2 . MAS EqS endfm. 

eq addEquation (fmod QI is IL SD SSDS ODS VDS MAS EqS endfm, TEl, TE2) = 

fmod QI is IL SD SSDS ODS VDS MAS eq TEl = TE2 . EqS endfm. 

eq removeEquation (fmod QI is IL SD SSDS ODS VDS MAS EqS endfm, EQ) 

= fmod QI is IL SD SSDS ODS VDS MAS remEquation (EqS, EQ) endfm. 

eq remEquation (EQ EqS, EQl) = if EQ == EQl then EqS 

else EQ remEquation (EqS, EQl) fi . 

endfm) 

Figure 7 Extension of the module META-LEVEL 
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aim in mind, the module ATTRIBUTE is modified (figure 8) by means 

of the operations defined above. 

moduleAttribute == addEquation (addEquation ( removeEquation ( removeEquation ( 

addVariable (replaceOperation (addSorts (addOperation ( addOperation 

(ATTRIBUTE, 'changeable, nil, 'Changeability, none) 

,'frozen, nil, 'Changeability, none) ,'Changeability ) 

,'attribute, 'attribute ,'AttributeName 'TypeName 'Changeability, 'Attribute, none) 

,'A, 'Changeability) ,eq 'typeName [ 'attribute [ 'NA, 'NT]] == 'NT .) 

,eq 'attributeName [ 'attribute [ 'NA, 'NT ]] == 'NA .) 

,'typeName [ 'attribute [ 'NA, 'NT, 'A ]],'NT) 

,'attributeName [ 'attribute [ 'NA, 'NT, 'A ]], 'NA) . 

Figure 8 Modification of the module ATTRIBUTE 

A new sort, Changeability, representing the new attribute of the meta

c1ass Attribute is inc1uded in the sort dec1aration. The domain of the 

operation attribute is modified with a new sort, Changeability, what leads 

to the modification of the operations typeName and attributeName equa

tions. Now, we introduce the range of values for Changeability that are 

represented, respectively, by the constant symbols Jrozen (the attribute 

value may not be altered after the object is instantiated and its values 

initialized) and changeable (no restriction on modification is imposed). 

These changes are carried out by means of the reduction of the term 

moduleAttribute which yields the meta-representation of the extension 

of the module A TT RIB UT E. The resultant module is shown in figure 9. 

(fmod ATTRIBUTE is sorts Attribute Changeability . 

protecting ATTRIBUTENAME . 

protecting TYPENAME . 

op attribute: AttributeName TypeName Changeability -> Attribute. 

op frozen : -> Changeability . 

op changeable : -> Change ability . 

op typeName : Attribute -> TypeName . 

op attributeName: Attribute -> AttributeName . 

var NA : AttributeName . var NT : TypeName . var A : Changeability . 

eq typeName (attribute (NA, NT, A)) == NT . 

eq attributeName (attribute (NA, NT, A)) == NA . 

endfm) 

Figure 9 The module ATTRIBUTE (obtained from the reduction of the term mod

uleAttribute in figure 8) 

The module SYSTEMOBJECTS, which belongs to the semantic spec

ifications in table 1, specifies the population of objects existing in the 

system, and inc1udes, among others, operations to add and remove ob

jects, and to modify the values of the object attributes. Therefore, the 
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*** constant representing: modifying an attribute labeled as frozen is not permitted 

op errorFrozenAttribute : -> ObjectList . 

*** modify the value of an attribute 
op changeAttributeValue : TypeList ObjectList Oid AttributeName 

Value -> ObjectList 

*** modify the value (Value) associated to an attribute (AttributeName) of an object 

*** (Oid) from a list of objects (ObjectList) 
op changeObjectList : AttributeList ObjectList Oid AttributeName 

Value -> ObjectList . 
*** modify the value (Value) of an attribute (AttributeName) from the list of values 
*** (ValueList) associated to the attributes of an object (AttributeList) 

op changeValueList : AttributeList AttributeName ValueList Value -> ValueList . 

