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Abstract. The abundance of primordial black holes (PBHs) in the mass range 0.1−103M⊙

can potentially be tested by gravitational wave observations due to the large merger rate of
PBH binaries formed in the early universe. To put the estimates of the latter on a firmer
footing, we first derive analytical PBH merger rate for general PBH mass functions while
imposing a minimal initial comoving distance between the binary and the PBH nearest to
it, in order to pick only initial configurations where the binary would not get disrupted. We
then study the formation and evolution of PBH binaries before recombination by performing
N-body simulations. We find that the analytical estimate based on the tidally perturbed
2-body system strongly overestimates the present merger rate when PBHs comprise all dark
matter, as most initial binaries are disrupted by the surrounding PBHs. This is mostly due
to the formation of compact N-body systems at matter-radiation equality. However, if PBHs
make up a small fraction of the dark matter, fPBH . 10%, these estimates become more
reliable. In that case, the merger rate observed by LIGO imposes the strongest constraint
on the PBH abundance in the mass range 2 − 160M⊙. Finally, we argue that, even if most
initial PBH binaries are perturbed, the present BH-BH merger rate of binaries formed in the
early universe is larger than O(10)Gpc−3yr−1 f3PBH.
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1 Introduction

The Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) observed ten
black hole (BH) binary mergers during its first runs [1–6]. The constituents of these binaries
were relatively heavy, with masses in the range 7 − 50M⊙, and it remains unclear whether
they have astrophysical or primordial origin [7–9]. Observables that may probe the origin
of these BH binaries include the distribution of their eccentricities [10], masses [11–16] and
spins [16–18], the redshift dependence of the BH merger rate [16] and the correlation between
the gravitational wave (GW) sources and galaxies [19, 20] or dark matter (DM) spikes [21].

A population of primordial black holes (PBHs) may also contribute to the DM abun-
dance, but the possibility that PBHs of any mass make up all of the DM is strongly con-
strained by a wide range of experimental observations (see e.g. Refs. [22–24]). However,
recent revisions of the femtolensing [25] and the HSC/Subaru [26] surveys have opened new
windows for PBH DM for light PBHs with masses below 10−11M⊙ [27, 28]. Heavier PBH
DM, in the mass range 0.1− 103M⊙, is constrained by microlensing [29, 30], survival of stars
in dwarf galaxies [31, 32], the distribution of wide binaries [33] and by modification of the
cosmic microwave spectrum due to accreting PBHs [34–37]. Also the recent 21cm observa-
tions by EDGES experiment [38] constrain the energy injection from accreting PBHs putting
bounds on the abundance of PBHs in this mass window [39].

The strongest potential bounds on the PBH abundance in a mass range around 10M⊙

can be derived from LIGO observations. If PBHs made up a significant fraction of DM, they
would produce a BH binary merger rate and a gravitational wave (GW) background much
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larger than what is observed by LIGO [13, 40, 41]. These constraints are, however, subject to
large theoretical uncertainties. A reliable estimate of the GW signatures from PBH binary
mergers requires a good understanding of both the formation of the PBH binaries and of
their subsequent interactions with the surrounding matter that may disrupt the binaries.

In the most common scenario, PBHs are formed when large curvature fluctuations in
the early universe directly collapse gravitationally to form BHs [42, 43]. Independent of the
formation mechanism, they are thereafter dynamically coupled to cosmic expansion and thus
their peculiar velocities are negligible. PBHs become gravitationally bound to each other
roughly when their local density becomes equal to the density of surrounding radiation,
which generically happens after matter-radiation equality. However, due to large Poisson
fluctuations at small scales, some PBHs can decouple much earlier. When this happens,
the closest PBH pairs start falling towards each other and their head-on collision may be
prevented only by the torque caused by the gravitational field of the surrounding PBHs and
other matter inhomogeneities. As a result a population of PBH binaries is formed.

This mechanism was first described about two decades ago in Ref. [44]. It was assumed
that all PBHs have the same mass, were uniformly distributed in space, all torque was
provided by the PBH closest to the binary, and the early binaries were not disrupted between
their formation and merger. This model has since been significantly improved [13, 45–50].
In this paper we provide a self contained extension of the merger rate derivation of Ref. [48],
that included the torques from surrounding PBH and matter inhomogeneities, to a general
PBH mass function. We also account for the necessary separation between the initial binary
and the surrounding PBHs.

The merger rate may be modified by interactions of the binaries with surrounding matter
after their formation. Estimates based on hierarchical 3-body systems show that excluding
initial conditions where the pair becomes bound to the nearest PBH cuts the merger rate
in half [45]. The required initial distance between the binary and the third PBH was found
to be larger than the average distance between the PBHs. In that case, however, it is likely
that the 3-body system is also coupled to other surrounding PBHs, so a full N -body analysis
is needed to determine which binaries are disrupted by the nearest PBH. In Ref. [48] the
disruption of PBH binaries after the formation of the first virialised haloes consisting of 10
or more PBHs was estimated, using simple analytic arguments, to have a negligible effect on
the merger rate. However, the period between formation of the binary and formation of the
first haloes was not considered. In Ref. [49] the interaction with the surrounding CDM was
shown to have only a mild effect on the merger rate, because of the high eccentricity of the
PBH binaries merging today.

In this paper, we focus on the earliest stages of structure formation before recombination.
To check if the binaries are significantly disrupted during this epoch, we perform 70-body
simulations that model the evolution of PBHs for the first 377 kyr. A large number of
surrounding PBHs makes it possible to numerically test the analytical predictions for the
statistical distribution of orbital characteristics of the initial binaries. Because most binaries
with a close third PBH are disrupted, we find that the distribution of eccentricities is better
approximated by a Gaussian distribution than the broken power law found in Ref. [48]. If
PBHs comprise most of the DM, then they (including any binaries) will rapidly form small
N -body systems beginning matter-radiation equality. Due to this effect, the simulations show
a much larger disruption rate than predicted in Ref. [48]. On the other hand, if PBHs make
up only a small fraction of DM, bound structures of PBHs form much later and the early
disruption rate becomes negligible.
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We re-evaluate the LIGO constraints on the PBH abundance from the observed BH-BH
merger rate and from non-observation of the stochastic GW background by accounting for
the possible suppression of the merger rate due to the interactions of the binary with the
surrounding matter. The BH-BH mergers observed by LIGO require a relatively narrow
mass function centred around 20M⊙ while the merger rate can be reproduced if about 0.2%
of DM consists of PBHs. We stress, that these constraints are tentative, as they neglect
the late disruption rate, which is likely significant for a large PBH fraction, and they also
ignore the contribution from the population of perturbed initial PBH binaries. We argue,
however, that, due to the hardness of initial binaries, the stochastic GW background and the
merger rate should be observable even if the initial binary population is almost completely
perturbed, which is the case if PBHs make up most of DM.

The paper is organised as follows. The analytical estimates of the PBH merger rate
are derived in Sec. 2. In Sec. 3 we compare the analytical results to numerical simulations
and study the early interactions of PBH binaries with the surrounding PBHs. In Sec. 4 we
consider the gravitational wave phenomenology of PBH mergers and revise the constraints
on the fraction of DM in PBHs. We summarise our main results in Sec. 5.

Geometric units, G = c = 1, are used throughout this work.

2 Merger rate from early PBH binary formation

In this section we derive the PBH merger rate under the assumption that the initially formed
binary population is not disturbed. The initial condition consists of two PBHs with masses
m1 and m2, proper separation r, and a sphere of comoving radius y which contains no other
PBHs. The distribution of the initial PBH binaries is set by the distribution of their initial
conditions and subsequent emission of GWs. To exclude the possibility of early disruption by
nearby PBHs, we will consider a range of possible initial conditions that gives a conservative
estimate for the merger rate.

The binary is formed from a pair of close PBH. The surrounding matter contributes
with its gravitational potential, which we expand around the centre of mass of the pair, and
acts on the pair via a tidal force that generates the angular momentum of the binary. The
derivation of the merger rate can be divided into two parts:

• The calculation of the orbital parameters of the binaries for a given initial separation
and a known distribution of surrounding BHs and other matter inhomogeneities. From
the orbital parameters we can estimate the coalescence time of the binary. This will be
discussed in Sec. 2.1.

• From the probability distribution of possible initial conditions that will lead to binary
formation we can then derive the distribution of the orbital parameters and coalescence
times. This will be the focus of Sec. 2.2.

We compare these analytic estimates for the formation of the initial binaries with numerical
results from N -body simulations in Sec. 3.

2.1 Dynamics of early binary formation

Consider first the dynamics of a PBH pair in an expanding background surrounded by other
PBHs and matter with small inhomogeneities. At that time the Hubble parameter can be
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expressed as

H2 =
8π

3

(
ρMa

−3 + ρRa
−4
)
, (2.1)

where ρM and ρR denote the comoving energy densities of matter and radiation, respectively,
and the scale factor is chosen so that today a = 1. The scale factor at matter-radiation
equality is aeq ≡ ρR/ρM ≈ 1/3400.

