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Abstract. Format-preserving encryption (FPE) encrypts a plaintext of
some specified format into a ciphertext of identical format—for example,
encrypting a valid credit-card number into a valid credit-card number.
The problem has been known for some time, but it has lacked a fully
general and rigorous treatment. We provide one, starting off by formally
defining FPE and security goals for it. We investigate the natural ap-
proach for achieving FPE on complex domains, the “rank-then-encipher”
approach, and explore what it can and cannot do. We describe two fla-
vors of unbalanced Feistel networks that can be used for achieving FPE,
and we prove new security results for each. We revisit the cycle-walking
approach for enciphering on a non-sparse subset of an encipherable do-
main, showing that the timing information that may be divulged by cycle
walking is not a damaging thing to leak.

1 Introduction

Background. During the last few years, format-preserving encryption (FPE)
has emerged as a useful tool in applied cryptography. The goal is this: under
the control of a symmetric key K, deterministically encrypt a plaintext X into
a ciphertext Y that has the same format as X . Examples include encryption
of US social security numbers (SSNs), credit card numbers (CCNs) of a given
length, 512-byte disk sectors, postal addresses of some particular country, and
jpeg files of some given length. In our formalization of FPE, the format of a
plaintext X will be a name N describing a finite set XN over which the encryption
function induces a permutation. For example, with SSNs this is the set of all
nine-decimal-digit numbers.

The FPE goal is actually quite old. For one thing, a blockcipher itself can be
seen as one kind of FPE: each N -bit string, where N is the block size, is mapped
to some N -bit string. But what makes FPE an interesting and powerful idea is
that the notion reaches far beyond blockciphers, which normally encipher strings
of some one, convenient length.

Some prior work. In FIPS 74 (1981) [27], a DES-based approach is de-
scribed to encipher strings over some fixed alphabet, say the decimal digits
D = {0, 1, . . . , 9}. Each plaintext X ∈ DN would be mapped to a ciphertext
Y ∈ DN . Here each plaintext X ∈ D∗ has a unique format N = |X | and we must
encipher X relative to the set XN = DN .
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Brightwell and Smith (1997) [6] considered a more general scenario, identify-
ing what they termed datatype-preserving encryption. They wanted to encrypt
database entries of some particular datatype without disrupting that datatype.
A field containing an SSN (a nine-digit decimal string) should get mapped to
another SSN. The authors colorfully explain the difficulty of doing this, saying
that, with conventional encryption schemes, a “Ciphertext . . . bears roughly the
same resemblance to plaintext . . . as a hamburger does to a T-bone steak. A
social security number, encrypted using the DES encryption algorithm, not only
does not resemble a social security number but will likely not contain any num-
bers at all” [6, p. 142]. The authors provide a proposed solution, though, as with
FIPS 74, definitions or proofs for it are not likely or claimed.

Black and Rogaway [4] provided a provable-security investigation of a special
case of FPE, asking how to make a cipher E : K × X → X with an arbitrary
domain X. Their solutions focused on X = ZN , the integers {0, 1, . . . , N − 1}.
The authors offer no general definition for FPE but they clearly intend that
ciphers with domains of ZN be used to construct schemes with other domains,
like the set of valid CCNs of a given length.

The term format-preserving encryption is due to Terence Spies, Voltage Se-
curity’s CTO [40]. Voltage, Semtek and other companies have been active in
productizing FPE and explaining its utility [39]. FPE can enable a simpler mi-
gration path when encryption is added to legacy systems and databases, as
required, for example, by the payment-card industry’s data security standard
(PCI DSS) [34]. Use of FPE enables upgrading database security in a way trans-
parent to many applications, and minimally invasive to others. Spies has gone on
to submit to NIST a proposed mechanism, FFSEM, that combines cycle walking
and an AES-based balanced Feistel network [41].

Syntax. The current paper aims to help cryptographic theory “catch up” with
cryptographic practice in this FPE domain. We initiate a general treatment
of the problem, doing this within the provable-security tradition of modern
cryptography.

We begin with a very general definition for FPE. Unlike a conventional cipher,
an FPE scheme has associated to it a collection of domains, {XN}N∈N. We call
each XN a slice (the overall domain is their union, X =

⋃
N XN ). The set N is

the format space. For every key K, format N , and tweak T the FPE scheme E
names a permutation EN,T

K on XN . We are careful to make FPEs tweakable [20]
because, in this context, use of a tweak can significantly enhance security.

Returning to the CCN example, suppose we want to do FPE of CCNs with a
zero Luhn-checksum [18]. Let’s assume that the map should be length-preserving
and that the possible lengths range from 12 to 19 decimal digits. Then we could
let N = {12, . . . , 19} and let XN be the set of all N -digit numbers X such that
LuhnOK(X) is true. Now an FPE scheme E with slices {XN}N∈N does the job.
You encrypt CCN X with key K and tweak T by letting Y = EN,T

K (X), where
N = len(X).
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Security notions. We define multiple notions of security for FPE schemes.
Our strongest adapts the traditional PRP notion to capture the idea that FPE
is a good approximation for a family of uniform permutations on the slices.
Our weaker notions are denoted SPI, MP, and MR. SPI (single-point indistin-
guishability) is a variant of the PRP notion in which there is a only a single
challenge point. MP (message privacy) lifts semantic security to the FPE set-
ting by adapting earlier notions of deterministic encryption [3,5]. MR (message
recovery) formalizes an adversary’s inability to recover a challenge message, in
its entirety, from the message’s ciphertext. All of these notions can be made with
respect to an adaptive or nonadaptive adversary, and can also be strengthened
to allow chosen-ciphertext attacks (for PRP, this would result in what is called
a strong PRP).