*** check if an attribute from a list of attributes is changeable 
op isAttribChangeable : AttributeList AttributeName -> Bool . 
var 01 : Oid. var on : Oid. var TN : TypeName . var NEVL : NEValueList . 
var VL : ValueList. var TL : TypeList . var AN : AttributeName . 

var ANI : AttributeName . var V : Value. var VI : Value . 
var OL : ObjectList. var ATL : AttributeList . var C : Changeability . 

eq changeAttributeValue (TL, OL, 01, AN, V) = 
ifisAttribChangeable (typeAttribRName (objectTypeNameROid (01, OL), TL), AN) 
then changeObjectList (typeAttribRName (objectTypeNameROid (01, OL), TL), 

OL, 01, AN, V) 

else errorFrozenAttribute fi . 
ceq changeObjectList (ATL,object ( 01 , TN , NEVL) OL, Oll, AN, V) = 
object (01, TN, changeValueList (ATL, AN, NEVL, V)) OL if 01 == on. 

ceq changeObjectList (ATL, object (01, TN, NEVL) OL, on, AN, V) = 

object (01, TN, NEVL) changeObjectList (ATL, OL, on, AN, V) if 01 =/= on . 
ceq changeValueList (attribute (ANI, TN, C) ATL, AN, V VL, VI) = 

VI VL if ANI == AN . 
ceq changeValueList (attribute (ANI, TN, C) ATL, AN, V VL, VI) = 

V changeValueList (ATL, AN, VL, VI) if ANI =/= AN . 
ceq isAttribChangeable (attribute (ANI, TN, C) ATL, AN) = true 

if ANI == AN and C == changeable . 
ceq isAttribChangeable (attribute (ANI, TN, C) ATL, AN) = false 

if ANI == AN and C == frozen . 
ceq isAttribChangeable (attribute (ANI, TN, C) ATL, AN) = 

isAttribChangeable (ATL, AN) if ANI =/= AN . 

Figure 10 Definition of errorFrozenAttribute and changeAttributeValue operations 
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dynamic semantics of the new feature Changeability should be described 

in the module SYSTEMOBJECTS. To attain this goal, the operation 

changeAttribute Value and the constant operation errorFrozenAttribute 

are declared in the module SYSTEMOBJECTS (figure 10). Likewise, 

new equations are included to prevent the modification of an attribute 

value labeled as frozen. The equations declared for the query operations 

typeAttribRName and objectTypeNameROid are not shown. The oper

ation typeAttribRName yields the attributes of a type by using a type 

name, and the operation objectTypeNameROid yields the type name of 

an object from an object identifier. For the sake of space, the mod

ification of the module SYSTEMOBJECTS from the extension of the 

module META-LEVEL defined in figure 7 is not given. This new mod

ule is obtained in the same way as the modified module ATTRIBUTE 

has been (see figure 8). 

4.5. VERIFICATION OF THE EXTENSION 

To make the practical interest of metamodel extension clear, we will 

show how to detect the violation of a UML statement (the meaning of 

the label Jrozen) concerning the new property introduced, changeability. 

A metareduction by using the meta-representation of the terms tl and 

01 is shown in figure 11. 

tl = type ( 'Company, attribute ('SA, 'Bool, frozen) 

attribute ('NumberEmployee, 'Integer, changeable),nonOperation) 

type ( 'Bank, attribute ('Internet, 'Bool, changeable), nonOperation ) 

type ( 'Person, attribute ('Male, 'Bool, frozen) attribute (' Age, 'Integer, 

changeable), operation ('Ineome, parameter (,date, 'Date) ,'Integer». 

01 = newObject (object ( 8, 'Person, (true 20», tl, 

newObject (object ( 7, 'Person, (true 22», tl, 

newObject (object ( 6, 'Bank, (false», tl, 

newObject (object ( 5, 'Bank, (false», tl, 

newObject (object ( 4, 'Company, (true 260», tl, 

newObject (object ( 3, 'Person, (true 26», tl, 

newObject (object ( 2, 'Company, (false 1000», tl, 

newObject (object ( 1, 'Person, (false 25», tl, nonObject»»»» . 

(red meta-reduce (moduleSystemObjects, 

changeAttributeValue(tl,ol,2,' SA,true».) 

Result Term: { 'errorFrozenAttribute } 'ObjectList 

Figure 11 Term representing the addition of a set of objects. Meta-reduction of a 

term 

The term tl of sort typeList represents a list of types, Company, Bank, 

and Person. TypeList is a sort declared by importing the parameterized 

module LISTinstantiated with the module TYPE. This module specifies 
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the abstract syntax and semantics of a type in UML (a type comprises a 

name, a list of attributes and a list of operations). For example, the type 

Person has two attributes, male and age, and one operation, income. 

