
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 748529, 12 pages
http://dx.doi.org/10.1155/2013/748529

Research Article

Formation and Propagation of Local Traffic Jam

Hong-sheng Qi,1 Dian-hai Wang,1 and Peng Chen2

1 College of Civil Engineering Architecture, Zhejiang University, 866, Yuhngtang Road, Hangzhou City,
Zhejiang Province 310058, China

2Department of Civil Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

Correspondence should be addressed to Hong-sheng Qi; lordqi@yahoo.cn

Received 14 November 2012; Accepted 22 January 2013

Academic Editor: Cengiz Çinar
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Large scale tra�c congestion o
en stems from local tra�c jam in single road or intersection. In this paper, macroscopic method
was used to explore the formation and propagation of local tra�c jam. It is found that (1) the propagation of tra�c jam can be
seen as the propagation of tra�c signal parameters, that is, virtual split and virtual green time; (2) for a road with endogenous �ow,
entrance location in�uences the jam propagation. With the same demand (upstream links �ow and entrance �ow), the upstream
got more in�uence; (3) when a one-lane road is thoroughly congested, virtual signal parameters everywhere are the same as that
at stop line; for a basic road, the virtual signals work in a cooperative manner; (4) phase sequence is one important parameter that
in�uences tra�c performances during peak hour where spill back of channelization takes place. �e same phase plan for le
-turn
�ow and through �ow would be preferred; (5) signal coordination plays an important role in tra�c jam propagation and hence
e�ective network signal parameters should be designed to prevent jam from propagation to the whole network. �ese �ndings
would serve as a basis for future network tra�c congestion control.

1. Introduction

Urban road network has been considered as the “life line” of
urban daily life. It serves as the basis of urban economy. �e
assurance of its normal operation is very important.However,
as the development of urbanization, the number of vehicles
relatively exceeds the capacity of road network which o
en
results in large scale tra�c jam during peak hours. �is leads
to many problems such as pollution, and noise. Large scale
tra�c jam o
en stems from local jam which takes place in
a road or single node. According to Wright and Roberg [1],
there are three sources of tra�c jam: a temporary obstruction,
stochastic �uctuation in demand, and permanent capacity
bottleneck. �ese types of congestion cannot be prevented
e�ciently because they are related tightlywith road geometry,
land usage, or other factors which cannot be changed easily.
However, if we can control the propagation of tra�c jam,
then, network tra�c jam will be prevented. �e propagation
process looks like “domino phenomena” which is character-
ized by connected set of events. Many literatures are focusing
on this subject.

Simulation methods including microscopic and macro-
scopic types are among the most used methods. Microscopic
tools include cellular automata [2] and car following models
[3]. �ey are based on dynamic motion of single vehicle
and hence can grasp the tra�c performance of the whole
network [1, 4, 5]; macroscopic tools o
en adopted a discrete
form [6, 7] of LWR model which stemmed from Lighthill
and Whitham [8] and Richards [9]. �is method divided
links into a series of consecutive cells and time into equal
time steps. By checking and tracking basic tra�c parameters
(�ow, density, and velocity) of every cell during each step,
the dynamic nature of tra�c jam can be derived. �is kind
of method greatly relies on underlying models and the
simulation networks are o
en regular [10, 11] which lacks
generality. Furthermore, no analytical conclusion can be
obtained through this approach.

Some researchers tried to establish analytical results of
tra�c jam. Wright and Roberg [1] proposed a simple ana-
lytical model for incident-based jam growth and discussed
the e�ect of the length of the channelized part of roads and
stop line width assignment on jam formation;Michalopoulos
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Figure 1: Simple representation of road geometry.

et al. [12] formulated a rigorous but complex mathematical
modeling for signalized links; Skabardonis and Geroliminis
[13, 14] developed an analytical model based on kinetic wave
theory to construct monitor methods for arterials. Based on
the derivation of waves produced by tra�c signal, vehicle
trajectory was identi�ed and hence travel time function
was formulated; Daganzo [15] divided the network into
connected neighborhoods and constructed the relationship
between de�ned tra�c variables and formulated the so-called
“gridlock” condition. �rough these researches we can get a
deep understanding of tra�c jam. If we examine the general
road network, we can see that it is comprised of basic road
(some may be simpler) as shown in Figure 1. �e road is
multilane structure controlled by tra�c signal. �e tra�c
demand may come from upstream links or entrance within
roads. Compared with this situation, current researches are
not enough to describe tra�c �ow operation on basic road
segment, not tomention the network tra�c jam propagation.