In the comoving Newtonian gauge and in the absence of anisotropic stress, the line
element for spacetimes with small inhomogeneities is [45]

ds2 = −(1 + 2φ(x))dt2 + (1− 2φ(x))a(t)2dx2 , (2.2)

where the potential φ is determined by

a−2∆φ = 4πρPBH(x) + 4πρ̄MδM(x) . (2.3)

Here ρPBH and ρ̄M are the densities of PBHs and other types of matter respectively, and δM
denotes the density fluctuations of the latter. Treating the PBHs as point masses, we obtain

φ(x) = −
∑

i

mi

a|xi − x| − 4πρDM

∫
d3k

(2π)3
a2

k2
e−ik·xδ̃DM(k), (2.4)

where mi and xi denote the masses and comoving positions of the PBHs. The motion of test
particles is encoded in the action m

∫
ds. A system of N non-relativistic PBHs, adx/dt≪ 1,

obeys the action

S(N) =

∫

dt

[
∑

i

mi

(
1

2
ṙ2i +

1

2

ä

a
r2i − φex(x)

)

+
∑

i>j

mimj

|ri − rj |

]

, (2.5)

where ri ≡ axi is the proper distance. The last term accounts for the pairwise interaction of
the PBHs and φex(x) is an external potential describing the effect of the surrounding matter
on the N -body system. The action of a two PBH system can then be approximated as

S(2) ≈
∫

dt

[
M

2

(

ṙ2c +
ä

a
r2c

)

−Mφex(rc) +
µ

2

(

ṙ2 +
ä

a
r2 +

2M

r
− r ·T · r

)]

, (2.6)

where r denotes the separation of the PBH, rc is the centre of mass of the 2-body system,
M ≡ m1 +m2 and µ ≡ m1m2/M are the total and reduced mass of the binary, and Tij ≡
∂i∂jφ(rc) results from the expansion of the external potential around the centre of mass of
the system. We assume that the centre of mass is stationary, so the time dependence of T
can be estimated from the expansion only. The forces acting on the pair are summarised as
follows

F/µ = rä/a
︸︷︷︸

Hubble flow

− M r̂/r2
︸ ︷︷ ︸

self-gravity

+ (r̂ ·T · r)r̂
︸ ︷︷ ︸

radial tidal forces

+ (r× (T · r))
︸ ︷︷ ︸

tidal torque

×(r̂/r) , (2.7)

where r̂ ≡ r/r is the unit vector parallel to r. The first three forces are radial (i.e. parallel to
r̂), and the last term provides the torque that prevents the head on collision of the two PBHs.
For the binary to form, the tidal forces are required to be much weaker than the gravitational
attraction of the PBH pair, that is, the two bodies must be more tightly coupled to each
other than to any other PBH.
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Decoupling from the expansion takes place when the second term in Eq. (2.7) starts to
dominate over the first one. We define

δb ≡ M/2

ρMV (x0)
, (2.8)

where V (x) ≡ (4π/3)x3 denotes the comoving volume of comoving radius x. The quantity
δb − 1 can be interpreted as the effective matter overdensity generated by a PBH pair of a
total mass M and a comoving separation x0. We are interested in initial PBH pairs with
δb ≫ 1, as they produce tightly bound PBH binaries that may merge within the age of
the universe. In the radiation dominated epoch such perturbations collapse roughly when
ρRa

−4 ≈ δbρMa
−3. So, we define the scale

adc ≡ aeq/δb , (2.9)

as an approximate estimate of decoupling.
After decoupling, the separation of the PBH pair will stop growing and the tidal forces

will be damped fast, T ∝ a−3, as the universe expands. This is implied from Eq. (2.4)
because, in the first approximation, during radiation domination the surrounding PBHs are
assumed to follow the Hubble flow and the matter density perturbations are constant. This
means that the potential (2.4) scales roughly as φ ∝ a−1, which translates to T ∝ a−3, as
claimed.

The angular momentum L of the two body system vanishes initially. It is generated by
the tidal torque,

L = µ

∫

dt r× (T · r) . (2.10)

It is more convenient to work with the dimensionless angular momentum,

j ≡ L/µ√
raM

, (2.11)

where ra is the semi-major axis of the PBH binary. The orbital eccentricity e of the binary
is given by e =

√

1− j2, and the coalescence time for eccentric orbits, j ≪ 1, by [51]

τ =
3

85

r4a
ηM3

j7 , (2.12)

where η ≡ µ/M is the symmetric mass fraction. For non-eccentric orbits Eq. (2.12) may
overestimate the coalescence time by at most a factor of 1.85 [51].

Following Ref. [48] we estimate the effect of tidal torque perturbatively assuming that the
decoupling from expansion takes place in the radiation dominated epoch and that the orbit
of the binary remains eccentric, j ≪ 1. The evolution of j can be evaluated perturbatively
by first solving for purely radial motion using r̈ − rä/a +Mr−2 = 0 and then plugging the
solution into Eq. (2.10). As the relevant binaries are formed in the radiation dominated
epoch, we may ignore the contribution of the matter density ρM to the Hubble parameter
(2.1) in the first approximation. The equation of motion for the comoving separation x ≡ r/a
is then simply

x′′ +
a

adc

x30
x2

= 0 , (2.13)
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where the prime denotes derivation with respect to ln(a) and the initial conditions are given
by x(a0) = x0, x

′(a0) = 0. We must assume that a0 ≪ adc. Eq. (2.13) is solved by
x(a) ≈ x0χ(a/adc), where χ(y) is determined by (y∂y)

2χ + yχ−2 = 0 and the boundary
conditions χ(y → 0) = 1, χ′(y → 0) = 0. The function χ(y) is positive and oscillates with
an amplitude that decreases asymptotically as 0.2/y. So, the semi-major axis of the fully
decoupled binary is

ra = axa/2 ≈ 0.1adcx0 . (2.14)

The first root of χ(y), indicating the first close encounter of the pair, lies at y ≈ 0.54,
which translates to a ≈ 0.54adc, so the binary must decouple even earlier than our first
estimate a ≈ adc suggested. Although Eq. (2.13) ignores the contribution of matter to
cosmic expansion, it yields a relatively good approximation even when adc ≈ aeq. Plugging
the solution of Eq. (2.13) into Eq. (2.10), and, again, neglecting the contribution of matter
to the expansion, gives

j =
1√
raM

∫
da

a2H
x× (Ta3 · x) = 0.95x30

M
r̂× (Ta3 · r̂) , (2.15)

where we used
∫∞
0 dy χ(y)2 ≈ 0.3. Note that Ta3 is constant under the assumptions made

above. Because T is rapidly damped by the expansion, the binary acquires about 90% of its
angular momentum during the first period.1

The coefficients in Eqs. (2.14) and (2.15) can be determined from the numerical simu-
lations that we discuss in Sec. 3. So, to account for deviations from the simplified case, we
will not fix them and define the coefficients ca and cj instead,

ra = ca
8πρR
3

x40
M

, j = cj
x30
M

r̂× (Ta3 · r̂) . (2.16)

For the above simplified scenario we have ca = 0.1 and cj = 0.95.
The orbit of the binary is now explicitly determined by the PBH masses m1 and m2,

the initial comoving separation x0 and the tidal torque T, and the coalescence time (2.12) of
the initial binary can be written as

τ =
4096π4c4ac

7
jρ

4
R

2295

x370
ηM14

|r̂× (Ta3 · r̂)|7. (2.17)

Of course, this prediction holds only when the orbit is not disturbed between the formation
and merger of the binary. Note that the surrounding matter enters these expressions through
the radiation density, which, by assumption, determines the Hubble parameter when the
binary is formed, and the tidal torque, that implicitly accounts for the surrounding PBH
and matter fluctuations. Both x0 and T should be thought of as random variables that
depend on the statistical properties of the initial PBH population. Next we will discuss how
the distribution of masses and positions of the PBHs will determine the distribution of the
orbital parameters derived above.

2.2 Distribution of initial binaries

Having detailed the properties of the PBH binary given the initial condition with known
separation x0, masses m1, m2 and T, we now turn to discuss the distribution of initial

1The first period corresponds to the first root of χ(y) at y ≈ 0.54, during which the angular momentum
generated is proportional to

∫

0.54

0
dy χ(y)2 ≈ 0.26. The total angular momentum corresponds to

∫

∞

0
dy χ(y)2 ≈

0.3.
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x0
y

Surrounding matter

Poissonian PBH population

PBH pair

Figure 1. Schematic description of the initial configuration for the simulation. The exterior region
(blue) contains surrounding matter that has a uniform density and evolves only due to the expansion of
the universe. A spherical region (white) contains a randomly distributed PBH population. The interior
region (red) contains only the binary that is inserted so that, by using Eq. (2.17), its coalescence time
matches the current age of the universe. A similar set-up applies for the analytic estimate for binary
formation in Sec. 2.1, but in that case the white region extends to infinity and all PBH in this region
within the timescale of formation of the binary are assumed to evolve only due to cosmic expansion.

conditions which will eventually determine the distribution of j and the merger rate of the
PBH binaries.

Consider a PBH pair with masses m1, m2 at a comoving separation x0 so that they are
the only PBHs in spherical volume of comoving radius y. This set-up is shown in the interior
region of Fig. 1. The reason for forbidding surrounding PBHs closer than y is to exclude initial
configurations where the binary gets disrupted by surrounding PBHs shortly after formation.
In such cases the perturbative estimate of the coalescence time will inevitably fail. For the
sake of generality, we will not fix the value of y in the general discussion. The aim of the
following is to estimate the density of viable initial conditions and, from it, the distribution
of coalescence times and the merger rate. The spatial PBH distribution is assumed to be
Poisson throughout the paper.2 In this case the comoving number density of configurations
producing a binary is

dnb =
1

2
e−N̄(y)dn(m1)dn(m2)dV (x0) , (2.18)

where dn(m) is the comoving number density of PBH in the mass range (m,m+ dm), ρDM

denotes the present DM energy density, N̄(y) ≡ nV (y) is the expected number of PBH in a

2Based on general arguments, the spatial distribution at small scales has been shown to be well approx-
imated by the Poisson distribution [41]. It has been argued, however, that accounting for the two-point
function of PBHs, ξPBH, may affect the merger rate for wider mass functions [13, 52, 53]. In Ref. [53] this
effect was estimated to be irrelevant for PBHs in the LIGO mass range. In addition, a rough estimate yields
that for ξPBH 6 1 the contribution of the PBH two-point function to the merger rate is generally subleading
to the direct contribution of the width of the mass function [13]. Only the latter will thus be considered in
this paper. Formation of initially clustered PBH distributions, enabled by some more exotic PBH formation
mechanisms, and the evolution of such clusters has been considered in Ref. [54].
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spherical volume with radius y, and n =
∫
dn(m) is the PBH number density. The factor

1/2 avoids overcounting.
The differential merger rate per unit time and comoving volume is then given by3

dR =

∫

dnbdj
dP

dj
δ

(

τ − 3

85

r4a
ηM3

j7
)

=
1

14τ
dn(m1)dn(m2)

∫

dV (x0)e
−N̄(y)j

dP (j|x0, y)
dj

∣
∣
∣
∣
j=j(τ)

,

(2.19)

where j(τ) is obtained from Eq. (2.12) and dP/dj is the distribution of the dimensionless
angular momentum for a given y and x0. We derive dP/dj in the following section. The
choice of N̄(y) should guarantee that the pair is initially a 2-body system and thus not
gravitationally coupled to a third PBH. Numerical simulations presented in Sec. 3 indicate
that initial configurations with a third PBH in the surrounding volume V (y) .M/ρPBH will
produce binaries that are likely to be disrupted and will thus not contribute to the present
merger rate.

