
 Open access Journal Article DOI:10.1007/S10817-014-9312-2

Formally Verified Certificate Checkers for Hardest-to-Round Computation
— Source link

Erik Martin-Dorel, Guillaume Hanrot, Micaela Mayero, Laurent Théry

Institutions: French Institute for Research in Computer Science and Automation, École normale supérieure de Lyon,
University of Paris

Published on: 01 Jan 2015 - Journal of Automated Reasoning (Springer Netherlands)

Topics: Hensel's lemma, Lattice reduction, Function (mathematics) and Proof assistant

Related papers:

 Univariate and bivariate integral roots certificates based on Hensel's lifting

 Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq

 How to Compute the Area of a Triangle: A Formal Revisit

Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building
blocks of double-word arithmetic"

 Proving Bounds on Real-Valued Functions with Computations

Share this paper:

View more about this paper here: https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-
27zpdqah60

https://typeset.io/
https://www.doi.org/10.1007/S10817-014-9312-2
https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60
https://typeset.io/authors/erik-martin-dorel-1b4g4gbhrt
https://typeset.io/authors/guillaume-hanrot-596evsli4f
https://typeset.io/authors/micaela-mayero-30yefqzb2g
https://typeset.io/authors/laurent-thery-2l9vgsp7gv
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/ecole-normale-superieure-de-lyon-uvwhpiee
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/journals/journal-of-automated-reasoning-p7aqqv75
https://typeset.io/topics/hensel-s-lemma-2qz7nl5q
https://typeset.io/topics/lattice-reduction-3q9vqu94
https://typeset.io/topics/function-mathematics-1tqun887
https://typeset.io/topics/proof-assistant-34c0cvki
https://typeset.io/papers/univariate-and-bivariate-integral-roots-certificates-based-1ihyi4539n
https://typeset.io/papers/proving-tight-bounds-on-univariate-expressions-with-1gkm3y4ntq
https://typeset.io/papers/how-to-compute-the-area-of-a-triangle-a-formal-revisit-3f59i9iqpy
https://typeset.io/papers/formalization-of-double-word-arithmetic-and-comments-on-1zbc1onn42
https://typeset.io/papers/proving-bounds-on-real-valued-functions-with-computations-5b5jqxfnk1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60
https://twitter.com/intent/tweet?text=Formally%20Verified%20Certificate%20Checkers%20for%20Hardest-to-Round%20Computation&url=https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60
https://typeset.io/papers/formally-verified-certificate-checkers-for-hardest-to-round-27zpdqah60

HAL Id: hal-00919498
https://hal.inria.fr/hal-00919498v2

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally verified certificate checkers for
hardest-to-round computation

Érik Martin-Dorel, Guillaume Hanrot, Micaela Mayero, Laurent Théry

To cite this version:
Érik Martin-Dorel, Guillaume Hanrot, Micaela Mayero, Laurent Théry. Formally verified certificate
checkers for hardest-to-round computation. Journal of Automated Reasoning, Springer Verlag, 2015,
54 (1), pp.1-29. ฀10.1007/s10817-014-9312-2฀. ฀hal-00919498v2฀

https://hal.inria.fr/hal-00919498v2
https://hal.archives-ouvertes.fr

JAR manuscript No.
(will be inserted by the editor)

Formally verified certificate checkers for

hardest-to-round computation

Érik Martin-Dorel · Guillaume Hanrot ·

Micaela Mayero · Laurent Théry

The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10817-014-9312-2

Abstract In order to derive efficient and robust floating-point implementations of a
given function f , it is crucial to compute its hardest-to-round points, i.e. the floating-
point numbers x such that f(x) is closest to the midpoint of two consecutive floating-
point numbers. Depending on the floating-point format one is aiming at, this can be
highly computationally intensive. In this paper, we show how certificates based on
Hensel’s lemma can be added to an algorithm using lattice basis reduction so that
the result of a computation can be formally checked in the Coq proof assistant.

Keywords: formal proofs, certificate checkers, Hensel’s lemma, modular arithmetic.

1 Introduction and motivations

Hensel’s lemma is a very classic mathematical tool. Given a polynomial P over the
integers, it starts from a solution to P (x) ≡ 0 (mod p) and constructs a solution

Érik Martin-Dorel
Inria Saclay - Île-de-France, LRI
Bâtiment 650 Ada Lovelace
Université Paris Sud 11
91405 Orsay Cedex, France
E-mail: erik.martin-dorel@ens-lyon.org

Guillaume Hanrot
École Normale Supérieure de Lyon
LIP (UMR 5668 CNRS, ENSL, Inria, UCBL)
46 allée d’Italie, 69364 Lyon Cedex 07, France
E-mail: guillaume.hanrot@ens-lyon.fr

Micaela Mayero
Université Paris 13, LIPN (UMR 7030 CNRS)
99 avenue JB Clément, 93430 Villetaneuse, France
E-mail: micaela.mayero@lipn.univ-paris13.fr

Laurent Théry
Inria Sophia Antipolis
2004 route des Lucioles, BP 93
06902 Sophia Antipolis Cedex, France
E-mail: laurent.thery@inria.fr

http://dx.doi.org/10.1007/s10817-014-9312-2

2 Érik Martin-Dorel et al.

to P (x) ≡ 0 (mod pk) for any k ∈ N
∗, under mild hypotheses (for instance, that

p does not divide the discriminant of P). This lemma was given its final shape by
Hensel, in his study of p-adic numbers, where it plays a central role [21]; see also
[36, Chapter 13]. The algorithm derived from the proof of Hensel’s lemma is usually
called Hensel lifting.

The strengths of Hensel’s lemma are its versatility (it can be stated in a very
general context, being also valid, e.g., for power series rings), the fact that it combines
an assertion of existence (there is a lifting) and uniqueness (this lifting is unique)
under mild hypotheses, and the fact that it is effective, and provides a simple and
efficient algorithm. Hensel’s lemma has applications in several areas of mathematics
and computer science where one has to solve equations over the integers (or over the
ring of polynomials over a field, as in the last step of Guruswami-Sudan list decoding
algorithm for Reed-Solomon codes [19,1]). In this work, we are interested in some of
them that we present just below.

1.1 Hensel’s lemma in computer algebra

Since the beginning of the development of computer algebra, the algorithmic version
of Hensel’s lemma (Hensel lifting) has been one of the fundamental tools for com-
putations over the integers. The strategy is to isolate a “nice” prime p where the
problem under study over the integers has a “good reduction” to the same problem
modulo pk for all k ∈ N

∗. One then solves the problem modulo p, lifts the solution
modulo pm for some m such that pm is slightly larger than an a priori bound on the
size of the solution.

Standard applications include linear system solving over the integers (Hensel’s
technique is very powerful in practice as it avoids manipulating huge rational num-
bers while keeping the size of integers involved under control), but also 0-dimensional
polynomial systems solving over the integers (though the poor quality of the bounds
for real solutions as the number of variables grows might limit the applicability
in that case) or polynomial factoring over the integers. In all those cases, Hensel’s
lemma can be used either to compute the solutions or to provide a certificate for a
list of solutions (using the uniqueness statement of the lemma).

In the present paper, we are mainly interested in the second aspect, in a setting
where Hensel lifting is used at the end of a complex algorithmic chain where formal
verification is a major issue; we now turn to the description of the problem for which
this algorithmic chain was designed: the Table Maker’s Dilemma, a problem which
needs to be solved for implementing elementary functions with correct rounding.

1.2 The Table Maker’s Dilemma

The newly revised IEEE 754–2008 standard for floating-point (FP) arithmetic recom-
mends that some mathematical functions (exp, log, x 7→ 2x, . . .) should be correctly
rounded: the system must always return the FP number that is the nearest to the ex-
act mathematical result of the operation. Having correctly rounded functions greatly
improves the portability of numerical software.

If we consider a correctly-rounded elementary function f in radix 2 and precision
n, most implementations use the so-called Ziv’s strategy:

Formally verified certificate checkers for hardest-to-round computation 3

1. compute a small enclosing interval of width 2−n′

for f(x);
2. if both endpoints of this interval round at precision n to the same FP number v,

this number v is the correctly rounded value of f(x);
3. otherwise, increase n′, and go to step 1.

The correctness of this strategy follows from the fact that rounding is monotonic—if
both endpoints of the interval round to the same value, any point of the interval
also does. Note that in order to avoid an infinite loop, one should be able to deal
separately with “exact cases”, i.e. the FP numbers x such that (for rounding-to-
nearest) f(x) is the exact midpoint of two consecutive FP numbers, or (for directed
rounding modes) f(x) is a FP number, like x = 0 for the exp function.

In order to make this strategy optimal, we want to minimize the number of iter-
ations through step 3, and set the n′ to a large enough precision to guarantee that
the test at step 2 is true, and yet not too large, since the cost of step 1 increases
significantly with n′. Finding the optimal value (say n′

0) of this “large enough” preci-
sion is the so-called Table Maker’s Dilemma (TMD) [30, chap. 12]. Finding an upper
bound for n′

0 will be called the Approximate TMD. Solving the TMD, for a given
function f and a rounding mode (say, rounding-to-nearest) reduces to finding the
hardest-to-round (HR) points, that is the FP numbers x such that f(x) is closest to
the midpoint of two consecutive FP numbers.

In this paper, we are interested in one of the algorithms that solve this problem:
the Stehlé–Lefèvre–Zimmermann (SLZ) algorithm [35,33]. This algorithm requires
complex and very long calculations (years of cumulated CPU time), and its only out-
put as of today is a list of hard-to-round points (each of which gives a lower bound on
n′

0) and a claim that the worst one is in that list. This is even worse when the SLZ
algorithm is applied to the Approximate TMD, as the output is limited to a yes/no
answer. This situation thus appears to be unsatisfactory: the initial motivation for
the TMD problem is to provide strong guarantees for numerical computations, but
the trusted computing base contains highly optimized implementations of compli-
cated algorithms. One of the main contributions of this paper is to propose “logs”
for the execution of the SLZ algorithm, allowing one to use aggressively optimized
implementations of computer algebra primitives while making it easy to verify the
results.