Some scholars used data collected from control system
(mainly loop detectors) to monitor long queue and spillover
[16, 17]. However, under congestion hour tra�c jam involves
various tra�c �ows that include multilane �ow and endoge-
nous �ow from within the entrance, and these are di�cult
to distinguish from loop detector data. �ese factors may
undermine the applicability of these methods.

�e dynamic nature of network tra�c jam (critical
condition for its formation, propagation speed, propagation
route, and so on) is complex in that they are in�uenced by
many factors such as road physical characteristics, network
topology, and control parameters. Understanding of these
relationships is important andpremise for further control and
management. However, they were not fully accounted for in
traditionalmethods. In this paper, with the consideration that
network jam always stems from tra�c jam formed within
single road, attention was put on the tra�c jam formation
on signal controlled network comprised of basic road as in
Figure 1 that is generally existed. A
er description of critical
condition of jam formation for one-way link (Section 2.2),
decomposition method is used to divide the road into
two multilane segment (Section 2.3). Factors include insu�-
cient split or excess demand (Section 3.1), endogenous �ow
(Section 3.2) and channelization spillback (Section 3.3) are
discussed.�e in�uences of road spillback on upstream links

�
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Figure 2: A Single one-way link.

are then analyzed (Section 4). We end with some highlights
for further researches.

2. Preliminary Results

2.1. Notations

��: optimal �ow rate,

��: optimal density,

��: jam density,

�, �, �, �: green time, red time, cycle and split res-
pectively,

�
V
: virtual red time,

�0, �1, �2: stopping wave, starting wave, and wave that
emerges a
er �0 and �2 meet,

	max: maximal queue length,

���, ���, ���: output �ow rate of le
-turn �ow, through
�ow and right-turn �ow. “
” means output,

���,���,���: green time for le
-turn �ow, through �ow
and right-turn �ow.

2.2.WaveDynamics under SimpleCondition. Consider a one-
lane road controlled by signal without endogenous �ow as
shown in Figure 2 which is the simplest condition in the
road network (such as a road regulated by one-way tra�c
organization), assuming that fundamental diagram of tra�c
�ow is parabolic function as shown in Figure 3. Upstream
�ow is � (point A in Figure 2) and from parabolic function� can be obtained (density of upstream �ow is always smaller
than optimum density under maximum �ow; that is, point A
should be on le
 side of the curve, otherwise stopping wave
speed would be bigger than starting wave which denotes that
queue would not disperse forever, which can be seen from
Figure 3):

� = �� − √�2� − 4 (�2�/��) �
2 . (1)

Formation and dispersion of a queue behind stop line at
signal controlled intersection are shown in Figure 4(a). At
�rst (the beginning of red time), stopping wave (red lines in
Figure 4 which represent queue back) propagates upstream
with velocity �0 and a queue forms. When green time begins
a starting wave (blue line in Figure 4) emerges and also
propagates upstreamwith bigger speed (denoted as �1). A
er�� starting wave catches up with stopping wave and queue has
dispersed and a new wave (denoted by its speed �2) forms. It
takes ��� for wave �2 to pass through stop line. If green time, �,
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Figure 3: (a) Concave fundamental diagram; (b) triangular funda-
mental diagram.

is bigger than ��+���, then it can be concluded that tra�c state
would reproduce cycle by cycle. However, if � is smaller than�� + ���, the wave propagation pro�le is di�erent (as shown in
Figure 4(b)) cycle by cycle. At �rst, stopping wave will spread
with speed �1 which makes queue back of this cycle further
from stop line than former cycle. As time elapses, queue back
becomes further and further, so it is an unstable condition
which represents oversaturated condition.

Based on the analysis above, some formulas can be got:

�1 = ���� − �� , �0 = ��� − � , �2 = �� − ��� − � ,
�0 (� + ��) = �1�� �⇒ �� = �0��1 − �0 ,

	max = �1�� = �1�0��1 − �0 ,
��� = �max�2 .

