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Abstract: This paper deals with the formation control problem without collisions for second-order
multi-agent systems. We propose a control strategy which consists of a bounded attractive component
to ensure convergence to a specific geometrical pattern and a complementary repulsive component
to guarantee collision-free rearrangement. For convergence purposes, it is assumed that the commu-
nication graph contains at least a directed spanning tree. The avoidance complementary component
is formed by applying repulsive vector fields with unstable focus structure. Using the well-known
input-to-state stability property a control law for second-order agents is derived in a constructive
manner starting from the first-order case. We consider that every agent is able to detect the presence
of any other agent in the surrounding area and also can measure and share both position and velocity
with his predefined set of neighbours. The resulting control law ensures the convergence to the
desired geometrical pattern without collisions during the transient behaviour, as well as bounded
velocities and accelerations. Numerical simulations are provided to show the performance and
effectiveness of the proposed strategy.

Keywords: multi-agent systems; formation control; collision avoidance; nonlinear control; repulsive
vector fields

1. Introduction

Multi-agent systems have received much attention in the last decades because of
their wide range of potential applications in situations where a single agent could not
be effective enough, e.g., exploration, surveillance and rescue tasks, among others [1–5].
In order to design versatile systems that can achieve the mentioned tasks, a number of
different issues have been studied in this research area: for example, consensus, trajectory
tracking, formation control, coordination, synchronization and so forth [6–10]. In formation
control, a group of agents is meant to be driven to a prescribed spatial pattern. Depending
on the constraints imposed in the ability to measure or share information with other
agents, those geometrical patterns could be reached up to translation, rotation, scaling
or a combination of them. In terms of the sensing capability and interaction among
agents, previous results in formation control algorithms can be divided into three main
categories: position-, displacement- and distance-based schemes [7]. In position-based
control strategies, agents usually are able to determine their absolute position with respect
to a global reference frame. Communication among agents is not strictly necessary, but the
whole performance can be enhanced if coordination is regarded. As a result, the desired
patterns are reached with proper scale and orientation [11–13]. Displacement-based control
schemes require the agents to measure relative positions of their neighbouring agents with
respect to a local frame attached to each agent which has to be aligned with the global
reference frame. Communication among agents needs to include at least a spanning tree,
and the desired formation is specified by a set of relative displacements among agents.
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Under this approach, the resulting formation is invariant up to translation [10,14]. Distance-
based strategies treat the desired formation as a set of inter-agent distances which can
be expressed in local coordinates where the local frames are not necessarily aligned with
respect to the global frame. Interactions among agents must be enhanced in order to ensure
the agents converge to the correct formation by using rigidity, angle rigidity or signed
area approaches [15–18]. The aforementioned results have been developed by regarding a
number of mathematical models, such as single or double integrator, unicycle-type robots,
high-order linear agents, as well as a variety of constraints as intermittent communication,
time delay, input saturation, quantization and digitization, among others [18–23].

One important issue that arises independently of the control objective and approach
for solving the formation control problem is to guarantee that collisions will not occur
among agents. Different schemes have been proposed for multi-agent systems regarding
several mathematical models, communication topology and agents’ capabilities to either
receive or transmit information and sensing equipment. In the same way, there are different
works regarding collisions between agents or collisions against obstacles, in [24–34].

A common approach to avoid collisions is based on the use of repulsive vector fields
designed as the negative gradient of an artificial potential function. The main advantage of
this approach is the simplicity in the design process, but it can lead to undesired equilibrium
points where the agents could get stuck [25,26]. A immediate remedy to guarantee that
the agents can escape from unwanted local minima is to add a controlled perturbation
to the overall control input [26]. In [28,29], velocity information was used to modify
the avoidance functions in order to be more energy-efficient and to generate faster and
smoother trajectories. Many strategies under this approach have been designed in such
a way that the repulsive vector fields grow indefinitely as the distance between agents
tends to zero. This results in high magnitude control inputs that might be unrealistic
for physical agents to achieve. Furthermore, if physical dimensions of agents are taken
into account, collisions could eventually occur. Therefore, modified potential functions
are proposed to comply with a minimum safety distance between any pair of agents and
bounded control input magnitude in [26,32]. A recent work proposed the use of the rotation
matrix to modify the vector fields depending on the relative position of the agent with
respect to obstacles [30]. In contrast, in [33], the shape of obstacles are taken into account
to guarantee motion without collisions. However, both algorithms were developed for
nonholonomic vehicles. An alternative strategy to the collision avoidance problem was
formulated in [27], where the agents are labelled according to a priority level which provide
solution to the conflicts between agents. The priority in this scheme varies for leader
and followers. An interesting strategy was proposed in [34], where an adaptive control
component was used to ensure free-collision convergence. A novel approach was reported
in [31], in which barrier functions are applied to ensure input and velocity constraints and
collision avoidance requirements.

