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Nonequilibrium patterns in open systems are ubiquitous in nature, with examples as diverse as desert sand
dunes, animal coat patterns such as zebra stripes, or geographic patterns in parasitic insect populations. A
theoretical foundation that explains the basic features of a large class of patterns was given by Turing in the
context of chemical reactions and the biological process of morphogenesis. Analogs of Turing patterns have
also been studied in optical systems where diffusion of matter is replaced by diffraction of light. The
unique features of polaritons in semiconductor microcavities allow us to go one step further and to study
Turing patterns in an interacting coherent quantum fluid. We demonstrate formation and control of these
patterns. We also demonstrate the promise of these quantum Turing patterns for applications, such as
low-intensity ultra-fast all-optical switches.

N
onequilibriumpatterns in open systems are ubiquitous in nature1, with examples as diverse as desert sand
dunes2, animal coat patterns such as zebra stripes3,4, or geographic patterns in parasitic insect popula-
tions5. Motivated by the quest to understand the chemical basis for morphogenesis, Turing proposed in

1952 a chemical reaction-diffusion model6 that has been used to explain patterns in a diverse range of research
fields4,5,7–10. Probably the most faithful realisation of Turing’s original activator-inhibitor model was reported in
chemical reactions by DeKepper and co-workers11. Important characteristics of these patterns include the fact
that they are stationary, and the patterns’ structure size is not dictated by the physical size of the system.
Moreover, Turing structures occur in systems in which the spatially uniform phase is stable against uniform
fluctuations; only spatially varying perturbations experience instability and growth, and thus contribute to
spontaneous symmetry-breaking and pattern formation.

The definition of Turing patterns has been extended to optical systems, in which the spatial propagation is
diffractive rather than diffusive12,13. Even though there is no direct optical analog to activator and inhibitor, the
classification of optical patterns14,15 in terms of Turing structures creates a useful perspective of the underlying
unifying principles. By definition, they do not include spatially localised structures such as optical solitons12,16,17.

A further generalisation of Turing patterns includes quantum fluids, as long as the aforementioned character-
istics are preserved. The observation of the relatively simple Turing patterns in quantum fluids could complement
the well-known other forms of patterns in quantum systems, such as Abrikosov lattices and vortex lattices in
superfluids or Bose condensates in atomic and polaritonic systems18–22 and the BCS phase in magnetic fields23

(these are based on vortices and are not ‘simple’ patterns in the density profile of themacroscopic quantum state).
Microcavity polaritons24–41 – composite quasi-particles that are partly photonic partly electronic – seem ideally
suited for the search of Turing patterns in quantum fluids: polaritons combine rather fundamental quantum
mechanical characteristics of excitons with the benefits of light that allows for a straightforward excitation and
read-out. Moreover, the many-particle interactions in exciton systems are particularly rich and give a spinor
character to the polariton fluid42,43.

Here we demonstrate experimentally and analyse theoretically formation and control of Turing patterns in
a coherent quantum fluid of microcavity polaritons. Complementing our experiments and full numerical
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simulations, we also discuss the underlying physics using results of a
previous analysis on simplified models of the polariton scattering
dynamics. However, we also identify fundamental differences: the
polariton patterns we report show clear signatures only observable
for patterns in a two-component spinor field. We identify these
signatures and show that they can be traced back to spin-dependent
polariton interactions beyond mean-field approximation. In our
study, microcavity polaritons prove to be a suitable playground to
explore and control quantum Turing patterns through selective
optical excitation of specific wave-vector components in Fourier
space; this is not possible in most other pattern-forming systems.
We believe that these findings open the door to a much broader
understanding and application (e.g., in all-optical switches) of
Turing patterns at the quantum/classical interface as well as in purely
quantum mechanical systems.