(2)

When � = �� + ��� holds (we can deduce that this
equation determines a speci�c split �) a stable state forms (if� decreases, it will result in oversaturation), that is,

	max = �1�� = �1�0��1 − �0 , (3a)

� = 	max�1 +
	max�2 . (3b)
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Figure 4: Tra�c wave propagation.

�e critical condition is de�ned such that the furthest
queue back reaches road tail because larger � or smaller split
will result spillover of queue:

	max = �1�� = �1�0��1 − �0 , (4a)

� = 	max�1 +
	max�2 , (4b)

	max = �. (4c)

Equations (4a), (4b), and (4c) establishe the relationship
between link length�, cycle�, split�, and �ow �. Given � split
can be obtained as shown in embedded �gure in Figure 5.
When � and � are given, � and � (also �) can be deduced
as shown in Figure 5. It can be seen that links with di�erent
lengths require di�erent control parameters and upstream
in�ow tomaintain their normal operation. Muchmore green
time is needed during higher demand under the same road
length. �is is why unchanged green time usually causes
longer queue especially during peak hours. Spillover caused
by smaller green time will be discussed later.

2.3. Decomposition of Complex Link Topology. �e problems
discussed above are mainly focusing on the ideal scenario
of one-way links while the case in reality shows more
topological complexity. We de�ne the basic road shown in
Figure 6(a) that always appears in urban road network. It
is a road controlled by signal with a channelized section of
length 	2. Overall upstream tra�c demand, �	 is assumed to
be uniformly distributed between two lanes, that is, �	1 = �	2.
Proportion of le
-turn �ow, right-turn �ow, and through �ow
is ���, ���, and ��� (and ��� = 1 − ��� − ���), respectively. �e
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Figure 6: Sketch map of basic road and its decomposition.

same symbol expressionmethod is for signal parameters, that
is, ���, ���, ���, and ���, so we can get

�	 = ��� + ��� + ���,
��� = �	���,
��� = �	���,
��� = �	���.

(5)

Decompose the basic road as shown in Figure 6(b). �e
basic road has been divided into two sections: upstream
section and channelized section. Both are comprised of some
single one-way links. Channelized sections are controlled by
tra�c signal (except right-turn section).�e analysis hence is
simpli�ed that themethod in Section 2 can be used in further
analysis.

3. Complex Circumstances

During daily operation, circumstances o
en hold more com-
plex nature.�is section deals with this problem by analyzing
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Figure 7: Stopping wave and starting wave with insu�cient split.

dynamic and insu�cient split, endogenous �ow of basic road,
and the spillover of channelized section.

3.1. Dynamic and Insu	cient Split. Usually oversaturation is
developed gradually and queue back extends cycle by cycle,
that is, domino phenomenon is the result of oversaturation
extending in several cycles as shown in Figure 7(a). Each
green signal tends to pull back queue back while each red
signal prolongs queue back. Furthermore, the length pulled
back or prolonged is proportional to time duration of tra�c
signal because in the �gure slope of wave trajectory; that
is, wave speed including starting wave and stopping wave is
�xed.

Given green time �	 of cycle � (or red time �	) queue lengthℎ
� pulled back (ℎ�� prolonged) can be computed fromFigures
7(b1) and 7(b2):

ℎ�� = �	�0�1�1 − �0 ,
ℎ
� = �	�2�1�1 + �2 .

(6)

A
er �th red time �	 (�th green time �	) location of queue
back is

	�� = 	0 +∑
	−1
(ℎ�� − ℎ
�) + ℎ�� = 	
�−1 + ℎ�� ,

	
� = 	0 +∑
	
(ℎ�� − ℎ
�) ,

(7)

where 	0 denotes the length of initial oversaturated queue. It
can also be calculated easily by assuming that the tra�c is
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Figure 9: Spillover of road queue.

undersaturated at �rst, as shown in Figure 8. Symbols and
derivations are as follows:

	�2 + 	�1 = 	,
�2�� + (�� + �� − �	) �1 = 	,
�� = 	 − (�� − �	) �1�1 + �2 ,
	0 = (�� + �� − �	) �1,

	0 = (	 − (�
� − �	) �1�1 + �2 + �� − �	)�1.