The critical step of the SLZ algorithm consists in generating two polynomials
v1, v2(∈ Z[X, Y]) as Z-linear combinations of a specific polynomial family. These
polynomials are hard to find—they are produced by an aggressively optimized version
of the complicated LLL [25] algorithm, which, for standard parameter values is by
far the most time-consuming part of the SLZ algorithm. It is then possible to treat
the LLL calls as oracles and log their results in a certificate. To be more precise,
the SLZ algorithm consists in the following main steps. First, it performs a domain-
splitting step and calls a polynomial approximation algorithm. In doing so, the initial
(Approximate)-TMD problem is rewritten into myriads of problems that involve
integers only. All problems are then instances of the Integer Small Value Problem
[35, Section 3.2]:

4 Érik Martin-Dorel et al.

Problem 1 (ISValP) For P ∈ Z[X] and (A, B, M) ∈ N
3, find all solutions of the

system


















(x, y) ∈ Z
2,

|x| 6 A,

|y| 6 B,

P (x) ≡ y (mod M).

Next, each instance of ISValP is solved by successively using the modular, bivariate
version of Coppersmith’s technique, and the bivariate version of Hensel lifting. This
is where the concept of ISValP certificate comes into play, and the core motivation
for our work.

1.3 Outline of the paper

In Section 2, we first present the bivariate version of Hensel lifting and then focus
on the formalization of the uniqueness statement of bivariate Hensel’s lemma in the
Coq formal proof assistant. In Section 3, we give the formalization of two interre-
lated certificate checkers, to address instances of the bivariate small integral roots
problem as well as the integer small value problem (ISValP). Next, in Section 4,
we present some extra formal material that is used to increase the efficiency and
the modularity of these certificate checkers. We then evaluate the performances of
our ISValP certificate checker on several examples. In Section 5, we discuss some
salient technicalities related to our formalization. Finally we draw some conclusions
in Section 6.

2 Formal study of bivariate Hensel’s lemma

2.1 Preliminary definitions and notations

For any x ∈ R, the largest integer 6 x is denoted by ⌊x⌋ and the smallest integer
> x by ⌈x⌉, so that we have ⌈x⌉ = − ⌊−x⌋. For any (a, b) ∈ Z

2 (assuming a 6 b),
the set of integers k satisfying a 6 k 6 b is denoted by Ja, bK. Then for any x ∈ R

and q ∈]0, +∞[, the “standard modulo” of x by q (also called the remainder of x
modulo q) taken in [0, q[is denoted by

x mod q := x − q

⌊

x

q

⌋

(> 0). (1)

As a result, we straightforwardly get x mod q ∈ J0, q − 1K for any x ∈ Z and q ∈ N
∗.

Finally for any (a, b) ∈ R
2 and q ∈]0, +∞[, the usual abbreviation for modular

equality is used:

a ≡ b (mod q) ⇐⇒ a mod q = b mod q.

Definition 1 (Small integral root) For any pair (v1, v2) ∈ Z[X, Y]2 of bivariate
polynomials over Z and any pair (A, B) ∈ N

2, a small integral root of (v1, v2) (with

Formally verified certificate checkers for hardest-to-round computation 5

respect to bounds A and B) is a pair (x, y) ∈ Z
2 that is solution of the system



















|x| 6 A,

|y| 6 B,

v1(x, y) = 0,

v2(x, y) = 0.

Then the problem of finding all the solutions of this system is referred to as the
bivariate small-integral-roots problem (SIntRootP).

Definition 2 (Modular root) For any pair (v1, v2) ∈ Z[X, Y]2 and any q ∈ N
∗,

a modulo-q root of (v1, v2) is a pair (x, y) ∈ Z
2 satisfying

{

v1(x, y) ≡ 0 (mod q),

v2(x, y) ≡ 0 (mod q).

Note that if (x, y) is a modulo-q root of (v1, v2) ∈ Z[X, Y]2, then any (z, t) ∈ (x +
qZ) × (y + qZ) is also a modulo-q root of (v1, v2).

Definition 3 (Modular inverse of an integer) For any x ∈ Z coprime with
q ∈ N

∗, the modulo-q inverse of x (taken in J0, q − 1K) is the integer x−1
q ∈ J0, q − 1K

satisfying ∃y ∈ Z, xx−1
q + yq = 1. This quantity can be computed by using the

extended Euclidean algorithm.

Definition 4 (Modular inverse of a matrix) For any M ∈ Mn(Z) such that
det M is coprime with q ∈ N

∗, the modulo-q inverse of M can be defined as M−1
q :=

(det M)
−1
q · (adj M) mod q, where the modulo operation is applied coordinatewise

and where adj M denotes the adjugate matrix of M , that is, the transpose of the
cofactor matrix of M , cf. [37]. In particular, for order-2 matrices over Z, we get:

(

a b
c d

)−1

q

= (ad − bc)−1
q ·

(

d −b
−c a

)

mod q, (2)

assuming ad − bc is coprime with q ∈ N
∗. Note that if q = p2k

for a given prime p,
this coprimality condition is equivalent to ad − bc 6≡ 0 (mod p).

A slightly unusual notion in modular arithmetic is that of centered modulo:

Definition 5 (Centered modulo) For any x ∈ R and q ∈]0, +∞[, the centered
modulo of x by q, denoted by x cmod q, satisfies

|x cmod q| 6
q

2
and ∃n ∈ Z, x cmod q = x + nq. (3)

To ensure the uniqueness of this definition, we can consider the centered modulo
that has values in

]

− q
2 , q

2

]

, which amounts to considering the following definition:

x cmod q := x − q

⌈

x

q
−

1

2

⌉

. (4)

6 Érik Martin-Dorel et al.

Note that if x and q are integers, so is x cmod q. As a matter of fact, in the following,
we will only deal with centered moduli over the integers. Also, the centered modulo
can be emulated with the standard one:

x cmod q =

{

x mod q if x mod q 6 q
2

x mod q − q otherwise.
(5)

Furthermore, any centered modulo function trivially enjoys the following equivalence:

∀(z, q, n) ∈ Z
3, |z cmod q| 6 n ⇐⇒

∃x ∈ Z, |x| 6 min
(q

2
, n
)

∧ z ≡ x (mod q), (6)

which can be useful to “unfold” the centered modulo when it occurs in such an
inequality. Note also that in practice we will always have n < q/2, allowing one to
further simplify the right-hand side of the equivalence (6).

2.2 Finding bivariate small-integral-roots using Hensel lifting

Before focusing on the uniqueness statement of bivariate Hensel’s lemma and in order
to give more intuition, we start with the algorithmic version of this lemma, called
bivariate Hensel lifting. The main step of this iterative algorithm is summarized in
Algorithm 1, along with the conditions and post-conditions that actually relate to
the existence statement of bivariate Hensel’s lemma.

Algorithm 1: Bivariate Hensel lifting: sketch of the computation to be iterated

Input : (v1, v2) ∈ Z[X, Y]2, p prime, k ∈ N, q = p2k
,

(a, b) ∈ Z
2 such that det [Jv1,v2 (a, b)] 6≡ 0 (mod p)

and v1(a, b) ≡ 0 ≡ v2(a, b) (mod q).

Output : (a′, b′) ∈ Z
2 such that a′ ≡ a (mod q), b′ ≡ b (mod q),

and v1(a′, b′) ≡ 0 ≡ v2(a′, b′) (mod q2).
(

a′

b′

)

←

(

a
b

)

−

[

Jv1,v2 (a, b)
]−1

q2

(

v1(a, b)
v2(a, b)

)

cmod q2

We can see that Algorithm 1 deals with the modular roots of a pair (v1, v2) of
bivariate polynomials over Z, and involves the Jacobian matrix1 of (v1, v2) evaluated
at (a, b) ∈ Z

2. Since p is prime, the condition det [Jv1,v2
(a, b)] 6≡ 0 (mod p) implies

that it is legal to consider the modular inverse
[

Jv1,v2
(a, b)

]−1

q2
(for q2 = p2k+1

). Note

1 Recall that this matrix is the generalization of the derivative in higher-dimensional calculus
and is defined in the bivariate case by:

Jv1,v2 (a, b) =

(

∂ v1

∂X
(a, b) ∂ v1

∂Y
(a, b)

∂ v2

∂X
(a, b) ∂ v2

∂Y
(a, b)

)

.

Formally verified certificate checkers for hardest-to-round computation 7

that this algorithm is very similar to the so-called Newton’s method, so its univariate
counterpart is called p-adic Newton iteration in the book Modern Computer Algebra
[38, Algorithm 9.22, p. 264]. Note also that the univariate algorithm presented in this

reference stores the modulo-(p2k

) inverses in an extra variable, which is updated at
each iteration using Hensel’s iteration for the inverse “on the fly”: this optimization
could be generalized to the bivariate case too.

To find the bivariate small-integral-roots of (v1, v2), we just need to:

(i) Find a “nice” prime p so that Algorithm 1 is applicable;
(ii) Iterate Algorithm 1 on each modulo-p root of (v1, v2);
(iii) Stop as soon as one reaches an a-priori bound on the solutions.

For item (i), we can choose any prime p such that the following condition holds:

∀(x, y) ∈ Z
2, v1(x, y) ≡ 0 ≡ v2(x, y) (mod p) =⇒

det Jv1,v2
(x, y) 6≡ 0 (mod p). (7)

Note that (7) can be decided by checking p values for x and p values for y, that is,
p2 different pairs (x, y) ∈ J0, p − 1K2.

Algorithm 2 describes how to process item (ii) and item (iii), in order to solve
instances of bivariate SIntRootP (according to the terminology of Definition 1).

Algorithm 2: Find the small integral roots of two bivariate polynomials

Input: (v1, v2) ∈ Z[X, Y]2, (A, B) ∈ N
2.

Output: The small integral roots of (v1, v2) with respect to bounds A and B.

