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Formally Speci�ed Monitoring of Temporal Properties�

Moonjoo Kim, Mahesh Viswanathan,

Hanêne Ben-Abdallahy, Sampath Kannan, Insup Lee, and Oleg Sokolskyz

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

Abstract

We describe the Monitoring and Checking (MaC)
framework which provides assurance on the correct-
ness of an execution of a real-time system at run-
time. Monitoring is performed based on a formal
speci�cation of system requirements. MaC bridges
the gap between formal speci�cation, which analyzes
designs rather than implementations, and testing,
which validates implementations but lacks formal-
ity. An important aspect of the framework is a
clear separation between implementation-dependent
description of monitored objects and high-level re-
quirements speci�cation. Another salient feature is
automatic instrumentation of executable code.

The paper presents an overview of the framework,
languages to express monitoring scripts and require-
ments, and a prototype implementation of MaC tar-
geted at systems implemented in Java.

1 Introduction

Real-time systems often arise in the area of em-
bedded and safety-critical applications. Depend-
ability of such systems is the utmost concern to their
developers. Much research in the past two decades
concentrated on methods for analysis and validation
of real-time systems. Important results have been
achieved, in particular, in the area of formal veri�-
cation [4]. Formal methods of system analysis allow
developers to specify their systems using mathemat-
ical formalisms and prove properties of these spec-
i�cations. These formal proofs increase con�dence
in correctness of the system's behavior.

Still, complete formal veri�cation has not yet be-
come a prevalent method of analysis. The reasons
for this are twofold. First, full veri�cation of real-

life systems remains infeasible. The growth of soft-
ware size and complexity seems to exceed advances
in veri�cation technology. Second, veri�cation re-
sults apply not to system implementations, but to
formal speci�cations of these systems. Construction
of such speci�cations is usually a manual and error-
prone process. Separate methods are needed, then,
to verify compliance of the system implementation
to its formal speci�cation. Testing, on the other
hand, allows one to validate the system implemen-
tation directly. However, testing results lack the
rigor of formal analysis and usually do not provide
guarantees of absence of errors in the implementa-
tion.

Consequently, whichever analysis approach has
been taken to validate a real-time system, there ex-
ists a possibility of incorrect behavior during the
execution of the system. Run-time monitoring and
checking strives to address this problem.

Computer systems are often monitored for per-
formance evaluation and enhancement [10], debug-
ging and testing [14], and to control or check of sys-
tem correctness [18]. Recently, the problem of de-
signing monitors to check for the correctness of sys-
tem implementation has received increased atten-
tion from the research community [3, 15, 16, 13, 17].
Such monitors can be used to detect violations of
timing [13] or logical [3] properties of a program,
constraints on language constructs [15], and so on.

In this paper, we describe a framework of moni-
toring and checking a running system with the aim
of ensuring that it is running correctly with respect
to a formal requirements speci�cation. The use
of formal methods is the salient aspect of our ap-
proach. We concentrate on the following two issues:
(1) how to map high-level abstract events that are
used in requirement speci�cation to low-level activi-
ties of a running system, and (2) how to instrument
the code to extract and detect necessary low-level
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activities. We assume that both requirement spec-
i�cations and the system implementation are avail-
able to us.

The major phases of the framework are as fol-
lows: (1) system requirements are formalized; at
the same time, a monitoring script is constructed,
which is used to instrument the code and establish a
mapping from low-level information into high-level
events; (2) at run-time, events generated by the
instrumented system are monitored for compliance
with the requirements speci�cation. The run-time
monitoring and checking (MaC) architecture con-
sists of three components: �lter, event recognizer,
and run-time checker. The �lter extracts low-level
information (such as values of program variables
and time when variables change their values) from
the instrumented code. The �lter sends this in-
formation to the event recognizer, which converts
it into high-level events and conditions and passes
them to the run-time checker.

Each event delivered to the checker has a times-
tamp, which reects the actual time of the occur-
rence of the event. This enables us to monitor real-
time properties of the system. Timestamps are as-
signed to events by the event recognizer based on
the clock readings provided by the �lter. The run-
time checker checks the correctness of the system
execution thus far according to a requirements spec-
i�cation of the system, based on the information it
receives from the event recognizer, and on the past
history. The checker can combine monitoring of be-
havioral correctness of the system control ow with
program checking [2] for numerical computations.
This integrated approach is a unique feature of the
proposed framework.