In [35], a collision avoidance algorithm based on reactive repulsive vector fields
was proposed. This work was proposed to solve the formation control problem without
collisions for first-order agents by applying repulsive vector fields with unstable focus
structure. This technique, first reported in [36], considers that there exists an unstable focus
centred at the position of any other robot or obstacle. This mechanism is activated when
agents are near enough to each other. The repulsive vector fields are turned on/off in a
discontinuous manner which could provoke the appearance of chattering phenomenon.
Finite-time convergence to the desired formation, as well as finite-time for solving the
conflicts between agents, were achieved. Unlike many previous works, the repulsive
vector fields proposed in [36] cannot be derived as the gradient of any potential function.
Then, in [37], the switching control strategy was modified by using continuous switching
functions to ensure a smooth transition between the components of the control law and
conditions to guarantee asymptotic convergence to the desired formation were derived. It is
important to notice that the convergence component is bounded by considering saturation,
while the collision avoidance component is, by definition, bounded. This results in a
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bounded control algorithm. Moreover, this strategy has been shown to be effective in
real-time experiments [38]. Additionally, in [37], a detailed analysis of the repulsive vector
fields leads to minimum gain parameters such that the collision avoidance is guaranteed.

In this paper, we propose a solution to the formation control problem without collisions
for second-order agents by generalizing the algorithm in [35]. Regarding the second-order
agents as a cascade of two single integrators, we apply the mentioned control law to first
integrator in order to ensure asymptotic stability of the position error. Then, taking the
velocity as a virtual control, we find the expression of acceleration signal which are, indeed,
the control input. A cascaded system approach is utilized to show that the interconnected
systems is globally asymptotically stable. We consider that every agent is equipped to
measure the relative position and velocity of a predefined set of neighbours. For conver-
gence purposes, it is assumed that the communication among agents contains, at least,
a spanning tree. Even more, each agent is able to detect the presence of any agent in
the surrounding area and share both position and velocity with agents into their sensing
region. The convergence component of the algorithm is bounded by a saturating function
while the repulsive vector fields are smoothly activated/deactivated. The resulting control
law ensures the convergence to the desired geometrical pattern without collisions during
the transient behaviour and bounded velocities and control inputs. The use of repulsive
vector fields with unstable focus structure provides a relatively simple tool to avoid unde-
sired equilibrium points. Moreover, the algorithm can be scaled in case that agents were
added or removed with the only requirement of existing a spanning tree in the nominal
communication scheme.

The remainder of this paper is organized as follows. In Section 2, some basic concepts
about graph theory and some definitions are reviewed. We state, in detail, the problem
and the control objective in Section 3. Our main results are provided in Section 4 and the
corresponding simulation results to validate the performance of the proposed strategy are
presented in Section 5. Finally, in Section 6, we list some conclusions and perspectives of
our future work in this research line.

2. Preliminaries

In this section, we provide some concepts and definitions that will be useful throughout
the rest of the paper.

2.1. Graph Theory

The communication among a set of agents is described by a formation graph
G = {V, E, C}, which consists of a set of vertices V = {R1, . . . , Rn} corresponding to
each agent and a set of edges E = {(RjRi) ∈ V × V, i 6= j}, which denotes the agent Ri
receive information about Rj; the agent Rj is called the parent node and Ri is, respectively,
the child node; finally, C = {cji ∈ R2 | (RjRi) ∈ E, i 6= j} is a set of constant vectors that
represent the relative desired position of agent Ri with respect to its neighbours. A forma-
tion graph is undirected if (RjRi) ∈ E implies that (RiRj) ∈ E. That is, the communication
is bidirectional. On the other hand, a formation graph is said to be directed if (RiRj) ∈ E
implies that (RiRj) /∈ E. If a formation graph is neither directed nor undirected, it is called
mixed. There exists a path between the vertices Rj and Ri if there is a sequence of edges
(RjRm1), (Rm1 Rm2), . . . , (Rmr Ri) for some i 6= j. A directed tree is a directed graph in which
every node has exactly one parent, except for one single node, called the root. The root
has no parent and has a directed path to every other node. A directed spanning tree of
a directed graph G is a directed tree involving every node in G. The Laplacian matrix
associated with a formation graph G is given by

L(G) = ∆−Ad
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where ∆ is the degree matrix defined as ∆ = diag{g1, . . . , gn}, gi is the number of edges
directed to Ri, i = 1, . . . , n and Ad is the adjacency matrix of G defined as follows

aij =

{
1, if (RjRi) ∈ E
0, otherwise.