2.2.1 Angular momenta

The distribution of eccentricities or, equivalently, the dimensionless angular momenta j,
gets contributions from surrounding PBH and matter fluctuations. The dimensionless an-
gular momentum from the surrounding PBHs, for which the tidal tensor reads TPBHa

3 =
∑

imi(1 − 3x̂i ⊗ x̂i)/x
3
i , is given by the sum, jPBH ≡

∑

i j1(xi,mi), of contributions from
individual PBHs (see Eq. (2.15))

j1(xi,mi) = j0
mi

〈m〉
3

N̄(xi)
x̂i × r̂ (x̂i · r̂) , (2.20)

where 〈m〉 = ρPBH/n is the average PBH mass4 and we defined

j0 ≡ cj N̄(x0)〈m〉/M ≈ 0.4fPBH/δb , (2.21)

where we used ΩM/ΩDM = 1.2. The quantity j0 provides an order of magnitude estimate of
the average dimensionless angular momentum, since, as most of the torque is likely generated
by the PBH closest to the binary, for which N̄(xi) ≈ 1 and mi ≈ 〈m〉 on average, so the
other terms in Eq. (2.20) will on average contribute an order one factor. Binary formation
requires δb ≫ 1, thus we must assume j0 ≪ 1. As we will see, this will be true for coalescence
times less than the age of the universe.

We assume that the masses mi and positions xi of the surrounding PBH and the matter
density perturbations are statistically independent. The angular momentum, j = jPBH + jM,
is then composed of a sum of independent variables, so its distribution is most conveniently
estimated using the cumulant generating function K(k) ≡ ln

〈
eik·j

〉
,

dP

d3j
≡ 〈δ(j− jM − jPBH)〉 =

∫
d3k

(2π)3
e−ik·j+K(k) , (2.22)

3In Ref. [55] it was argued, that the PBH binary merger rate is enhanced by a cascade of mergers in the
early Universe. However, their application of the early binary formation mechanism beyond the first merger
step is questionable as the PBHs may have peculiar velocities.

4In general, the average over masses is defined as 〈X〉 ≡ n−1
∫

Xdn.
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because of the additive property of cumulants.
We start by considering the first two cumulants of j. Isotropy implies that

〈j〉 = 0, 〈j⊗ j〉 = 1

2
σ2j (1− r̂⊗ r̂), (2.23)

where σ2j ≡ 〈j2〉 and the r̂⊗ r̂ term arises because j ⊥ r̂ by construction (2.16). In general, the
last feature implies that K is a function of k⊥ ≡ k× r̂, while isotropy further constrains it to
be a function of k⊥. Statistical independence implies that σ2j = σ2j,PBH + σ2j,M. The variance
due to matter perturbations is obtained by applying Eq. (2.16), averaging over orientations
of r̂ and using that, by Eq. (2.3), in Fourier space a3T = q̂⊗ q̂ 4πρ̄MδM(q),5

σ2j,M =
〈
j2M
〉
=

(
cjx

3
0

M

)2
a6

5

〈

tr(T ·T)− 1

3
tr(T)2

〉

=
6

5
j20

σ2M
f2PBH

,

(2.24)

where σ2M ≡ (ΩM/ΩDM)2
〈
δ2M
〉
is the rescaled variance of matter density perturbations at

the time the binary is formed and fPBH ≡ ρPBH/ρDM is the fraction of PBHs. Following
Ref. [48] we will use the value

〈
δ2M
〉
= 0.005 for numerical estimates. We stress, however,

that differences from this estimate can arise when PBH formation is accompanied by enhanced
density perturbations at small scales, as is often the case.

A similar calculation yields, for the variance due to surrounding PBHs,

σ2j,PBH = lim
V→∞
N/V=n

N
〈
j21
〉
=

6

5
j20

〈m2〉
〈m〉2 lim

V→∞
N/V=n

N

∫ V

V (y)

dV (x)

V

1

N̄(x)2

=
6

5
j20

1 + σ2m/〈m〉2
N̄(y)

,

(2.25)

where σm ≡
√

〈m2〉 − 〈m〉2 is the width of the mass distribution. The new element in this
computation is the average over positions of the surrounding PBHs. We first estimated
it for a finite volume V and then took the limit V → ∞ by keeping the PBH number
density, n = N/V , fixed. The contributions from each PBH are statistically independent
and identical, so σ2j,PBH is just the contribution from a single PBH times the number of
surrounding PBHs. The integral over positions has a lower bound because we exclude initial
conditions where PBHs can be closer than y to the centre of mass of the binary.

In conclusion, the variance of j is

σ2j = σ2j,M + σ2j,PBH =
6

5
j20

(
1 + σ2m/〈m〉2

N̄(y)
+

σ2M
f2PBH

)

. (2.26)

The limit N̄(y) → 0, where the variance diverges, is never realised as, in order not to disrupt
the binary, the distance to the closest PBH must be larger than the separation of the binary,
that is y > x0. Therefore, since j0 ≈ N̄(x0) ≪ 1 we have σ2j . j0. A comparison of
Eqs. (2.24) and (2.25) indicates that the variance due to the surrounding PBHs may be
attributed to Gaussian matter perturbations with variance (1 + σ2m/〈m〉2)f2PBH/N̄(y). As

5We assumed that ρ̄M = ρM. This introduces a minor error as the contribution of σj,M becomes insignificant
for fPBH = 1, while the distinction is negligible for fPBH ≪ 1.
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N̄(y) is the expected number of PBHs in the empty volume around the binary, this result is
not surprising for a Poisson distribution of PBHs. Moreover, when N̄(y) ≫ 1, it is expected
that the distribution of j is Gaussian with a width (2.26). This is indeed so, as we will confirm
shortly.

The cumulant generating function of j decomposes as K = KPBH +KM. We will next
calculate these separately. As matter density fluctuations are Gaussian only the first two
cumulants contribute, thus KM is simply

KM(k) = −1

2

〈
(k · j)2

〉
= −1

4
σ2j,Mk

2
⊥ . (2.27)

To compute KPBH we proceed in a similar manner as in the case of σ2j,PBH – starting with a
finite volume and then taking the limit V → ∞ by keeping N/V fixed. This gives

KPBH(k) = lim
N→∞

N ln
〈

eik·j1(x,m)
〉

=

∫

d3x dn(m)
(

eik·j1(x,m) − 1
)

. (2.28)

After plugging in Eq. (2.20) and averaging over PBH positions in the region |x| > y we get6

KPBH(k) =

∫

dn(m)

∫

|x|>y

dΩ

4π
dV (x)

[

exp

(
i3mj0

ρPBHV (x)
(k⊥ · x̂) (x̂ · r̂)

)

− 1

]

= −N̄(y)

∫
dn(m)

n
F

(
m

〈m〉
1

N̄(y)
j0k⊥

)

,

(2.29)

where F (z) = 1F 2

(
−1/2; 3/4, 5/4;−9z2/16

)
− 1 and 1F 2 is the generalised hypergeometric

function. The function F has the following properties

z − 1 ≤F (z) ≤ 3z2/10, F (z) ≥ 0 when z ≥ 0,

F (z) ∼ z − 1, when z → ∞,

F (z) ∼ 3z2/10, when z → 0,

(2.30)

which we list for later convenience. As a consistency check we find that the first two cumulants
obtained from Eq. (2.29) match the earlier direct computation, i.e. −i∂kKPBH|k=0 = 0,
(−i∂k)2KPBH

∣
∣
k=0

= σ2j .
Both KPBH and KM depend only on k⊥, so, as expected for an isotropic distribution of

matter, it is sufficient to consider the distribution of j. From Eq. (2.22) we then obtain

j
dP

dj
=

∫ ∞

0
duuJ0(u) exp

[

−N̄(y)

∫
dn(m)

n
F

(

u
m

〈m〉
1

N̄(y)

j0
j

)

− u2
3

10

σ2M
f2PBH

j20
j2

]

.

(2.31)
This distribution peaks at j . j0. Since for PBH binaries merging today j0 ≪ 1, this result
is consistent with the assumption of eccentric orbits.

6Defining z ≡ k⊥j0m/(ρPBHV (y)) and changing the integration variable to u ≡ zV (y)/V (x), the spatial
integration can be performed as follows

− z

∫

d2Ω

4π

∫ z

0

du

u2

[

exp
(

i3u(k̂⊥ · x̂) (x̂ · r̂)
)

− 1
]

= −z

∫ z

0

du

u2

∫ π

0

∫

2π

0

d cos(θ) dφ

4π

[

exp

(

i
3u

2
sin2(θ) sin(2φ)

)

− 1

]

= −z

∫ z

0

du

u2

[

π

2
√
2
J
−

1

4

(

3u

4

)

J 1

4

(

3u

4

)

− 1

]

= 1F 2

(

−1

2
;
3

4
,
5

4
;−9z2

16

)

− 1.
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Figure 2. The distribution of the logarithm of the dimensionless angular momentum, jdP/dj, for
monochromatic mass functions and fPBH = 1. The exact distribution (2.31) evaluated numerically
for N̄(y) = 0.2, 2, 10 is shown by the blue, yellow and green dotted line, respectively, while the red line
corresponds to the N̄(y) → 0 limit (2.32). The blue, yellow and green dotted line show the Gaussian
approximation (2.33) for N̄(y) = 0.2, 2, 10, respectively.

The logarithmic distribution jdP/dj depends on j only through the ratio j/j0, so the
characteristics of the binary, which affect only j0, do not change the shape of the distribution
but only shift it on the logarithmic scale. In particular, for monochromatic mass functions,
dn(m) = nδ(m − mc)dm, the shape of this distribution does not explicitly depend on the
PBH mass. The distribution (2.31) for a monochromatic mass function is shown in Fig. 2
for fPBH = 1 by the solid lines for different values of N̄(y).