Results
Figure 1a shows the double-cavity that was specifically designed for
our study. The system is based on two cavities mutually coupled
through the Bragg mirror in the center. GaAs quantum-wells are
embedded in both cavities. In each of the two cavities the light-field
is coupled strongly to the fundamental exciton resonance of the
quantum-wells such that polaritons42 are formed (details are given
in the Methods Section). The resulting dispersions of polaritons can
be seen in the photoluminescence at low excitation density in Fig. 1b.
A finite (in-plane) momentum corresponds to propagation under an
oblique angle. Two lower-polariton branches (LPBs) are formed. In
the nonlinear experiments below, we excite the upper of the two LPBs
with a continuous-wave pump beam with frequency vP in normal
incidence (kP 5 0) to the cavity.
With increasing pump intensity, the density of pump-induced

polaritons at kP 5 0 increases and Coulomb scattering of polaritons
occurs; mediated by the exciton fraction of the polariton quasi-part-
icles26. In our setup, this scattering is most efficient when two polar-
itons at k5 0 scatter off each other to opposite in-plane momenta k
and 2k right onto resonance with the lowest polariton branch at
pump frequency vP (cf. Fig. 1 b). Through their photonic compon-
ent, the scattered polaritons then leave the cavity under a finite angle
as indicated in Fig. 1a (the angle is determined by the pump fre-
quency and polariton dispersion including nonlinear shifts42). The
pairwise scattering of polaritons to k and 2k at vP is the basic
mechanism behind build-up of signals in Fourier-space at finite k.
Above a certain pumping threshold intensity, the stimulated nature
of the polariton scattering26 leads to spontaneous symmetry breaking

with strong signals propagating at finite k, defining an emission cone
about the propagation direction of the pump. Thismarks the onset of
pattern formation.
Figure 2a shows the measured far-field emission (corresponding

to the Fourier-plane picture discussed above) from the cavity with
pump intensity above threshold. The threshold power is at about
150 mW and the experiments in Fig. 2 are at 195 mW. Detection
is in reflection geometry. The pump is linearly polarised and detec-
tion is polarised perpendicular to the pump’s polarisation state. In
contrast to the emission cone (circle in the Fourier-plane) one may
have expected, clearly evident in Fig. 2a is a hexagonal pattern. In
Fig. 2b we show that, in coincidence with the observed hexagonal
pattern in the far-field emission, a stationary hexagonal pattern is
observed in the near-field emission (spatial resolution is about
0.6 mm). The stable near-field pattern underlines the fixed phase-
relation of signals on the six different spots in the far-field once the
pattern has formed and the phase has locked in. In a spatially homo-
geneous setup, the symmetry breaking driving the hexagon forma-
tion (instead of a ring pattern) is induced by the hexagon-specific
higher-order nonlinear interaction process of polaritons illustrated
and discussed in more detail below. It is worth noting that above
threshold, the shape of the pattern observed does not sensitively
depend on the excitation intensity. We observe that in Fig. 2 b the
hexagons appear slightly distorted and misalignments between dif-
ferent hexagons occur. This is consistent with the finding in Fig. 2a,
that the hexagon observed in the far-field is slightly distorted
and smeared out in k-space. We reckon that spatially varying
sample imperfections might be the cause as well as residual sphe-
rical aberration from our imaging setup. The patterns’ orientation is
not dominated by built-in anisotropy along crystallographic
axes44,45. However, we note that we do see evidence of a structural
anisotropy as the general appearance of the hexagon changes with its
orientation.
The build-up of the hexagonal pattern in Fig. 2 can be regarded as a

multi-step process: (i) The basic stimulated scattering of polaritons
leading to off-axis signals on a ring in the Fourier plane (cf. discus-
sion below). In the spinor polariton fluid, this scattering can either
preserve the linear polarisation state of both scattered polaritons or
turn both of their polarisations perpendicular to the pump’s46. Being
negatively detuned to the exciton, here this scattering is more
efficient in the cross-linear channel. For the pump intensity in
Fig. 2 only one mode, a cross-linearly polarised mode, is unstable
(above threshold) such that this component dominates the emission
for finite k. This is the simplest possible scenario as competition

Figure 1 | The double-microcavity system. (a) Sketch of the double-microcavity and optical setup. The continuous-wave pump is in normal incidence to

the DBRs (distributed Bragg reflectors). Signals are emitted under finite angle after spontaneous symmetry-breaking. Detection is in the Fourier-plane.