2.2. Saturating and Switching Functions

Definition 1. Let Φr be the set of the saturating functions which is composed of all the real
functions which satisfy the following conditions

• φ(x) = 0⇔ x = 0;
• −r ≤ φ(x) ≤ r for some r > 0;
• xφ(x) > 0, ∀x 6= 0;

• 0 < ∂φ(x)
∂x < M1 < ∞.

Then, it is said φr(·) is a saturating function parameterized by r.

Definition 2. Let Ψ be the set of smooth switching functions which is composed of functions
satisfying the next properties

• ψ(x) = 1 if x ≤ a;
• ψ(x) = 0 if x ≥ b;
• 0 < ψ(x) < 1 if a < x < b;

• −∞ < ∂ψ(x)
∂x ≤ 0.

where b > a > 0.

2.3. Input-to-State Stability

Definition 3. The system
ẋ = f (t, x, u) (1)

is said to be input-to-state stable (ISS) if there exist a class KL function β and a class K function
γ, such that for any initial state x(t0) and any bounded input u(t), the solution x(t) exists for all
t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0‖, t− t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
(2)

Lemma 1 ([39]). Let V : [0, ∞)× Rn → R be a continuously differentiable function such that

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) (3)

∂V
∂t

+
∂V
∂x

f (t, x, u) ≤ −W3(x), ∀‖x‖ ≥ ρ(‖u‖) > 0 (4)

∀(t, x, u) ∈ [0, ∞) × Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K function
and W3(x) is a continuous positive definite function on Rn. Then, the system (1) is input-to-state
stable with γ = α−1

1 ◦ α2 ◦ ρ.

Lemma 2 ([39]). Consider the interconnected system

ẋ = f (t, x, y), (5)

ẏ = g(t, y). (6)

If the subsystem (5) with y as input is ISS and y = 0 is a globally uniformly asymptotically
stable equilibrium point of the subsystem (6), the origin (x, y) = (0, 0) of the interconnected system
(5) and (6) is globally uniformly asymptotically stable.
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3. Problem Statement

Consider the set N = {R1, R2, . . . , RN} consisting of N mobile agents at the plane.
The position coordinates of every robot are specified by zi(t) = [xi(t), yi(t)]

T ∈ R2,
i = 1, 2, . . . , N. The agent Ri is modelled by the double integrator

żi = vi, (7a)

v̇i = ui, (7b)

where vi = [vi1, vi2]
T ∈ R2 and ui = [ui1, ui2]

T ∈ R2 represent the velocity and acceleration
along the X and Y axes, respectively. We assume that robot Ri can sense continuously.
The relative position and velocity of a specific subset of robots Ni ⊆ N are determined
by the corresponding formation graph G. Therefore, the desired position z∗i of robot Ri is
defined as

z∗i =
1
ni

∑
j∈Ni

(
zj + cji

)
, (8)

where ni is the cardinality of Ni and cji = [cxji , cyji ]
T ∈ R2, ∀j ∈ Ni defines the geometrical

pattern to be reached. In addition, we assume that each agent is able to detect and measure
the relative position and velocity of any other agent within a circle of radius D. This region
is called the sensing region and is assumed to be the same for all robots. The set of agents
into the sensing region is denoted as Mi(t) = {Rj ∈ N | ‖zi(t)− zj(t)‖ ≤ D}. Analogously,
the collision region is defined by a radius d, which is the smallest allowed distance between
any pair of agents. If some agents get closer than this value, it is considered that they collide
with each other because of their physical dimensions.

3.1. Control Objective

The control goal is to design distributed controllers ui(zi, zj, żi, żj), j ∈ Ni ∪ Mi(t),
i = 1, . . . , N such that:

(i) The agents reach the desired relative positions, that is,

lim
t→∞

(zi(t)− zi(t)∗) = 0, i = 1, . . . , N; (9)

(ii) There are no collisions among agents. Even more, the agents remain at some prede-
fined distance d from each other, that is, ‖zi(t)− zj(t)‖ ≥ d, ∀t ≥ 0, i 6= j;

(iii) Once the agents achieve the desired formation, the geometrical pattern does not move
from its current location any more, i. e., limt→∞ vi(t)→ 0, ∀i ∈ N.