(8)

Replace 	0 in (7) queue back can be calculated at any
time. Given changeable �	 and�	 and upstream tra�c demand�, ℎ�� and ℎ
� hence each 	�� also can be determined. When
queue back exceeds road length, that is, 	�� > � then spillover
emerges (�� in Figure 9 is the time when queue back exceeds
road length).

However, spillover itself does not result domino phenom-
ena because there may be no upstream tra�c demand, this
problem will be discussed in Section 4.

In order to describe jam propagation upstream, the
method of SVS (speed of virtual signal) is used.�e principle
is that there is a virtual signal located everywhere. When
the jam has not reached a speci�c location, the virtual signal

�
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�

Figure 10: Method of virtual signal.
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Figure 11: Virtual split calculation.

is always green. When the location is occupied by a queue
(i.e., jam propagates to this position), the virtual signal shows
red. When the queue is cleared, the virtual signal turns to
green. From this description, we can see that the propagation
of jam can be transformed to the propagation of virtual signal
parameter. We use split to explore the propagation of jam.
If we obtain locations of �	, �	, �	 shown in Figure 10, then
we can derive the split dynamics along time and space (see
Figure 11). If demand exceeds supply, at the end of each cycle,
the residual vehicle number is �� − ��� (the queue that
remains a
er past cycles is not included in this formula), so
three locations for each cycle can be derived:

�	 = �	−1 + �� − ����� ,
�	 = �	 + ℎ�� ,
�	 = �	 − ℎ
�−1 .

(9)

A
er obtaining �	, �	, �	 for every cycle, together with
Figure 11, split everywhere for any cycle can be determined.

Figures 12 and 13 present a simple numerical example for
propagation of split. From Figure 12, for a speci�ed location,
the gradual change of virtual signal cycle by cycle can be easily
seen. Figure 13 gives the split on space-time (expressed as
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Figure 13: Contour of split on space-time diagram and parameters
are the same as in Figure 12.

cycle number) diagram. �e slope can be seen as the speed
of jam propagation.

In order to develop a measure of this speed, an index
which incorporates stopping wave and starting wave is pro-
posed later on. For a cycle of jam propagation, the increment
of queue back can be got:

Δ		 = ℎ�� − ℎ
�−1 . (10)

If the control parameters are constant, then we de�ne
speed of virtual signal (SVS) to express the severity of jam,
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Figure 14: SVS versus split; �� = 180 veh/km, �� = 1800 veh/h.

that is, the propagation of congestion. During a cycle, queue
back propagates Δ		, and the average speed is then

SVS = Δ		� = �	�0�1/ (�1 − �0) − �	�2�1/ (�1 + �2)�
= (1 − �) �0�1�1 − �0 − ��2�1�1 + �2 ,

(11)

SVS = �0�1�1 − �0 − � [
�2�1�1 + �2 +

�0�1�1 − �0 ] =  (�, �) . (12)

From the expression we can see that SVS is in linear
relationship with split.

Figures 14 and 15 present the relationship between SVS
and split, arriving �ow rate, respectively. From the �gure
we can see that SVS is very sensitive to tra�c state under
saturation condition.�e results above are based on parabolic
fundamental, which is symmetrical about optimal �ow. Fig-
ures 16 and 17 plot the SVS versus split and arriving �ow
under triangular fundamental diagram like Figure 3(b). �e
parameters are given beneath the �gure.

Similar trend is also found for triangular fundamental
diagram. However, it is evident from both �gures that change
of SVS is somewhat moderate compared with parabolic
diagram. �is phenomena stem from the di�erent nature
embedded in these two fundamental diagrams: wave speed
for triangular diagram is constant when the density is below��, but for parabolic fundamental diagram, wave speed
(tangent line of speci�c point) is changing simultaneously
with tra�c demand.