Why bother with SPI, MP, and MR when they are implied by PRP? SPI
is useful because it is easy to work with and implies MP and MR with a tight
bound. MP and MR are interesting because they, even in their nonadaptive form,
are what an application will most typically need. An attack against the PRP
notion may be no threat in practice, and achieving good PRP security may be
overkill. Good concrete security bounds become particularly a focus when slices
are small: a bound permitting q ≈ 2n/4 queries provides limited assurance when
n = 20 bits.

Constructions. We next investigate the construction of FPE schemes. Suppose
we wish to build an FPE scheme E with a complex specification—the slices {XN}
on which it should encipher. A natural approach is to arbitrarily number the
points in each XN , say XN = {X0, X1, . . . , Xn−1} where n = |XN |. Then, to
encipher X ∈ XN , find its index i in the enumeration, encipher i to j in Zn,
and then return Xj as the encryption of X . We call this strategy the rank-
then-encipher approach. It’s the obvious, one could say folklore, approach. To
implement it, we need an integer FPE that can encipher on Zn for any needed n,
as well a ranking function, rank, that maps each (N, X) with X ∈ XN to a point
in Zn with rank(N, ·) : XN → Zn a bijection for all N ∈ N.

We will show how to build ranking functions for any FPE problem whose
domain is a regular language (the slices being strings of each possible length).
This includes many practical problems. This can be extended to domains that
are context-free languages having unambiguous grammars.

Our starting point for building integer FPEs is the construction of Black and
Rogaway [4], which combines a generalization of an unbalanced Feistel network
(the left and right hand side are numbers in Za and Zb rather than strings) and a
technique the authors call cycle walking, a method apparently going back to the
rotor machines of the early 1900’s [37]. We extend their work to handle multiple
slices with the same key, and to incorporate tweaks.

The type of unbalanced Feistel network that was extended in [4] is the type due
to Lucks [22]. It is not the only kind of unbalanced Feistel network. An equally
natural possibility is the unbalanced Feistel design of Schneier and Kelsey [36].
Extended to ZN where N = ab, we call this a type-1 Feistel, as opposed to the
type-2 unbalanced Feistel network of [4,22]. Our FPE schemes FE1 and FE2,
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based on type-1 and type-2 unbalanced Feistel networks, comprise a flexible,
efficient, and customizable means for enciphering domains ZN where N = ab is
the product of integers greater than one. Its round function can be based, for
example, on AES. Combining FE1 or FE2 with the rank-then-encipher approach
lets one achieve FPE in a wide variety of contexts.

Security. Ideally, we would like to prove good bounds on the strong-PRP
security for FE1 and FE2, assuming the round function to be a good PRF.
But we run into a limitation, namely that the proven strength of Feistel ci-
phers [4,21,24,26,28,29,30,31,32,33], in terms of quality of bounds, falls short of
what is wanted, and what appears to be the actual strength of the techniques.
We address this in a couple of ways.

First, proofs have always targeted PRP. Instead, we target MP and MR,
thereby getting better bounds more easily. We prove that FE2 with only three
rounds hides all partial information with respect to a nonadaptive chosen-
plaintext attack: one achieves nonadaptive SPI, MP, and MR security with rea-
sonable bounds. Even then, we feel that being guided purely by what can be
proved would lead to an overly quite pessimistic security estimate. The most
realistic picture may be obtained by also assessing resistance to attacks. We
consider known attacks and discuss their implications for our parameter choices
(principally the number of rounds). We also provide a novel attack against (heav-
ily) unbalanced type-2 Feistel networks, one that achieves message recovery with
success probability exponentially small in the number of rounds. The attack is
damaging if the number of rounds is too small.

Finally, reaching beyond PRP/SPI/MP/MR security, we consider a particular
kind of side-channel attack. The use of cycle-walking in the rank-then-encipher
approach raises the fear of timing attacks: might the number of times one has to
apply the underlying cipher leak adversarially valuable information? We prove
that cycle-walking will not, on its own, give rise to timing attacks. This is because
the correct distribution on the number of iterations of the cipher on any input
can be computed by a simulator that does not attend to the inputs. Due to space
constraints, we present this result in the full version only [1].

The future. We expect FPE to be increasingly deployed. The complex systems
that process financial transactions impose a powerful legacy constraint. Using
classical blockcipher-based modes would require far larger changes to these sys-
tems, which is costly and error-prone. FPE can be realized by simple, AES-based
modes of operation, avoiding the need to design and review any fundamentally
new primitive. Besides the enciphering of database fields, FPE may prove use-
ful in networking applications, allowing datagrams to have their fields protected
without changing their format. What one might lose in security when employing
a deterministic encryption scheme can often be erased by sensibly tweaking the
FPE scheme [20]. Moreover, such loss of security may be entirely overshadowed
by the reduced need for random bits and disruption in infrastructure, protocols,
and code.
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2 FPE Syntax

Syntax. A scheme for format-preserving encryption (FPE) is a function E : K×
N × T × X → X ∪ {⊥} where the sets K, N, T , and X are called the key
space, format space, tweak space, and domain, respectively. All of these sets are
nonempty and ⊥ �∈ X. We write EN,T

