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Formant Estimation for Speech Recognition
Lutz Welling and Hermann Ney,Member, IEEE

Abstract—This paper presents a new method for estimating
formant frequencies. The formant model is based on a digital
resonator. Each resonator represents a segment of the short-time
power spectrum. The complete spectrum is modeled by a set of
digital resonators connected in parallel. An algorithm based on
dynamic programming produces both the model parameters and
the segment boundaries that optimally match the spectrum.

We used this method in experimental tests that were carried
out on the TI digit string data base. The main results of the ex-
perimental tests are: 1) the presented approach produces reliable
estimates of formant frequencies across a wide range of sounds
and speakers; and 2) the estimated formant frequencies were used
in a number of variants for recognition. The best set-up resulted
in a string error rate of 4.2% on the adult corpus of the TI digit
string data base.

Index Terms—Formants, linear prediction, speech analysis,
speech recognition.

I. INTRODUCTION

A N EFFICIENT and compact representation of the time-
varying characteristics of speech offers potential benefits

for speech recognition. Therefore, a variety of approaches
such as formant tracking [8], [17], [25], [27], articulatory
models [24], and auditory models [13] have been explored. For
formant tracking, methods based on linear prediction analysis
(LPC) have received considerable attention [20], [26]. Root-
finding algorithms are employed to find the zeros of the LPC
polynomial, or local maxima of the LPC envelope are searched
using peak-picking techniques. The problem with root-finding
algorithms is that the determination of formant frequencies and
bandwidths is only successful for complex-conjugate poles and
not for real poles. Peak-picking techniques are vulnerable to
merged formants and spurious peaks.

The approach described in this paper avoids the above-
mentioned problems. In [1] and [16], a set of digital formant
resonators connected in parallel or in cascade has been pro-
posed for speech synthesis. In this paper, we propose to use
a parallel digital resonator model for formant estimation. We
model the power spectrum by formant models, each of
which represents one segment of the power spectrum [28].
For the formant model, we use the resonance frequency that
is different from the pole frequency typically used in the
context of digital resonators. An algorithm based on dynamic
programming produces the set of formant parameters and
segment boundaries that optimally match the short-time power
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spectrum of a speech segment. This algorithm is simple to
implement and fast. A systematic evaluation of the method
on the complete adult corpus of the TI digit string data base
[18] is carried out. Formants have also been estimated on the
same database in [5] and [17]. We use the estimated formant
contours to perform systematic recognition experiments on the
TI digit string data base.

An advantage of the method for formant estimation pre-
sented in this paper is that an explicit smoothing of the
formant frequencies along the time axis does not seem to
be necessary, since the formant contours as obtained by the
proposed method are remarkably smooth. Other systems such
as [27] use frequency continuity constraints and dynamic
programming along the time axis in order to get smooth
trajectories.

A similar, dynamic programming-based algorithm was pre-
sented in [6]. The authors used the algorithm in the context
of spectral estimation in order to minimize the discrepancy
between a signal spectrum and a model spectrum. Therefore,
apart from the segmentation algorithm itself, there are no
similarities to the work presented here.

Today, virtually all high-performance speech recognition
systems are based on some kind of mel-cepstral coefficients or
filterbank analysis. So, we do not expect that in the near future
formant-based parameters will be competitive. Nevertheless,
there might be specific aspects due to which formant-based
parameters are attractive, as listed below.

• Formants are considered to be robust against channel
distortions and noise.

• Formant parameters might provide a means to tackle
the problem of a mismatch between training and testing
conditions.

• There is a close relation of formant parameters to model-
based approaches to speech perception and production.

The paper is organized as follows. Section II defines the
formant model. Section III describes the dynamic program-
ming algorithm that produces the optimum set of segment
boundaries. Section IV contains various experimental results
including recognition tests. Finally, our findings are summa-
rized in Section V.