In the limit N̄(y) → 0, σM ≪ fPBH we obtain a power law distribution with a break at
j0,

j
dP

dj
=

j2/j20
(1 + j2/j20)

3/2
. (2.32)

This limiting case matches the result of Refs. [48, 50]. Interestingly, this result does not
depend on the PBH mass function as it drops out of the integral in Eq. (2.31). Note,
however, that the mass of the binary enters implicitly through j0. As shown in Fig. 2,
Eq. (2.32) approximates the distribution (2.31) relatively well for N̄(y) . 0.2 if fPBH & σM.
However, if fPBH . σM matter fluctuations can dominate over the Poisson fluctuations of
PBH. In conclusion, the approximation (2.32) holds if the variance of the distribution (2.26)
is dominated by PBHs, that is N̄(y) ≪ f2PBH/σ

2
M.

In the limit N̄(y) → ∞ we obtain a Gaussian distribution,

j
dP

dj
=

2j2

σ2j
e−j2/σ2

j , (2.33)

where the width σj is given by Eq. (2.26). The dotted lines in Fig. 2 show this limiting
case. We see that, for monochromatic mass functions, the Gaussian distribution is a decent
approximation already for N̄(y) = 2. The latter corresponds to the case where the binary
lies in an underdense region prompting matter to initially move away from the binary. It
also matches the conclusion based on the analysis of 3-body systems which states that the
distance to the closest PBH should be at least of the order of the average distance between
PBHs [45].
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2.2.2 Merger rate

Assuming negligible disruption between formation and merger, the merger rate of the PBH
binaries can now be obtained from Eq. (2.19). We take N̄(y) to be independent of x0, that is,
the binaries are expected to be disrupted if and only if initially there are surrounding PBH
closer than y. This assumption is in good agreement with the numerical results of Sec. 3
in case fPBH ≪ 1. The integrals over x0 and u can then be factorised by replacing x0 with
v = uj0/j(τ). The primordial merger rate reads

dR = S × dR0, (2.34)

where

dR0 =
0.65

τ

(

τηM14

f7PBHc
7
jc

4
aρ

11
M

) 3

37

dn(m1)dn(m2)

≈ 1.6× 106

Gpc3yr
f

53

37

PBHη
− 34

37

(
M

M⊙

)− 32

37

(
τ

t0

)− 34

37

ψ(m1)ψ(m2) dm1dm2

(2.35)

is the rate in the limit N̄(y) → 0 and σM/fPBH → 0. On the second line we have used the
usual definition of a PBH mass function,

ψ(m) ≡ m

ρPBH

dn

dm
, (2.36)

that is normalised to unity,
∫
ψ(m)dm = 1, and the numerical values ca = 0.1, cj = 1,

t0 = 13.8× 109 yr. The suppression factor

S =
e−N̄(y)

Γ(21/37)

∫

dv v−
16

37 exp

[

−N̄(y)〈m〉
∫

dm

m
ψ(m)F

(
m

〈m〉
v

N̄(y)

)

− 3σ2Mv
2

10f2PBH

]

(2.37)

quantifies the contribution from matter density fluctuations and modifications due to the size
of the empty region assumed around the pair. Note that, since S does not depend on the
coalescence time, the merger rate has an universal time dependence given by τ−

34

37 .
From the asymptotics of F given in Eq. (2.30) we obtain the following limiting cases:

First, in the limit N̄(y) → 0 the suppression factor reads

Smax =

(
5f2PBH

6σ2M

) 21

74

U

(
21

74
,
1

2
,
5f2PBH

6σ2M

)

, (2.38)

where U is the confluent hypergeometric function. Note that this is again independent of the
shape of the mass function. The approximate merger rate reported in Ref. [48] corresponds

to S =
(
1 + σ2M/f

2
PBH

)−21/74
and underestimates the suppression factor (2.38) by at most a

factor of 1.43 when fPBH ≪ σM.
Second, in the limit N̄(y) → ∞ we get

Smin =

√
π

Γ(29/37)

(
σj
j0

)− 21

37

e−N̄(y) . (2.39)

For narrow mass functions, Eq. (2.39) is a good approximation already when N̄(y) & 1. The
inequalities in Eq. (2.30) imply that the suppression factor is bounded between the above
asymptotics,

Smin ≤ S ≤ Smax ≤ 1, (2.40)
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Figure 3. The integrated merger rate R as a function of the fraction of DM in PBHs for lognormal
mass functions with mc = 20M⊙. The dashed and solid lines correspond to different widths of the
lognormal mass function. For the red lines N̄(y) → 0 and blue ones N̄(y) = 2, whereas for the
black lines N̄(y) is given by Eq. (3.1). The grey region shows roughly the rate at indicated by LIGO
observations [6]. The hatched region at fPBH > 0.1 indicates that the merger rate estimate (2.34) is
not reliable.

where in the last inequality can be saturated in the limit, σM/fPBH → 0. In particular, dR0

constitutes the upper bound on the merger rate of initial PBH binaries.
The dependence of the integrated merger rate on the PBH fraction is shown in Fig. 3.

We assumed a lognormal mass function for the PBHs,

ψ(m) =
1√

2πσm
exp

(

− log2(m/mc)

2σ2

)

, (2.41)

where, following the notation of [23],mc denotes the peak mass ofmψ(m), and σ characterises
the width of the mass spectrum. This class of mass functions has been found to provide a good
representative of a large class of extended mass functions [35, 56–59]. We stress, however,
that the log-normal mass function is not universal as several effects may cause deviations
from it [60–65].

3 Evolution of PBH binaries in the early universe

The PBH binaries are the first gravitationally bound structures to be formed in the early
universe. Subsequently, interactions with nearby PBHs may disrupt the binaries. To estimate
the effect of the surrounding PBHs on the binary population in the early universe and to
determine which initial configurations produce undisrupted PBH binaries, we conducted N -
body simulations of PBHs in an expanding background, using a custom-written C++ code.

The simulations focus on the early evolution of PBH binaries, from their formation up
to a = 3aeq, which corresponds roughly to the time of recombination. The initial conditions
of the central PBH pair are chosen such that a binary with an expected coalescence time
equal the age of the universe is formed according to Eq. (2.17). The aim is to study the
interaction of this pair with the surrounding PBHs, and to test the validity of the formation
mechanism described in Sec. 2.1 and the analytical predictions for the distribution of the
PBH binary orbital parameters given in Sec. 2.2.
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3.1 Simulation set-up

The simulations are performed in physical coordinates and solve the equations of motion
resulting from the action (2.5). The initial state consists of a central PBH pair that will form
a binary and N − 2 randomly distributed PBHs in a sphere around the binary as shown in
Fig. 1. The individual particles in the simulation are subject to three different forces:

1. The gravitational attraction of the other N − 1 particles is calculated in the New-
tonian approximation without any regularisation at small distances. The individual
contributions are summed.

2. The expansion of the universe is simulated by including a Hubble acceleration of the

form ~̈r =
(

Ḣ +H2
)

~r.

3. The gravitational attraction of the PBHs in the rest of the universe is approximated by
the gravitational potential of a spherical underdensity inside otherwise homogeneously
distributed matter. Equivalently, this corresponds to a sphere with uniform negative
mass density equal to the positive mass density of the simulated black holes. The
comoving radius and the total negative mass are kept constant.

We remark that the radius of the simulation is always much smaller than the Hubble
radius, so the Newtonian approximation is justified. The simulation neglects the contribu-
tions of matter fluctuations as well as from the PBHs outside of the sphere. These are not
relevant for fPBH ≫ σM, as the dominant forces acting on the central binary arise in that
case from the closest PBHs surrounding it. For fPBH <∼ σM, in turn, these omissions under-
estimate the tidal forces. We also neglect the effect of emission of gravitational radiation. A
binary that is loosing energy only by gravitational radiation satisfies ra ∝ j−2 for j ≪ 1 [51].
Eq. (2.12) implies the time dependence j(t) = j0/(1− t/τ), where τ is the coalescence time
at formation, so for binaries merging today the impact of gravitational radiation on the evo-
lution of the orbit is of the order 10−4 within the first millions of years and can thus be
safely neglected. We neglect baryons and, when fPBH < 1, treat the surrounding DM as
non-dynamical, accounting it only in the expansion rate.

The simulation uses adaptive, individual time steps for the particles and implements
the leapfrog integration algorithm in the drift-kick-drift formulation. The size of the indi-
vidual time steps is chosen such that the simulation (when ignoring the expansion of the
universe) approximately conserves the total energy of the system. To determine the required
precision of the energy conservation, we consider a typical binding energy of Eref = 1039 J
(corresponding e.g. to two lightly bound BHs with masses of 30 M⊙ circling each other with
a distance of ∼4 mpc). The simulation is then required to conserve the total energy with a
precision ∆E ≤ 3 · 10−5Eref in each global time step. We find that this level of precision
allows for sufficiently accurate integration of binary orbits while keeping the total CPU time
requirement manageable.

To allow for exact reproduction of the black hole orbits, a large dynamical range is
required. The simulation reduces the individual, adaptive time steps until the required preci-
sion or the maximal number of substeps is reached. If the minimal substep of ∼ 0.63 seconds
cosmic time is not sufficient to reach the required precision, the code marks an exception in
the output and continues with the minimal substep.

To ensure that the simulations finish in finite time, it is furthermore necessary to define
a minimal distance of the BHs, which is chosen at dmin = 3 · 108 m. If two BHs approach
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each other more closely, they are merged into a single object while conserving the mass and
momentum of the previous two objects. In practice, we find that this minimal distance allows
for the simulation of binaries with lifetimes corresponding to a small fraction of the age of
the universe, with the exact number depending on the other orbital parameters. We also
tested that changes in the results are insignificant if dmin is decreased.

The simulations are started with an initial scale factor of ainit = 10−3 aeq. The initial
set-up shown in Fig. 1 is achieved in the following way: First, the N−2 other particles in the
simulation are randomly added to a spherical volume, such that the density of BHs in the
spherical volume is equal to fPBH times the total dark matter density. Then, the projection
of the tidal force in a fixed direction from these N − 2 particles is calculated for the centre
of the sphere. Finally, the pair is added. The centre of mass of the pair is set to coincide
with the centre of the spherical region and the vector joining the two PBH matches the fixed
direction chosen before. The initial separation of the central BH binary is calculated by
solving Eq. (2.17) for x0 and demanding that τ equals the current age of the universe. Since
the simulation is performed in non-comoving coordinates, each object is introduced with an
initial velocity given by the Hubble expansion, i.e. ~v0 = H0 ~r0, corresponding to a vanishing
peculiar velocity. To guarantee that the initial conditions produce, on average, binaries
that are expected to merge within the age of the universe, we used the values ca = 0.129
and cj = 1.055 found numerically from fPBH = 1 simulations. After the central PBH pair
has been added, the simulation is run until a scale factor of afinal = 2.97 aeq is reached,
corresponding to a total simulation time of 377 kyr. The simulation therefore finishes after
recombination.