1 p← a prime that satisfies (7)
2 S ← ∅

3 foreach (r, s) ∈ J0, p− 1K2 such that v1(r, s) ≡ 0 ≡ v2(r, s) (mod p) do
4 k ← 0
5 K ← p
6 a← r cmod K
7 b← s cmod K

// Here, K = p2k
, a ≡ r (mod p), b ≡ s (mod p), |a| 6 K

2
, |b| 6 K

2

8 while K 6 2 ·max(A, B) do
9 k ← k + 1

10 K ← K2

11

(

a
b

)

←

(

a
b

)

−

[

Jv1,v2 (a, b)
]−1

K

(

v1(a, b)
v2(a, b)

)

cmod K

12 end

// Here, K = p2k
, a ≡ r (mod p), b ≡ s (mod p), |a| 6 K

2
, |b| 6 K

2

13 if v1(a, b) = 0 = v2(a, b) and |a| 6 A and |b| 6 B then S ← S ∪ {(a, b)}
14 end
15 return S

We now give a concrete example to see how Algorithm 2 works. This example
comes from an actual execution of the SLZ algorithm and will thus be reused later.

8 Érik Martin-Dorel et al.

Example 1 Let us consider the following bivariate polynomials:



















v1(X, Y) = Q(X, Y)2

+ (−6Y − 1593703)MQ(X, Y)

+ (9Y 2 + 4781109Y + 634972313052)M2,

v2(X, Y) = −25MQ(X, Y) + (76Y + 19921289)M2,

where M = 292 and

Q(X, Y) = −X + (36506148256923413Y 3 + 28709603185988793532416Y 2

+ 15052100435175692583523319808Y

+ 3945817816478696756615137147748352).

Suppose we want to determine all the integral roots (x, y) of (v1, v2) that satisfy

|x| 6 A := 287 and |y| 6 B := 24.

We first compute the Jacobian matrix of (v1, v2),

Jv1,v2
=

(

∂v1

∂X

∂v1

∂Y

∂v2

∂X

∂v2

∂Y

)

,

whose determinant cancels for some2 modulo-2 roots of (v1, v2). In contrast, we can
check that modulo 3, no modular root of (v1, v2) is a modular root of det Jv1,v2

:



























v1(x, y) ≡ 0 (mod 3),

v2(x, y) ≡ 0 (mod 3), and

det Jv1,v2
(x, y) 6≡ 0 (mod 3) if (x mod 3, y mod 3) ∈ {(0, 2), (2, 1)} ,

v1(x, y) 6≡ 0 (mod 3)

or v2(x, y) 6≡ 0 (mod 3) otherwise.

This means that p := 3 is the first prime satisfying the key hypothesis (7). Following
Algorithm 2, we can iterate bivariate Hensel lifting on both modulo-3 roots of (v1, v2):

since 325

6 2×max(A, B) < 326

, 6 iterations are performed and lead to the modular
roots summarized in Table 1.

Focusing on the values computed at the 6th iteration, we can notice that both
(x, y) = (233673222969575457782319, 11) and (33647808062653569260574440, −14)
satisfy

v1(x, y) = 0 = v2(x, y), |x| 6 A and |y| 6 B,

which means we have found two small integral roots of (v1, v2). Thanks to the ma-
terial presented in this paper, it will also be possible to provide a certificate that
guarantees that there is no other small integral root of (v1, v2), that is, we have found
all the solutions of the problem at stake (in particular, see Section 3 for the sequel
of this example).

2 Namely, (0, 0) and (1, 1) are modulo-2 roots of both (v1, v2) and det Jv1,v2 .

Formally verified certificate checkers for hardest-to-round computation 9

k (a, b) at k-th iteration for (r, s) := (0, 2) (a, b) at k-th iteration for (r, s) := (2, 1)

0 (0,−1) (−1, 1)
1 (0, 2) (−4, 4)
2 (18, 11) (23,−14)
3 (2286, 11) (−1516,−14)
4 (−11125170, 11) (−4823851,−14)
5 (281986488503298, 11) (785654438631512,−14)
6 (233673222969575457782319, 11) (33647808062653569260574440,−14)

Table 1 Modular roots obtained by iterating bivariate Hensel lifting (with a centered modulo)
for initial values (0, 2) and (2, 1), which are modulo-3 roots of (v1, v2). The variables k, r, s, a, b
are those of Algorithm 2.

2.3 Bivariate Hensel’s lemma: pencil and paper proof

We start this section by introducing two elementary arithmetic results that are used
several times in what follows.

Lemma 1 For all d ∈ N and z ∈ Z, if |z| < d and z ≡ 0 (mod d), then z = 0.

Corollary 1 For all (d, m, n) ∈ Z
3, if |2 · m| 6 d, |2 · n| < d, and m ≡ n (mod d),

then we have m = n.

Proof (Corollary 1) Suppose d, m, n ∈ Z satisfy the hypotheses of Corollary 1. By
the triangle inequality, we have |2 · (m − n)| < 2 · d, that is |m − n| < d. Since we
also have m − n ≡ 0 (mod d), Lemma 1 implies that m − n = 0, that is, m = n. ⊓⊔

We can now present the uniqueness statement of bivariate Hensel’s lemma:

Lemma 2 (Hensel) Let v1, v2 be two bivariate polynomials with integer coefficients,
and let p be a prime that satisfies (7). For all (x, y) ∈ Z

2 and k ∈ N such that

v1(x, y) ≡ 0 ≡ v2(x, y) (mod p2k

), (8)

any (Z2)-valued sequence (an, bn)06n6k defined by the relations

(a0, b0) ≡ (x, y) (mod p) (9)

and

∀n ∈ J0, k − 1K ,

(

an+1

bn+1

)

≡

(

an

bn

)

−

[

Jv1,v2
(an, bn)

]−1

p2n+1

(

v1(an, bn)
v2(an, bn)

)

(mod p2n+1

)

(10)

satisfies:
∀n ∈ J0, kK , (an, bn) ≡ (x, y) (mod p2n

). (11)

Notice that the modular equalities that appear in conditions (9) and (10) somewhat
generalize the algorithms presented in the previous Section 2.3, which were involving
a centered modulo. This generalization is made possible as Hensel lifting does not
depend on the representatives chosen at each step.

The following corollary shows that Lemma 2 constitutes a uniqueness result for
bivariate Hensel lifting:

10 Érik Martin-Dorel et al.

Corollary 2 (Uniqueness of Hensel lifting) Assume (v1, v2) ∈ Z[X, Y]2 satisfies

(7) for a given prime p. For any k ∈ N, if (a, b) ∈ Z
2 and (c, d) ∈ Z

2 are modulo-(p2k

)
roots of (v1, v2), that is if

{

v1(a, b) ≡ 0 ≡ v2(a, b) (mod p2k

)

v1(c, d) ≡ 0 ≡ v2(c, d) (mod p2k

),

then the lifting of the corresponding modulo-p roots is unique, that is
{

a ≡ c (mod p)

b ≡ d (mod p)
=⇒

{

a ≡ c (mod p2k

)

b ≡ d (mod p2k

).

Proof (Corollary 2) First, apply Lemma 2 with (x, y) := (a, b) and fix a sequence
(an, bn)06n6k satisfying (9) and (10), e.g., using the standard modulo. Then take n :=

k in (11), so that (ak, bk) ≡ (a, b) (mod p2k

). Second, apply Lemma 2 with (x, y) :=
(c, d), using the same sequence (an, bn)06n6k which indeed satisfies (a0, b0) ≡ (a, b) ≡

(c, d) (mod p). Then take n := k again, so that (ak, bk) ≡ (c, d) (mod p2k

), hence
the result. ⊓⊔

Before giving a complete mathematical proof of Lemma 2, let us mention that we
give in Appendix A the mathematical proof of the correctness of Algorithm 2 that
we deduce from this lemma. Although this proposition in appendix is not directly
related to the main topic of the paper, it can be useful to illustrate the usefulness
of Lemma 2 beyond the formal verification of certificates checkers based on Hensel’s
lemma. (In particular, the verification of these checkers does not require Algorithm 2
to be proved correct, as we will focus on a certifying variant of Algorithm 2 instead
in Section 3.1.)

Proof (Lemma 2) Let us assume that all the hypotheses of the lemma hold for
(v1, v2) ∈ Z[X, Y]2, p prime, (x, y) ∈ Z

2, and (an, bn)06n6k. To shorten the formulas
involved in the sequel, we denote by (xn, yn)n∈N

the sequence defined for all n ∈ N

by (xn, yn) := (x mod p2n

, y mod p2n

). Proving (11) thus amounts to showing that
∀n ∈ N, n 6 k ⇒ (an, bn) ≡ (xn, yn) (mod p2n

). We prove it by induction on n:

– First, we have p = p20

, so that (9) implies (a0, b0) ≡ (x0, y0) (mod p20

), which
proves the base case.

– For the inductive case, let us show that for any integer n < k that satisfies
(an, bn) ≡ (xn, yn) (mod p2n

), we have (an+1, bn+1) ≡ (xn+1, yn+1) (mod p2n+1

).

We can write xn = x mod p2n

= [x mod p2n+1

] mod p2n

= xn+1 mod p2n

, so
that xn+1 ≡ xn (mod p2n

), hence xn+1 ≡ an (mod p2n

) by using the induction
hypothesis. This implies that

∃λ ∈ Z, xn+1 = an + λp2n

.

Likewise, we deduce that

∃µ ∈ Z, yn+1 = bn + µp2n

.

For any bivariate polynomial P , we consider the operator

∆i,j(P) :=
1

i!j!

(

∂i+j

∂Xi∂Y j
P

)

. (12)

Formally verified certificate checkers for hardest-to-round computation 11

Despite the division, ∆i,j maps Z[X, Y] to Z[X, Y]. This can be easily checked on

monomials where we have ∆i,j(XkY ℓ) =
(

k
i

)(

ℓ
j

)

Xk−iY ℓ−j . Using this operator,

we apply Taylor’s theorem to each bivariate polynomial vl (l = 1, 2):

vl(xn+1, yn+1) =
∑

i,j∈N

(

λp2n)i (

µp2n)j
∆i,j(vl)(an, bn). (13)

The left-hand side of (13) is zero modulo p2n+1

, since

vl(xn+1, yn+1) = vl(x mod p2n+1

, y mod p2n+1

) ≡ vl(x, y) = 0 (mod p2n+1

).