K (X) = E(K, N, T, X) for the encryption
of X with respect to key K, format N , and tweak T . We require that whether
or not EN,T

K (X) = ⊥ depends only on N, X and not on K, T , and let

XN = {X ∈ X : EN,T
K (X) ∈ X for all (K, T ) ∈ K× T }

be the N -indexed slice of the domain. We demand that a point X ∈ X live in at
least one slice, X ∈ XN for some N (if X is in no slice it should not be included
in E’s domain). We demand that there be finitely many points in each slice,
meaning XN is finite for all N ∈ N. We require that EN,T

K (·) be a permutation
on XN for any (K, T ) ∈ K × T . Its inverse D : K × N × T × X → X ∪ {⊥}
is defined by DN,T

K (Y ) = D(K, N, T, Y ) = X if EN,T
K (X) = Y . In summary,

an FPE enciphers the points within each of the (finite) slices that collectively
comprise its domain.

A practical FPE scheme E : K×N×T ×X→ X∪ {⊥} must be realizable by
efficient algorithms: an algorithm E to encrypt, an algorithm D to decrypt, and
an algorithm to sample uniformly from the key space K. Thus K, N, T , and X

should consist of strings or points easily encoded as strings, and E and D should
return ⊥ when presented a point outside of K×N× T ×X. We will not draw
any distinction between an integer element of X , say, and a string that encodes
such a point.

The format of a point. Let E : K × N × T × X → X ∪ {⊥} be an FPE
scheme. Then we can speak of X ∈ X as having format N if X ∈ XN . One could
associate to E a format function ϕ : X→ P(N) \ {∅} that maps each X ∈ X to
its possible formats; formally, ϕ(X) = {N ∈ N : X ∈ XN}.

Note that, under our definitions, a point may have multiple formats. But often
this will not be the case: each X ∈ X will belong to exactly one XN . In that case
we can regard the format function as mapping ϕ : X→ N and interpret ϕ(X) as
the format of X . FPE is somewhat simpler to understand for such unique-format
FPEs: you can examine an X and know from it the slice Xϕ(X) on which you
mean to encipher it. For a unique format FPE one can write ET

K(X) rather than
EN,T

K (X) since N is determined by X .

Specifications. An FPE problem, as needed by some application, will specify
the desired collection of slices, {XN}N∈N. It will also specify the desired tweak
space T . Typically it is easy to support whatever tweak space one wants, but it
may be quite hard to support a given collection of slices {XN}N∈N (indeed it may
be hard to accommodate a single slice, depending on what it is). We therefore call
the collection of slices {XN}N∈N the specification for an FPE scheme. We will
write X = {XN}N∈N for a specification, only slightly abusing notation because
the domain X is the union of slices in {XN}N∈N. The question confronting the
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cryptographer is how to design an FPE scheme with a given specification. We
now provide some example possibilities.

Examples. (1) AES-128 can be regarded as an FPE with a single slice, {0, 1}128.
The key space is K = {0, 1}128 and the format space and tweak space are
trivial (have size one). (2) To encipher 16-digit decimal numbers, take X =
{0, 1, . . . , 9}16 and just the one slice. (3) To encipher 512-byte disk sectors using
an 8-byte sector index as the tweak, let X = {0, 1}4096, T = {0, 1}64, and just the
one slice. (4) Suppose you want to encipher CCNs of 12–19 digits with a proper
Luhn checksum, the ciphertext having the same length as the plaintext. Then
the specification could be X = {XN}N∈N where N = {12, 13, . . . , 18, 19} and XN

is the set of all strings X ∈ {0, 1, . . . , 9}N satisfying the predicate LuhnOK(X).
Here |XN | = 10N−1. (5) One nice FPE has slices that are {0, 1}N for each
N ≥ 0. It allows length-preserving encryption of any binary string. (6) One can
FPE rather unusual spaces. For example, slice XN could encode all N -vertex
graphs. Or XN could be all valid C-programs on N bytes. Designing an efficient
FPE with this specification might be impossible. All of the examples just given
are unique-format FPEs. The following example is not.

Integer FPEs. The specification for a particularly handy kind of FPE is the
following. The slices are XN = ZN , for N ∈ N ⊆ N. This allows enciphering
natural numbers with respect to any permitted modulus N . Assuming the tweak
space is similarly rich, say T = {0, 1}∗, we call such scheme an integer FPE.
When used within the rank-then-encipher paradigm, integer FPEs enable the
construction of FPEs with quite complex specifications.

3 FPE Security Notions

Games. Our definitions and proofs use code-based games [2], so we first review
that material. A game has an Initialize procedure, an optional Finalize pro-
cedure, and any number of additional procedures. A game G is executed with
an adversary A as follows. First, Initialize executes, possibly returning an out-
put s, and then A(run, s) is run (s = ε if Initialize returns no string). As A
executes it may call any procedure G (but not Initialize or Finalize) provided
by G. If there is no Finalize procedure, the output of A is the output of the
game. If the game does specify a Finalize, then, when A terminates, A’s output
is Finalize’s input and the game’s output is that of Finalize. Game procedures
may call A(identifier[, x]), which invokes an instance of the caller with distinct
coins for each distinct identifier. Conceptually, then, each identifier thus names
a separate adversarial algorithm. State is not shared among them. Let GA ⇒ y
denote the event that the game outputs y. We write S ∪← x as shorthand for
S←S ∪ {x}. Later we write c

+← d for c← c + d.
Boolean variables, including bad, are silently initialized to false, set vari-

ables to ∅, integer variables to 0. Games G and H are said to be identical-
until-bad if their code differs only in the sequel of statements that first set
bad to true. We say that “GA sets bad ” for the event that game G, when
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executed with adversary A, sets bad to true. If G, H are identical-until-bad
and A is an adversary then Pr

[
GA sets bad

]
= Pr

[
HA sets bad

]
. It is also

standard (“the fundamental lemma”) that if G, H are identical-until-bad then
Pr

[
GA ⇒ y

]
− Pr

[
HA ⇒ y

]
≤ Pr

[
GA sets bad

]
.