3.2. Position Error Dynamics

Define the position error for each agent as the difference between the current and the
desired position,

z̃i = zi − z∗i . (10)

Then, the position error dynamics is given by

˙̃zi = żi −
1
ni

∑
j∈Ni

żj. (11)

Given (7), the last equation can be written in terms of velocities. The whole system in
vector form is

˙̃z =
(

∆−1L (G)⊗ I2

)
v. (12)
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where L (G) is the Laplacian matrix, I2 is the 2× 2 identity matrix,⊗ denotes the Kronecker
product, z̃ =

[
zT

1 , zT
2 , . . . , zT

N
]T ∈ R2N , v =

[
vT

1 , vT
2 , . . . , vT

N
]T ∈ R2N and

∆−1 =


1

n1
0 . . . 0

0 1
n2

...
...

. . . 0
0 0 . . . 1

nN

. (13)

4. Control Design

In this section, we solve the formation control problem without collisions in two stages.
First, we propose a control law attending only the convergence issue. Then, we propose a
complementary reactive control component which prevent agents from collisions.

4.1. Formation Control Strategy

In order to design a control law to achieve the aforementioned objective, we start by
recalling the control law in ([37] Thm. 1), which was proposed for first-order agents and
consists of a bounded control input

γi = −µφ(z̃i), (14)

which applied to (7a). The closed-loop system in vector form takes the form

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃), (15)

where φ(z̃) =
[
φT(z1), φT(z2), . . . , φT(zN)

]T ∈ R2N , φ(·) ∈ Φr and µ > 0. Indeed, it was
proven that the error trajectories in (15) coverge to zero, implying that the agents reach
their desired formation. Keeping this in mind and in view of (12), we can add and subtract
the right-hand term of (15) into (12). Then, grouping conveniently, we have

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃) +

(
∆−1L (G)⊗ I2

)
ξ, (16)

where we have defined an auxiliary variable ξ ∈ R2N as

ξ = v + µφ(z̃), (17)

whose dynamics is given by

ξ̇ = u + µ

(
∂φ(z̃)

∂z̃

)T
˙̃z. (18)

Using (12),

ξ̇ = u + µ

(
∂φ(z̃)

∂z̃

)T(
∆−1L (G)⊗ I2

)
v. (19)

Theorem 1. Consider the system (16)–(19) and assume that the communication graph contains at
least a directed spanning tree. Then, using the control law

u = −µ

(
∂φ(z̃)

∂z̃

)T(
∆−1L (G)⊗ I2

)
v− λξ (20)

with λ > 0, the set of agents reaches the desired geometrical pattern and the velocity of the whole
formation tends to zero.
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Proof. First, we show that the subsystem (16) is ISS with ξ as input. Then, if ξ = 0, we have

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃). (21)

Taking the Lyapunov function candidate

V(z̃) =
N

∑
i=1

∫ z̃i

0
φ(τ)dτ (22)

=
N

∑
i=1

(∫ z̃ix

0
φx(τ)dτ +

∫ z̃iy

0
φy(τ)dτ

)
, (23)

where φ(z̃i) =
[
φx(z̃ix ), φy(z̃iy)

]T
, φx, φy ∈ Φr, the dynamics along the trajectories of (16) is

V̇(z̃) =
N

∑
i=1

(
φx(z̃i) ˙̃xi + φy(z̃i) ˙̃yi

)
(24)

=
N

∑
i=1

(
φT(z̃i) ˙̃zi

)
. (25)

In vector form, it becomes

V̇(z̃) = −µφT(z̃)
(

∆−1L (G)⊗ I2

)
φ(z̃). (26)

Since every agent defines its desired position with respect to, at least, another agent,
the matrix ∆−1 > 0. If there exists a directed spanning tree in the communication
graph, the Laplacian matrix has exactly one zero eigenvalue, say λn = 0. This implies
rank(L (G)) = n− 1, while the rest of the eigenvalues have positive real parts, that is,
Re(λi) > 0, i = 1, . . . , n− 1. Then, we can ensure that

V̇(z̃) ≤ 0. (27)

Now, to prove asymptotic stability, consider the eigenvector associated to the zero
eigenvalue, which has a value of 1n = [1, 1, . . . , 1]T . Then, L (G)1n = 0, which implies that
in the equilibrium, the components φ(z̃i) are all equal, i.e., φ(z̃1) = φ(z̃2) = · · · = φ(z̃n).
Due to the properties of saturation functions, z̃1 = z̃2 = · · · = z̃n = z∗. On the other
hand, there exists a left eigenvector α = [α1, α2, . . . , αn]