(b) Measured luminescence showing the polariton dispersions at low density. The two lower-polariton branches LPB1 and LPB2 are visible. The

theoretical bare cavity (white lines) and polariton (red lines) dispersions are included. The double-cavity design enables triply-resonant stimulated

scattering of polaritons in this symmetric setup.

www.nature.com/scientificreports
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between multiple unstable modes in different polarisation channels
of the spinor polariton fluid (whichwould be an interesting aspect for
future studies) is avoided. Additionally, the cross-linearly polarised
excitation-detection setup is advantageous here as no direct stray
light from the pump overshadows the desired signal in detection.
(ii) Once the signals start growing at finite k, higher-order scattering
processes47 (see discussion below) couple different spots visible in the
emission cone, leading to competition and further symmetry-break-
ing of its rotational invariance. (iii) The structure that self-stabilises
as stationary behavior is approached, is a hexagon. This is the one
structure for which the relevant higher-order nonlinear (in the finite-
k polariton field amplitude; cf. discussion below) processes are
phase-matched in our system that is dominated by a third-order
nonlinearity1,48. Before we further elaborate on this point, however,
wewould like to demonstrate how the system behavior changes when
spatial anisotropy is (intentionally) introduced.
Figure 3 shows the measured pattern when the pump is slightly

tilted away from normal incidence (kpump< 0.1 mm21). In this case,
the optically induced anisotropy destabilises the hexagon and a
transition into a stationary two-spot pattern is observed.
The control of transverse patterns with additional light beams has

previously been used to realise a highly efficient all-optical switch in
an atomic vapour49–51. Figure 4 shows the demonstration of an ana-
logous all-optical switching with patterns in our microcavity system.
The two-spot pattern at finite pumping angle is switched to a differ-
ent orientation upon application of an extra light beam; cf. sketch in
Fig. 4a. In panel b the two-spot pattern is oriented along the aniso-
tropy axis induced by the pump. In panel c, without changing the

pumping configuration, the pattern has been steered away into the
direction of an additional light beam sent into the system where the
brightest spot is seen in the emission in c. This switching is reversed
upon switching off the extra light beam. Our simulations discussed
below indicate that the switching speed realistically achievable is on
the tens of picoseconds timescale. We would like to emphasise that
the extra beam (control beam) not merely induces additional con-
jugated spots (at k and 2k) on the emission cone as one may have
expected, but in this highly nonlinear system indeed steers away the
pattern from its original orientation. A more detailed and dynamical
investigation52 of this pattern control (switching), we keep for a
future study.

Discussion
To get a deeper insight into the mechanisms important for the pattern
formation observed experimentally and discussed above, we have
developed a theoretical description of the coupled cavity-field exciton
dynamics inside the double-cavity system. The calculated data in
Figs. 5 a and b are based on this full theory which is firmly based
on the coherent nonlinear optical response of the fundamental exci-
tons in the quantum wells derived from a microscopic semiconductor
Hamiltonian53–55. We compute the dynamics of the excitonic fields
self-consistently together with the optical fields in the cavities. The
vectorial polarisation of the excitons and cavity fields and polarisa-
tion-dependent interactions are fully taken into account46. The
system-specific parameters are obtained from a transfer-matrix mod-
elling of the double-cavity system. The resulting linear dispersions are
included in Fig. 1b. Full details about theory and numerical simula-
tions are given in the Methods Section. We note that the numerical
simulations cover the full two-dimensional plane such that all pos-
sible scattering processes are included and no restrictions to the
topology of the stationary solutions and patterns formed are made.
In these simulations, just as observed in the experiments, we find that
for linear polarisation of the pump, a hexagon (over all the other
possible patterns) spontaneously forms, which is oriented perpendic-
ular to the axis defined by the pump’s polarisation. The result is
shown in Fig. 5a. As in the experiments, we also find two bright spots
perpendicular to this axis and four spots reduced in intensity. Based
on the calculations we could clarify that the reproducible pinning of
the hexagon orientation to the pump’s polarisation state is rooted in
an interplay between the finite longitudinal-transverse (TE-TM)
splitting of cavity modes (which is present in the experiments and
included in the calculations) and the polarisation-dependent non-
linear interaction of the polaritons beyondmean-field approximation.
The origin of a polarisation-induced spatial anisotropy can already be
understood in the onset of pattern formation56, however, here we
report its manifestation also in the nonlinear regime, beyond the

Figure 2 | Observation of hexagonal Turing patterns. Experimental (a) far-field and (b) near-field emission for linearly polarised continuous-wave

pumping at k 5 0 (yellow arrow gives pump polarisation state; detection is polarised perpendicular to the pump). Spontaneous hexagon formation is

evident in (a) and (b). For clarity, in the detection, the signal is blocked out for small k. In the near-field image (b), as a guide to the eye themaxima in the

extended hexagonal structure are marked and exemplarily one hexagon is highlighted.