Security notions. We will extend the standard PRP notion to our setting, but
we will also describe notions weaker than it, because they can be achieved with
better proven concrete security for the same efficiency and, at the same time,
they suffice for typical applications. Coming at it from the latter perspective, the
most basic and often sufficient requirement is security against message recovery
(MR), under either an adaptive or nonadaptive attack. We define this as well as
a stronger notion of message privacy (MP) that requires that partial information
about the message is not leaked by the ciphertext. We also consider a weakening
of the PRP notion that we call SPI. The reason for considering this notion is
that it is simpler than MP and MR to work with yet implies them; at the same
time, it can be achieved with better concrete security bounds than we currently
know how to get for the ordinary PRP notion.

In the following let E : K × N × T × X → X ∪ {⊥} be an FPE scheme.
We consider the games in Figure 1. It is assumed that any query of the form
(N, T, X) satisfies N ∈ N, X ∈ XN , and T ∈ T .

PRP security. The standard notion of PRP security is extended to FPE schemes
via game PRPE and the corresponding adversary advantage is

Advprp
E (A) = 2 · Pr

[
PRPA

E ⇒ true
]
− 1 .

In the game Perm(XN ) is the set of all permutations on XN .

SPI security. Single-point indistinguishability (SPI) requires that the adversary
be unable to distinguish between the encryption of a single chosen message or
a random range point, even when given adaptive access to a true encryption
oracle. The formalization is based on game SPIE . An adversary A is allowed
to make only a single Test query, and this must be its first oracle query. Its
associated advantage is

Advspi
E (A) = 2 · Pr

[
SPIAE ⇒ true

]
− 1 .

The SPI notion is closely related to (and inspired by) a definition originally
from [12], variants of which were also considered in [9,25]. It is easy to see that
PRP security implies SPI security, but there is an additive loss of q/M in the
advantage bound, where q is the number of queries by the adversary and M is the
minimum size of XN over all N ∈ N. This is perhaps unfortunate, but SPI is only
used as a tool anyway. A hybrid argument following [9,12] shows that SPI security
likewise implies PRP security. Here, Advspi

E (A) ≤ q ·Advprp
E (B) + q2/M where

q is the number of Enc queries of starting prp adversary A, and constructed spi
adversary B makes q − 1 Enc queries.

Message recovery. An FPE scheme secure against message recovery is one for
which an adversary is unable to recover plaintexts from ciphertexts, even given an
encryption oracle and a favorable distribution of plaintexts, formats, and tweaks.
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Initialize
b

$←{0, 1} ; K
$←K

for (N, T ) ∈ N × T
do πN,T

$←Perm(XN )

Enc(N, T, X)
if b = 1 then ret EN,T

K (X)
if b = 0 then ret πN,T (X)

Finalize(b′) //Game PRPE

ret (b = b′)

Initialize
b

$←{0, 1} ; K
$←K

Enc(N, T, X)
if (N, T, X)∈S then

ret ⊥
S ∪← (N, T, X)
ret EN,T

K (X)

Test(N∗, T ∗, X∗)
if (N∗, T ∗, X∗)∈S then

ret ⊥
S ∪← (N∗, T ∗, X∗)
if b = 1 then

Y ∗←EN∗,T∗
K (X∗)

else Y ∗ $←XN∗

ret Y ∗

Finalize(b′) //Game SPIE
ret (b = b′)

Initialize
K

$←K

(N∗, T ∗, X∗) $←A(dist)

Y ∗←EN∗,T∗
K (X∗)

ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test //Game MPE

ret Y ∗

Finalize(Z)
ret (Z = A(func, X∗))

Initialize

K
$←K

(N∗, T ∗, X∗) $←A(dist)

Y ∗←EN∗,T∗
K (X∗)

ret (N∗, T ∗)

Enc(N, T, X)
ret EN,T

K (X)

Eq(X)
ret (X = X∗)

Test //Game MRE

ret Y ∗

Finalize(X)
ret (X = X∗)

Fig. 1. Games used for defining FPE security notions SPRP, PRP, SPI, MP, and MR.
Procedure A, invoked by games MP and MR, denotes the caller of the game.

If the encryption were randomized we would require that the target ciphertext Y ∗

and encryption oracle EK be of no use in recovering the plaintext, but this is
too much to ask for with a deterministic encryption scheme, as an adversary can
always encrypt candidate messages X1, . . . , Xq to ciphertexts Y1, . . . , Yq and,
if Yi = Y ∗ for some i, it will know that the target plaintext is X∗ = Xi.
Our security definition will formalize that this attack is (up to the adversary’s
advantage) the best one possible.