II. DEFINITION OF THE FORMANT MODEL

In this section, we present a model for formant estimation
that is based on a set of parallel digital resonators. The
frequency range is divided into a fixed number of segments,
each of which represents a formant. For the moment, the
segment boundaries are fixed. In Section III, we will show
how the segment boundaries can be obtained by dynamic
programming optimization.

1063–6676/98$10.00 1998 IEEE
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Fig. 1. Predictor polynomial as a function of frequency for a bandwidth of (a) 50 Hz, (b) 500 Hz, and (c) 1000 Hz and a resonance frequency of 1200 Hz.

A. Second-Order Resonator

For each segment with given boundaries, we define a
second-order digital resonator. As in general LPC analysis [23,
p. 399], we consider the predictor polynomial, which is defined
as the Fourier transform of the corresponding second-order
predictor

where and are the real-valued prediction coefficients.
can be written as

(1)

(2)

The typical frequency dependence of such a predictor polyno-
mial is depicted in Fig. 1. As we will see later, we have the
constraint . Equation (2) shows that the parameter
determines the bandwidth of the resonator which is defined [1,
p. 128] as the negative logarithm of . has its
global minimum at the resonance or formant frequency

(3)

We denote the beginning point and the end point of seg-
ment by and , respectively. Using the predictor
polynomial, we define the prediction error as follows:

where denotes the short-time power density spec-
trum of the speech signal. Using (1), the prediction error can
be rewritten as

(4)

with the autocorrelation coefficients of segment for
, 1, 2

(5)

By minimizing the prediction error as given by (4) with respect
to and , we obtain the following optimum prediction
coefficients [19, p. 568]:

The value of the minimum prediction error is given [19, p.
568] by

(6)
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Fig. 2. Illustrations of the allowed regions for(�; �).

B. The Resonance Conditions

The resonance frequency we have derived is different from
the usual definition of the resonance frequency in the context
of second-order models. Also, there are constraints on the
values that can be taken on by the prediction coefficients.
Therefore, we discuss the relationships between these different
approaches. Since we fix a specific segmentin the following,
we drop the index for this discussion and use the symbols

and for the prediction coefficients.
From the minimum requirement, we obtain the constraint

that the zeros of the complex predictor polynomial
with complex must lie inside the unit circle [15, pp.
159–160]. Using these identities, the minimum requirement
can be expressed in terms of the prediction coefficientsand

[3, p. 60], as follows:

These constraints result in a triangular region in the -
plane, as shown in Fig. 2. This figure also contains other
constraints, which are discussed next.

In order to model a pole, i.e., a true second-order resonator,
the conventional approach is to require that the zeros of the
predictor polynomial should form a conjugate complex pair
[3, p. 60]. This requirement results in the constraint

which by combining with the previous constraints can be
tightened to the new constraints

These constraints result in a parabolic boundary line as shown
in Fig. 2. In the case of such a conjugate complex pair, the
so-called pole frequency is given by the equation

In the approach presented in this paper, we define the
relevant frequency as that frequency at which the magnitude

of the predictor polynomial attains its minimum. As shown
before, this resonance frequencyis given by the equation

From the evident inequality , we obtain the
following constraints for and :

Plotting the corresponding boundary lines in the -plane
as shown in Fig. 2, we see that these constraints are tighter
than the constraints for a pole solution. This relation is easy
to prove. For , we can write down the following
sequence of inequalities:

Thus, it can be seen that the resonance condition always
implies the pole condition. The two frequencies converge to
the same value if the damping of the pole approaches zero,
which is given by .

III. D YNAMIC PROGRAMMING

ALGORITHM FOR SEGMENTATION

So far we have considered the prediction error of a single
segment only. We now assume that the whole frequency
range is divided into segments with boundaries

. In this section, we describe
a dynamic programming algorithm for finding the optimum
segment boundaries.