The current prototype implementation of the
MaC architecture, monitors systems written in
Java. Instrumentation is performed automatically,
directly in JAVA bytecode. A language called
MEDL, based on a linear temporal logic, is used to
describe the formal requirements. Other formal lan-
guages can be readily used to specify requirements.

Related work. The \behavioral abstraction" ap-
proach to monitoring was pioneered by Bates and
Wileden [1]. Although their approach lacked formal
foundation, it provided an impetus for future de-
velopments. Several other approaches pursue goals
that are similar to ours. The work of [5] addresses
monitoring of a distributed bus-based system, based
on a Petri Net speci�cation. Since only the bus
activity is monitored, there is no need for instru-
mentation of the system. The authors of [16] also

consider only input/output behavior of the system.
In our opinion, instrumentation of key points in
the system allows us to detect violations faster and
more reliably, without sacri�cing too much perfor-
mance. The test automation approach of [14] is also
targeted towards monitoring of black-box systems
without resorting to instrumentation. Additionally,
we aim at using the MaC framework beyond testing,
during real system executions. Sankar and Man-
del have developed a methodology to continuously
monitor an executing Ada program for speci�cation
consistency [15]. The user manually annotates an
Ada program with constructs from ANNA, a for-
mal speci�cation language. Mok and Liu [13] pro-
posed an approach for monitoring the violation of
timing constraints written in the speci�cation lan-
guage based on Real-time Logic as early as possi-
ble with low-overhead. The framework proposed
in this paper does not limit itself to any particu-
lar kind of monitored properties. In [10], an elabo-
rate language for speci�cation of monitored events
based on relational algebra is proposed. Instrumen-
tation of high-level source code is provided auto-
matically. Collected data are stored in a database.
Since the instrumentation code performs database
queries, instrumentation can signi�cantly alter the
performance of a program.

The paper is organized as follows. Section 2
presents an overview of the framework. Section 3
informally presents the language for monitoring
scripts and requirements speci�cations. Section 4
describes a prototype implementation of the MaC
framework. More complete and formal treatment of
MaC is given in [9].

2 Overview of the MaC Framework

The MaC framework aims at run-time assurance
monitoring of real-time systems. The structure of
the framework is shown in Figure 1. The framework
includes two main phases: (1) before the system is
run, its implementation and requirement speci�ca-
tion are used to generate run-time monitoring com-
ponents; (2) during system execution, information
about the running system is collected and matched
against the requirements.

A major task during the �rst phase (indicated
by clear boxes in Figure 1) is to provide a map-
ping between high-level events used in the require-
ment speci�cation, and low-level state information
extracted during execution. They are related ex-
plicitly by means of a monitoring script. The
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Figure 1. Overview of the MaC framework

monitoring script describes how events at the re-
quirements level are de�ned in terms of monitored
states of an implementation. For example, in a
gate controller of a railroad crossing system, the re-
quirements may be expressed in terms of the event
train in crossing. The implementation, on the
other hand, stores the train's position with respect
to the crossing in a variable train position. The
monitoring script in this case can de�ne the event
as condition train position < 800. The language
of monitoring scripts event recognizer (described in
Section 3) has limited expressive power in order to
ensure fast recognition of events.

The monitoring script is used to generate a �l-
ter and an event recognizer automatically. The �l-
ter instruments the implementation to extract the
necessary state information at run-time. The event
recognizer receives state information from the �lter
and determines the occurrences of events according
to their de�nition in the script. Also during the
�rst phase, the system requirements are formalized,
and a run-time checker is produced from the formal
requirements. The requirement speci�cation uses
events de�ned in the monitoring script.

During the run-time phase (shaded boxes in Fig-
ure 1), the instrumented implementation is executed
while being monitored and checked against the re-
quirements speci�cation. The �lter sends relevant
state information to the event recognizer, which de-
termines the occurrence of events. These events are
then relayed to the run-time checker to check ad-
herence to the requirements.

Filter. A �lter is a set of program fragments
that are inserted into the implementation to instru-
ment the system. The essential functionality of a �l-
ter is to keep track of changes to monitored objects
and send pertinent state information to the event
recognizer. Instrumentation is performed statically
directly on the executable code (bytecode, in the
case of Java). Instrumentation is automatic, which
is made possible by the low-level description in the
monitoring script.