The idea is formalized as game MRE in Figure 1. An MR-adversary A must
begin with a Test query and have QTest(A) = 1 and QEq(A) = 0, while a simu-
lator S for A is an adversary that has S(dist) = A(dist), QTest(S) = QEnc(S) = 0
and QEq(S) = QEnc(A). Here QProc(C) is the maximum number of calls that
adversary C might make to procedure Proc, the maximum over all coins of C and
all possible oracle responses. The MR-advantage of adversary A is then defined
as

Advmr
E (A) = Pr

[
MRA

E ⇒ true
]
− pA

where pA = maxS Pr
[
MRS

E ⇒ true
]

with the maximum over all simulators S
for A. Translating our formalism into English, an adversary making a Test query



Format-Preserving Encryption 303

and some number of Enc-queries could do just as well forgoing its Test query
and trading its Enc queries for Eq queries.

In our experiment defining pA it is easy to see what strategy an optimal S
should use: it makes q Eq-queries, X1, . . . , Xq, where X1 is a most likely point
output by A(dist) for the known (N∗, T ∗); X2 is a second most likely point
(X2 �= X1); X3 is a third most likely point (X3 �∈ {X1, X2}); and so on. If
the Eq-oracle returns true for some Xi then S calls Finalize(Xi); otherwise,
it calls Finalize(Xq+1) where Xq+1 /∈ {X1, . . . , Xq} is the next most likely
point after Xq. In this way S will win with probability pA =

∑q+1
i=1 pi where

pi = Pr[A(dist)⇒(N, T, Xi) | (N, T ) = (N∗, T ∗)].

Message privacy. In message privacy we are trying to measure the ability of an
adversary with an encryption oracle to compute some function of a challenge
plaintext X∗ from its encryption C∗. If the encryption is randomized we would
require that the challenge ciphertext C∗ is of no use in such an attack. The
formalization of this is semantic security [13]. For deterministic encryption, the
intuition we aim to capture is that the adversary should do no better than it
could if the encryption were ideal. In this case, the encryption oracle provides no
more than the capability of testing whether a message of the adversary’s choice
equals the challenge message.

Our formalization closely resembles that for MR. A difference is that A is
asked not only to come up with the distribution on plaintexts, but also the func-
tion on which it hopes to do well. See game MP in Figure 1. An MP-adversary
A must begin with a Test query and have QTest(A) = 1 and QEq(A) = 0, while
a simulator S for A is an adversary that has S(dist) = A(dist), QTest(S) =
QEnc(S) = 0, QEq(S) = QEnc(A) and S(func) = A(func). The advantage of A is
defined as

Advmp
E (A) = Pr

[
MPA

E ⇒ true
]
− pA

where pA = maxS Pr
[
MPS

E ⇒ true
]

with the maximum over all simulators S
for A. Translating our formalism into English, an adversary making a Test
query and some number of Enc-queries could do just as well in guessing Z =
A(func, X∗) forgoing its Test query and trading its Enc queries for Eq queries.
Note that MR-security amounts to a special case of MP-security where the
function A(func, ·) is the identity function.

Relations between notions. One can pictorially describe the relationships
between our four security notions like this:

PRP SPI MP MR

The solid arrows indicate tight implications and the broken arrows indicate lossy
ones. We already noted the implications between PRP and SPI above. These can
be shown to be the best possible, with the counter-example in the first case be-
ing a perfect FPE scheme and in the second case following [9]. We also noted
that MP tightly implies MR. The non-obvious implication is that SPI tightly
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implies MP, and is proved below. Finally, MP does not imply SPI, and MR does
not imply MP. For the former separation, consider an FPE scheme that has a
fixed point for all keys; for the latter separation, consider an FPE that always
leaks a single bit of the plaintext. The proof of the following is given in the full
version [1].

Proposition 1. [SPI ⇒ MP] Let E : K×N×T ×X → X ∪ {⊥} be an FPE
scheme and let A be an MP adversary. Then there is an SPI adversary B such
that Advmp

E (A) ≤ Advspi
E (B). In addition, adversary B runs in time that of A

and QEnc(B) = QEnc(A). �

Nonadaptive security, strong security. We expect that nonadaptive ad-
versaries (the “static” security setting) are sufficient for many applications of
FPE—the constructed scheme is not so much a tool as an end. We consider
the class of static adversaries S. An adversary A ∈ S, on input run, decides at
the beginning of its execution the sequence of queries it will ask, their number
and their kind being fixed. The relations between the non-adaptive notions of
security remain the same as for their adaptive counterparts as described above.

In the other direction, the notions can be strengthened to require CCA-
security. This is done by adding to the games a decryption procedure. In the PRP
case, procedure Dec(N, T, Y ) would return DN,T

K (Y ) if b = 1 and π−1
N,T (Y ) oth-

erwise, where D = E−1 denotes the inverse of E, as defined earlier. The resulting
notion is the FPE analog of what is sometimes called strong-PRP (SPRP). In
the games for SPI, MP and MR, Dec(N, T, Y ) would return DN,T

K (Y ). The ad-
versary is not allowed to call it on inputs N∗, T ∗, Y ∗ and the simulator is not
allowed to call it at all.