T ≥ 0 such that 1T
n α = 1 and

L T(G)α = 0, [40]. In other words, there exists a linear combination of the position errors
in such a way that

N

∑
i=1

αi z̃i = 0, (28)

with coefficients αi not all equal to zero. Finally,

N

∑
i=1

αi z̃i = z∗
N

∑
i=1

αi = 0 (29)

implies that z∗ = 0, which means that only the trivial solution can identically ensure
V̇(z̃) = 0. Then, z̃ = 0 is asymptotically stable. Moreover, as the Lyapunov function candi-
date (22) is strictly increasing and radially unbounded, the origin is globally asymptotically
stable (GAS). Now, we allow ξ 6= 0. Using the same Lyapunov candidate function, we get

V̇(z̃) = φT(z̃)
(

∆−1L (G)⊗ I2

)
(−µφ(z̃) + ξ).
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The last expression can be written as

V̇(z̃) = −µ(1− θ)φT(z̃)
(

∆−1L (G)⊗ I2

)
φ(z̃)

+ φT(z̃)
(

∆−1L (G)⊗ I2

)
(−µθφ(z̃) + ξ), (30)

or, bounding the last right-hand term,

V̇(z̃) ≤ −µ(1− θ)φT(z̃)
(

∆−1L (G)⊗ I2

)
, ∀‖z̃‖ > φ−1

(
‖ξ‖
µθ

)
, (31)

with 0 < θ < 1. Then, according to Lemma 1, (16) is ISS with γ(r) = φ−1
(
‖ξ‖
µθ

)
. Finally,

by direct application of the control law (20), (19) becomes

ξ̇ = −λξ, (32)

which is not only GAS, but also globally exponentially stable. Recalling Lemma 2, a cas-
caded composition of an ISS subsystem as (16) and a GAS subsystem as (32) result in
another GAS system. This implies that z̃ → 0 and the auxiliary variable ξ → 0 as t → ∞.
As a consequence, from (17), we also notice that v→ 0 as t→ ∞. In summary, this implies
that the agents reach the desired geometrical pattern and the whole formation remains
stationary after achieving the formation goal. This concludes the proof.

Once the formation control problem has been solved, it is of interest to implement the
control law in each agent. Then, rewriting (20) in terms of the position and velocity errors,
we have

u = −
(

µ

(
∂φ(z̃)

∂z̃

)T(
∆−1L (G)⊗ I2

)
+ λI2N

)
v− λµφ(z̃), (33)

where (
∂φ(z̃)

∂z̃

)T
= diag

{(
∂φ(z̃1)

∂z̃1

)T
, . . . ,

(
∂φ(z̃N)

∂z̃N

)T
}

. (34)

The implementation of this control law in each agent is

ui = −
(

µ

(
∂φ(z̃i)

∂z̃i

)T
(

1
ni

∑
j∈Ni

(vi − vj)

)
+ λvi

)
− λµφ(z̃i). (35)

4.2. Formation Control Strategy With Collision Avoidance

In order to enhance the applicability of the control law proposed in the previous
subsection, we now take into account the possibility of collisions to occur while the rear-
rangement of agents. Following the same reasoning, we start from a control law designed
for first-order agents inspired in the one reported in [37], given as

ui = −µφ(z̃i)− ε
n

∑
j=1,j 6=i

ψij(dij)

[
pij − qij
pij + qij

]
, (36)

where ψij(·) are smooth distance-based switching functions which satisfy that ψij(dij) = 1
for dij < d and ψij(dij) = 0 for dij > D. This allows us to turn on/off the collision avoidance
mechanism. dij is the distance between the i-th and the j-th agents. For designing this
control law, every agent considers that there exists an unstable focus structure centred at the
position of any other agent which ensures that the agents repel each other. The repulsive
vector fields, which are given by the second right-hand term in (36), are designed by taking
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into consideration the relative positions between any pair of robots, when they are in their
sensing regions. The relative position variables are defined as

pij = xj − xi, (37)

qij = yj − yi. (38)

Clearly, if an agent does not detect any other agents into its sensing region, the repul-
sive component is not necessary. In this case, the repulsive component should be turned
off, i.e., if the agents are far enough from each other, the second right-hand term in (36)
vanishes. This implies that, in vector form, the control law reduces to the one applied
in (15). In [41], it was shown that (36) and a gain ε, properly selected, solve the problem
for first-order agents. It is also proved that, even if the repulsive vector fields are applied
when the agents are at a distance D, the agents could get closer, but never at a distance
smaller than d. Once the agents leave their sensing regions, their reactive components are
deactivated and they proceed with their motion to the respective desired locations.