We ran 70-body simulations with a monochromatic mass function for fPBH = 1, fPBH =
0.1 and fPBH = 0.01 and with an extended mass function for fPBH = 0.1. Each set of
simulations consisted of 3000 simulations. The data used in the following analysis only
includes simulations that reached a = 3aeq within a runtime of 10 days for fPBH = 1 and 6
days for other simulations. We also excluded simulations where the central binary merged
due to reaching the minimal distance set in the simulation. The latter makes up about
20% of the finished simulations in the case of monochromatic simulations with fPBH = 1,
7% for fPBH = 0.1 and 2% for fPBH = 0.01, while the corresponding fraction is 2 -8% for
simulations with an extended mass function. We checked that increasing the minimal distance
or decreasing the runtime of the simulation does not affect our conclusions about undisrupted
binaries. However, we see in Figs. 4 and 8, that the total number of used simulations (blue
histogram) in the region where the central binary is expected to be disrupted remains below
the expectation for Poisson distributed initial conditions (dashed line). This systematic effect
can be attributed to the fact that N -body collisions are more likely to produce encounters
where the distance briefly decreases below dmin = 3 · 108m while their accurate simulation
requires more computational resources making the simulation less likely to finish.

3.2 Properties of binaries merging within the age of the universe

The binary may be disrupted shortly after formation by a nearby PBH or a small cluster
of PBHs, which may appear due to the Poissonian nature of the spatial distribution. We
find that a single nearby PBH is the dominant source for disruption at the earliest times,
especially when fPBH ≪ 1. When fPBH ≈ 1, however, the formation of bound systems of
several PBHs can be observed already at matter-radiation equality, and, if the initial binary
finds itself close to such clusters, it is very likely to be disrupted.
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The initial binaries expected to merge today are highly eccentric, j ≪ 1. If they interact
with other objects, the eccentricity decreases and, since τ ∝ j7, the coalescence time will on
average be increased by several orders of magnitude. So, in the first approximation, all
disrupted binaries are removed form the population of binaries merging today.

Consider collisions between the binary and the PBH initially closest to it. Let xNN de-
note the initial comoving distance of the nearest neighbour. We would like to choose the size of
the empty region around to binary as the smallest xNN that does not lead to the early disrup-
tion of the binary. A rough estimate can be obtained by noting that, since the volume V (xNN)
surrounding the PBH pair does not contain any PBH by construction, the central pair cor-
responds to an effective matter density fluctuation δNN ≈ (M − ρPBHV (xNN))/(ρMV (xNN)).
As such configurations are expected to collapse at a ≈ aeq/δNN we estimate that, at a given
a, the binary has collided with its neighbour if xNN < y, where y is given by

N̄(y) ≈ M

〈m〉
fPBH

fPBH + aeq/a
. (3.1)

We stress that this estimate is intended to provide a maximal value for xNN below which most
initial binaries will be disrupted by the PBHs initially surrounding it. It does not account
for any sources of later disruption, e.g. interactions with PBH clusters. For monochromatic
mass functions and a → ∞ we obtain N̄(y) = 2 consistent with the analysis of Ref. [45]
which implied that y should be of the order of the average distance between PBHs.

Using the simulations we can estimate if a binary with a nearest neighbour at distance
xNN gets disrupted. The results are summarised in Fig. 4. The numerical data is obtained
from 2820, 2423, and 1382 independent 70-body simulations with fPBH = 0.01, fPBH = 0.1
and fPBH = 1, respectively. In all simulations, the central pair initially forms a binary with
a coalescence time of roughly the age of the universe, as can be seen from Fig. 5. The
blue region in Fig. 4 shows all initial configurations. As a consistency check we find that
the initial distance of the nearest neighbour follows a Poisson distribution. Simulations in
which at least one of the central BHs is in a binary system at a = 3aeq (upper panels) or
a = 3aeq (lower panels), i.e. simulations where the initial binary may have swapped a BH, are
shown by the yellow line, while the dashed yellow line shows simulations where the central
BH remain bound to each other. More precisely, under the solid yellow line we included
simulations where the energy of the system containing one of the central BHs and the BH
closest to it was negative and we additionally imposed that the binding energy between the
binary and its closest neighbour is less than 10% of the binary binding energy. For the dashed
yellow line we only require that the total energy of the initial binary is negative. The green
regions show simulations with central binaries with a coalescence time τ < 10t0, which we
use as the working definition for undisrupted binaries. This definition is justified by the fact
that encounters with surrounding PBHs dominantly increase the coalescence time by several
orders of magnitude, as can be clearly seen from the fist panel in Fig. 5.

Fig. 4 shows that the numerical result is consistent with the estimate (3.1) for the
minimal value of xNN and for its dependence on the scale factor. For fPBH ≪ 1 the sharp
transition at y in Fig. 4 from almost all initial binaries being disrupted to almost all of
them being non-perturbed confirms the underlying assumption in the computation of the
rate (2.34) that y is independent of x0. For fPBH = 1, however, half of the PBH with
xNN > y are disrupted already at a = 3aeq. This implies an additional suppression factor
on top of (2.37), because the latter accounts for disruption by the closest PBH only. Visual
inspection of randomly selected simulations with fPBH = 1 and xNN > y where the binary
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Figure 4. The dependence of the state of the central pair at a = aeq (upper panels) and a = 3 aeq
(lower panels) on the initial comoving distance of the PBH nearest to the binary for a monochromatic
mass function at mc = 30M⊙ with different values of fPBH. The blue region shows all simulations,
while simulations with bound and undisrupted central binaries at a = 3 aeq are shown in yellow and
green, respectively. The yellow dashed line shows the pairs, where the total energy of the central
pair is negative, while the solid yellow curve shows initial conditions where at least one of the central
PBHs is in a binary system at the end of the simulation. The dashed vertical line corresponds to the
estimate Eq. (3.1) for the minimal distance the nearest neighbour can have in order for not to disrupt
the binary. The dot-dashed line shows the expected distribution of the nearest neighbour distance.
For comparison, the initial comoving separation x0 of the binaries is of the order 200 pc for fPBH = 1.
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Figure 5. Distribution of estimated coalescence times at a = 3 aeq for different PBH fractions and
a monochromatic mass function with mc = 30M⊙. Bound and undisrupted central binaries are
coloured in yellow and green respectively. The dashed vertical line indicates the age of the universe.
The geometric average of the expected coalescence times is evaluated only for unperturbed binaries.
The dashed grey line in the fPBH = 1 plot shows the distribution of expected coalescence times at
a = 0.1aeq.

was disrupted indicates that the disruption is mostly, but not always, due to the interaction
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Figure 6. Distribution of angular momenta at a = 3 aeq of PBH binaries expected to merge today
for different PBH fractions and a monochromatic mass function with mc = 30M⊙. The bound and
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Eq. (3.2) evaluated from the exact distribution Eq. (2.31) using N̄(y) estimated from Eq. (3.1), while
the thin dot-dashed and dotted lines indicate the limiting cases N̄(y) ≪ 1 in Eq. (2.32) and N̄(y) ≫ 1
in Eq. (2.33), respectively. The distribution of bound binaries is normalised to unity.

of the binary and a nearby N -body cluster as opposed to a direct collision with the nearest
PBH. As the binaries will continue to be disrupted in the early clusters when a > 3aeq, i.e.
after the end of the simulation, it is expected that nearly all initial binaries will be disrupted
within the age of the universe in case fPBH ≈ 1. It is, however, not possible to draw definite
conclusions from our numerical results beyond stating the need for a careful revision of early
binary formation when fPBH ≈ 1. We will return to the merger rate in that case in Sec. 3.5.

The expected coalescence time τ distribution shown in Fig. 5 for the fPBH = 0.1 and
fPBH = 0.01 simulations is somewhat smaller than the age of the universe. This discrepancy
is due to inaccuracies in the idealised analytic estimates (2.16) and (2.17) used to determine
the initial separation x0 for the central PBH pair. Notably, since τ ∝ x370 small deviations
in the initial separation estimate can lead to large deviations in τ from t0. Based on test
simulations we fixed the numerical parameters ca = 0.129 and cj = 1.055 to obtain merger
times close to t0 in the case fPBH = 1. However, Fig. 5 shows that this choice overestimates
τ for fPBH = 0.1 and fPBH = 0.01 by roughly a factor of 3 and 4, respectively. On the other
hand, by Eq. (2.17) τ ∝ c4ac

7
j , so the obtained values ca = 0.1 and cj = 0.95 would have

underestimated τ by a factor of 2. In all, in agreement with previous studies, we find that
the analytic approach gives a reliable estimate of the coalescence time of the initial binary.

Moreover, we stress that, because dR ∝ c
−21/37
j c

−12/37
a by Eq. (2.35), the merger rate of

initial PBH binaries is considerably less sensitive than τ to O(1) changes in cj and ca.
Consider now the analytic estimate of the orbital parameters of binaries with a coa-

lescence time t0. The distribution (2.31) gives the conditional probability for a fixed initial
separation x0 and the size of the empty region y. Since the initial separation is distributed
simply as n dV (x0), we obtain

dP

dj

∣
∣
∣
∣
τ=t0

∝
∫

dV (x0)δ (t0 − τ(ra(x0), j))
dP (j/j0(x0))

dj

∝ j0(x0)
dP (j/j0(x0))

dj

∣
∣
∣
∣
t0=τ(ra(x0),j)

,

(3.2)

where we dropped overall factors independent of j as they will be determined by properly
normalising the distribution. In the last step we used dτ/dx0 ∝ τ/x0 and j0 ∝ x30. The initial
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separation x0 is determined from the semimajor axis ra by Eq. (2.16) which in turn is fixed
by the coalescence time (2.12) and the angular momentum j. This gives that j0 ∝ j−21/16.
The distribution of ln j, that is jdP/dj, depends on j through the combination of j/j0, thus
we can define a similar characteristic angular momentum jτ for fixed τ so that jdP/dj|τ=t0

will be a function of j/jτ only, i.e. j/j0|τ=t0 = (j/jτ )
37/16. This gives7

jτ = 0.02f
16

37

PBH(4η)
3

37

(
M

20M⊙

) 5

37

(
t0
tau0

) 3

37

(3.3)

for binaries with total mass M and mass asymmetry η. This quantity gives an order of
magnitude estimate of the dimensionless angular momentum of initial binaries merging today.