Concerning the right-hand side, we can notice that

∀i, j ∈ N, i + j > 2 =⇒
(

λp2n)i (

µp2n)j
=
[

λiµj
(

p2n)i+j−2
]

· p2n+1

and

∆i,j(vl)(an, bn) ∈ Z,

therefore all terms in the summation involved in (13) are zero modulo p2n+1

whenever i + j > 2. As a result, (13) becomes

0 ≡ vl(an, bn) + λp2n ∂

∂X
vl(an, bn) + µp2n ∂

∂Y
vl(an, bn) (mod p2n+1

). (14)

We can combine (14) for both values l = 1, 2 to obtain

(

0
0

)

=

(

v1(an, bn)
v2(an, bn)

)

+

[

Jv1,v2
(an, bn)

](

λp2n

µp2n

)

(mod p2n+1

), (15)

where the modulo is taken coordinatewise.
Then, we can easily combine (8) with the induction hypothesis to deduce that
v1(an, bn) ≡ 0 ≡ v2(an, bn) (mod p), hence by (7), det Jv1,v2

(an, bn) 6≡ 0 (mod p)

and thereby det Jv1,v2
(an, bn) 6≡ 0 (mod p2n+1

), so that (15) can be rewritten to

−

[

Jv1,v2
(an, bn)

]−1

p2n+1

(

v1(an, bn)
v2(an, bn)

)

≡

(

λp2n

µp2n

)

(mod p2n+1

). (16)

Then we replace λp2n

with xn+1 − an (resp. µp2n

with yn+1 − bn) and we obtain

(

an

bn

)

−

[

Jv1,v2
(an, bn)

]−1

p2n+1

(

v1(an, bn)
v2(an, bn)

)

≡

(

xn+1

yn+1

)

(mod p2n+1

).

Now we can use (10) to finally deduce that

(

an+1

bn+1

)

≡

(

xn+1

yn+1

)

(mod p2n+1

). ⊓⊔

12 Érik Martin-Dorel et al.

2.4 Bivariate Hensel’s lemma: formal proof in Coq

The code of our CoqHensel library, along with some documentation, is available
online at http://tamadi.gforge.inria.fr/CoqHensel/.

Let us now focus on the formalization of bivariate Hensel’s lemma in Coq [15,3].
As regards the basic types, functions and lemmas required for this formalization, we
can see from the previous Section 2.3 that we need:

(i) N with the usual operations (including exponentiation) as well as the primality
and divisibility predicates;

(ii) Z with the usual operations (including absolute value) and a comprehensive
formalization of modular arithmetic;

(iii) Z[X, Y] with polynomial evaluation, derivatives, and Taylor’s theorem for bi-
variate polynomials;

(iv) Some facilities to handle iterated operators, and in particular the summations
that appear when proving (and using) Taylor’s theorem;

(v) ExtendedGCD-based modular inversion over M2(Z).

A large part of these notions are covered by the libraries distributed with the
SSReflect [17,18] extension of Coq. First, item (i) above is fully handled using
libraries ssrnat, prime and div. For item (ii), we rely on the SSReflect libraries
ssrint, intdiv and ssrnum which define integers as

Inductive int := Posz (n : nat) | Negz (n : nat).

0 is represented by (Posz 0), 1 by (Posz 1), −1 by (Negz 0), and so on. As
this definition involves Peano integers (nat), it is definitely not adapted to large-
scale computation, but quite convenient to develop proofs and going back-and-forth
between signed integers and natural numbers. For computing effectively with integers
we will rely on other data structures, which will be the topic of Section 4.1.

For item (iii), we simply define bivariate polynomials as polynomials with uni-
variate polynomials as coefficients. The corresponding Coq code is:

Notation "{ ’bipoly’ R }" := {poly {poly R}} : type_scope.

Note that this definition is asymmetric with respect to the indeterminates X and Y
(which are respectively defined as the outermost indeterminate and the innermost
one). One of the benefits of this definition is that we directly inherit all ring oper-
ations and support theorems from the SSReflect library poly. We just need to
define the n-th partial derivatives and bivariate Horner evaluation, then prove the
following version of Taylor’s theorem:

Theorem 1 (Taylor) For any unital ring R, for any polynomial P ∈ R[X, Y] and
for any x0, y0, h, k ∈ R that commute pairwise3 we have

P (x0 + h, y0 + k) =
∑

i

∑

j

∆i,j(P)(x0, y0) · hi · kj . (17)

The operator ∆i,j above has been previously defined in Equation (12), and we recall
that it maps the ring R[X, Y] to R[X, Y], despite the presence of the division 1

i!j! .
The proof of Theorem 1 essentially relies on some manipulations of summations,

3 that is, x0y0 = y0x0, x0h = hx0, x0k = kx0, y0h = hy0, y0k = ky0 and hk = kh.

http://tamadi.gforge.inria.fr/CoqHensel/

Formally verified certificate checkers for hardest-to-round computation 13

and uses twice the univariate version of Taylor’s theorem. Note that our version of
univariate Taylor’s theorem has been included to the standard SSReflect library
poly.

For item (iv), we benefited from the formalization of generic “big operators”
provided in the SSReflect library bigop [4].

For item (v), we rely on the formalization of rings Z/qZ provided in the SSRe-

flect library zmodp to address Definition 3. Then, we benefit from the SSReflect

library matrix to deduce Definition 4. We formalize this definition in a generic way
(for order-n matrices) before specializing it to order-2 matrices within the proof of
Lemma 2. Although not essential to derive the proof of bivariate Hensel’s lemma,
the use of matrices leads to more concise expressions and proof steps. In particular,
a key ingredient about order-2 matrices is given by the following version of Cramer
rule with moduli:

∀p prime, ∀k ∈ N, ∀A ∈ M2(Z), ∀t ∈ Z
2 = M2,1(Z),

det(A) 6≡ 0 (mod p) =⇒ A−1

p2k+1 × (A × t) ≡ t (mod p2k+1

). (18)

The formal proof of Lemma 2 closely follows the pencil-and-paper proof presented
in Section 2.3. In particular, we rely on the result (18) to deduce (16) from (15).

3 Formal verification of certificates using Hensel’s lemma

We now follow the certificate-based approach to address the Integer Small Value
Problem (ISValP) described in Section 1.2 :

– In Section 3.1, we devise some bivariate small integral roots certificates that can
be generated by using a variant of Algorithm 2. These certificates can then be
verified by a checker that does not need to iterate Hensel lifting all over again,
and whose correctness proof relies on Corollary 2.

– Then in Section 3.2, we devise some ISValP certificates that are built upon the
previous certificates, and that can be generated using the modular, bivariate
version of Coppersmith’s technique, based on the LLL algorithm [25]. Again, the
checker does not need any call to the LLL algorithm to verify the certificates.

3.1 Certificates for the bivariate small-integral-roots problem

3.1.1 The problem at stake

The problem we tackle in this section is to formally verify that we know all the small
integral roots (x, y) ∈ Z × Z of a pair of bivariate polynomials (v1, v2) on Z, with
respect to bounds A and B:

Problem 2 (Certifying bivariate small integral roots) Given


























v1 ∈ Z[X, Y],

v2 ∈ Z[X, Y],

A ∈ N,

B ∈ N,

S ⊂ Z × Z,

(19)

14 Érik Martin-Dorel et al.

we want to formally verify that the following property holds:

∀(x, y) ∈ Z
2, (x, y) ∈ S ⇐⇒ v1(x, y) = 0 = v2(x, y) ∧ |x| 6 A ∧ |y| 6 B. (20)

For this purpose, we follow the following steps:

1. Define the type for bivariate small integral roots certificates as a Record;
2. Define the checker for these certificates as a Coq function;
3. Prove the correctness of this checker (if it returns true, then (20) holds), using

the uniqueness result given by Corollary 2;
4. Optimize the implementation of the checker by using efficient data structures for

the computation.

We detail below the main definitions or statements that are involved in the three
first steps, while the fourth step will be described in Section 4.

3.1.2 The type of certificates

First, we need to define the type of certificates for the bivariate small-integral-roots
problem. Typically, it should gather at the same time the “input/output” of the
problem—here given in Equation (19)—, as well as some additional data that allow
one to deduce that the particular instance of the problem is valid—here it amounts
to showing that Equation (20) holds. We thus consider the following type:

Record bivCert := BivCert

{ bc_v1 : {bipoly int}

; bc_v2 : {bipoly int}

; bc_A : nat

; bc_B : nat

; bc_p : nat

; bc_k : nat

; bc_L : list (int * int * bool)

}.

In addition to the polynomials v1, v2, and the bounds A and B—which constitute
the “input” of the problem—, the certificate stores the prime p and the final value
of k that both occur in Algorithm 2.

We recall that p is a prime number that fulfills (7), and k is the number of
iterations of Hensel lifting performed to reach the specified bounds (i.e., we have

p2k

> 2 · max(A, B)). Finally, the list L involved in the certificate is supposed to

store all the modulo-(p2k

) roots4 of (v1, v2), along with a Boolean value that indicates
whether each modular root is an actual integral root or not.

4 These modular roots being considered in an appropriate range, say in
]

− p2k

2
, p2k

2

]

.

Formally verified certificate checkers for hardest-to-round computation 15

Example 2 (Bivariate small integral roots certificate) A possible certificate built on
Example 1 is the following one:

C :=

(

v1, v2,
(

A := 287
)

,
(

B := 24
)

, (p := 3) , (k := 6) ,

(

L :=
{

(233673222969575457782319, 11, true),

(33647808062653569260574440, −14, true)
}

)

)

.

where v1 and v2 are not shown here for brevity (see Example 1 for their definition).