Event recognizer. The event recognizer is the
part of the monitor that detects an event from val-
ues of monitored variables received from the �l-
ter according to the monitoring script. Recognized
events are delivered to the run-time checker. Each
event is supplied with a timestamp that can be used
in checking real-time properties. Events may addi-
tionally have associated numerical values to facili-
tate program checking by the monitor.

While it is conceivable to merge the event recog-
nizer with the �lter, we chose to separate the two
modules. The separation allows us to remove the
overhead of abstracting out events from the low-
level information. This reduces interference of the
monitor with the monitored system's execution. On
the other hand, communication overhead incurred
by sending changes in the monitored data from the
�lter to the event recognizer increases, but it applies
only to the o�-line processing of the monitored in-
formation and is therefore more acceptable. An ad-
ditional advantage of the chosen design is a clear
separation of monitoring activity from the system
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activity.

Run-time checker. The run-time checker
checks that the current execution satis�es the given
requirements, based on the information provided by
the event recognizer. The checker can handle be-
havioral as well as numerical requirements. The
latter are analyzed using the technique of program
checking. The prototype implementation does not
have provisions for program checking yet. The cur-
rent implementation uses language MEDL (see Sec-
tion 3.4) to express requirements.

It may seem that a violation of a requirement
at run time is a catastrophic event, and that it is
too late to recover from it. This, however, is not
necessarily true. A monitored property may rep-
resent a potentially dangerous condition that need
to draw the attention of a human operator, which
is the function that the run-time checker provides.
We illustrate this concept with an example in Sec-
tion 3.5.

3 The MaC Language

In this section, we give a brief overview of the
languages used to describe what to observe in the
program and the requirements the program must
satisfy. The scripts written in these languages are
then used to automatically generate the event rec-
ognizer and the run-time checker, respectively.

The language for monitoring scripts is called
PEDL (Primitive Event De�nition Language, Sec-
tion 3.3). PEDL scripts are used to de�ne what
information is sent from the �lter to the event
recognizer, and how they are transformed into
requirements-level events by the event recognizer.
Requirement speci�cations are written in MEDL
(Meta Event De�nition Language, Section 3.4).
The primary reason for having two separate lan-
guages in the monitoring framework is to separate
implementation-speci�c details of monitoring from
requirements speci�cation. This separation ensures
that the framework is scalable to di�erent imple-
mentation languages and speci�cation formalisms,
while providing a clean interface to the designer of
monitors. For example, if we wish to retarget our
system from programs written in Java to C++, then
all we would need to modify is the syntax of PEDL,
leaving MEDL unchanged.

Objects described in both PEDL and MEDL
scripts are events and conditions. Before we present
the two languages, we illustrate the distinction be-
tween events and conditions.

3.1 Events and Conditions

As described in Section 2, whenever an \interest-
ing" state change occurs in the running system, the
�lter sends a noti�cation to the monitor. Based on
the updates from the �lter, the monitor matches the
trace of the current execution against the require-
ments. In order to do this, we distinguish between
two kinds of state information underlying the noti-
�cations.

Events occur instantaneously during the system
execution. For example, an event denoting return
from method RaiseGate occurs at the instant the
control returns from the method. We can conclude
that this event does not occur at any moment ex-
cept when the monitor receives an update from the
�lter. By contrast, conditions may hold between
updates. Consider monitoring condition (position

== 2). Once the monitor receives a message from
the �lter that variable position has been assigned
the value 2, we can conclude that it keeps this value
until the next update comes.

Since events occur instantaneously, we can assign
to each event the time of its occurrence. Times-
tamps of events allow us to reason about timing
properties of monitored systems. Conditions, on the
other hand, have durations, intervals of time when
the condition is satis�ed. There is a close connec-
tion between events and conditions: the start and
end of a condition's interval are events, and the in-
terval between any two events can be treated as a
condition. This relationship is made precise below.

This distinction between events and conditions
is formalized in a simple two-sorted logic that de-
�nes various operations on events and conditions.
PEDL and MEDL are subsets of this logic with
added means of de�nition of primitive events and
conditions.