4.3. Reduced System

In the design of a collision avoidance complementary control law for second-order
agents, we start by considering a reduced system consisting of two first-order agents with
bidirectional communication between them. The closed-loop system for this reduced set, is
given in (40) by applying (36), where we denote the distance d12 = d21 simply by d̂.

F =

[
1 −1
1 1

]
(39)

is the matrix which provides the unstable focus behaviour.

˙̃z = −µ(L (G)⊗ I2)φ(z̃)− ε

([
−ψ12(d̂) ψ21(d̂)
ψ21(d̂) −ψ12(d̂)

]
⊗ I2

)
(I2 ⊗ F)(L (G)⊗ I2)z. (40)

We can assume without loss of generality that every agent has the same range of
measurement, then ψ12(d̂) = ψ21(d̂) = ψ(d̂), and (40) becomes

˙̃z = −µ(L (G)⊗ I2)φ(z̃) +

(
εψ(d̂)(L (G)⊗ I2)(I2 ⊗ F)(L (G)⊗ I2)z

)
. (41)

Remark 1. It is worthwhile to point out that a well-defined desired geometric pattern is such that
the distance among the agents is larger that the minimum one, that is, at the desired formation, no
conflicts between agents exist. Then, at the origin of (41), the second right-hand term vanishes.

Then, following the same procedure applied in the previous subsection, and adding
and subtracting the right-hand side of (41) to (12), we have

˙̃z = −µ(L (G)⊗ I2)φ(z̃) + β(z) + (L (G)⊗ I2)ξ, (42)

where
β(z) = εψ(d̂)(L (G)⊗ I2)(I2 ⊗ F)(L (G)⊗ I2)z (43)

and a new auxiliary variable is defined as

ξ = v + µφ(z̃)− εψ(d̂)(L (G)⊗ F)z (44)

whose dynamics is given by

ξ̇ = u + µ

(
dφ(z̃)

dz̃

)T
(L (G)⊗ I2)v− εψ̇(d̂)(L (G)⊗ F)z− εψ(d̂)(L (G)⊗ F)v. (45)
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If the control input is selected as

u = −µ

(
dφ(z̃)

dz̃

)T
(L (G)⊗ I2)v

+ εψ̇(d̂)(L (G)⊗ F)z

+ εψ(d̂)(L (G)⊗ F)v− λξ, (46)

the ξ-subsystem reduces to
ξ̇ = −λξ. (47)

Then, once that the control law (46) is applied, the cascaded system (42)–(47) could
be analysed as in Theorem 1. Since the ξ-subsystem is clearly GAS, it remains to show
that z̃i-subsystem is ISS, which can be done by using the stability theory for perturbed
systems. Indeed, if we let ξ = 0, (42) can be focused as (15) perturbed by the term β(z).
As mentioned in Remark 1, this term is a vanishing perturbation at the desired formation.

4.4. General System

If we consider a set of N first-order agents along with the formation control strategy
(36), the closed-loop system (42), in vector form, can be expressed as

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃) + ε

(
∆−1L (G)⊗ I2

)
(Ω⊗ F)z, (48)

where F is defined as in (39). The matrix Ω, which depends on the distance between every
pair of agents and models the conflicts among agents, is described by

Ω =


∑N

j=1,j 6=i ψ(d1j) −ψ(d12) . . . −ψ(diN)

−ψ(d21) ∑N
j=1,j 6=i ψ(d2j) . . . −ψ(d2N)

...
. . .

...
−ψ(dN1) −ψ(dN2) . . . ∑N

j=1,j 6=i ψ(dNj)

. (49)

Remark 2. As it was assumed, every robot is able to detect other robots in a certain radius, which
ensure the matrix Ω is a symmetric Laplacian-like matrix if only the agents in conflict are regarded.