3.1.3 The certificate checker

Let us now present the algorithm to be implemented in the certificate checker. We say
that a certificate (v1, v2, A, B, p, k, L) is valid if the following conditions are fulfilled:

p is a prime number, (21a)

if the list L is not empty, the integer k > 0 satisfies p2k

> 2 · max(A, B), (21b)

for Lp := {(r mod p, s mod p) | ∃t ∈ {true, false} , (r, s, t) ∈ L} , we have:

∀(x, y) ∈ J0, p − 1K2, (x, y) ∈ Lp ⇐⇒ v1(x, y) ≡ 0 ≡ v2(x, y) (mod p), (21c)

the elements of Lp are pairwise distinct, (21d)

∀(x, y) ∈ Lp, det Jv1,v2
(x, y) 6≡ 0 (mod p), (21e)

and for all (r, s, t) ∈ L, we have:

v1(r, s) ≡ 0 ≡ v2(r, s) (mod p2k

), (21f)

|2 · r| 6 p2k

and |2 · s| 6 p2k

, (21g)

t = true ⇐⇒
(

v1(r, s) = 0 = v2(r, s) ∧ |r| 6 A ∧ |s| 6 B
)

. (21h)

These conditions are implemented by a Coq function biv_check that takes a cer-
tificate of type bivCert and returns a boolean that indicates whether the certificate
is valid or not.

3.1.4 The formal correctness proof

The correctness proof of the bivariate checker biv_check consists in proving that
any certificate that is accepted by the checker is valid, i.e., contains all the small
integral roots of the considered pair of bivariate polynomials. We thus prove the
following

16 Érik Martin-Dorel et al.

Theorem 2 (Correctness of biv_check) For any bivariate small-integral-roots
certificate C := (v1, v2, A, B, p, k, L), if (biv_check C) returns true, then for all
(x, y) ∈ Z

2 we have the equivalence
(

v1(x, y) = 0 = v2(x, y) ∧ |x| 6 A ∧ |y| 6 B
)

⇐⇒ (x, y, true) ∈ L. (22)

Remark 1 (Invertibility hypothesis) Equation (21e) can be viewed as a “distributed
version” of the main invertibility hypothesis (7) of bivariate Hensel’s lemma. Indeed,
according to (21c), the values that are given to variable (x, y) in (21e) correspond
to all the modulo-p roots of (v1, v2), so that (21c) and (21e) imply

∀(x, y) ∈ J0, p − 1K2 ,

v1(x, y) ≡ 0 ≡ v2(x, y) (mod p) =⇒ det Jv1,v2
(x, y) 6≡ 0 (mod p).

Let us now present the main steps of this correctness proof, which has been
mechanized in Coq.

Proof (Theorem 2) Suppose that (biv_check C) returns true for a given certificate
C := (v1, v2, A, B, p, k, L), and let (x, y) ∈ Z

2. Note that modular equalities over Z
2

below are taken coordinatewise.

– Let us prove the “=⇒” part of equivalence (22), relying on Corollary 2. To begin
with, the assumption v1(x, y) = 0 = v2(x, y) implies

v1(x mod p, y mod p) ≡ 0 ≡ v2(x mod p, y mod p) (mod p). (23)

So applying (21c) with (x0, y0) := (x mod p, y mod p) leads to (x0, y0) ∈ Lp, that
is by definition of Lp,

∃(r, s, t) ∈ L, (x0, y0) = (r mod p, s mod p),

hence
(x, y) ≡ (r, s) (mod p). (24)

Now let us show that (r, s, t) = (x, y, true), which will allow one to deduce that
(x, y, true) ∈ L.
– First, we want to show that (x, y) = (r, s). We can use Corollary 2: the main

hypothesis (7) is fulfilled thanks to (21e), as explained in Remark 1. Moreover,
we immediately have

v1(x, y) ≡ 0 ≡ v2(x, y) (mod p2k

)

as well as
v1(r, s) ≡ 0 ≡ v2(r, s) (mod p2k

)

by using (21f). So we can apply Corollary 2 and use (24) to deduce that

(x, y) ≡ (r, s) (mod p2k

).

In addition, with K := p2k

, we have


















|x| 6 A < K/2 by (21b),

|r| 6 K/2 by (21g),

|y| 6 B < K/2 by (21b),

|s| 6 K/2 by (21g).

Hence by applying twice Corollary 1, we get x = r and y = s.

Formally verified certificate checkers for hardest-to-round computation 17

– Second, we want to show that t = true, knowing that the equivalence (21h)
holds. By hypothesis, we have

v1(x, y) = 0 = v2(x, y) ∧ |x| 6 A ∧ |y| 6 B.

It then suffices to combine this result with the fact that (x, y) = (r, s) that
we have proved just now to get v1(r, s) = 0 = v2(r, s) ∧ |r| 6 A ∧ |s| 6 B,
which is equivalent to the desired result t = true.

– For the “⇐=” part of (22), we need to verify that the values stored in L are
actual integral roots. This directly follows from (21h). ⊓⊔

3.2 Certificates for the Integer Small Value Problem (ISValP)

3.2.1 The problem at stake

In the previous Section 3.1, we have seen that we can take advantage of Hensel’s
lemma to devise some bivariate small integral roots certificates. We will now see how
this kind of certificates can be reused to address the ISValP problem. For this, we
introduce the list S and rephrase Problem 1 as:

Problem 3 (Certifying ISValP) Given



























P ∈ Z[X],

A ∈ N,

B ∈ N,

M ∈ N,

S ⊂ Z × Z,

(25)

we want to formally verify that the following property holds:

∀(x, y) ∈ Z
2, |x| 6 A ∧ |y| 6 B ∧ P (y) ≡ x (mod M) =⇒ (x, y) ∈ S. (26)

Notice that the order of variables x and y in (26) is reversed with respect to Problem 1
and [35]. This different wording is due to some Coq technicalities, on which we will
elaborate in Section 5. Note also that unlike Problem 2 where the required property
(20) was an equivalence, here we only require an implication (26) saying that S is
a superset of the ISValP solutions. Indeed we are especially interested in formally
proving that no ISValP solution has been forgotten. And for computing the exact
ISValP solutions, it suffices to check the ISValP conditions on each solution candidate
(i.e., on each element of S).

3.2.2 Focusing on the SLZ algorithm

In order to understand which kind of certificates could be suitable for ISValP, we
have to give a closer look to what the SLZ algorithm is doing. The main steps are
summarized in Figure 1 and explained below.

18 Érik Martin-Dorel et al.

Integer Small Value Problem P ∈ Z[X], find all y ∈ J−B, BK such that |P (y) cmod M | 6 A

Q(X, Y) := P (Y) − X ∈ Z[X, Y]

Bivariate Small Modular Roots Find all (x, y) ∈ J−A, AK × J−B, BK s.t. Q(x, y) ≡ 0 (mod M)

Coppersmith’s technique with parameter α > 0:
Consider Qi,j(X, Y) = Mα−iQ(X, Y)iY j (i 6 α).
Heuristically, find two Z-linear combinations v1, v2 of (Qi,j) s.t.

∀x, y ∈ Z, |x| 6 A and |y| 6 B =⇒ |vl(x, y)| < Mα.
Notice that the small modulo-M roots of Q also satisfy

vl(x, y) ≡ 0 (mod Mα).

Bivariate Small Integral Roots Find all (x, y) ∈ J−A, AK × J−B, BK s.t. v1(x, y) = 0 = v2(x, y)

Bivariate Hensel lifting

ISValP certificate

Fig. 1 Solving ISValP using the SLZ algorithm.

The algorithm starts from an ISValP instance and reduces it to a bivariate small
integral root problem (to be solved by using Hensel lifting, as described in Sec-
tion 3.1). Here is the proof of correctness of this reduction:

Proof (Reduction from an ISValP instance) Assume that y ∈ J−B, BK satisfies
|P (y) cmod M | 6 A. According to Equation (6) in Section 2.1, this amounts to
saying that we have (x, y) ∈ J−A, AK × J−B, BK such that P (y) ≡ x (mod M).
Then, pose Q(X, Y) := P (Y) − X ∈ Z[X, Y], implying that

Q(x, y) ≡ 0 (mod M). (27)

Then, choose an integer α > 0 (the Coppersmith parameter) and consider the family
of polynomials

Qi,j(X, Y) = Q(X, Y)iMα−iY j (i 6 α).

Under heuristic assumptions, we may find two Z-linear combinations5 v1, v2 of (Qi,j)
such that

∀(z, t) ∈ J−A, AK × J−B, BK , |v1(z, t)| < Mα and |v2(z, t)| < Mα. (28)

By definition of (Qi,j), v1 and v2, Equation (27) implies

v1(x, y) ≡ 0 ≡ v2(x, y) (mod Mα). (29)

Combining (28) and (29) leads to

v1(x, y) = 0 = v2(x, y). ⊓⊔

Note that the small integral roots of the reduced problem may happen to be a strict
superset of the solutions of ISValP.

5 These polynomials v1 and v2 can be found by means of the LLL algorithm for Euclidean
lattice basis reduction, which is the most time consuming part of the overall algorithm SLZ.
More details on the way the polynomials v1 and v2 are computed may be found in [33,35,34].

Formally verified certificate checkers for hardest-to-round computation 19

3.2.3 Designing the certificate

The certificate must obviously contain the initial values P , A, B, M . We also need to
include the Coppersmith parameter α. As regards the linear combinations v1, v2, we
focus on their coefficients with respect to the family of polynomials {Qi,j(X, Y)}i,j ,
and we store these coefficients as mere polynomials u1, u2 in the monomial basis. In
other words, for both l ∈ {1, 2}, the certificate will contains the polynomial

ul =
∑

i6α

∑

j

ul;i,jXiY j .

which will represent the linear combination
∑

i6α

∑

j

ul;i,jQi,j(X, Y) = vl.