3.2 A Logic for Events & Conditions

Syntax. We assume a countable set C =
fc1; c2; : : :g of primitive conditions. For example, in
the monitoring script language PEDL, these prim-
itive conditions will be Java boolean expressions
built from the values of the monitored variables. In
the requirements description language MEDL these
will be conditions that were recognized by the event
recognizer and sent to the checker.

We also assume a countable set E = fe1; e2; : : :g
of primitive events. When an event occurs, it can
have an attribute value, which is an element of a
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set Dei
. For example, startM (RaiseGate) is a

primitive event in the monitoring script language,
which occurs at the start of method RaiseGate and
whose attribute value is the tuple of values of all
the parameters with which this method is called.
The primitive events in the requirements description
language will be those that are reported by the event
recognizer.

The logic has two sorts: conditions and events.
The syntax of conditions (C) and events (E) is as
follows:

hCi ::= c j [ hEi , hEi ) j ! hCi j hCi && hCi j
hCi jj hCi j hCi ) hCi

hEi ::= e j start( hCi ) j end( hCi ) j hEi && hEi
j hEi jj hEi j hEi when hCi

Semantics. The models for this logic are similar
to those for linear temporal logic, in that they are
a sequence of worlds. The worlds correspond to in-
stants in time at which we have information about
the truth values of primitive conditions and events.
Each world is, therefore, labeled by the time instant
it corresponds to and the set of primitive conditions
and events that are true at that instant. Intuitively,
these worlds correspond to the times when the �l-
ter (or event recognizer) sends updates, and so these
models are a discrete abstraction of the execution
of the running system.

The intuition in describing the semantics of
events and conditions based on such models, is that
conditions retain their truth values in the duration
between two worlds, while events are present only at
the instants corresponding to certain worlds. The
labels on the worlds give the truth values of primi-
tive conditions and events. The semantics for nega-
tion (!c), conjunction (c1&&c2), disjunction (c1jjc2)
and implication (c1 ) c2) of conditions is de�ned
naturally; so !c is true when c is false, c1&&c2 is
true only when both c1 and c2 are true, c1jjc2 is
true when either c1 or c2 is true, and c1 ) c2 is
true if c2 is true whenever c1 is true. Conjunction
(e1&&e2) and disjunction (e1jje2) on events is de-
�ned similarly. Now, since conditions are true from
some time until just before the instant when they
become false, two events can naturally be associated
with a condition, namely the instant when the con-
dition becomes true (start(c)) and the instant when
the condition becomes false (end(c)). Any pair of
events de�ne an interval of time, and forms a con-
dition [e1; e2) that is true from event e1 until e2.
Finally, the event e when c is true if e occurs and
condition c is true at that time instant.

The formal semantics for this logic is given in [9].

Notice that some natural equivalences hold in
this logic. For example, for any condition c, c �
[start(c); end(c)). This allows one to identify condi-
tions with pairs of events, and is the reason why the
languages in the MaC framework, are called \event
de�nition languages". Also, for conditions c1 and
c2, and event e, e when c1 when c2 � e when (c1
&& c2).

3.3 Primitive Event Definition Language
(PEDL)

PEDL is the language for writing monitoring
scripts. Design of PEDL is based on the fol-
lowing two principles. First, we encapsulate all
implementation-speci�c details of the monitoring
process in PEDL scripts. Second, we want the pro-
cess of event recognition to be as simple as possible.
Therefore, we limit the constructs of PEDL to allow
one to reason only about the current state in the ex-
ecution trace. The name of the language reect the
fact that the main purpose of PEDL scripts is to de-
�ne primitive events of requirement speci�cations.

Monitored entities. PEDL scripts can refer to
any object of the target system. This means that
declarations of monitored entities are by necessity
speci�c to the implementation language of the sys-
tem. In the current prototype, values of �elds of an
object, as well as of local variables of a method, and
method calls can be monitored. Examples of moni-
tored entities' declarations are given in Section 4.

De�ning conditions. Primitive conditions
in PEDL, are constructed from boolean-valued
expressions over the monitored variables. An
example of such condition is Cond TooFast =

Train.calculatePosition().trainSpeed > 100.
In addition to these, we have primitive condition
InM(f). This condition is true as long as the
execution is currently within method f. Complex
conditions are built from primitive conditions using
boolean connectives.

De�ning events. The primitive events in
PEDL correspond to updates of monitored variables
and calls and returns of monitored methods. Each
event has an associated timestamp and may have a
tuple of values.