Asymptotic notions. We can adapt our definitions to the asymptotic setting.
We illustrate this for PRP-security. Recall first that, in speaking of complexity,
we assume that K, E, and D are all given by algorithms. Also, algorithm K took
no input. We must slightly adjust the syntax of our FPE schemes. In particular,
we provide K an input of the form 1k. The algorithm must run in probabilistic
polynomial time. Algorithm E and its inverse D must run in deterministic poly-
nomial time in the sum of their input lengths. We then say that E is PRP-secure
if, for any PPT adversary A, the function ε(k) = Advprp

E (A(1k)) is negligible,
meaning ε(k) ∈ k−ω(1). We emphasize that it is the key K output by K that,
presumably, grows with the security parameter k; the specification X = {XN}
does not grow with or otherwise depend on the security parameter.

4 The Rank-then-Encipher Approach

The idea. Suppose we want to build an FPE scheme E the slices of which
may be quite complex. As an example, we might want to do length-preserving
encryption of credit cards of various lengths, the CCNs of each length hav-
ing a particular checksum and satisfying specified constraints on allowable sub-
strings. It would be undesirable to design an encryption schemes whose internal
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workings were tailored to the specialized task in hand. Instead, what one can
do is this. First, arbitrarily order and then number the points in each slice,
XN = {X0, X1, . . . , Xn−1} where n = |XN |. Then, to encipher X ∈ XN , find its
index i in the enumeration, encipher i to j in Zn using an integer FPE scheme,
and then return Xj as the encryption of X . We call this strategy the rank-then-
encipher approach. The method will be efficient if there is an efficient way to
map each point X to its index i, to encipher i to j, and to map j back to the
corresponding point Xj. Details now follow, attending more closely to formats
and tweaks, and also allowing the enumeration used for mapping j to Xj to
differ from that used for ranking.

Definitions. To formalize RtE encryption, we first define a ranking and an
unranking function for a specification X = {XN}. A ranking function is a map
rank : N×X→ N∪{⊥} for which rankN (·) = rank(N, ·) is a bijection from XN to
Z|XN |. In addition, rankN (X) = ⊥ if N �∈ N or X �∈ XN . An unranking function
is a map unrank : N × N → X ∪ {⊥} for which unrankN (·) = unrank(N, ·) is a
bijection from Z|XN | to XN . In addition, unrankN (i) = ⊥ if i �∈ Z|XN |.

For the asymptotic tradition, we say that a specification X = {XN} can
be efficiently ranked if there are (deterministic) polynomial-time computable
ranking and unranking functions for X = {XN}. Polynomiality is in the sum
of the input lengths. Note that the security parameter is not an input to the
ranking or unranking functions, but it is already built in that larger slices may
take more time to rank and unrank, as the input to these functions includes the
format N .

The scheme. Suppose one aims to create an FPE scheme E with specification
X = {XN}N∈N. Let the desired tweak space for E be the set T . Let N0 =
{|XN | : N ∈ N} ⊆ N be the sizes of the different slices. Then we can construct
our desired FPE scheme E if we have in hand: (1) an integer FPE scheme E : K×
N0×{0, 1}∗ → N (it enciphers points in Zn for each n ∈ N0), and (2) a ranking
function rank and an unranking function unrank for X = {XN}N∈N. Given such
objects, define E = RtE[E, rank, unrank] as the map E : K×N×T ×X→ X∪{⊥}
with

EN,T
K (X) = unrankN (E|XN |,〈N,T 〉

K (rankN (X)))

when X ∈ XN , and EN,T
K (X) = ⊥ otherwise. We call this rank-then-encipher

approach. In words: convert the N -formatted string X to its corresponding num-
ber i; encipher i ∈ Z|XN | to some j ∈ Z|XN |, employing a tweak that encodes
both the format N of X and the tweak of E ; finally, convert j back to a domain
point in Y ∈ XN using a possibly unrelated enumeration of points.

We will omit formalizing and proving the rather obvious statements that,
if E is secure with respect to the strong-PRP, PRP, SPI, MP, or MR notion
of security, then so too will be the FPE scheme E = RtE[E, rank, unrank], the
reduction being tight and having time complexity that is approximately the sum
of the times to perform the ranking and unranking.
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By way of the rank-then-encipher approach, one can take an integer FPE
(based, e.g., on the techniques described in [4]) and create from it an FPE with
a quite intricate specification X = {XN}N∈N.

For many specifications the needed ranking and unranking functions are sim-
ple to design and fast to compute: an ad hoc approach will work fine. But what
can one say in general about the power of the rank-then-encipher FPE approach?
We now turn our attention to this.

5 FPE for Arbitrary Regular Languages

The problem. Let Σ be a (finite) alphabet and let L ⊆ Σ∗ be a language over
it. We say that an FPE scheme E : K×N×T ×X→ X∪{⊥} is an FPE scheme
for L if X = L, N = N, and the slices are Xn = Ln = L ∩ Σn for all n ∈ N. In
this section we show how to build an FPE for an arbitrary regular language L
by describing how to compute a corresponding ranking and unranking function.