In Fig. 6 we compare the distribution of angular momenta at a = 3aeq obtained nu-
merically from the simulation and the corresponding analytic estimates based on Eqs. (2.31)
and (3.2) with N̄(y) fixed using Eq. (3.1). The analytic prediction for unperturbed binaries
is in good agreement with the numerical results (green). The j distribution of perturbed
binaries (yellow) is roughly uniform, i.e. jdP/dj ∝ j.

Interestingly, the analytic prediction for the distribution of j of the unperturbed binaries
(solid line in Fig. 6) works well also when fPBH = 1 although most of the initial binaries
with xNN > y are disrupted. This observation can be used to shed some light on the cause
of disruption of the binaries with xNN > y. The choice (3.1) for the size of the empty region
around the binary provides a rough estimate of the minimal xNN for which the binary is
almost certainly disrupted by the infall of the nearest PBH, but it does not predict what
happens to the binaries for which xNN > y. As the analytic prediction for the distribution
of j, which assumes that all initial binaries with xNN < y are disrupted while binaries
with xNN > y remain undisrupted, matches the numerical one, the process disrupting the
binaries with xNN > y must be statistically nearly independent of j and thus also from xNN.
This is because the nearest PBHs give the dominant contribution on the tidal torque which
determines j. In conclusion, the disruption in simulations with xNN > y is less likely to take
place immediately after the surrounding PBHs have decoupled from expansion, but later,
as they interact with clusters of PBHs. We have also observed this by visually studying
individual simulations with xNN > y that produce a disrupted central binary.

The distribution of semimajor axis is easily obtained by noting that ra ∝ j−7/4 when
the coalescence time is fixed, so jdP/dj|τ=t0

= (7/4) radP/dra|τ=t0
. Analogously to the

characteristic angular momentum jτ , we find the characteristic scale for the semimajor axis

ra,τ = 0.3mpc× f
− 28

37

PBH(4η)
4

37

(
M

20M⊙

) 19

37

(
t0
tau0

) 4

37

. (3.4)

The semiminor axis rb = jra and the periapsis rper ≈ j2ra/2 are therefore of the order of au
and 10−2au, respectively.

3.3 Properties of surrounding PBHs

Let us briefly examine the properties of the PBHs surrounding the central binary. By combing
the data, excluding the central pair, from all simulations with a given fPBH, we estimate the
two point function of the PBH spatial distribution of surrounding PBH. The result is shown

7We used the analytic predictions ca = 0.1 and cj = 0.95. Since jτ ∝ c
16/37
j c

−12/37
a , it is relatively

insensitive to O(1) changes in these parameters.

– 19 –



0.1 1 10 100 1000 10410-6

0.01

100

106

x/pc

1
+
ξ

fPBH = 1

fPBH = 0.1

fPBH = 0.01

0.001 0.01 0.1 1 10 100 1000

0.001

0.01

0.1

1

v/(km s
-1)

v
d

P
/d

v

Figure 7. Left panel: The two point function at a = 3aeq obtained from simulations with fPBH = 1
(blue line), fPBH = 0.1 (green line), , fPBH = 0.01 (red line). The dashed grey lines show the two
point function for the initial configuration. The dotted line shows the fit ξ ∝ x−2.38 at small scales.
Right panel: The velocity distribution at a = 3aeq for fPBH = 1 (blue line), fPBH = 0.1 (green line), ,
fPBH = 0.01 (red line).

in the left panel of Fig. 7. Initially, the two point function, shown by the grey dashed lines, is
flat as expected for a Poisson distribution. The drop in 1 + ξ(x) for large x appears because
of the finite size of the simulation. At a = 3aeq we observe a power law behaviour at small
scales, ξ(x) ≈ (x/xc)

−γ , with xc = 604(8)pc and γ = 2.38(1), for the data from fPBH = 1
simulations. This shape does practically not depend on fPBH. Note that at a = 3aeq the flat
region has almost disappeared for the fPBH = 1 simulations and 1 + ξ(x) has developed an
extended tail at large x, as PBHs can be found outside the initial comoving volume. Thus,
larger simulations are needed to probe the small scale structure beyond a = 3aeq.

The distribution of velocities of the surrounding PBH is shown in the right panel of
Fig. 7 for different values of fPBH. It has a peak which decreases as a power law on both
sides and is followed by a roughly log-normal tail. The velocity dispersion in all simulations
is approximately constant already after 0.1aeq and it takes the values 6 km/s, 1.5 km/s and
0.4 km/s for fPBH = 1, fPBH = 0.1 and fPBH = 0.01, respectively.

3.4 Extended mass functions

To study the effect an extended mass function has on the survival of the binary, we simulated
a simplified scenario where fPBH = 0.1 and the PBH population consists of 3M⊙, 10M⊙

and 30M⊙ BH with mass density fractions 25%, 50% and 25%, respectively. In detail, the
simulation included 41, 25 and 4 surrounding PBHs of mass 3M⊙, 10M⊙ and 30M⊙ and
a central pair with different combinations of these masses. The state of the central pair at
a = 3aeq with a mass (3+3)M⊙, (10+10)M⊙, (3+30)M⊙ and (30+30)M⊙ is shown in Fig. 8.
The histograms are based on 629, 636, 555 and 646 simulations, respectively. The definitions
of the blue, yellow and green regions corresponding to all, bound and non-separated binaries
are the same as for Fig. 4. Note that the dashed yellow line can exceed the solid one because
the binding energy of the binary with its nearest neighbour is constrained only in the second
case. In addition, the most massive, in this caseM = 60M⊙, binaries can be bound to several
light PBHs which provide only a small fraction of the binding energy of the system. The
lighter PBHs will, in general, be eventually ejected from the system.
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Figure 8. The dependence of the state of the central pair at a = 3 aeq on the initial comoving
distance of the PBH nearest to the binary in a PBH population with an extended mass function and
fPBH = 0.1. The different panels show the fate of a central PBH pair with masses (3+3)M⊙ (top left),
(10 + 10)M⊙ (top right), (3 + 30)M⊙ (bottom left) and (30 + 30)M⊙ (bottom right). The blue region
shows all simulations, while simulations with bound and undisrupted central binaries at a = 3 aeq
are shown in yellow and green, respectively. The yellow dashed line shows the pairs where the total
energy of the central pair is negative, while the solid yellow curve shows initial conditions where at
least one of the central PBH forms a binary at the end of the simulation. The dashed vertical line is
the estimate (3.1) for the minimal distance the nearest neighbour can have in order for not to disrupt
the binary. The dot-dashed line corresponds to the expected distribution of the nearest neighbour
distance.

Fig. 8 shows that the estimate (3.1) for the disruption by the nearest neighbours works
relatively well also for non-monochromatic mass functions with fPBH ≪ 1. We checked that
the angular momentum distribution follows the analytic prediction (2.31). The coalescence
times of the binaries in these simulations were approximately 0.4t0, which is consistent with
the monochromatic simulations (see the second panel of Fig. 5).

An important feature specific to extended mass functions is that, although heavy bi-
naries are more easily disrupted, almost all of them will remain bound to each other. As a
result, a population of less eccentric heavy binaries with a wide coalescence time distribution,
peaked around 1010t0, appears. On the other hand, the disruption rate is slightly increased
when compared to the monochromatic case, as can also be seen from Fig. 9, because initial
binaries containing light PBH are more easily disrupted.

3.5 Implications for the present merger rate

Let us now turn to the merger rate of initial PBH binaries in the late universe. To estimate
which initial conditions will produce undisrupted binaries merging today we will rely on
Eq. (3.1) for the choice of an appropriate value for N̄(y). The simulations indicate that this
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Figure 9. The distribution of the relative change of the energy of the central binaries. The initial
energy Ei corresponds to the energy of the central binary, if it is bound, evaluated at a = 0.3aeq,
while Ef is the total energy of the two body system formed by at least one of the initial PBH and
the PBH closest to it, evaluated at a = 3aeq. Negative ratios indicate that the binary was separated,
0 < Ef/Ei < 1 corresponds to softened binaries and Ef/Ei > 1 to hardened ones. The green
histogram shows all binaries (disrupted and undisrupted) while the yellow histogram shows only the
disrupted binaries containing at least one central PBH. Left panel: Simulations with fPBH = 1 and
30M⊙ PBHs. Middle panel: Number of simulations with fPBH = 0.1 and 30M⊙ PBHs. Right panel:
Simulations with fPBH = 0.1 combining all simulations with extended mass functions described in
Sec. 3.4.

approach works when fPBH ≪ 1 as for fPBH ≈ 1 the disruption of initial binaries is not
determined by the closest PBH, but their interaction with (or within) the compact N -body
systems that form in the early universe. Extrapolating Eq. (3.1) to a≫ 3aeq and considering
only initial conditions that produce binaries expected to survive until the collapse of the first
DM structures, i.e. until a/aeq = 1/σM , we obtain

N̄(y) ≈ M

〈m〉
fPBH

fPBH + σM
. (3.5)

By Eq.(2.37), the contribution of binaries much heavier than the average PBH mass will
therefore be exponentially suppressed.

We stress that this is a rough approximation as it assumes that all initial PBH binaries
with xNN & y survive while all binaries with xNN . y are disrupted and will not merge
within the age of the universe. This is certainly not the case when fPBH ≈ 1. In the case
of a monochromatic mass function, where N̄(y) ≈ 2 according to Eq. (3.5), we see from
the left panel of Fig. 4 that about half of the binaries with xNN & y are disrupted already
after 0.4Myr. The future of the remaining binaries will depend on their interaction with the
surrounding PBH clusters and, given a half-life of the order of only 0.4Myr, nearly all of
these binaries are expected to be disrupted within the age of the universe. The fraction of
unperturbed initial binaries will, of course, depend on the subsequent evolution of the PBH
clusters, which is not accessible by our simulation. The disruption rate may decrease at later
times when, for example, the dense clumps containing a few PBHs are dissolved within larger
structures. By using Eq. (2.35) as a rough estimate, we note that when fPBH ≈ 1 the initial
binaries can produce a large enough merger rate to be consistent with LIGO even if only
0.1% of the initial binaries remain unperturbed.