The position error dynamics (12) in combination with (48) is

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃) + β(z) +

(
∆−1L (G)⊗ I2

)
ξ. (50)

where
β(z) = ε

(
∆−1L (G)⊗ I2

)
(Ω⊗ F)z (51)

and a general auxiliary variable was defined as

ξ = µφ(z̃)− ε(Ω⊗ F)z + v. (52)

Since the time derivative of the auxiliary variable is

ξ̇ = u + µ

(
∂ϕ(z̃)

∂z̃

)T
˙̃z− ε

(
Ω̇⊗ F

)
z− ε(Ω⊗ F)v, (53)

the control input could be selected as

u = −µ

(
∂ϕ(z̃)

∂z̃

)T
˙̃z + ε

(
Ω̇⊗ F

)
z + ε(Ω⊗ F)v− λξ, (54)
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which implies that the dynamics of the auxiliary variable ξ becomes

ξ̇ = −λξ. (55)

Now, we are ready to state our main result.

Theorem 2. Consider the system (50) and (55), and assume that the communication graph contains
at least a directed spanning tree. Then, using the control law (54), the set of agents reaches the
desired geometrical pattern without collisions. Once the desired formation is achieved, the whole
pattern does not move from its current position. Even more, the agents remains for all time at a
distance greater than or equal to a predefined bound d.

Proof. First we show that (50) is ISS. If we let ξ = 0 in (50), we get

˙̃z = −µ
(

∆−1L (G)⊗ I2

)
φ(z̃) + β(z). (56)

As mentioned before, the second right-hand term vanishes when the agents are far
enough from each other, including when they reach the desired formation; that is, β(z∗) = 0.
Then, regarding (51), we have

‖β(z)‖ ≤ c1‖z̃‖, (57)

with c1 > 0. Equation (56) could be considered as (15) perturbed by the term β(z), which is
fully described in (51) and could be bounded as in (57). According to [39], since β(z) van-
ishes at the origin of the error dynamics, if the parameters are selected properly, the system
is still GAS. In [41], it has been shown that (56) is GAS when applying (36) and conditions
in the selection of parameters µ and ε were derived. If we let ξ 6= 0 and recall the same
Lyapunov function candidate (22), we have

V̇(z̃) ≤ −µ(1− θ)φT(z̃)
(

∆−1L (G)⊗ I2

)
+ (1− θ)φT(z̃)β(z),

∀‖z̃‖ >
(

‖ξ‖
µ(θ + c2)

)
, (58)

where 0 < θ < 1 and c2 > 0. Then, (50) is ISS, which, along with (55), implies that the
cascaded system remains GAS even when the complementary control component is applied.
As a conclusion, the formation control problem with collision avoidance is solved satisfying
the control objective stated above.

It is clear that when the agents remain far enough from each other, the matrices Ω and
Ω̇ are null, which implies that (54) reduces to (33) where the repulsive vector fields are not
taken into account. Finally, if (54) is written only in terms of position and velocity variables,
it becomes

u = −λµφ(z̃) + ε

((
λΩ + Ω̇

)
⊗ F

)
z

−
(

µ

(
∂ϕ(z̃)

∂z̃

)T(
∆−1L(G)⊗ I2

)
+ λI2N − ε(Ω⊗ F)

)
v. (59)

5. Simulations

In this section, we present the results of a series of simulations carried out to show and
evaluate the performance of the proposed control strategy. To illustrate the effectiveness
of the control law, we study a system composed of nine agents whose objective is to
reach a sequence of desired geometrical patterns which are shown in Figures 1–4 where
the communication links are shown as well. The parameters used for this example are
µ = 1, ε = 0.6 and λ = 1, and the sensing and collision radius were D = 2.8 and d = 2,
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respectively, i.e., the minimum allowed distance between any pair of agents is 2 m and each
agent is able to detect any another robots within a range of 2.8 m. The switching function
that enables the repulsive vector fields is given by

ϕ(dij) =
1

1 + ea(dij−b)
, (60)

with a = 10 and b = 2.4. This exhibits the behaviour depicted in Figure 5 and gives
a good approximation to the properties of the switching functions defined previously.
The minimum distance between agents one they reach the desired formations is about
3.5 m. This distance ensures these patterns are reachable. The parameters of the simulation
are summarized in Table 1.

Table 1. General parameters used for simulation.

Parameter Value

µ 1
ε 0.6
λ 1
D 2.8
d 2
a 10
b 2.4

Figure 1. First desired formation.

Figure 2. Second desired formation.
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Figure 3. Third desired formation.

Figure 4. Fourth desired formation.

1.6 2 2.4 2.8 3.2

0

0.2

0.4

0.6

0.8

1

Figure 5. Switching function to turn on/off the repulsive vector fields. A function which satisfy con-
ditions given in Section II, with the same behaviour, could also be used instead of the proposed one.