Why attend to regular languages? Many FPE specifications can be cast as
asking for an FPE for a regular language. This is trivially true when the domain
is finite. Some important domains are finite and without an easily summarized
structure; a domain like “a valid postal address” is likely to be defined by a
database such as the US Address Information System (AIS) and, given such
a database, ranking is easy. Other finite domains are large but have a concise
description as a regular language, either in terms of a regular expression or
a DFA. For example, a US social security number is a string in the regular
language (0 ∪ 1 ∪ · · · ∪ 9)9. Alternatively, one may subtract from this any set
of numbers that have not been assigned, such as those starting with an 8 or 9,
having 0000 as the last four digits, or having 00 as the preceding two digits, but
the resulting set will again have a concise description. For credit card numbers,
a simple 20-state DFA M recognizes the language LuhnR of strings that are
the reversals of numbers with a valid Luhn checksum [18]. Namely, the DFA is
M = (Q, Σ, δ, q0, F ) with states Q = Z10 × Z2, final states F = {0} × Z2, start
state q0 = (0, 0), and transition rule δ((a, b), d) = (a+2d+a�d/5�mod 10, 1−b).
We will continue to use the M = (Q, Σ, δ, q0, F ) syntax below, following the
convention of Sipser’s book [38].

Rank computation for regular languages. We will describe efficient
ranking and unranking functions for the specification X = {XM} where M is a
DFA and XM = L(M) is its language. First impose a total order a1 ≺ · · · ≺ a|Σ|
on the elements of the alphabet Σ = {a1, . . . , a|Σ|} and extend this to the lex-
icographic order ≺ on each Σn. For a ∈ Σ let ord(a) be the index i such that
a = ai and for every n ∈ N let the ranking function be given by rankL(X) =
|{Y ∈ L : |X | = |Y | = n and Y ≺ X}|. We omit the argument n = |X | because
it is determined by X . Assume we have an integer FPE scheme E. Provided
that we can efficiently compute each rankL(·) and its inverse unrankL(·), apply-
ing the RtE paradigm gives a practical FPE E = RtE[E, rankL, unrankL] with
E : K×N × T × L→ L ∪ {⊥}.
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algorithm BuildTable(n)

for q ∈ Q do
if q ∈ F then T [q, 0]← 1

for i← 1, . . . , n do
for q ∈ Q do

for a ∈ Σ do
T [q, i]

+← T [δ(q, a), i− 1]

algorithm rank(X)

q← q0 ; c← 0 ; n←|X|
for i← 1, . . . , n do

for j← 1, . . . , ord(X[i]) − 1 do
c

+← T [δ(q, aj), n− i]
q← δ(q, X[i])

ret c

algorithm unrank(c)

X← ε ; q← q0 ; j← 1
for i← 1, . . . , n do

while c ≥ T [δ(q, aj), n− i] do
c← c− T [δ(q, aj), n− i] ; j

+← 1
X[i]←aj ; q← δ(q, x[i]) ; j← 1

ret X

Fig. 2. Bottom left: Algorithm for computing the rank of a word in the regular
language L of a DFA M = (Q, Σ, δ, q0, F ). Top: Initializing the table T . Each T [·, ·]
starts at zero. Bottom right: How to compute the inverse of the ranking function.

Let M = (Q, Σ, δ, q0, F ) be a DFA recognizing the regular language L ⊆ Σ∗.
Let X [i] denote the i-th character of X ∈ Σ∗ (numbering from the left and
starting at 1). Extend δ to Q×Σ∗ so that δ(q, X) is the state we end up in by
starting from q and following X ∈ Σ∗. Formally, set δ(q, ε) = q for all q ∈ Q and
recursively define δ(q, x) = δ(δ(q, X [1] · · ·X [n− 1]), X [n]) for all q ∈ Q and all
X ∈ Σ∗ with n = |X | ≥ 1.

We compute the ranking function for M by dynamic programming, follow-
ing [11]. Let T [q, n] be the number of strings X ∈ Σn such that δ(q, X) ∈ F . The
first algorithm of Figure 2, on input n, uses dynamic programming to compute,
for all q ∈ Q and j ∈ [1 .. n], the number T [q, j] of accepting paths of length j
that start at q. The rank of a word in L can be computed based on T as shown
by the second algorithm in Figure 2. The third algorithm in the figure computes
the inverse, deriving a word in L by its rank. In the unit-cost model of compu-
tation, where arbitrary integer multiplications and additions are performed in
unit time, rankM and unrankM can be computed in O(|Σ| · n) time, while the
preprocessing step BuildTable(n) takes time O(|Q| · |Σ| · n) time.

We comment that ranking can be further sped up to require about n sums
instead of n|Σ| by precomputing the needed partial sums, adding a third coor-
dinate to T . The unranking function would need a binary search, or some other
method, to map a number into the corrected (precomputed) interval [0..β1),
[β1..β2), . . . , [βσ−1, βσ) that contains it, where σ = |Σ|. Regardless, ranking and
unranking are linear-time for any regular language L, with modest constants in
terms of the DFA representation of L.

On the importance of representations. It is important that we repre-
sented our regular language in terms of a DFA; had L been represented in terms
of an NFA or a regular expression, we could not have efficiently computed the



308 M. Bellare et al.

ranking and unranking functions. In particular, remember that it is NP-hard
(even PSPACE-hard) to decide if the language of an NFA M (or a regular ex-
pression α) is Σ∗ [10, #AL1], [14]. Consequently, if P �= NP, we can’t compute
unrank(2n − 1) efficiently for all n, as such functionality would provide imme-
diate means to decide if L(M) = Σ∗. Formally, if P �=NP then XM can’t be
efficiently ranked, where XM = L(M) is the language of the NFA M . Note,
however that this does not imply an inability to make an efficient FPE scheme
for this specification—it only means that such a scheme could not use the RtE
approach.