The event update(x) is triggered when variable
x is assigned a value. The value associated with this
event is the new value of x. Events StartM(f) and
EndM(f) are triggered when control enters method
f (resp., returns from f. The value associated with
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StartM is a tuple containing the values of all argu-
ments. The value of an event EndM is a tuple that
has the return value of the method, along with the
values of all the formal parameters at the time con-
trol returns from the method. Besides these three,
we have one other primitive event which is IoM(f).
This is also triggered when control returns from a
method f, but has as its value a tuple that con-
tains the return value of the method, and the values
of the arguments at the time of method invocation.
This event allows one to look at the input-output
behavior of a method, and is needed if one wants to
program check some numerical computation. Notice
that event IoM(f) is the only event to violate our
second design principle, namely that the operation
of the event recognizer is to be based only on the
current state.

All the operations on events de�ned in the logic
can be used to construct more complex events from
these primitive events. In PEDL, we also have two
attributes time and value, de�ned for events. As
mentioned in section 3.2, events have associated
with them attribute values, and the time of their
occurrence, and these can be accessed using the at-
tributes time and value. time(e) gives the time
of the last occurrence of event e, while value(e)

gives the value associated with e, provided e oc-
curs. time(e) refers to the time on the clock of
the monitored system (which may be di�erent from
the clock of the monitor) when this event occurs.
If the monitored system has several clocks, we as-
sume, for this paper, that the clocks are perfectly
synchronized.

3.4 Meta Event Definition Language (MEDL)

The safety requirements that need to be moni-
tored are written in a language called MEDL. Like
PEDL, MEDL is also based on the logic for events
and conditions, described in section 3.2. Primitive
events and conditions in MEDL scripts are imported
from PEDL monitoring scripts; hence the language
has the adjective \meta".

Auxiliary variables. The logic described is sec-
tion 3.2 has a limited expressive power. For exam-
ple, one cannot count the number of occurrences
of an event, or talk about the ith occurrence of an
event. For this purpose, MEDL allows the user to
de�ne auxiliary variables, whose values may then
be used to de�ne events and conditions. Auxil-
iary variables must be of one of the basic types in
Java. Updates of auxiliary variables are triggered by
events. For example, RaisingGate -> t := time

(RaisingGate)) records the time of occurrence of
event RaisingGate in the auxiliary variable t. Ex-
pression e1 -> count e1 := count e1 + 1 counts
occurrences of event e1. A special auxiliary vari-
able currentTime can be used to refer to the cur-
rent time of the system. Precisely, it is set to be the
timestamp of the last message received from the �l-
ter.

De�ning events and conditions. The primi-
tive events and conditions in MEDL are those that
are de�ned in PEDL. Besides these, primitive con-
ditions can also be de�ned by boolean expressions
using the auxiliary variables. More complex events
and conditions are then built up using the various
connectives described in section 3.2. These events
and conditions are then used to de�ne the safety
properties and alarms.

Safety Properties and Alarms. The cor-
rectness of the system is described in terms safety
properties and alarms. Safety properties are con-
ditions that must always be true during the execu-
tion. Alarms, on the other hand, are events that
must never be raised. Note that all safety proper-
ties [12] can be described in this way. Also observe
that alarms and safety properties are complemen-
tary ways of expressing the same thing. The reason
we have both of them is because some properties
are easier to think of in terms of conditions, while
others are easier to think of in terms of alarms.

3.5 Example

We illustrate the use of PEDL and MEDL using
a simple but representative example. The example
is inspired by the railroad crossing problem, which
is routinely used as an illustration of real-time for-
malisms [7]. The system is composed of a gate that
can open and close, taking some time to do it, trains
that pass through the crossing, and a controller that
is responsible for closing the gate when a train ap-
proaches the crossing and opening it after it passes.
The common speci�cation approach is to assume
an upper bound on the time necessary for the gate
to open or close. In reality, however, mechanical
malfunctions may result in unexpectedly slow op-
eration of the gate. A timely detection of such a
violation lets the train engineer stop the train be-
fore it reaches the crossing. In this example, we
monitor the controller of the gate, using the require-
ment that the gate is down within 30 seconds after
signal CloseGate is sent, unless signal OpenGate is
sent before the time elapses. Precisely, we check
that if there is a signal CloseGate, not followed by
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class GateController {

public static final int GATE_UP = 0;

public static final int GATE_DOWN = 1;

public static final int IN_TRANSIT = 2;

int gatePosition;

public void open() { ... }

public void close() { ... }

...