We then need to include the values p, k, and L that correspond to the bivariate small
integral root certificate. Altogether this gives the following Coq record:

Record cert_ISValP := Cert_ISValP

{ ic_P : {poly int}

; ic_A : nat

; ic_B : nat

; ic_M : nat

; ic_alpha : nat

; ic_u1 : {bipoly int}

; ic_u2 : {bipoly int}

; ic_p : nat

; ic_k : nat

; ic_L : list (int * int * bool)

}.

Let us give an example of ISValP certificate.

Example 3 (ISValP certificate) This example is based on the same numerical data
as in Examples 1 and 2 :

C′′ :=

(

P,
(

A := 287
)

,
(

B := 24
)

,
(

M := 292
)

, (α := 2) , u1, u2, (p := 3) , (k := 6) ,

(

L :=
{

(233673222969575457782319, 11, true),

(33647808062653569260574440, −14, true)
}

)

)

,

where P (X) = 36506148256923413X3 + 28709603185988793532416X2

+ 15052100435175692583523319808X

+ 3945817816478696756615137147748352,
and
{

u1(X, Y) = X2 + (−6Y − 1593703)X + (9Y 2 + 4781109Y + 634972313052),

u2(X, Y) = −25X + (76Y + 19921289).

20 Érik Martin-Dorel et al.

3.2.4 The certificate checker

The algorithm of our ISValP certificate checker is described in Figure 2.

check_ISValP (P, A, B, M, α, u1, u2, p, k, L) ∈ {true, false}

1. Compute Q(X,Y) := P (Y)−X ∈ Z[X, Y];

2. Compute vl(X, Y) = Mα · ul

(

Q(X, Y)
M

, Y

)

for l ∈ {1, 2};

3. Return true if and only if:






















∑

i,j

|v1;i,j |A
iBj < Mα,

∑

i,j

|v2;i,j |A
iBj < Mα,

(v1, v2, A, B, p, k, L) is a valid SIntRootP certificate (as specified in Section 3.1.3).

Fig. 2 ISValP certificate checker.

In this algorithm, Line 1 computes the bivariate polynomial Q, then Line 2
performs a change of polynomial basis: the polynomials v1(X, Y) and v2(X, Y) are
initially expressed in the polynomial basis {Qi,j(X, Y)}i,j and we need to compute
their coefficients in the usual monomial basis. In the formalization, we perform this
change of polynomial basis in two steps:

1. First, we “lift” the coefficients of u =
∑

i6α

∑

j
uijXiY j from uij to uijMα−i;

2. Then in the polynomial
∑

i6α

∑

j
uijMα−iXiY j , we replace the indeterminate

X with the polynomial Q to get v =
∑

i6α

∑

j
uijMα−iQ(X, Y)iY j ; this may

be accomplished by using a Horner-based polynomial composition.

Weighted Norm-1. Now let us explain Line 3 in Figure 2. A crucial ingredient for
building our ISValP checker consists in formalizing a simple and efficient test to
ensure that (28) is fulfilled. We introduce the notion of “weighted norm-1,” defined
for any P ∈ Z[X, Y] and (A, B) ∈ N

2 by:

|P |(A, B) :=
∑

i,j

|Pi,j |AiBj ∈ N.

This notion enjoys the following result:

Lemma 3 For any P ∈ Z[X, Y] and any (A, B) ∈ N
2, we have

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B =⇒ |P (x, y)| 6 |P |(A, B).

Thanks to this result (and considering P := vl), we can notice that it is sufficient to
have |vl|(A, B) < Mα to make sure that Equation (28) holds. (Note that the design
of the SLZ algorithm internally relies on a similar notion, so the fact that it only
provides a sufficient condition does not raise any issue.)

Formally verified certificate checkers for hardest-to-round computation 21

3.2.5 The formal correctness proof

The correctness claim for our ISValP checker is given by the following statement:

Theorem 3 (Correctness of check_ISValP) For any ISValP certificate C :=
(P, A, B, M, α, u1, u2, p, k, L) that is accepted, we have the following property:

∀(x, y) ∈ J−A, AK × J−B, BK , P (y) ≡ x (mod M) =⇒ (x, y, true) ∈ L.

As pointed out in Section 3.2.2, Coppersmith’s technique proceeds by implication,
so it finally leads to an implication in Theorem 3. In other words, all the solutions
of the ISValP instance are gathered in the list L. At the very end (to compute
the hardest-to-round points of the considered elementary function), it will suffice to
check the solution candidates gathered in the list L.

In order to prove Theorem 3, we closely follow the reduction proof given in
Section 3.2.2. We formally prove Lemma 3, then we combine it with Lemma 1 to
obtain the following result:

Lemma 4 For any P ∈ Z[X, Y] and any (N, A, B) ∈ Z
3, we have:

∀x, y ∈ Z, |x| 6 A ∧ |y| 6 B ∧ |P | (A, B) < N

∧ P (x, y) ≡ 0 (mod N) =⇒ P (x, y) = 0.

We use this result twice, one for each polynomial v1, v2. Then we apply Theorem 2
to get Theorem 3.

4 Effective certificate checkers

The certificate checkers that we have presented in Sections 3.1 and 3.2 have been
developed using some data structures that are suitable for proving, but not for com-
puting. To get effective computation, we need to re-implement our certificate checkers
with effective data structures. This is a standard approach, see e.g. [16].

4.1 Focusing on modularity and efficiency

We implement the effective version of our certificate checkers in a modular way,
relying on the Module system of Coq. These checkers are then proved correct with
respect to the reference checkers presented in Section 3. A key aspect of our modular
implementation is that we can easily change the arithmetic with which these checkers
compute. Three instantiations are available:

– binary integers from Coq’s standard library ZArith that represent numbers as
list of booleans with linear access;

– machine-efficient integers from Coq’s standard library BigZ that represents num-
bers as complete binary trees of machine integers with logarithmic access;

– Integers Plus Positive Exponent (IPPE) numbers that are unevaluated dyadic
numbers m×2e with e > 0. We detail below the motivation and the formalization
of this latter implementation.

22 Érik Martin-Dorel et al.

This last instantiation has been motivated by the fact that the coefficients of the
approximation polynomials that typically occur in the final verification chain for SLZ
are floating-point numbers in radix-2. In order to switch to integer arithmetic, these
polynomials are then scaled by a large power of the radix to generate an instance
of ISValP. For instance, in some example presented in Section 4.2.1, the power of 2
to be considered is 213660, leading to a polynomial on Z whose degree-0 coefficient
is M × 210629 where M is an odd integer in

q
23032, 23033 − 1

y
. Factoring out the

powers of 2 in all computation seems a reasonable optimization. In fact, it leads to
an appreciable twofold speedup as we will see in Section 4.2.1.

Some obvious optimizations were mandatory in order to get reasonable checking
time:

– First, the quantity det Jv1,v2
(x, y) involved in Condition (21e) can be computed

in several ways: we can either compute the determinant ∆(X, Y) = ∂v1

∂X
× ∂v2

∂Y
−

∂v2

∂X
× ∂v1

∂Y
and deduce the quantity ∆(x, y), or perform the Horner evaluation

beforehand on each of the derivatives and compute the determinant of the result-
ing matrix. The latter calculation has the benefit of not requiring multiplication
of polynomials, since the determinant acts on a matrix in M2(Z) instead of
M2(Z[X, Y]). For implementing this calculation, we redefine the type of order-2
matrices as a polymorphic record with four projections, which is better suited
to effective computation than the SSReflect type ’M_2 for order-2 matrices.
Then we refine the corresponding algorithms with respect to ’M_2.

– Second, the case where L is empty is very frequent so worth optimizing. In
particular, when this list is empty, some computations like that of the Jacobian
determinant above are unnecessary.

– The last optimization concerns Condition (21c) (and (21e) as well). It consists
in checking whether the list

Lp = {(r, s) mod p | ∃t ∈ {true, false} , (r, s, t) ∈ L}

satisfies

∀(x, y) ∈ J0, p − 1K , (x, y) ∈ Lp ⇐⇒ v1(x, y) ≡ 0 ≡ v2(x, y) (mod p).

Since the coefficients of v1 and v2 are huge, the polynomials v1(X, Y) (mod p)
and v2(X, Y) (mod p) are computed once before performing the different Horner
evaluations.

4.2 Evaluation of the performances of the ISValP checker

The current section is organized as follows. First, we evaluate the performances of
the current version of our library by focusing on four ISValP instances that were
first presented in [26, Section 5.4.5] and which cover a broad spectrum of situations
related to our target application (solving the TMD using SLZ). Second, we present
a complete verification of an ISValP computation that addresses the full range of an
exponent, in order to demonstrate the scalability of our Coq implementation.

Formally verified certificate checkers for hardest-to-round computation 23

The certificates were generated using SAGE (which relies, mostly, on the MPIR,
FLINT and fpLLL libraries). All the Coq benchmarks have been computed on an
Intel R© Xeon R© E5-2667 CPU clocked at 2.90 GHz, using OCaml 4.00.1 and the
following two versions of Coq: the experimental native-coq6 branch of Coq [6] and
the current stable version of Coq (version 8.4pl4). Note that the native-coq version is
obviously faster but it has also a larger trusted computing base since it dynamically
links new code generated by the OCaml compiler.

4.2.1 Four typical instances of ISValP

For each instance of ISValP, Table 2 gives the function at stake, the precision vari-
ables n and n′ that were presented in Section 1.2, the normalized (or scaled) ap-
proximation polynomial P ∈ Z[X], the modulo M , and the bounds A and B. These
instances have been chosen so that

– #1, #2, and #3 deal with the binary64 format, while #4 deals with binary128;
– #1 contains a hardest-to-round point, unlike other instances;
– #3 and #4 deal with the Approximate TMD (cf. Section 1.2), the value of n′

being much larger than 2 × n.

Instance of ISValP f n n′ deg(P) maxi(|Pi|) M A B
#1 exp 53 100 2 .1.68×2237 2185 2139 212

#2 exp 53 100 2 .1.22×2237 2185 2139 212

#3 exp 53 300 12 .1.36×2996 2942 2696 232

#4 exp 113 3000 90 .1.36×213661 213547 210661 272

Table 2 Short description of four instances of ISValP.