Figure 3 | Phase transition induced by spatial anisotropy. With the

pump slightly tilted away from normal incidence, a two-spot pattern is

observed.

www.nature.com/scientificreports
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analysis of linearly unstable modes. For excitation with a non-norm-
ally incident cw-pump, we find that instead of the hexagon a stable
two-spot pattern is spontaneously formed (Fig. 5b). This result con-
firms our experimental observation that by optically introducing
anisotropy into the system (by tilting the pump away from normal
incidence), a transition from a hexagonal pattern to a two-spot pat-
tern is induced. We classify the patterns we observe as generalised
Turing patterns. They are stationary, the spatially homogenous state
(represented by signals at k5 0) is stable while only k? 0 perturba-
tions are unstable, and the pattern does not depend on the system’s
size (rather, it is determined by the pump frequency and polariton
dispersion). In our polariton system, the system size can be varied
with the size of the pump spot. The far-field patterns are indeed
found to be similar in appearance for different pump spot sizes
(not shown). In order to keep the changes at a minimum, the pump
peak intensity, has to be slightly adjusted to compensate for the
changes in the polariton walk-off from the pumping region for
decreased or increased spot size. We note again that the diffusive
transport in the original Turing pattern is replaced here by diffractive
propagation of polaritons. The polariton interaction that leads to
pattern formation is inherently quantum mechanical in nature: it is
governed by the spin-dependent Coulomb interactions between the
polariton’s excitonic components and their underlying fermionic
constituents.
The theoretical results presented above are based on direct simu-

lations of the coupled, nonlinear, spinor cavity-field exciton dyna-
mics inside the double-cavity system. On the other hand, the basic
mechanism of the formation of hexagonal patterns (and subsets
thereof) can be understood and explained by considering the indi-
vidual effects and the interplay (competition and cooperation) of the
polariton scattering processes shown in Fig. 6. By focussing on the

most relevant degrees of freedom, this alternative perspective allows
a simpler analysis of the dynamics and a characterise of the system’s
quasi-stationary behaviour from a nonlinear dynamics viewpoint. In
addition, it brings a close connection to the analyses of patterns in
other systems57, thus underlining the analogy of the polariton pat-
terns to other systems showing pattern formation. A detailed analysis
from this viewpoint was carried out in Ref. 58. In Ref. 58 we analysed
the special case of a single cavity and the applied fields (pump and
control) were limited to one circular polarisation, but the general
arguments about hexagon formation invoked there hold for themore
general case studied here. We briefly summarise in the following
the essence of that analysis to make the present discussion more
complete.
In the initial stage of pumping the microcavity with an on-axis (k

5 0) intense beam, off-axis (k? 0) polaritons are mainly generated
through linear scatterings (Fig. 6a), where two pump polaritons
scatter off each other into two opposite off-axis directions. Corres-
pondingly, a linear analysis in the off-axis polariton field yields a
modified dispersion relation for off-axis polaritons, which allows
exponential growth for polaritons carrying transverse momenta
lying within a certain window (close to the elastic circle on the
renormalised polariton dispersion). As a matter of fact, only polar-
iton modes with maximal linear growth rates dominate the sub-
sequent scattering processes. Hence, instead of considering the
entire range of jkj, in a first approximation, only polariton modes
within a narrow jkj range need to be retained in the analysis. In the
absence of asymmetries induced by polarisation and/or imperfec-
tions of the cavity, the growth rate depends only on the magnitude
of k. Therefore, the modes actively participating in the pattern
formation process all lie on a ring centered at the origin of the k-
space. After pumping for a short while, the population of polariton

Figure 4 | Optical switching with patterns. (a) Sketch of the switching setup. (b) and (c) show spatial re-orientation of the two-spot pattern induced by

an external control beam. The switching is reversed upon switching off the control.