Equation (12) assumes that the arriving �ow is constant;
however, it is not the case. But we can generalize it to dynamic
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condition where within one cycle the arriving is stable but
di�erent from cycle to cycle, that is,

SVS = �0 (�) �1�1 − �0 (�) − � [
�2 (�) �1�1 + �2 (�) +

�0 (�) �1�1 − �0 (�)] , (13)

where �0(�) is stop wave speed at cycle �.
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3.2. In
uence of Endogenous Flow. Traditionally it is assumed
that �ow is generated at nodes (i.e., intersections within the
network or originations of a road network) as we did in
network tra�c analysis [18]. However, intersections inside
road network actually do not generate �ow (of course, from
the viewpoint of downstream intersection, �ow is “produced”
at upstream intersection). In fact, most tra�c stems from
entrance within road (e.g., shopping malls, schools, and
o�cial departments about the road). It is necessary to take
endogenous tra�c �ow into account. Due to complexity in
analyzing multilane road, we only deal with one-way road
with entrance insidewhich the �ow is denoted as �� (shown in
Figure 18). �e basic assumption is major road priority; that
is, vehicles in major road have priority to cross.

When a formed queue back has not reached entrance
location, the upstream �ow is �	 + ��; when queue length
exceeds 	� (distance between stop line and endogenous
�ow entrance location) upstream �ow becomes �	, so the
stopping wave and starting wave propagate di�erently from
that without endogenous �ow (Figure 4(a)). Given �	 and
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�� stopping wave pro�le and starting wave pro�le can be
obtained using the same method. Denote stopping wave as�01 (wave when queue length has exceeded 	�), �02 (wave
when queue length has not exceeded 	�) and �21, �22 as the
wave produced a
er �02 and �1 meet as shown in Figure 20.

From Figure 19 formulas below can be got:

�01 = (�	 + ��)�� − � , �02 = �	�� − � ,

�21 = �� − �	�� − � , �22 = �� − (�	 + ��)�� − � .
(14)

For case I, critical condition can be formulated just as in
(3a) and (3b):

	max = �1�� = �1�02��1 − �02 , (15a)

� = 	max�1 +
	max�22 . (15b)

For cases II and III, critical conditions as follows:

�
V
= � − 	� (�1 − �02�02�1 ) , (16a)

	max = 	� + �1�01�V�1 − �01 , (16b)

� = �1�01�V/ (�1 − �01)�21 + 	��22 . (16c)

�e virtual red time in Figure 20 and (16a), (16b), and
(16c) is obtained from geometric relationship. Figure 21 gives
the relationship between critical split and di�erent entrance
locations from (15a), (15b), (16a), (16b), and (16c). We can see
that upstream location getsmore in�uence in that once queue
propagates exceed entrance endogenous �ow cannot enter.
Moreover, propagation of jam (i.e., SVS under this condition)
also holds such trend because of the same tendency of
propagation speed of stopping and starting wave.

3.3. Channelized Section Spillover. Most researches do not
take spillover of channelized section into account. But at

peak hours due to length constraint the channelized section
o
en cannot accommodate excessive vehicles which make
spillover of channelized section inevitable. Following Wright
and Roberg [1], we assume that tra�c �ow running on
the upstream section was mixed uniformly (i.e., velocity,
density, and �ow are uniformly distributed in the section)
and lane changing are executed instantly at interface between
channelized section and upstream section. �is is acceptable
from the viewpoint of system description although some
details we do not concern with are lost. Road layout is as
that in Figure 6. From fundamental tra�c theory we can
easily get �ow-density relationship as shown in Figure 22.
Parabolic curve beneath is �ow-density relationship of le
-
turn channelized section (right-turn or through channelized
section is the same) and the upper curve is that of upstream
section.

When there exists channelized section spillover the in�u-
ence can be considered as “virtual red time,” principle of
which is described in Figure 23: once there is spillover a queue
will propagate upstream and block upstream section result of
which is the same as signal control. A virtual signal is set at the
interface between two sections as shown in Figure 23. Virtual
red time equals to time di�erence between stopping wave and
starting wave spreading over the interface. Now the analysis
of spillover with consideration of channelized section can be
taken by two steps:

(I) analyze supply-demand of channelized section to
obtain block time (note that queues of two chan-
nelized sections, that is, through section and le
-
turn section may be over�owed at the same time or
may be not, so block time of these spillovers may be
separated, overlapped, or overlapped partly);

(II) a
er virtual time (interface block time) is obtained,
analyze supply-demand of upstream section. If
upstream section queue back exceeds road length,
then upstream intersection will be blocked.