To define the prediction error for the whole frequency range,
we have to sum up the errors of all segments

In order to compute the autocorrelation coefficients ,
we use a discrete approximation of the integral in (5). The
frequency interval is sampled at equally spaced
frequencies . The segment boundaries

are replaced by the indices
. The autocorrelation coeffi-

cients are then given by

with

As usual, the discrete short-time power spectrum is
computed using a fast Fourier transform with points.
Because of the symmetry properties of the short-time power
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Fig. 3. Segmentation by dynamic programming.

spectrum, only the frequencies in the interval are
relevant. The autocorrelation coefficients can be computed
efficiently using the identity

(7)

with look-up tables

(8)

for , 1, 2 and .
The task is now to find the segment boundaries

so that

is minimized. Dynamic programming [2], [4] provides an
efficient solution. We introduce an auxiliary quantity ,
which is defined as the error of the best segmentation of the
frequency interval into segments. By decomposing the
frequency interval into two frequency intervals, and

, and using the optimality in the definition of ,
we obtain the recurrence relation of dynamic programming

(9)

As (9) shows, the best segmentation of the frequency interval
into segments is utilized to determine the partition

of the frequency interval into segments. Fig. 3 gives
an illustration of how (9) performs an optimum segmentation.
To keep track of the optimum segmentation boundary used to
compute , it is convenient to introduce associated back-
pointers, denoted as , that simply store the optimum
boundary

The optimum segment boundaries are obtained by recur-
sively applying (9). The minimum overall error is then given
by . Table I summarizes the complete algorithm. The
first step is to fill the look-up tables defined by (8). Then

TABLE I
DYNAMIC PROGRAMMING ALGORITHM FOR FINDING THE SEGMENT BOUNDARIES

the values of for and
are calculated using (6) and (7). The algorithm employs the
array to store the backpointers and to construct the optimum
set of segment boundaries. After this segmentation process,
the formant frequencies for each segment are calculated by
(3). This could be avoided by storing also the optimum
formant parameters. However, this increased computational
effort is negligible in comparison with the effort for finding
the optimum segmentation. This effort is determined by the
following two calculations:

1) the filling of the table , which requires
operations;

2) the dynamic programming recursion, which requires
operations.

We see that, in both cases, the computational effort is
quadratic in the number of frequency linesthat are evaluated
as segment boundaries in the dynamic programming recursion.
In the following, we will distinguish between the number of
frequency lines that are used for the approximation of the
Fourier integral and the number of frequency lines that are
hypothesized as segment boundaries in the dynamic program-
ming optimization. Using this distinction, the complexity of
the dynamic programming algorithm is then determined by
the square of the number of segment boundary candidates.
Therefore, the overall computational effort can be reduced
significantly, if the segmentation evaluates only everyth
frequency line of the discrete Fourier transform as possible
segment boundary, where is typically 2, 4, 8, 16. Neverthe-
less, for the estimation of the formant parameters, all frequency
lines are used. In our implementation, the reduction of the
frequency resolution for the segmentation is achieved by an
additional step-size parameter in the loops over the frequency
axis in the dynamic programming algorithm. In order to keep
the computational effort at an affordable level, we have to
check experimentally how much frequency resolution is really
needed for a reliable determination of the segment boundaries.

IV. EXPERIMENTAL RESULTS

The formant model presented in the previous sections was
tested in recognition experiments on the TI digit string data
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base. This section reports on the results and is divided into
two subsections. The first subsection gives several illustrating
examples. In particular, we will show short-time spectra with
estimated formant models, formant tracks superimposed on
the time-frequency spectrograms and histograms of formant
frequencies.

In the second subsection, we will focus our attention on
formant-based speech recognition. The estimated formant fre-
quencies are used to form the acoustic vectors for recognition
experiments. In a series of experiments, the optimum acoustic
vector was established. Using this optimum acoustic vector,
further recognition experiments were conducted. In particular,
we tested two types of density modeling, namely Gaussians
and Laplacians, and we compared the error rates obtained with
the mel-cepstrum and with formants. Furthermore, we inves-
tigated the effect of the spectral resolution on the recognition
performance in order to study the trade-off between recog-
nition performance and computational effort of the formant
estimation.