Figure 5 | Computed stationary patterns with and without spatial anisotropy. (a) Computed far-field emission for linearly polarised continuous-wave

pumping at k 5 0 (yellow arrow gives pump polarisation state; detection is polarised perpendicular to the pump). Spontaneous hexagon formation is

evident. For clarity, detection is blocked out for small k. (b) Transition of the hexagonal pattern in (a) into a two-spot pattern when the pump is

slightly tilted away from normal incidence along the direction marked by the orange arrow.

www.nature.com/scientificreports
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modes on this k-space ring becomes so high that nonlinear scattering
processes (Figs. 6b and c) take over the controlling role in the
dynamics. A quadratic process contributing to the polariton
dynamics inmode k1 is shown in Fig. 6b, where one off-axis polariton
(from mode k2) and a pump polariton with zero momentum scatter
into the modes k1 and k3. By (transverse) momentum conservation,
quadratic processes such as this one are operative only amongmodes
lying on the vertices of a regular hexagon. Their net effect was shown
in Ref. 58 to tend to stabilise the hexagonal pattern. In an (azimuth-
ally) isotropic setting, the orientation of the hexagon is arbitrary, and
hence, if there were no further ‘spontaneous’ symmetry breaking
mechanism, a ring composed of hexagons of all orientations would
result. Such a mechanism is provided by the cubic processes, an
example of which is shown in Fig. 6c. Generally serving to saturate
the off-axis polariton growth, the cubic processes can be classified for
our purpose into ‘cross-saturating’, as exemplified in Fig. 6c, and
‘self- saturating’ processes, where the outgoing modes are the same
as the incoming ones. For polaritons, the cross-saturating processes
exert a stronger effect than the self-saturating processes, favoring the
tendency to form a spontaneously broken symmetry state58. Unlike
the quadratic processes discussed above, the cubic processes do not
require a hexagon geometry. Thus modes residing on different hexa-
gons act on each other only through the cubic processes, leading to
the broken-symmetry pattern of a single hexagon as observed in the
simulations and the experiment. We note that, without this ‘winner-
takes-all’ mechanism, small, unavoidable anisotropies present in the
systemwould affect the ring pattern only perturbatively, and the ring
would not collapse into a single stable hexagon.
In summary, in this Article we demonstrate formation and control

of Turing patterns in a coherent quantum fluid of polaritons. In
particular, we show that the Fourier components of the polariton
patterns can selectively and efficiently be accessed all-optically
(which is much more difficult in most other pattern-forming sys-
tems). This gives us control over the patterns. We show that the
double-cavity we designed provides a suitable playground to study
the complex phase-structure within and beyond the hexagonal pat-
terns as well as for more general scenarios in a two-component
spinor field. Apart from the fundamental interest, the exploration
of the rich spectrum of instability and phase transitions could have
implications for ultrafast polariton based all-optical switches49–51. For
future studies also the quantum properties of the emitted light59with
the possibility to study pattern-specific multi-mode quantum corre-
lations would be of interest.

Methods
Experiments. The sample is formed by two l/2 Al(0.95)Ga(0.05)As cavities.
Distributed Bragg reflectors (DBR) are made by 25(back)-17.5(middle)-17.5(front)

couples of Al(0.95)Ga(0.05)As/Al(0.2)Ga(0.8)As layers. We deduce the theoretical
finesse of the cavity of 9800 (in the case of zero absorption) from our transfer matrix
simulations. The intermediate mirror permits coupling between the photonic modes
of the two cavities, resulting in two modes at 1.596 eV and 1.606 eV separated in
energy by 10 meV. Twelve quantum wells (QWs) are embedded in each cavity. The
QW material is GaAs and each QW has a width of 7 nm. The exciton energy is at
1.6072 eV. A group of four QWs is placed in the centre of the cavity, at the anti-node
of the electric field. Two other groups of four QWs are placed in the first couple of
DBR layers. In such a structure strong coupling is easily achieved44, resulting in two
lower polariton branches (see Fig. 1b) and two upper polariton branches (not shown).
The Rabi splitting is 13 meV. The rotation of the wafer was interrupted during MBE
growth of the cavity spacer such that an intentional wedge is introduced. The resulting
cavity gradient is about 2.6 meV/mm. This enables fine-tuning the photonic modes
with respect to the excitonic modes by probing different points on the sample surface.
All experimental data presented here refer to a slightly negative detuning.