Due to the fact that both channelized sections may block
the interface we �rst deal with only one section spillover and
then two.

3.3.1. One Section Spillover. Since results of spillover of the
two channelized section are the same, here we simply assume
that only le
-turn section spillover takes place. When ��� =���, that is, le
-turn tra�c �ow ��� equals through �ow ���.
It can be deduced from Figure 22 that starting wave and
stopping wave keep its speed a
er spread over interface. It is
conditionA in Figure 24.�is condition degrades to one-way
link spillover which has been discussed in Section 2.

When ��� > ��� (i.e., ��� > ���), upstream section holds
more �ow averagely than channelized section. �e wave
propagation pro�le should be the pattern as B in Figure 24. Its
stopping wave speed �0� is bigger than �0 and �2� is smaller
than �2. When green time ��� extends over $, the queue will
be cleared completely. From the �gure critical conditions for
domino formation are deduced:

( 	2�0 +
	1�0�) + (

	1�2� +
	2�2) = ��� + ���. (17)
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Figure 20: Stopping wave and starting wave with endogenous �ow.
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Figure 21: Critical split for jam formation versus di�erent entrance
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When ��� < ��� (i.e., ��� < ���), upstream section holds
less �ow averagely than channelized section, so the wave
propagation pro�le should be the pattern as� in Figure 24. Its
stopping wave speed �0� is smaller than �0 and �2� is greater
than �2. When green time ��� extends over % then the queue
will be cleared completely. Critical conditions for domino
formation are deduced:

( 	2�0 +
	1�0�) + (

	1�2� +
	2�2) = ��� + ���. (18)

From geometry and Figure 24, we can deduce virtual red
time for interface when critical condition (i.e., (17) and (18))
is not reached:

�
V
= ��� + 	2�1 −

	2�0 = ��� − 	2 (
�1 − �0�0�1 ) , (19)

where �
V
is virtual red for interface. From it split can also be

determined: �
V
= (� − �

V
)/�. Since (�1 − �0)/�0�1 > 0, from

�
2�	
��

�	

2�


2�

0�

0� 
1
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0

�

���
���

������ �jam 2�jam

Figure 22: �-� relationship of two sections.
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Figure 23: Virtual signal and virtual red time.

(19) we can see that virtual red time increases against chan-
nelization section length, and opposite relationship holds for
split and channelization section length.

Now critical condition of (4a), (4b), and (4c) can be used
to determine supply-demand of upstream section. Note that
there is no channelization spill back for through tra�c �ow.
Since virtual split of interface is bigger than (�− ���)/� (from
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Figure 24: Wave pro�le when channelized section spillover exists.

(19) relationship that �
V
< ��� is evident and also �V < ���), for

conditionAandC inFigure 24, if critical condition of (18) has
not reached, demand of upstream section is always satis�ed
because

��� + ����
V
�� + �V�� <

2���2�
V
�� =

����
V
�� <

�������� . (20)

For condition B, if the critical relationship of (4a), (4b),
and (4c) is not hold, tra�c jam will form and propagate
upstream.

If channelization spillover of only one direction happens,
capacity of the other two directions may be wasted, which
imply the importance of well-designed phase sequences.
From (4a), (4b), and (4c), it implies that the equation below
should hold to prevent wasted capacity:

	max = �1�� = �1�0����1 − �0 , (21a)

��� > 	max�1 +
	max�2 , (21b)

	max < 	2. (21c)

Equations (21a) and (21b) assure that the demand can be
satis�ed and (21c) guarantees queue back would not reach
interface such that block cannot happen.

3.3.2. Two Section Spillovers. Sometimes during peak hour
le
-turn demand and through demand may both exceed
respective capacity which results in spillover of both sections.
In such case the problem may be complicated but can be
explained conveniently. Spillover of two sections is just as
we set two signals in the interface at the same time. When
both virtual signals show green then overall virtual signal is

Virtual signal

of le�-turn
spillover

Virtual signal

of le�-turn
spillover

Virtual signal

of all spillovers

Figure 25: Virtual signal of both spillover.
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=
=
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(III)

Figure 26: Virtual signal for three cases.