The term 01 of sort ObjectList represents the inclusion of eight ob

jects in the modeled system. For instance, the person represented by 

the object with object identifier 8 is male and his age is 20. The 

expression changeAttributeValue(tl, 01, 2,' BA, true) denotes the meta

representation of the term changeAttribute Value (tl, 01, 2, 'BA, true). 

The reduction of this term, which tries to change the value of the at

tribute SA belonging to the object with object identifier 2, violates the 

constraint imposed on the equation declared in figure 10, that is to say, 

an attribute labeled frozen (like the attribute SA) can not be modi

fied. Therefore, the metaterm { 'errorFrozenAttribute } 'ObjectList is 

obtained as a result of the metareduction. 
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To conclude this section, the metamodeling relationships for the UML 

Class Diagrams case, supported by functional modules, are graphically 

shown in figure 12. The metamodel evolution is specified by an extension 

of the module META-LEVEL that implements the universal theory U. 

The terms and the modules from the lower level (representing elements 

of the UML metamodel) are reified as Maude terms. Likewise, descent 

functions are used to efliciently compute reductions at the metamodel 

level. As a result, both extension of the metamodel and of the model 

are supported in a seamless fashion. In the same way, the lowest layer in 

the UML four-Iayer metamodeling architecture (the User Object UML 

layer) can also be integrated into the metametamodel formalization. In 

this case, the evolution theories are semantic specifications instead of 

syntactic specifications (see figure 5). For clarity, the internal relation

ships between the semantic specifications and the metametamodel level 

are not shown in detail in figure 12. 

5. CONCLUSIONS AND FURTHER WORK 

This paper reports research leading to a formal framework to sup

port the UML notation extension mechanisms by means of an algebraic 

formalization. The refiective formal language Maude has been chosen 

to firstly represent both the graphical notation model and metamodel 

and secondly, the meta-metamodel by reifying the theories previously 

obtained. Formalizing the meta-metamodel simplifies the modeling of 

the UML extensibility. 

Due to the size and complexity of the UML and taking into account 

the lack of a precise semantic definition, its formalization is a diflicult 

task. For this reason, the existence of a formal framework, as the one 

presented in this paper, may be useful in adding new elements and im

proving the present definitions in new versions. The final formal models 

obtained rigorously support the unpredictable and changing nature of 

the UML, but the capacity of the notation to tailor the UML to needs 

for a specific application domain of interest is preserved. 

Since most practitioners apply only a subset of elements of the model

ing languages, the current trend in Software Engineering is to use simpler 

and easier languages and methods [18]. This research can also be tai

lored to CML (Core Modeling Language) which consists in a subset of 

the UML, including the extension mechanisms. 

As Maude is executable, the final set of models can also be used as 

a UML virtual machine, at the specification level, which is a valuable 

characteristic for practitioners. Maude has lived up to the author's ex-
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pectations regarding the advisability of using its reflection feature in 

metaprogramming applications. 

This research has also shown that migrating from OBJ3 to Maude is 

quite easy. Former experience with OBJ3 greatly helped us to under

stand the concepts included in Maude and its application to Software 

Engineering problems. In particular, as Full Maude supports parame

terised modules, views, and module express ions in the OBJ style, our 

previous research related to formalizing UML Statechart Diagrams and 

Class Diagrams can readily be translated into Maude in order to imme

diately apply the results of this paper. 

The incorporation of a user interface that hides the formal aspects of 

the language and a defined model process, will result in a powerful tool to 

edit, validate, verify and execute functional system requirements. In this 

sense, we have proposed, in conjunction with other researchers, a process 

model based on a combination of rapid and evolutionary prototyping 

[22]. In addition we are now in the process of integrating the formal 

specifications with Rational Rose and other commercial modeling tools 

via a standard XMI interface. A Java prototype of this environment 

that combines Maude and Rose is already working. As a continuation of 

this research, we are currently working on extending the formalization 

to OCL. A preliminary version of this extended formal specification is 

already available. By using parameterized programming and reflection, 

we will integrate the specifications into both the model and metamodel 

layer to permit the user to specify constraints on a particular model and 

to extend the UML metamodel in a homogeneous way. 

Our future research will address providing formal guidelines for the 

evolution of the metamodel. A wide range of possibilities have also 

opened up: exploring the proof of properties about the metamodel such 

as detecting deficiencies or design faults of the metamodel, and support

ing rules that describe its appropriate evolution. 
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