A. Examples of Formant Estimates

In the following, we first give the details of our signal pro-
cessing implementation and then discuss a variety of examples
of formant estimation. In our experiments, we used the TI digit
string data that had been sampled at a rate of 20 kHz. First,
we perform a signal preemphasis by calculating the first-order
difference of the sampled speech signal. Every 10 ms, a 20-ms
Hamming window is applied to overlapping speech segments,
and the short-time power spectrum is computed by a 1024-
point fast Fourier transform (FFT). The frequency range from
0–5 kHz is used for formant estimation so that we have 256
samples in this range that are used for the approximation of
the Fourier integral and for finding the optimum segmentation.
The formant and bandwidth frequencies are determined by
the model we have described; there is no smoothing of the
formant frequencies. We do not adapt the frequency range to
each speaker nor do we exclude the low-frequency range.

Next, we present experimental results of formant estimation
in order to illustrate the properties of the proposed formant
estimation algorithm. Figs. 4 and 5 show examples of for-
mant models along with the corresponding short-time power
density spectrum. There are two types of vertical lines for
the formants, namely the formant frequencies and the segment
boundaries. The values of the resonance frequencies are shown
on the frequency axis, whereas the segment boundaries are
represented as vertical lines without any numbers. In Fig. 4, we
keep the number of formant models fixed at . Fig. 4(a)
is an example of the “AY” vowel in “five.” The figure shows
the spectrum and the estimated formant models for frame 35 of
the digit string5873spoken by male talkerIF. The estimated
formant frequencies are 756, 1270, 2422, and 3369 Hz. These
values agree well with the synthesis parameters given in [1,
p. 186]. Frame 95 of the utterance73 by male talkerAH is
shown in Fig. 4(b). This frame is part of the transition between
the R semivowel and the “IY” vowel in “three.” Fig. 4(c) and
(d) display further examples. These examples indicate that the

proposed algorithm for formant estimation allows a reliable
estimation of formant frequencies.

However, there are cases where the fixed number of for-
mants leads to problems. This is illustrated by Fig. 5. The
figure shows frame 132 of the string554 spoken by male
talker HN. Looking at the spectrum, we would expect
formants. In Fig. 5(a), however, only formant models
were estimated. As a consequence, the formant model with the
resonance frequency 3683 Hz does not match the spectrum.
If the number of formant models is chosen as , the
estimated formant models result in a much better fit to the
spectrum, as can be seen in Fig. 5(b).

Fig. 6 presents examples of formant tracks superimposed
on the spectrogram, i.e. the sequence of short-term power
density spectra. Fig. 6(a) displays the formant contours for
the digit string5873 spoken by male talkerIF, and Fig. 6(b)
shows the string94zspoken by female talkerHG. In this work
and in [17], the character z represents “0” spoken as “zero.”
There is a good agreement between the formant frequencies
and the spectrograms in regions of speech. As indicated in
Fig. 6, the formant contours are significantly less smooth in
areas of obvious silence. In the recognition experiments to
be reported on later, we did not observe that the silence
regions resulted in special problems for formant-based speech
recognition. A possible explanation of this effect could be that
silence portions are mainly recognized by making use of the
frame energy and therefore the “jumpy” formant contours in
silence regions are not critical.

Fig. 7 shows histograms for each of the four formant
frequencies. The histograms were computed separately for
male [Fig. 7(a)] and female speakers [Fig. 7(b)]. For the
histograms, the silence frames in the acoustic signal were
omitted. Evidently, these histograms depend on the spoken
words and on the speaker population. Nevertheless, they are
in reasonable agreement to the formant ranges reported in [1,
p. 132], [10, p. 51], [5], and [22]. Comparing the formant
frequencies in Fig. 7(a) and (b) also shows that on the average
the formants of the female speakers are higher than the
corresponding formants of the male speakers.