};

Figure 2. Implementation of the gate con-
troller

either signal OpenGate or completion of gate clos-
ing, is present in the execution trace, then the time
elapsed since that signal is less than 30.

Figure 2 shows a fragment of the gate controller
implemented as a Java class. The state of the
gate is represented as variable gatePosition, which
can assume constant values GATE UP, GATE DOWN,
or IN TRANSIT. The controller controls the gate by
means of methods open() and close(). For sim-
plicity, we assume that there is only one instance of
class GateController in the system.

We need to observe calls to methods open() and
close(), and the state of the gate. The following
PEDL script introduces high-level events OpenGate,
CloseGate and Gate Down.

export event OpenGate, CloseGate;

export condition Gate_Down;

Monitored Entities:

void GateController.open();

void GateController.close();

int GateController.gatePosition;

CondDef:

Cond Gate_Down = (GateController.gatePosition

== GateController.GATE_DOWN);

EventDef:

Event OpenGate =

StartM(GateController.open());

Event CloseGate =

StartM(GateController.close());

The correctness requirement for the gate is given
in the MEDL script below. The time of the last oc-
currence of event CloseGate is recorded by the aux-
iliary variable lastClose. The requirement uses the
events and conditions imported from the monitoring
script and states that if there was a CloseGate event
at the time when the gate was not down, which was
not followed by either event OpenGate or condition
Gate Down becoming true, then the time allotted for
gate closing has not elapsed yet.

import event OpenGate, CloseGate;

import condition Gate_Down;

AuxVarDecl:

float lastClose;

float currentTime;

SafePropDef:

Cond GateClosing =

[ CloseGate when !Gate_Down,

OpenGate || start(Gate_Down)

) => lastClose + 30 > currentTime;

AuxVarDefL

CloseGate -> lastClose := time(CloseGate);

4 The Current MaC Prototype Sys-

tem

This section introduces a prototype implementa-
tion of the MAC framework. The prototype closely
follows the general architecture (see Figure 1 in Sec-
tion 2). We discuss implementation aspects of the
�lter, the event recognizer and the run-time checker.

4.1 Filter and Code Instrumentation

Java bytecode has been selected as the basis for
instrumentation for the following reasons: (1) a
class �le, the unit of Java bytecode, contains rich
symbolic information about the system [11] that
can be used for automatic instrumentation; (2) Java
bytecode is strongly typed and excludes pointer
arithmetic; (3) growing popularity of Java, com-
bined with platform independence of Java bytecode
will make the framework widely applicable. In ad-
dition, there are many high languages like Ada and
Lisp which compile its source code into Java byte-
code [19].

Several aspects of the presented framework
present implementation challenges. We now briey
outline these challenges and describe the limitations
of the prototype.

Naming of monitored objects. In order
to specify monitored entities unambiguously, we
use hierarchical names constructed from identi�ers
used in the source code. The following meaning is
ascribed to a name x.y: (1) if x is a class name, y
is a �eld or a method of the class. If y is not static,
it will apply to every instance of x; (2) if x is a
variable of type T, y is a �eld or a method of class
T; (3) if x is a method of class T, y is a local variable
of x. Unless y is of a primitive (non-reference) Java
type, the name can be extended further according
to the same rules. Examples of declarations include
RRC.train x, Train.position().trainSpeed,
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and Gate.gateDown(). The �rst of these declara-
tions denotes �eld train x of class RRC, the second
identi�es local variable trainSpeed of method
position in class Train. The last one identi�es a
method in class Gate.

Detection of object updates. We need to
guarantee that all updates to a monitored object
are reported. Two problems need to be addressed:
aliasing, where an object can be monitored through
several references, and reference changing, where a
reference is modi�ed to refer to an object that was
not intended to be monitored.

In general, we do not know statically which ref-
erences refer to the object of interest. We have,
therefore, to check accesses through all reference
variables of the same type. The user has the option
to enable this feature explicitly. However, most of
the monitored objects in the examples that we have
considered are always accessed through the same
reference. Therefore, we chose to disable the fea-
ture by default.