For the optical experiments, the sample is held in a cold-finger cryostat at tem-
perature of 6 K. Experiments are performed with a confocal optical setup. The laser is
a Coherent MIRA Titan-Saphire laser. The pump spot size is 50 mm and the pump
angle can be tuned finely. The excitation/detection optics is an inverted telescope
ocular with a 16 mm working distance and large numerical aperture. The Fourier
plane is imaged on the entrance slit of a 50 cm-long imaging spectrometer, equipped
with a 1200 g/mm grating. A low noise charge coupled device (CCD) is used as
detector for imaging. This system allows acquiring dispersion curves (as in Fig. 1) or
images of the far field emission (with spectrometer entrance slit open and grating at
zeroth order as in Figs. 2, 3, and 4).

Theory. Our theory is based on a microscopic density-matrix approach in the
coherent limit for the excitonic polarisation inside the quantum wells coupled to
the confined optical cavity fields in quasi-mode approximation46. We have adapted
the theory to describe the double-cavity system and excitation scenario studied. The
equations of motion then read as follows:
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with the in-plane momentum k of the respective field components. The index 1,2
distinguishes the polarisation states in a circular basis. The upper index i? j refers to
quantities local in either of the cavities. The inter-cavity coupling is through the
optical field with strength 2DC5 10 meV and the exciton-photon Rabi splitting is 2V i

5 13 meV. The dispersion of the optical fields contains diagonal hik~
2k
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account for TE-TM splitting with effective mass parametersmL5 3.793 1025 m0 and
mT 5 3.98 3 1025 m0 (with the electron mass m0) for longitudinal and transverse

components, respectively. For simplicity, the exciton dispersion ex,ik was assumed to be

constant. Decay of photons and exciton decoherence were set to cic~cix~0:2meV.
The theory includes phase-space filling from the underlying fermionic character of

excitations, with the matrix element 2~A~5:188:10{4mm2 , and excitonic interaction
through scattering matrices in equal and opposite spin channels, T++ and T++ ,
respectively. We neglect quantum memory contributions60 and the dispersive nature
of the interactions for the largely monochromatic scenarios studied here. The values
used at two times the pump frequency are T++(2vp)5 VHF5 5.69 ? 1023 meVmm2,
for simplicity approximated by its Hartree-Fock value, and T++(2vP)~

{T++(2vP)=3. Imaginary parts of Tij are safely neglected at the large negative
detunings studied. We further assume that for the relevant k, the interactions and
coupling constants V i and DC are k-independent. We solve the Fourier-transform of
Eq. (1) directly on a finite-sized grid in real-space in two dimensions. The dispersion
parameters were extracted from a comparison of the resulting linear dispersions with a
transfer matrix modelling of the double-cavity structure.
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Author contributions
All authors have contributed to the presented work and took part in the discussion of the

scientific results. Experiments were done at Ecole Normale Supérieure by V.A., M.A., E.B.,

P.R., J.T. Samples were grown at Laboratoire de Photonique et de Nanostructures by E.G.,

J.B., A.L. The theoretical work was done jointly by the Hong Kong (Y.C.T., M.H.L., P.T.L.),

Tucson (N.H.K., R.B.), and Paderborn (P.L., A.L., S.S.) groups. The manuscript has been

prepared by S.S., J.T., R.B. and N.H.K. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ardizzone, V. et al. Formation and control of Turing patterns in a

coherent quantum fluid. Sci. Rep. 3, 3016; DOI:10.1038/srep03016 (2013).

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3016 | DOI: 10.1038/srep03016 6

http://creativecommons.org/licenses/by-nc-nd/3.0

	Formation and control of Turing patterns in a coherent quantum fluid
	Introduction
	Results
	Discussion
	Methods
	Experiments
	Theory

	Acknowledgements
	References