B. Formant-Based Speech Recognition

We will now present the results of a series of experiments
that were conducted to optimize and study the performance of
formant-based speech recognition. All recognition experiments
were carried out on the adult portion of the TI digit string data
base [18]. We used all available training and testing data. Thus,
we had 8623 digit strings spoken by 55 male and 57 female
speakers for training and 8700 digit strings uttered by 56 male
and 57 female speakers for testing.

The recognition system [29] is based on whole-word hidden
Markov models with continuous observation densities. The
hidden Markov models are left-to-right models with forward,
skip, and loop transitions. The system has gender-dependent
word models for 11 English digits, including “oh” and gender-
dependent silence models. The total number of states and, thus,
emission distributions is 357 states plus one state for silence
per gender. The emission probabilities are modeled as single
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(a)

(b)

Fig. 4. Examples of formant models. (a) Frame 35, string5873, male talkerIF. (b) Frame 95, string73, male talkerAH.

Laplacian densities with state-dependent deviation vectors.
They are trained using the maximum likelihood criterion and
the Viterbi approximation.

The recognition results are reported in terms of both string
and word error rate. As usual, the word error rate is computed
from the minimum number of deletion, substitution, and

insertion errors. There were no syntactic constraints used in
recognition, i.e., any sequence of digits was legal from the
viewpoint of the recognizer.

The remainder of this subsection is divided into three parts.
In the first part, we investigate how the formant parameters,
i.e., resonance frequencies and bandwidths, can be used to
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(c)

(d)

Fig. 4. (Continued.) Examples of formant models. (c) Frame 152, string94z, female talkerHG. (d) Frame 67, string74, female talkerCM.

form an acoustic vector for speech recognition. In the second
part, the optimum acoustic vector is used to study the type
of emission probability modeling and the acoustic resolution
used in formant estimation. Also, recognition experiments
comparing cepstral features and formant features are presented.
A formant-based reference model is discussed in the third part.

1) Definition of the Acoustic Vector:In the following, we
present experiments that were conducted to form the optimum
acoustic vector for formant-based speech recognition. The
experiments were started using only the formant frequencies
along with the frame energy without the bandwidths. The
acoustic vector was augmented by the first-order and second-
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(a)

(b)

Fig. 5. Example of formant models for frame 132 of digit string554 spoken by male talkerHN. (a) Four formant models. (b) Five formant models.

order derivatives of the frame energy and by the first-order
derivatives of the formant frequencies. For time frame, the
first-order derivatives were calculated from frames and ,
and the second-order derivatives were calculated from frames

and . The recognition results for these experiments
are summarized in Table II. In Table II, two numbers for the

formant frequencies are reported, namely one for estimation
and one for recognition. The difference comes from the fact
that, in some recognition experiments, the highest formant
of the formants estimated was left out for recognition. It
can be seen from Table II that the lowest error rate, both
string error and word error rate, is obtained, if four formant
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(a)

(b)

Fig. 6. Spectrogram and formant contours. (a) String5873 by male talkerIF. (b) String 94z by female talkerHG.

frequencies are estimated and the three lowest ones are used
for recognition.

Next, we investigated the influence of the formant band-
widths on the recognition performance. The results are sum-

marized in Table III. The formant estimation was based on
formant models. To form the acoustic vector, the band-

widths were used in a way similar to the formant frequencies,
namely by selecting the three lowest formants and using the
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(a)

(b)

Fig. 7. Histograms of formant frequencies over training speakers of TI digit
string data base. (a) Male speakers. (b) Female speakers.