5.1. Desired Formations

For this simulation, the nine agents are initially located at z1(0) = [−15, 0]T ,
z2(0) = [10, 10]T , z3(0) = [−5, 5]T , z4(0) = [−5,−5]T , z5(0) = [5,−5]T , z6(0) = [−10, 10]T ,
z7(0) = [15, 5]T , z8(0) = [15,−10]T and z9(0) = [5, 5]T , all with zero velocity.

The desired formations are parametrized by a scale factor ` = 1.3 metersm such
that the set of constant vectors that specify the first pattern are c21 = c32 = c78 = c79 =
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`[0, 3]T , c12 = c23 = c87 = c97 = `[0,−3]T , c45 = c56 = `[3, 0]T , c54 = c64 = `[−3, 0]T ,
c34 = `[2,−3]T , c43 = −c34, c67 = `[2, 3]T and c76 = −c67.

The second desired pattern is defined by the vectors c91 = `[3, 0]T , c62 = `[−1.5,−3]T ,
c73 = `[1.5,−3]T , c84 = `[−3, 3]T , c15 = c73, c86 = `[−4.5, 0]T , c87 = −c86, c58 = `[−3,−3]T ,
c78 = c86, c68 = −c86 and c49 = `[1.5, 3]T .

In the same way, the third formation to be formed is given by c51 = `[3, 0]T ,
c82 = `[−3,−1.5]T , c83 = `[3.5,−2.5]T , c93 = `[2.5, 2]T , c84 = `[−3, 1.5]T , c45 = `[0, 3]T ,
c16 = `[2.5,−2]T , c86 = `[2.5, 2.5]T , c27 = `[0,−3]T and c79 = `[3, 0]T . It is important to
notice that, in this case, the communication is reduced to contain a directed spanning tree
rooted in robot R8. Moreover, we consider in this case that the robot R8 is not able to apply
the repulsive vector fields, i. e., the agent remains stationary while the rest of them get in
formation with respect to it.

Finally, the last desired configuration is determined by c21 = `[0,−3]T , c12 = −c21,
c31 = `[0, 3]T , c13 = −c31, c42 = `[−2,−2]T , c24 = −c24, c53 = `[−2, 2]T , c35 = −c53,
c46 = `[3, 0]T , c86 = c53, c57 = `[3, 0]T , c97 = c42, c68 = `[2,−2]T , c79 = −c42, c18 = `[7, 3]T

and c19 = `[7,−3]T .

5.2. Simulation Results and Discussions

In Figures 6–8, we show the results up to the first 100 s of simulation. In Figure 6, the
distances among any pair of agents are depicted. There, a horizontal dashed line represents
the minimum allowed distance between them. Clearly, no pair of robot get closer than this
predefined bound and, even more, the conflict among agents are solved after about 30 s.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

Figure 6. Distancesbetween any pair of agents from 0 [s] to 100 [s]. The dashed line indicates the
minimum allowed distance.
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-1.5

-1
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0

0.5

1

1.5

Figure 7. Velocities from 0 [s] to 100 [s].
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Figure 8. Control inputs from 0 [s] to 100 [s].

Additionally, in Figures 7 and 8, velocity and control signals are illustrated, respec-
tively. As it can be seen, velocities tend to zero, which implies that the whole formation
stays at its current location once the geometrical pattern is reached. Both velocities and
accelerations remain bounded during the transient period. Figure 9 shows the spatial
configuration of agents at different times, which helps to illustrate the convergence to the
desired formation.

Figure 9. Spatial distribution of agents at some specific times.

In Figure 10, distances between agents, velocities and accelerations are depicted for
the whole simulation time. Details about time evolution can be appreciated more clearly in
the video attached as Supplementary Material.
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Figure 10. Distancesbetween an pair of agents, velocities and control inputs for whole simulation.

6. Conclusions

In this paper, we proposed a strategy for solving the formation control problem
without collisions for second-order multi-agent systems. The control law is the result
of a generalization from a strategy which has been proved to solve the similar problem
for first-order systems. The main characteristics of the proposed design are preserved:
the unstable focus structure in the collision avoidance mechanism and the absence of
undesired equilibria. In this work, we assume that every agent in the set is able to determine
and share both position and velocity, and that each of them can apply repulsive vector fields
to repel others to avoid collision. The notion of input to state stability is applied to show
convergence to the desired formation by using the approach of cascaded subsystems. As a
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future work, performance of this methodology under constraints in the communication at
position and/or velocity level, the effect of time delay, intermittent communication and the
non-cooperative case could be studied.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/machines11020208/s1, Video S1: Real-time animation of agents’ positions of the numeri-
cal example.
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