Ranking non-regular languages. Beyond regular languages, we can also
apply the RtE approach with Mäkinen’s ranking algorithm for the language
generated by an unambiguous context-free grammar [23]. Efficient ranking al-
gorithms exist for various other classes of combinatorial objects. For example,
if we wish to encrypt the domain Xn! consisting of the set of permutations on
n elements, the Lucas-Lehmer encoding [16] provides an efficient ranking. Other
examples are spanning trees of a graph [7], B-trees [19], and Dyck languages [17].
Efficient rankings have also been studied in coding theory, starting with [8].

Given the ease of ranking regular languages and beyond, it is natural to ask if
every language for which there is an efficient FPE scheme admits an RtE-style
one. In the full version [1] we show that the answer is no. More specifically,
we exhibit a specification X = {XN}N∈N where efficient FPE is possible but
efficient ranking is not.

6 Feistel-Based Integer FPEs

We present two Feistel-based constructions of integer FPE schemes E : K×N×
T × X → X ∪ {⊥} with format space N = N × N and X such that XN = Zab

for N = (a, b) with a ≤ b. Both are parameterized by the following: (1) a round
function F : K× N × T × N× N→ N; and (2) a function r : N→ N specifying
the number of rounds.

Figure 3 defines encryption and decryption for the two integer FPE schemes
FE1 and FE2. We refer to Feistel networks, such as FE1, that utilize the same
kind of round function every round as type-1. Type-1 Feistel networks were pre-
viously treated in [26,36] for the case of bit strings. We refer to Feistel networks,
such as FE2, that alternate the kind of round function as type-2. Type-2 Feistel
networks for the case of bit strings are due to Lucks [22]. Type-2 Feistel networks
with modular arithmetic were first used in [4].

Round functions. The round functions should be PRFs. It is not clear what
this means when the range is the infinite set N. To specify a round function,
we will first specify a range function w : N → N such that for all N ∈ N we
have w(N) ≥ b where N = (a, b). The PRF advantage of an adversary A is then
defined by

Advprf
F (A) = Pr

[
AF (K,·,·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·,·) ⇒ 1

]
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algorithm FE1N,T
K (X)

(a, b)←N ; X0←X

for i = 1, . . . , r(N) do

Li−1←Xi−1 div b

Ri−1←Xi−1 mod b

Wi←Li−1 +FK(N, T, i, Ri−1) mod a

Xi← aRi−1 + Wi

ret Xr(N)

algorithm FD1N,T (Y )

(a, b)←N ; Yr(N)←Y

for i = r(N), . . . , 1 do

Wi←Yi mod a

Ri−1←Yi div b

Li−1←Wi−FK(N, T, i, Ri−1) mod a

Yi−1← aRi−1 + Zi

ret Y0

algorithm FE2N,T
K (X)

(a, b)←N

L0←X mod a ; R0←X div a

for i = 1, . . . , r(N) do

If i mod 2 = 1 then s← a else s← b

Li←Ri−1

Ri←Li−1 + FK(N, T, i, Ri−1) mod s

ret sLr(N) + Rr(N)

algorithm FD2N,T
K (Y )

(a, b)←N

If r(N) mod 2 = 1 then s← a else s← b

Rr(N)←Y mod s ; L0←Y div s

for i = r(N), . . . , 1 do

If i mod 2 = 1 then s← a else s← b

Ri−1←Li

Li−1←Ri − FK(N, T, i, Ri−1) mod s

ret sR0 + L0

Fig. 3. Top: Encryption and decryption algorithms for the integer FPE scheme FE1
where K ∈ K, T ∈ T , F ∈ N, and X, Y ∈ XF . Here xdiv y is short-hand for �x/y�.
Bottom: Encryption and decryption algorithms for the integer FPE scheme FE2.
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Fig. 4. Diagrams of three rounds of FE1 (left) and FE2 (right) for format N =
(a, b) = (2n0 , 2n1) and input X ∈ Zab. For both mechanisms, L0, L1, L2, L3 ∈ Za and
R0, R1, R2, R3 ∈ Zb.
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where A’s oracle in the second case returns a random point in Zw(N) in response
to a query F, T, i, X . Adversary A is not allowed to repeat an oracle query.

In cases of practical interest, we can build suitable round functions based on
block ciphers (e.g. 3DES or AES) or cryptographic hash functions (e.g. SHA-
256). In the full version [1] we detail example instantiations. We also discuss
there the use of precomputation for speed improvements (deriving from the fact
that several of the inputs to F are the same across all rounds).

Discussion. The round function takes as input the format and tweak, which
effectively provides “separate” instances of the cipher for each format, tweak
pair. To ensure independence between rounds, the round number is also input
into the PRF.

FE1 and FE2 support domains of the form Zab and only provide security
when a > 1. To handle arbitrary Zn one can choose N = (a, b) so that ab > N
and then utilize the cycle walking technique with FE1 or FE2 (see [4] for a
treatment). Alternatively, one might utilize the off-by-one construction (see [4])
to avoid cycle-walking. But for typical applications like the encryption of credit
card numbers, the requisite domains will be Zn for which n = ab for a and b
that are almost balanced.

Security of FE1,FE2. In the full version [1] we discuss in detail the security
of FE1 and FE2 in terms of best known attacks and proven security bounds.
Beyond prior results, we give a novel MR attack that breaks FE2 when it is used
with very unbalanced (a, b) and a relatively small number of rounds. We also
give novel provable SPI security bounds for both schemes, which by Proposition 1
establishes MP and MR security.
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