TABLE II
RECOGNITION RESULTSUSING VARIOUS NUMBERS OF FORMANTS

TABLE III
EFFECT OF BANDWIDTH PARAMETERS ON THE ERROR RATE

TABLE IV
EFFECT OF SECOND-ORDER DERIVATIVES ON THE ERROR RATES

corresponding first-order derivatives. The results indicate that,
for the given recognition conditions, the formant bandwidths
have an adverse effect on the recognition results: The string
error rate increases from 4.2% to 5.4% when the bandwidths
and their first-order derivatives are included. Using only the
bandwidths increases the string error rate from 4.2% to 4.8%.
This suggests that any type of bandwidth information seems
to deteriorate the recognition results.

Another experiment was carried out to check the usefulness
of the second-order derivatives of the frame energy and of the
formant frequencies. As the recognition results in Table IV
show, omitting the second-order derivative of the frame energy
increases the string error rate from 4.2% to 4.9%. For the
formant frequencies themselves, there was no improvement
when the second-order derivatives were added. In fact, as
shown in Table IV, the string error rate goes up from from
4.2% to 5.4%.

As a result of the first phase of experiments, we had found
that the optimum acoustic vector consists of

• the signal energy plus the corresponding first- and second-
order derivatives;

• the three lowest formant frequencies from four estimated
formants plus the corresponding first-order derivatives.

2) Recognition Results:The optimum acoustic vector was
used to study the type of emission probability modeling and the
acoustic resolution used in formant estimation. Also, a compar-
ison of recognition results obtained with the mel-cepstrum and
with formants was done. The results are summarized below.

Table V presents error rates for Gaussian and Laplacian
densities. Replacing Laplacian densities by Gaussian densities
increases the string error rate from 4.2% to 4.6%.

Table VI compares recognition results for formants and mel-
cepstrum on the TI digit string data base. For both types of
acoustic vectors, Table VI shows the word error rates, string
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TABLE V
RECOGNITION RESULTS FORGAUSSIAN AND LAPLACIAN DENSITIES

TABLE VI
COMPARISON OF RECOGNITION RESULTS FORFORMANTS

AND MEL-CEPSTRUM WITH SINGLE DENSITIES

error rates, and the number of components of the acoustic
vector. In the first experiment with the mel-cepstrum, the
acoustic vector consists of 16 cepstrum coefficients, 16 first-
order derivatives, and the second-order derivative of the signal
energy [29]. The string error rate for the mel-cepstrum vector
was then 1.7%. It should be emphasized that this error rate
was obtained for single-density modeling. When using mixture
densities, the string error rate can be reduced down to 0.71%.
This error rate is actually the lowest reported [7], [9], [11],
[12], [21].

Two more results for the mel-cepstrum with an acoustic vec-
tor consisting of nine components are given in Table VI. Using
the first four mel-cepstrum coefficients, the four corresponding
first-order derivatives, and one second-order derivative of the
signal energy, the string error rate was 5.2%. A string error rate
of 3.8% was obtained when we applied a linear discriminant
analysis (LDA) [14] to a large input vector. This input vector
consisted of three successive 33-component mel-cepstrum
vectors , and , which include derivatives.
A 9 99 transformation matrix was used to reduce the
dimension of the acoustic vector from 99 to nine components.
We used one transformation matrix per gender. The classes
to which the LDA is applied were chosen to be the states of
the hidden Markov models. As can be seen in Table VI, using
the same number of parameters the recognition results were
sligthly better for the mel-cepstrum combined with a LDA than
for the formants: The string error rates are 4.2% and 3.8% for
the formant vector and the cepstrum vector, respectively.

Finally, we report on the effects of the frequency resolutions
used for the calculation of the autocorrelation coefficients and
for the segmentation process on the recognition performance.
As pointed out above, these two frequency resolutions can
be different. We carried out experiments with several con-
figurations. The results are summarized in Table VII. Two
conclusions can be drawn. First, Table VII indicates that
the number of frequency samples provided by the discrete
Fourier transform for the calculation of the autocorrelation
coefficients is not critical: In the range from 128 to 2048
spectral lines, the recognition performance is not affected if
the resolution for segmentation is high enough. The second
conclusion concerns the frequency resolution for segmentation.