Most of the discussion focuses on a small fraction of all initial binaries – the ones that are
expected to merge within the age of the universe. Even if nearly all binaries are disrupted, a
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large fraction of PBHs will still form binaries, as can be seen in Figs. 4 and 8. These binaries
may contribute to the present merger rate.

The velocity dispersion estimates in Sec. 3.3 indicate that initial binaries merging within
the age of the universe are hard – a hard binary is defined by having a binding energy,
E = m1m2/(2ra), that is larger than the average kinetic energy of the surrounding bodies. A
well known result from studies of globular clusters is the Heggie-Hills law: hard binaries tend
to get harder, while soft binaries get softer [66, 67]. The binding energy in binary-single body
encounters is, on average, increased by an O(1) factor, which implies that the semimajor axis
will decrease, but not by much. Binary-binary encounters, however, will generally lead to
the ionisation of one of the binaries [68]. For wide mass spectra, the binary emerging from
binary-single body collisions will generally comprise the heaviest PBH. Since the energy is
roughly preserved, the final binary will expand so that ra,out/ra,in ≈ mheaviest/mlightest.

The distribution of the relative change in the binding energy in different sets of simula-
tions is shown Fig. 9. The data consists of simulations where the central binary was bound at
a = 0.3aeq. Hardened binaries are O(10) times more abundant than softened ones. In detail,
the ratio of perturbed binaries (yellow) whose energy increased by at least 5% to the number
of perturbed binaries where the energy decreased by more than 5% was 720/114, 493/40 and
622/92 in the panels of Fig. 9 counting from left to right, respectively. The frequency of
hardened binaries in Fig. 9 drops exponentially fast as Ef/Ei increases confirming that the
binding energy will grow by a O(1) factor on average. In both sets of fPBH = 0.1 simula-
tions, the set of perturbed binaries (yellow) consist mainly of binaries that are expected to
be perturbed at a = 3aeq by the estimate (3.1) as can be seen in Figs. 4 and 8.

Let us now attempt to derive a conservative estimate for the merger rate from perturbed
initial binaries in the case fPBH ≈ 1. For simplicity we will consider a monochromatic
population of PBHs with mass mc. In that case, even if most of the initial binaries are
disrupted, they will not be ionised. They will have roughly the same energy and semimajor
axis as they had initially, but their eccentricity will be considerably decreased. Thus, in order
to obtain a rough estimate for the merger rate of such binaries we may consider the following
idealised scenario:

1. Most of the initial binaries remain bound. They may have exchanged a PBH.

2. The energy of the perturbed binaries is of the order of the initial binary. This means
that we may estimate the semimajor axis from the initial conditions Eq. (2.14). To
obtain the largest increase in coalescence time and thus the smallest rate we will assume
that ra remains the same.

3. The eccentricity of the perturbed binaries is significantly decreased. Again, to obtain
the smallest rate, we use j = 1 as the final value. For final binaries with a coalescence
time τ , the initial comoving separation is then fixed by Eq. (2.12) and the previous
assumption, x0 ≈ 10pc (mc/M⊙)

7/16(τ/t0)
1/16. The horizon scale at PBH formation,

0.3pc (m/M⊙)
1/2, is about an order of magnitude smaller, thus such initial separations

are viable.

4. The initial binary should be able to interact with the surrounding PBHs before it
merges. Thus we assume that the coalescence time of the initial binary is larger than
some time period τc. When ra is fixed, the condition τinit > τc implies that we need

to consider initial binaries with jinit ≥ (τc/τ)
1

7 . We do not constrain the distance of
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the closest PBH, thus we can use the initial j distribution in the limit y → 0, given
by Eq. (2.32). Together with Eq. (2.21) we find that the probability of finding such
angular momenta is

P (τinit > τc|x0) = P
(

jinit > (τc/τ)
1

7 |x0, y → 0
)

≈ 0.5N̄(x0) (τ/τc)
− 1

7 (3.6)

for N̄(x0) ≪ 1. By the assumptions above N̄(x0) ≈ 2× 10−4fPBH(mc/M⊙)
5/16.

In all, with a final distribution of angular momenta peaked at j = 1 and τc ≈ 1Myr we
obtain from Eq. (2.19) that the present merger rate,8

R &
3n

32τ
N̄(x0)P (τinit > τc|x0)

≈ 6Gpc−3yr−1 f3PBH

(
mc

10M⊙

)− 3

8

(
τ

t0

)− 27

56

,

(3.7)

can be only slightly below the merger rate reported by the LIGO and Virgo collaborations,
9.7 − 101Gpc−3yr−1 [6]. We stress that this is a very rough lower bound as more realistic
scenarios will, on average, have final values of j or ra which will increase this rate. Also
the interactions with other surrounding matter will lead to an increase of j and of the
binding energy [49]. With τc = 1Myr we have that jinitial > 0.26. The corresponding
relatively high initial angular momentum will generally require the nearest neighbour to be
initially much closer than the average separation between PBHs. Thus, it is expected that it
couples to the binary early and, moreover, a more accurate description of the binary emerging
from this configuration likely reduces to solving the full 3-body problem on an expanding
background. In any case, the perturbative approach outlined in Sec. 2.1 has limited value
in such situations. Another indicator that such binaries originate from early 3-body systems
is the f3PBH dependence of the rate. To obtain an observable merger rate only a very small
fraction of initial conditions have to produce binaries – the probability of the required initial
3-body configurations appear is roughly N̄(x0)

2 ≈ O(10−8). The merger rate can decrease
mainly by ionising these binaries. According to Fig. 9, this will take place with a small
probability, and note that the binaries in our simulations are much softer than the ones
contributing to the rate (3.7), i.e. they are easier to disrupt.

In conclusion, the perturbative estimate (2.34) becomes more accurate when fPBH ≪ 1.
For fPBH ≈ 1 most of the initial binaries are disrupted9, yet the disrupted binaries should

8Formally, the evolution of the orbital parameters of initial binaries can expressed as

P (j, ra) =

∫

djinitdra,init P (j, ra|jinit, ra,init)P (jinit, ra,init) ,

where according to the simplifying assumptions

P (j, ra|jinit, ra,init) = δ(j − 1)δ(ra − ra,init)θ
(

jinit − (τc/τ)
1

7

)

.

Note that the transition probability does not have to be normalised to unity since the number of binaries is
not conserved. The rate can then be evaluated by replacing the distribution P (jinit, ra,init) with P (j, ra) in
Eq. (2.19).

9In contrast to Ref. [55], our results indicate that initial conditions for which the local PBH density is
comparable or larger than the average density of DM likely lead to a decrease of the merger rate instead of a
cascade of mergers. This is because such initial conditions tend to form compact N -body systems in which
the initial binaries are rapidly disrupted.
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still produce a merger rate consistent with LIGO. In both cases a more careful study of the
formation and evolution of small scale structures and their interaction with the binaries is
needed.

4 Phenomenology of PBH mergers

Now we turn to discuss the implications of the PBH mergers to the phenomenology of the
PBH mergers. Using the results of the previous sections, we first study the temporal be-
haviour of the PBH merger rate, and by comparing it to the case of astrophysical BHs we
confirm the earlier statements (see e.g. Ref. [24]) that the merger rates of primordial and
astrophysical BHs are very different especially at large redshifts. Then, we perform a likeli-
hood fit of the PBH mass function on the observed merger events, and finally derive potential
constraints on the fraction of DM in PBHs from the rate of observed events and from the
non-observation of the stochastic GW background.

4.1 Temporal behaviour of the merger rate

The z dependence of the PBH merger rate (2.19) is shown by the red line in Fig. 10. For
comparison, we show by the green line the z dependence of the merger rate of astrophysical
BHs. The properties of astrophysical BH binaries are assumed to inherit the properties of
stellar binaries from which they are formed. In that respect, the z dependence follows from
the star formation rate and the delay from the formation of a stellar binary to merging of
the BHs. The star formation rate is well approximated by the empirical formula [8, 69]

SFR(z) ∝ (1 + z)2.7

1 + ((1 + z)/2.9)5.6
≡ Pb(z) , (4.1)

and, as in Refs. [8, 70], we assume that the delay time distribution is Pd(t) ∝ t−1 for
t > 50Myr and zero otherwise. Then, the differential merger rate of BH binaries is given by

dRA ∝
(∫

dtddzbPb(zb)Pd(td)δ(t(z)− t(zb)− td)

)

Mαηβψ(m1)ψ(m2)dm1dm2 , (4.2)

where α and β parametrise the mass dependence of the astrophysical binary formation. These
are not relevant for the z dependence that is given by the part in brackets.

The temporal behaviour of the merger rates for the primordial and astrophysical BHs
are very different especially at large redshifts. Whereas the PBH merger rate monotonically
increases as a function of z due to the universal time dependence R ∝ τ34/37 predicted by
Eq. (2.35), the astrophysical BH merger rate starts to drop above z ≃ 1. LIGO is able to
observe BH mergers only at low redshifts, z <∼ 0.4, but future GW observatories such as
LISA or DECIGO can instead probe much higher redshifts, z ≃ 10. As pointed out e.g. in
Ref. [24], the observations of high redshift BH mergers can reveal if a significant fraction of
DM is in PBHs.

4.2 Likelihood fit to LIGO observations

Next we study the LIGO observations in the light of the derived merger rate. We start
by finding a fit for the lognormal PBH mass function. We perform a maximum likelihood
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Figure 10. The lines show the z dependence of the BH merger rates normalised to one at z = 0 for
early PBH binary formation (red) and for the astrophysical BH binaries (green).

analysis considering the ten observed BH-BH merger events listed in Table III of Ref. [6].
The log-likelihood function reads

ℓ =
∑

j

ln

∫
dP (m1,m2, z)pj(mj,1|m1)pj(mj,2|m2)pj(zj |z)θ(ρ(m1,m2, z)− ρc)

∫
dP (m1,m2, z)θ(ρ(m1,m2, z)− ρc)

, (4.3)

where dP (m1,m2, z) ∝ dR(m1,m2, z)dVc(z) is the differential probability of having a BH
binary consisting of individual masses m1 and m2 merging at redshift z, and Vc(z) is the
comoving volume. The experimental uncertainties are accounted by pj(mj |m) denoting the
probability to observe a BH mass mj given that the BH has mass m, and pj(zj |z), that is
the probability to observe a BH-BH merger at redshift zj when it happens at redshift z. We
take both pj to be Gaussian. The unit step function implements a detectability threshold
based on the signal-to-noise ratio ρ of the GW events.