�
�
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�� �� �� �
Spill back

time

Figure 27: Spillover time and block time.

green otherwise the overall signal is red. One case is shown
in Figure 25.

According to the signal assignment of le
-turn �ow and
through �ow, there will be three cases as shown in Figure 26.
Apparently for the same split, di�erent “o�set” will produce
di�erent spillover virtual signal which implies the importance
of phase sequence under spillover condition. We can see
that during congestion hours (where channelized section spill
back take place); it would be better to put through �ow and
le
-turn �ow in the same phase.
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4. Impact of Spillover on
Upstream Intersection

Spillover is the precondition of congestion propagation.
However, spillover itself is not enough for domino phe-
nomena formation because if there is not enough upstream
demand congestion would not spread.�us the su�cient and
necessary condition for domino phenomena is �rst, spillover
of downstream road and second, there is continuous demand
upstream.

When a queue forms and spill back and blocks upstream
intersection, there are basically two events to be analyzed:
�rst, how long it will block upstream intersection and second,
its in�uence on upstream �ows. When queue back reaches
upstream intersection at time, say, �� (as shown in Figure 27)
then it blocks the intersection till the starting wave catches up
with it.

We denote that the time duration of the intersection is
blocked (i.e., blocked time) as Δ�, then from the viewpoint of
upstream signal phases there are three types (using a typical
four-phase intersection shown in Figure 28 as an example) of
block. Take phase A to describe as following.

(I) Block fully happens at green time. �en the phase
will lose Δ� e�ective green time which will decrease
capacity respectively.

(II) Block fully happens at red time. Since no matter
whether the intersection is blocked, this movement
always has not got RoW (Right of Way), so this type
of block holds no impact.

(III) Block happens partially at green time and partially at
red time (let us neglect amber time because it will not

harm the conclusion). �is block will encroach some
green time which will reduce some capacity.

Due to reduced capacity caused by downstream block,
speci�c phase upstream will be under oversaturation tem-
porarily and long queue forms which may be block upstream
intersection of this crossroad.

�e block in�uences upstream link �ow di�erently. In
Figure 28 the most possible �ow blocked by downstream jam
is highlighted in red line for each phase. Green time for
these �ows then may be wasted hence new jam may form at
upstream links. �is can be seen as domino phenomena of
tra�c jam in the whole network.

From the description above we can see that badly
designed signal may contribute to network jam propagation,
which suggests the importance of network signal coordina-
tion during peak hours.

5. Conclusion

Due to the complexity of urban tra�c jam, many researches
were taken under simpli�ed assumption or used simulated
methods. In this paper, urban tra�c jam formation is studied.
From the research we can see that many factors (such as road
geometry, �ow structure, and signal settings) contribute to
the tra�c jam formation and propagation which should be
took into account in the control of jam during peak hours.

However, limited by the macroscopic method, we cannot
look into deeply mutual in�uence of di�erent �ow, (le
-
turn �ow, right-turn �ow, and through �ow) which may
contribute to the formation and propagation of tra�c jam.
�is may be solved by using microscopic analysis methods.
Furthermore, formation of congestion is only prelude of
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large scale urban tra�c jam. Propagation of urban tra�c
jam (denominated as “domino phenomena” here) itself is
in�uenced bymany factors. Some further researches could be
highlighted.

(1) �e calibration of fundamental diagram: the rela-
tionship between �ow, density, and speed is a basic
problem of tra�c engineering �eld and exerts great
in�uence on jam propagation (severity and propaga-
tion speed). A thorough examination of the in�uence
is needed.

(2) �e asssumption of uniformlymixed �owat upstream
section shoule be revised. In reality, the distribution
may be not averagely. Whether this feature prompts
the propagation f tra�c jam can be included in our
model with a coe�cient that needs to be explored
closely.

(3) Isolated intersection signal design at peak hours.
From this research we can see that traditional control
principle of minimizing delay may be ine�ective in
dealing with peak hour �ow due to the spillover of
long queue. Till now the control strategy that takes
this condition into account is absent.
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