TABLE VII
EFFECT OF SPECTRAL RESOLUTION ON THE ERROR RATE; RESOLUTION

IS GIVEN IN TERMS OF THE NUMBER OF FREQUENCY SAMPLES

TABLE VIII
COMPARISON OFFORMANT FREQUENCIES OF THEVOWEL “IY” AND THE

SEMIVOWEL “R.” (a) FORMANT FREQUENCIESAVERAGED OVER FIVE STATES OF

THE MALE REFERENCEMODEL FOR THE WORD “T HREE.” (b) FORMANT

FREQUENCIESRECOMMENDED FOR SPEECH SYNTHESIS IN [1, P. 186]

As Table VII shows, the error rate goes up significantly, if less
than 64 segment boundaries are considered in the dynamic
programming based segmentation.

3) Formant-Based Reference Models:For illustration pur-
poses, we consider in more detail one specific reference
model as it was obtained after training. Fig. 8 shows the male
and female reference models for “three” using the optimum
acoustic vector as defined above. In addition to the contours
of the three formant frequencies, Fig. 8 shows the absolute
deviation of the Laplacian models as a gray stripe around the
formant frequency, which is estimated as the sample mean.
To verify this reference, we selected by hand the formant
frequencies for two sounds of the male reference model,
namely “R” and “IY.” For each of these two sounds, the
formant frequencies were averaged over the associated states.
For the “R” sound, we used states 6–10, and for the “IY”
sound, we used states 17–21. The formant frequencies thus
obtained are shown in Table VIII along with the formant
frequencies that are typically used for speech synthesis and
recommended in [1, p. 186]. As can be seen in Table VIII,
there is a reasonable agreement between the two sets of
formant frequencies. Similar results were obtained for the
vowels in the reference models of the other digits. As usual
in speech synthesis, the formant values for synthesis shown in
Table VIII are based on the pole frequency definition. The
differences between the pole frequency and the resonance
frequency as used in this paper are negligible for formant
frequencies above 1 kHz. For the first formant, however, the
differences can be significant.

There is another observation that can be seen in Fig. 8. In
a region ranging from state 22 to 30, the formant contours
exhibit an oscillating behavior. To interpret this observation,
we have to take into account that the hidden Markov models
allow skip transitions. So the interpretation is that the oscil-
lations reflect an implicit mixture modeling of the emission
probabilities with two component densities. To verify this
hypothesis, we checked the reference models using cepstral
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(a)

(b)

Fig. 8. Formant-based reference models for the word “three.” (a) Male
model. (b) Female model.

acoustic vectors and observed the same effect. Therefore the
conclusion is that these erroneous oscillations arenot formant
specific.

V. CONCLUSIONS

This paper has presented the following new approach to
formant estimation.

1) The short-time power spectrum is decomposed into seg-
ments, each of which is modeled by a digital resonator.

2) The segment boundaries are optimized by dynamic pro-
gramming.

The estimated formant frequencies have been analyzed
using spectrograms and histograms. In a recognition test on
the adult corpus of the TI digit string data base, a string
error rate of 4.2% has been achieved with three formant
frequencies and signal energy. A slightly better string error
rate of 3.8% was obtained with the mel-cepstrum and the same
number of parameters. In this experiment, a linear discriminant
analysis was applied to reduce the dimension of the acoustic
vector. There was no smoothing or other postprocessing of
the formant trajectories. To the best of our knowledge, this is
one of the few recognition systems that are based solely on
formant contours. Considering that this work has started only
recently, we see room for further improvements in formant-
based speech recognition in the future. In this work, we have
applied the formant estimation method to clean speech only.
A topic for further research will be the application to noisy
speech.
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