For a given parameter α, SLZ produces the polynomials v1 and v2, and runs the
bivariate Hensel lifting to generate the ISValP certificates. Table 3 summarizes the
data stored in the certificates, and the timings for their verification inside Coq. The
last four columns give the timings using the compiled native_compute reduction
tactic of native-coq (using IPPE numbers, then BigZ numbers), and the timings
using the interpreted vm_compute reduction tactic of Coq 8.4pl4 (again using IPPE
numbers, then BigZ numbers).

Inst. α Mα p size(L)
CPU time to return true

Maple 16 native-coq Coq 8.4pl4
IPPE BigZ IPPE BigZ

#1 2 2370 5 1 0.002 s 0.069 s 0.077 s 0.070 s 0.066 s
#2 2 2370 23 0 0.005 s 0.086 s 0.089 s 0.095 s 0.100 s
#3 4 23768 5 0 0.024 s 0.154 s 0.261 s 0.705 s 1.641 s
#4 6 281282 5 0 29.91 s 6′ 6 s 11′ 14 s 1h 3′ 39 s 4h 16′ 29 s

Table 3 Short description of several ISValP certificates with their verification timing in Coq.
The first column refers to Table 2.

6 URL: https://github.com/maximedenes/native-coq

https://github.com/maximedenes/native-coq

24 Érik Martin-Dorel et al.

In what follows, we focus on the last two rows of Table 3 (as using native-coq yields no
appreciable speedup for the small examples #1 and #2, because of the compilation
overhead). These figures indicate that using IPPE integers in place of the standard
BigZ integers yields a 1.7x to 4x speedup, and using the compiled native_compute in
place of the interpreted vm_compute of Coq 8.4pl4 yields a 4.5x to 22x speedup. Also,
the fastest version of the Coq checker is only 6 to 12 times slower than Maple. This is
reasonable if we consider that the formal checker is executed in a trusted framework
with restricted computing power, unlike Maple that notably takes advantage of the
GMP library.

4.2.2 Large-scale benchmarks for our formalized ISValP checker

We now focus on sets of certificates that are needed to address the full range of an
exponent in binary64 (formerly known as the double precision format). We recall
that the bound B involved in the ISValP certificates directly indicates the number
of floating-point numbers that are taken into account. As a result, we would need
253−1/B = 220 certificates similar to the ISValP instance #3 of Table 3 to address all
the floating-point numbers7 of one exponent of binary64. We can then extrapolate the
overall timing that would be required in this context: 0.154 s × 220 ≈ 45 hours. And
the total size of the corresponding certificates would be of at least 2 806 bytes×220 ≈
2.9 GB of ASCII to be fed to Coq. As a matter of fact, we can do much better by
taking a larger value of α for the SLZ algorithm. For the parameters given in Table 4,
only 253−1/B = 212 certificates are necessary for addressing the same range. The
generation of each certificate took approximately 140 s, which leads to around 20 h
of real time on a 8-core Intel R© Xeon R© X5550 CPU clocked at 2.67 GHz. Roughly
95 % of this time was spent in the lattice reduction calls, on a 105 × 3056 matrix
with 700-bit integer entries.

All these certificates were verified on the same machine as in Section 4.2.1, by
compiling 8 Coq files, each containing the evaluation (i.e., Eval native_compute or
Eval vm_compute) of the ISValP checker on 512 certificates. The average verification
time (with standard deviation) for the considered population of ISValP certificates is
given in Table 5. We can see that using the native_compute reduction tactic in place
of vm_compute yields a speedup of 5x on average. Almost all certificates contain no

7 Technically speaking, we only consider the normal binary floating-point numbers here, i.e.,
their leading bit is assumed to be 1.

f n n′ range B α total size of input files
exp 53 300 [1, 2] 240 13 . 100 MB

Table 4 Short description of the common values of 4096 ISValP certificates.

Class of certificates Average CPU time ± std deviation to accept one certificate
native-coq & native_compute Coq 8.4pl4 & vm_compute

4090 certs. s.t. size(L) = 0 21.2 s± 4.5 s 109.0 s± 22.1 s
6 certs. s.t. size(L) = 1 42.8 s± 10.9 s 249.3 s± 62.0 s
all the 4096 certificates 21.2 s± 4.6 s 109.2 s± 22.9 s

Table 5 Some statistics on the formal verification of 4096 ISValP certificates within Coq, using
the “bigZ× bigN” implementation of IPPE integers. The biggest chosen prime is pmax := 47.

Formally verified certificate checkers for hardest-to-round computation 25

root and are relatively easy to verify. Also, there is a ratio of 6.6x (= 140 s/21.2 s)
between the generation using SAGE and the verification in Coq. This means that
using certificates, the computation has been formally verified with an overhead of
15 % only. As shown by our implementation of the checker in Maple, progress could
be made to further reduce this overhead. Note that for the very big certificate #4 of
Table 3, the formalized ISValP checker is only one order of magnitude slower than
Maple.

5 Discussion

In order to prove the correctness of our checkers, a variety of mathematical notions
has to be formalized: Taylor’s theorem for bivariate polynomials, Jacobian matrix
for pairs of bivariate polynomials, Cramer’s rule for order-n matrices in modular
arithmetic, and weighted norm-1 for bivariate polynomials among others.

Taylor’s theorem already existed in Coq for real analysis. It has been reproved
independently so as to be applicable to polynomials over an arbitrary ring (this is
integrated in the standard distribution of SSReflect). This leads to the notion of
normalized derivatives that uses binomial coefficients to internalize the division by
1
n! that is not available on a ring. Doing so, we also avoid a dependency with the
real analysis and its axiomatic approach. A similar dependency could also occur for
the IPPE integers, since they rely on the Coq.Interval library. We carefully checked
that no dependency was introduced also here. So, our development is axiom-free.

A careful reader would have noticed that in Section 3.2, we have interchanged
the two variables X and Y with respect to [35, Section 3.2], which was considering
Qi,j(X, Y) = XiQj(X, Y)Mα−j (j 6 α). This technical detail comes from the way
we have represented bivariate polynomials: Z[X, Y] is encoded as (Z[Y])[X]. A con-
sequence of the asymmetry between the two variables X and Y is that we get for
free the substitution of a polynomial Q(X, Y) for the variable X in P (X, Y) with
the simple univariate composition P ◦ Q. The other substitution with the variable Y
is less direct. The ISValP checker is then encoded using the first substitution.

Formalizing effective implementations of algorithms in a proof assistant is often
a challenging task. A key ingredient that we have been using here is to develop
modular code. The Coq proof assistant provides three mechanisms for modularity:
type classes [32], canonical structures [31], and modules [10,9]. Modules are less
generic than the other two (which are first-class citizens) but they have a better
computational behavior. Indeed, module applications are performed statically, so
the code that is executed is often more compact. We have been using modules to
develop the generic implementation presented in Section 4.1. In particular, this has
clearly simplified the formalization of IPPE integers, since the Coq.Interval library is
also relying on modules.

An aspect of our work that could be largely automated is the refinement from
the naive checker that works on a simple data-structure to the more efficient one.
For the moment, this is done in an ad-hoc way using morphisms between data-
structures and explicitly applying rewriting rules for the correctness proof. The use
of a more systematic approach such as the ones proposed in [11,20,24] would be a
clear improvement.

A key part of the mathematical background that underlies the formal verification
of our ISValP checker is Hensel’s lemma, in the bivariate case. We recall that ISValP

26 Érik Martin-Dorel et al.

can be solved by using a variant of Coppersmith’s technique, which exists in two
main versions, univariate and bivariate [13,12]. We thus started our formalization
effort by mechanizing the univariate case of Hensel’s lemma and generalizing it to the
bivariate case for the needs of ISValP. But beyond ISValP, further generalizations
of Hensel’s lemma could be envisioned, for instance to address the small integral
roots problem for n bounds and n polynomials. To this end, we could rely on our
formalization of Definition 4, which already handles order-n matrices. But a key
building block that would probably require more work consists of the availability of
a comprehensive library of multivariate polynomials.

6 Conclusion and perspectives

In this work, we have built several effective verified certificate checkers upon Hensel’s
lemma. In particular, our ISValP certificate checker is suitable to validate that all
the solutions of given instances of the Integer Small Value Problem (ISValP) have
been found. This problem consists of finding all the small integer entries on which a
univariate polynomial P ∈ Z[X] has small values modulo a large integer M . It can
be solved by using the SLZ algorithm, which is based on a variant of Coppersmith’s
technique [14]. We recall that this algorithmic chain consists of four main steps:
(i) domain splitting, then on each sub-domain: (ii) polynomial approximation, (iii)
the modular, bivariate version of Coppersmith’s technique, and (iv) bivariate Hensel
lifting. The formalization presented here constitutes a key formal component for
certifying the SLZ algorithm. In this paper, we have devised some certificates that
address steps (iii) and (iv) in a formal setting. To demonstrate the scalability of this
component, we have evaluated its performances within the Coq proof assistant on
realistic examples generated by the SLZ algorithm.

We have been using the Coq proof assistant to design certificates that make it
possible to validate a long computation. We have derived some reference checkers
that have been proved correct. In our case, they were efficient enough to be used for
validation. It is always debatable how much trust one can have in a Coq computation.
What can be said is that all the components that we have been using (starting from
arbitrary precision arithmetic) have been designed with a very strong concern about
correctness.

Hensel’s lemma has already been formalized in an abstract setting in the Is-
abelle/HOL proof assistant [23]. To the best of our knowledge, our work constitutes
the first formalization of bivariate Hensel’s uniqueness lemma along with verified,
Hensel-based certificate checkers. Further optimizations of our certified library could
be performed. For example, our formalization of quadratic Hensel lifting naturally
yields an arithmetic modulo p2k

, while we could restrict ourselves to the smallest
power pm > 2 · max(A, B) in the final certificates. Even if this would have no im-
pact on most certificates (those whose list L is empty), it would be interesting to
measure the performance gain for the other few certificates. Finally we would like to
improve the multiplication algorithm (and thereby, the bivariate polynomial compo-
sition one) by implementing a Karatsuba-based approach [22]. This may lead to a
further speedup for verifying some “extreme” certificates such as our binary128 ex-
ample in Section 4.2.1, while keeping the confidence we have in our formally verified
ISValP certificate checker.