Our estimate of the detectability of BH-BH mergers by LIGO is based on the signal-
to-noise ratio of the GW events as in Refs. [3, 71]. We characterise the sensitivity of LIGO
by the total strain noise, Sn(f), of the detectors using the fit given in Ref. [15]. The actual
strain sensitivity of the detectors fluctuates and has increased over time, whereas the total
strain noise that we use is constant in time, and its amplitude is slightly above the best
performance of the LIGO detectors. We therefore believe that our analysis may underestimate
the detectability of the events, so a more careful treatment may produce slightly stronger
constraints.

The signal-to-noise ratio is given by [71],

ρ2 ≡
∫ ∞

0

4|h̃(ν)|2
Sn(ν)

dν , (4.4)

where h̃(ν) is the Fourier transform of the signal [72, 73], that we compute using the results
of Ref. [74]. For the detectability threshold we take ρ > ρc = 8 [3, 71], implying roughly that
mergers taking place at z > 0.4 are not detectable.

Assuming that all LIGO BH-BH merger events are created by the early PBH binary
formation mechanism, we can constrain the PBH mass function. The result of a maximum
likelihood fit for a lognormal mass function (2.41) is shown in Fig. 11, where the red dashed
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Figure 11. The red dot shows the best fit, mc = 20M⊙, σ = 0.6, of the maximum likelihood fit to
the LIGO BH-BH merger events for the lognormal mass function, and the red dashed and solid lines
correspond respectively, the relative likelihoods ℓ− ℓmax = −3.09, −5.91, which we refer as 2σ and 3σ
confidence levels. The colour coding indicates the upper bound on the fraction of DM in PBHs from
the observed BH-BH merger event rate. In the hatched region above the black solid line the PBH
explanation of the observed GW events is excluded by existing constraints on the fraction of DM in
PBHs.

and solid lines correspond to the 2σ and 3σ confidence levels, respectively, and the best fit,
mc = 20M⊙, σ = 0.6, is indicated by the red dot. The best fit points to a relatively narrow
mass functions, but the 3σ region extends to large widths. However, the constraints on the
fraction of DM in PBHs disfavour very wide mass functions, as we will show in the next
subsection.

4.3 Constraints on the PBH abundance

The prediction for the number of BH-BH merger events that LIGO should see within the
period ∆t is

N = ∆t

∫

dR(m1,m2, z)dVc(z)θ(ρ(m1,m2, z)− ρc) . (4.5)

During ∆t ≃ 165 days, LIGO has observed Nobs = 10 BH-BH merger events [6]. We estimate
the error of Nobs from Poisson statistics by taking the log-likelihood region ℓ − ℓmax < −2,
which for Gaussian distribution would correspond to the 2σ confidence level. This gives
Nobs = 10+7.7

−5.1, so by 2σ confidence level the number of observed events is smaller than 17.7.
This can be converted to an upper bound on the PBH abundance fPBH for a given mass
function using the merger rate estimate (2.34). In the case of lognormal mass function the
resulting maximal value of fPBH is shown by the colour coding in Fig. 11 in the (mc, σ) -plane,
and for σ = 0.6 by the red solid line in Fig. 12. Moreover, the region between the red solid
and red dashed lines in Fig. 12 corresponds 4.9 < N < 17.7, that is, it corresponds to values
of fPBH for which the LIGO BH-BH merger event rate can be obtained at a 2σ confidence
level. We remark that the PBH abundance inside the 2σ region in Fig. 11 is fPBH < 0.01,
confirming the validity of the perturbative merger rate estimate (2.34).
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Figure 12. Constraints for the lognormal mass function with σ = 0.6. The red solid line shows the
2σ upper bound on the fraction of DM in PBHs, fPBH, from the observed merger rate by LIGO, and
the red dashed line shows the 2σ lower limit on fPBH assuming that all observed BHs are primordial.
The vertical dashed lines show the 2σ confidence levels from the fit shown in Fig. 11. The black solid
curve shows the constraint on fPBH from non-observation of the stochastic GW background by the
second LIGO observation run, and the black dashed line the projected sensitivity of the final phase
of LIGO. Since the analytic merger rate estimates are not reliable and the numerical simulations
indicate that the merger rate is strongly suppressed for f >∼ 0.1, we do not show the above constraints
in that region. The yellow, purple and light blue regions are excluded by the microlensing results from
EROS [29] and MACHO (M) [30], and by lack of lensing signatures in type Ia supernovae (SNe) [75],
respectively. The dark blue, orange, red and green regions are ruled out by Planck data [36], survival
of stars in Segue I (Seg I) [31] and Eridanus II (Eri II) [32], and the distribution of wide binaries
(WB) [33], respectively.

The non-observation of the stochastic GW background can further constrain the PBH
abundance. The spectrum of the stochastic GW background from binary BH coalescences
is [76, 77]

ΩGW(ν) =
ν

ρc

∫
dR(m1,m2, z) dz

(1 + z)H(z)

dEGW(νr)

dν
θ(ρc − ρ(m1,m2, z)) , (4.6)

where ρc denotes the critical density, νr = (1+z)ν is the redshifted source frequency, H(z) is
the Hubble parameter, and dEGW is the total GW energy in the frequency range (ν, ν +dν)
emitted in the coalescence of BHs [72–74]. The factor θ(ρc − ρ(m1,m2, z)) subtracts the
contribution of events which can be observed individually. We find, however, that this factor
can safely be neglected.

We calculate the stochastic GW background arising from coalescences of the early
formed PBH binaries. By comparing its strength to the sensitivity of LIGO, we then con-
strain the fraction of DM in PBHs. The resulting upper bound arising from the latest LIGO
observation run is shown by the black solid line in Fig. 12. The black dashed line shows
instead the projected final sensitivity of LIGO. We see that in the range where LIGO is most
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sensitive the constraint from the observed merger rate is significantly stronger than the one
from non-observation of the stochastic GW background. We remark that the constraint from
the GW background is also weaker than the previous estimate given in Ref. [13]. This is due
to the exclusion of the initial conditions where the initial binary is perturbed by its nearest
neighbour. The constraint from the stochastic GW background is affected more strongly by
the mass dependence of (3.5) and the resulting exponential suppression of the merger rate of
heavy binaries. Note, however, that via the stochastic GW background it is possible to probe
narrow mass functions with mc < 1M⊙ for which the individual mergers are not observable
by LIGO. The stochastic GW background from early PBH binary mergers was also studied
in [78].

The other constraints shown in Fig. 12 arising from lensing (EROS, Macho and SNe),
accretion (Planck), observations of compact stellar systems (Eridanus II and Segue I) and
wide binaries are evaluated for the lognormal mass function using the method introduced in
Ref. [23]. The strongest of these (EROS and Segue I) exclude the hatched region above the
black solid line in Fig. 11 for the fraction of DM in PBHs which would give N = 4.9. Thus,
the PBH origin of the LIGO merger events is excluded in that region as the required minimal
PBH abundance is larger than allowed by EROS or Segue I.

We emphasise that whereas the early merger rate estimate for f ≃ 1 is subject to
serious uncertainties as discussed in the previous sections, the merger rate (2.34) with the
choice (3.5) works well for fPBH ≪ 1. As the fPBH . 0.1 is already excluded by EROS or
Segue I, we conclude that the observed merger rate significantly strengthens the constraint
in the mass range 2 − 160M⊙. If the BHs observed by LIGO have a primordial origin, the
fraction of DM in PBH and the peak mass of the distribution are contained within the region
in Fig. 12 bound by the dashed red vertical lines and the red solid and dashed curves. These
follow from the 2σ fit of the mass function and the merger rate, respectively.

5 Conclusions

We studied the formation and evolution of PBH binaries in the early universe, and revised
the constraints from LIGO on the PBH abundance. Formed already before matter-radiation
equality, the PBH binaries are the first gravitationally bound structures in the universe.
We evaluated the characteristics of these binaries analytically allowing for extended PBH
mass functions. The angular momentum was estimated perturbatively from the tidal force
created by all surrounding matter, requiring that the PBH closest to the binary was suffi-
ciently far. We then studied this scenario numerically using N -body simulations finding that
the analytically obtained distributions of orbital characteristics of the binaries are in good
agreement with the numerical result. We found that the angular momentum distribution is
approximately Gaussian for the undisrupted PBH binaries.

The initially formed binary may be disrupted shortly after formation by a nearby PBH
or a small cluster of PBHs. The latter may appear due to the Poissonian fluctuations,
and we find that when fPBH = 1 a large fraction of the initial binaries expected to merge
within the age of the universe were absorbed into these clusters already before recombination.
If fPBH ≪ 1 the N > 2 body systems form later, and in this case we found that single
nearby PBHs are the dominant source of disruption. We estimated analytically which initial
configurations avoid this disruption, and derived the suppression factor for the merger rate
caused by this. We verified these estimates for the binary disruption by comparing them
with the results of the N -body simulations.
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We concluded that our analytical merger rate gives a good approximation for the merger
rate of the initially formed PBH binaries in the case fPBH ≪ 1, assuming that the disruption
rate at later stages is not significant. For fPBH = 1 the present merger rate estimate is
greatly suppressed already at recombination, and our analytical results for the merger rate
fail. Nevertheless, as most initially close PBH pairs will form binaries that are unlikely to
be ionised, we argue that the population of perturbed binaries can still generate a merger
rate consistent with LIGO. Moreover, since our results depend on the local PBH density, we
conclude that, in case the PBH are initially clustered, the early binaries are more likely to
be disrupted and the merger rate is therefore suppressed.

We used our merger rate results to re-evaluate the constraints on the PBH abundance
from LIGO observations. We calculated the constraints from both the observed merger rate
and the non-observation of the stochastic GW background. We found that the former gives
the strongest constraint on the PBH abundance in the mass range 2 − 160M⊙. We also
performed a likelihood fit for the lognormal PBH mass function on the 10 observed BH-BH
merger events finding a best fit at mc = 20M⊙ and σ = 0.6. In that case the fraction of DM
in PBHs needed to obtain the observed merger rate is fPBH ≃ 0.002.
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