A �lter consists of a set of code fragments in-
serted into class �les of the target system and Java
class, which provides for storing update information
and communication between �lter and event recog-
nizer. The following kinds of program entities can
be instrumented:

1) Execution points. The current prototype de-
tects when the execution point reaches a method in-
vocation, return from the method, start and end of
program and exception of method. Invocation and
return from the method can be detected by insert-
ing the instrumentation before the �rst instruction
and after the last instruction of the code for the
method. Exceptions are monitored by instrument-
ing the exception table of the method.

2) Local and �eld variables. Every local vari-
able is always accessed through an index �xed in a
bytecode instruction. There are only two kinds of
instructions that may modify a local variable. In-
strumentation is inserted immediately following the
update. Similarly, there is only one instruction that
accesses a �eld variable in an object, and the access
is through a �xed parameter in the bytecode.

The �lter is generated by �lter generator which
is written in Java using JTrek library [6] for in-
serting bytecode fragments into the program. The
�lter generator gets a program which is to be in-
strumented and a list of monitored variables and
monitored methods as input. It generates the in-
strumented program as output by inserting codes at
proper places of the program. The �lter sends up-

dated values, together with a timestamp and iden-
ti�cation of the thread that occasioned the update,
whenever it detects an updating of a monitored en-
tity. To minimize the overhead to the system, send-
ing values to event recognizer through the network
is performed by a separate thread.

4.2 Event recognizer

The event recognizer translates low-level state
changes communicated by the �lter, into high-level
events and conditions. The event recognizer main-
tains a table that stores the current value for each
monitored variable. Each message from the �lter
causes this table to be updated.

Whenever an update from the �lter arrives,
the event recognizer re-evaluates the truth of all
events and conditions. Conditions de�ned in terms
boolean expressions over the monitored variables
can be directly evaluated from the table of current
values of all monitored variables. However, in order
to identify events start(c) and end(c), it must
not only know the current truth value of condition
c, but also its truth value at the time of the previ-
ous update. The same is true for the event end(c).
Hence the checker also keeps track of the values of all
the conditions at the time of the previous update, in
addition to the values of the monitored objects. Fi-
nally, once the recognizer has determined the truth
of all the conditions and events de�ned in the mon-
itoring script, it sends to the checker its \exported"
events and changes in \exported" conditions.

4.3 Run-time Checker

The checker maintains a timed trace of the cur-
rent execution based on the messages received from
the event recognizer. Each event is supplied with a
timestamp, reecting the time when the event oc-
curred. Each value of the timestamp introduces a
new state in the time trace. At each state, event
occurrences and the values of conditions are evalu-
ated. As several received events may have the same
timestamp, evaluation of a state is deferred until
all events with the same timestamp arrive. The
checker is guaranteed to receive messages with non-
decreasing timestamps. In the prototype, TCP/IP
protocol is used for communication between the
event recognizer and the checker to ensure proper
sequencing. The truth value of every event and con-
dition can be evaluated in constant time in terms of
the length of the trace and linear in the size of the
requirement speci�cation.
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Once all the truth of all the events and conditions
has been determined, the auxiliary variables are up-
dated. If the event guarding the update occurs at
the current state, the auxiliary variable is updated
as per the assignment rule. Whenever an alarm be-
comes true or a safety property becomes false, the
checker declares the program to be incorrect.

5 Conclusions

The paper makes a step towards bridging the gap
between veri�cation of system design speci�cations
and validation of system implementations in a high-
level programming language. The former is desir-
able but yet impractical for large systems, while the
latter is e�cient but informal and error-prone.

To this end, we have presented a design and a
prototype implementation of an on-line monitoring
of correctness properties of real-time systems. Mon-
itoring is based on formally speci�ed system require-
ments. The formality of approach guarantees that
at least the current execution complies with the re-
quirements. A variety of speci�cation formalisms
can be easily accommodated in the framework. For
example, all properties expressed in real-time logic
RTL [8] can be e�ciently checked.

The immediate goals of the future work on this
topic include extensions of the prototype into a full-
strength monitoring system and extension of the
framework to other languages beyond Java. An-
other avenue of research is aimed at a transition
from passive observation to active guidance of the
monitored system. Our current system is geared to-
wards the detection of faults. It would be desirable
in future to build monitors that can steer a system
to a correct state.
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