Formally verified certificate checkers for hardest-to-round computation 27

Our next priority will be to combine the CoqHensel machinery presented here
with that of the CoqApprox library for certified polynomial approximation [8,27]. We
will then get a validation for the whole SLZ algorithm for solving the Table Maker’s
Dilemma. It will then be possible to provide certificates that formally guarantee that
we know all the bad cases for correctly rounding a given mathematical function.

Finally the part of this work which, beyond Hensel’s lemma, addresses Copper-
smith’s technique, might have, up to slight modifications, some use in applications
of the latter, for instance the list decoding algorithm for CRT-type codes, see [7,2],
or for RS-codes already pointed out in Section 1.

28 Érik Martin-Dorel et al.

A One additional mathematical proof

The proposition below illustrates the usefulness of Lemma 2 beyond the formal proof of the
certificate checkers presented in the paper.

Proposition 1 (Correctness of Algorithm 2) For any (v1, v2) ∈ Z[X, Y]2, (A, B) ∈ N
2,

if there exists a prime p satisfying (7), then the output of Algorithm 2 satisfies

S =
{

(x, y) ∈ Z
2
∣

∣ v1(x, y) = 0 = v2(x, y) ∧ |x| 6 A ∧ |y| 6 B
}

.

Proof (Proposition 1) First, let us notate

R :=
{

(x, y) ∈ Z
2
∣

∣ v1(x, y) = 0 = v2(x, y) ∧ |x| 6 A ∧ |y| 6 B
}

.

In order to prove that S = R, we proceed by double-inclusion:

– First, we have S ⊂ R since S is initially empty, and each element added to S by Algorithm 2
on Line 13 does belong to R;

– Next, let (x, y) ∈ Z
2 be an element of R. Note that v1(x, y) = 0 = v2(x, y) implies

v1(x mod p, y mod p) ≡ 0 ≡ v2(x mod p, y mod p) (mod p). (30)

So the foreach loop of Algorithm 2 is executed for (r, s) := (x mod p, y mod p). In par-
ticular, it iterates bivariate Hensel lifting on this modulo-p root of (v1, v2), and the corre-
sponding while loop stops as soon as we have K > 2 ·max(A, B). Let us denote by ℓ the
final value of k (at the end of the while loop). Then notice that the successive values of
variables (a, b) in this loop correspond to a sequence (ak, bk)06k6ℓ that satisfies relations
(9) and (10). Given that (7) holds by hypothesis, and that (8) is trivially satisfied by the
integral root (x, y), we can apply Lemma 2. To sum up, we have



























K = p2ℓ
,

(aℓ, bℓ) ≡ (x, y) (mod K) by taking n := ℓ in (11),
|aℓ| 6 K/2,

|bℓ| 6 K/2 by definition of cmod,

|x| 6 A < K/2,

|y| 6 B < K/2 by hypothesis.

Then we deduce that x = aℓ and y = bℓ by applying twice Corollary 1. Thence, the small
integral root (x, y) of (v1, v2) has indeed been found and added to S by Algorithm 2. ⊓⊔

Acknowledgements This research was partly funded by the TaMaDi project of the Agence
Nationale de la Recherche (ref. ANR-2010-BLAN-0203-01). It was mainly done while the
first author was PhD student in École Normale Supérieure de Lyon, with the LIP research
laboratory. The authors are very grateful to the anonymous reviewers, whose suggestions have
been very helpful for revising this paper.

References

1. Daniel Augot and Lancelot Pecquet. A Hensel Lifting to Replace Factorization in List-
Decoding of Algebraic-Geometric and Reed-Solomon Codes. Information Theory, IEEE
Transactions on, 46(7):2605–2614, November 2000.

2. Daniel J. Bernstein. Simplified High-Speed High-Distance List Decoding for Alternant
Codes. In Bo-Yin Yang, editor, PQCrypto, volume 7071 of LNCS, pages 200–216. Springer,
2011.

3. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

Formally verified certificate checkers for hardest-to-round computation 29

4. Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical Big Operators.
In Mohamed et al. [29], pages 86–101.

5. Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors. Interactive The-
orem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26,
2013. Proceedings, volume 7998 of LNCS. Springer, 2013.

6. Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full Reduction at Full Throt-
tle. In Jean-Pierre Jouannaud and Zhong Shao, editors, CPP, volume 7086 of LNCS, pages
362–377. Springer, 2011.

7. Dan Boneh. Finding Smooth Integers in Short Intervals Using CRT Decoding. J. Comput.
Syst. Sci., 64(4):768–784, 2002.

8. Nicolas Brisebarre, Mioara Joldeş, Érik Martin-Dorel, Micaela Mayero, Jean-Michel
Muller, Ioana Paşca, Laurence Rideau, and Laurent Théry. Rigorous Polynomial Ap-
proximation Using Taylor Models in Coq. In Alwyn Goodloe and Suzette Person, editors,
NASA Formal Methods 2012, volume 7226 of LNCS, pages 85–99. Springer, 2012.

9. Jacek Chrząszcz. Implementing Modules in the Coq System. In David A. Basin and
Burkhart Wolff, editors, TPHOLs, volume 2758 of LNCS, pages 270–286. Springer, 2003.

10. Jacek Chrząszcz. Modules in Coq Are and Will Be Correct. In Stefano Berardi, Mario
Coppo, and Ferruccio Damiani, editors, TYPES, volume 3085 of LNCS, pages 130–146.
Springer, 2003.

11. Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for Free! In Georges
Gonthier and Michael Norrish, editors, CPP, volume 8307 of LNCS, pages 147–162.
Springer, 2013.

12. Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring with
High Bits Known. In Maurer [28], pages 178–189.

13. Don Coppersmith. Finding a Small Root of a Univariate Modular Equation. In Maurer
[28], pages 155–165.

14. Don Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

15. The Coq Development Team. The Coq Proof Assistant: Reference Manual: version 8.4pl4,
2014. Available from: http://coq.inria.fr/distrib/current/refman/.

16. Maxime Dénès, Anders Mörtberg, and Vincent Siles. A Refinement-Based Approach to
Computational Algebra in Coq. In Lennart Beringer and Amy P. Felty, editors, ITP,
volume 7406 of LNCS, pages 83–98. Springer, 2012.

17. Georges Gonthier and Assia Mahboubi. A Small Scale Reflection extension for the Coq
system. Research Report RR-6455, INRIA, 2008.

18. Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection in Coq.
Journal of Formalized Reasoning, 3(2):95–152, 2010.

19. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

20. Florian Haftmann, Alexander Krauss, Ondrej Kuncar, and Tobias Nipkow. Data Refine-
ment in Isabelle/HOL. In Blazy et al. [5], pages 100–115.

21. Kurt Hensel. Neue Grundlagen der Arithmetik. Journal für die reine und angewandte
Mathematik (Crelle’s Journal), 1904(127):51–84, 1904. 10.1515/crll.1904.127.51.

22. A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by Automatic Com-
puters. Doklady Akad. Nauk SSSR, 145:293–294, 1962. Translation in Physics-Doklady 7,
595–596, 1963.

23. Hidetune Kobayashi, Hideo Suzuki, and Yoko Ono. Formalization of Hensel’s lemma. In
Theorem Proving in Higher Order Logics: Emerging Trends Proceedings, number PRG-
RR-05-02 in Oxford University Computing Laboratory Research Reports, pages 114–127,
2005.

24. Peter Lammich. Automatic Data Refinement. In Blazy et al. [5], pages 84–99.
25. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261:515–534, 1982.
26. Érik Martin-Dorel. Contributions to the Formal Verification of Arithmetic Algorithms.

PhD thesis, École Normale Supérieure de Lyon, Lyon, France, 2012. Available from:
http://tel.archives-ouvertes.fr/tel-00745553/en/.

27. Érik Martin-Dorel, Micaela Mayero, Ioana Paşca, Laurence Rideau, and Laurent Théry.
Certified, Efficient and Sharp Univariate Taylor Models in COQ. In SYNASC 2013, pages
193–200, Timişoara, Romania, 2013. IEEE.

http://coq.inria.fr/distrib/current/refman/
http://tel.archives-ouvertes.fr/tel-00745553/en/

30 Érik Martin-Dorel et al.

28. Ueli M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, International Con-
ference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain,
May 12-16, 1996, Proceeding, volume 1070 of LNCS. Springer, 1996.

29. Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar, editors. Theorem Proving in
Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings, volume 5170 of LNCS. Springer, 2008.

30. Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Clause-Pierre Jeannerod,
Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres.
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

31. Amokrane Saïbi. Typing Algorithm in Type Theory with Inheritance. In POPL, pages
292–301, 1997.

32. Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Mohamed et al. [29],
pages 278–293.

33. Damien Stehlé. Algorithmique de la réduction des réseaux et application à la recherche
de pires cas pour l’arrondi des fonctions mathématiques. PhD thesis, Université Nancy 1
Henri Poincaré, December 2005.

34. Damien Stehlé. On the Randomness of Bits Generated by Sufficiently Smooth Functions.
In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, Algorithmic Number
Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006,
Proceedings, volume 4076 of LNCS, pages 257–274. Springer, 2006.

35. Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Searching Worst Cases of a One-
Variable Function Using Lattice Reduction. IEEE Transactions on Computers, 54(3):340–
346, March 2005.

36. Jörn Steuding. Diophantine Analysis. Chapman & Hall/CRC, 2005.
37. G.W. Stewart. On the adjugate matrix. Linear Algebra and its Applications, 283(1–

3):151–164, 1998.
38. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge

University Press, 2nd edition, 2003.

