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Abstract: This paper presents the formation tracking problem for non-holonomic automated guided
vehicles. Specifically, we focus on a decentralized leader–follower approach using linear quadratic
regulator control. We study the impact of communication packet loss—containing the position of
the leader—on the performance of the presented formation control scheme. The simulation results
indicate that packet loss degrades the formation control performance. In order to improve the control
performance under packet loss, we propose the use of a long short-term memory neural network to
predict the position of the leader by the followers in the event of packet loss. The proposed scheme
is compared with two other prediction methods, namely, memory consensus protocol and gated
recurrent unit. The simulation results demonstrate the efficiency of the long short-term memory in
packet loss compensation in comparison with memory consensus protocol and gated recurrent unit.

Keywords: formation control; packet loss; long short-term memory

1. Introduction

Automated guided vehicles (AGVs) along with their formation control are a key
technology for Industry 4.0 as they automate the coordinated movement of materials and
components in manufacturing environments in a safe, secure, and operationally efficient
manner [1,2]. In many applications, formation control refers to the process by which a group
of autonomous vehicles follows a predefined trajectory while maintaining a desired spatial
pattern [3]. Multi-agent formation control systems have received considerable attention
in the research literature due to the inherent difficulties associated with the control and
coordination strategies, especially in the absence of a central controller. AGV formation
control has been extensively used in smart factories and warehouse environments in a
mobile robot-based production line system [4]. Formation control has a wide range of
applications, including vehicle platoon control [5], cooperative transportation of large or
heavy loads carried by multiple mobile robots, or automated guided vehicles (AGVs) [6].
Formation control [7] addresses various sub-problems such as localization [8], obstacle
avoidance [9], and distributed path planning [10], with numerous studies on these topics.
Due to its simplicity and scalability, the leader–follower approach is a widely adopted
formation control method [11]. This method selects one or more robots as leaders to guide
and move along the desired trajectory, while the remaining robots are selected as followers
to track the leader(s) paths. A leader–follower formation control problem can be considered
a tracking problem in control systems, where the leader moves along the desired trajectory,
and the followers track the leader, maintaining the required formation [3]. We consider
that each robot’s (e.g., leader, follower) control procedure only uses local measurements
and is not based on a centralized controller. Consensus control is another type of formation
control in which all robots coordinate and make decisions based on information from their
neighbours to achieve consensus [12].

Generally, the AGVs/robots exchange formation control information through a wire-
less network [10], which plays a vital role in interconnecting the AGVs. Formation control
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is vulnerable to wireless network uncertainties such as wireless channel noise, communica-
tion delay, and communication packet losses. These uncertainties can result in a variety
of complex dynamic behaviours in control systems, such as divergence, oscillation, and
instability [13]. Most existing studies assume ideal communication links and do not con-
sider the effect of packet loss or delay [14–16]. There are only a few works that consider
communication delay, while the packet loss is generally ignored [12,17–21].

However, packet loss in the communication network has a significant impact on
the performance of any industrial process control system [22], specifically the trajectory
tracking performance of a robotic formation. In the formation control of robots, holonomic
and non-holonomic robots are two types of robots which are widely used in industry; while
holonomic robots move regardless of their heading angle/orientation, non-holonomic
robots such as differential drive robots are unable to move into arbitrary directions due to a
non-holonomic constraint. As a result, they require sophisticated control mechanisms, and
the impact of packet loss on the formation control of non-holonomic differential drive robots
is significant. Holonomic robot formation is more resilient to network uncertainties than
non-holonomic robot formation [23]. To mitigate the effects of packet loss, communication
networks typically use re-transmissions to ensure that the data are received at the intended
receiver. However, re-transmission will increase the transmission delay [18]. On the
other hand, a range of control approaches such as robust control [24], model predictive
control [25], sliding mode control [13], and various estimators [26] or filters [27] are widely
used to address packet loss from a control perspective.

Machine learning can also be a useful tool to mitigate packet loss, and its efficiency
has been demonstrated in a variety of wireless network applications within the Internet
of Things context, including network management, congestion avoidance, and resource
allocation optimization [28]. As a result, various studies have been conducted on the
predictive capabilities of machine learning, particularly deep learning approaches such
as long short-term memory (LSTM) [29]. To the best of our knowledge, no prior research
has used deep learning techniques to address the effect of packet loss on formation control.
Inspired by the above discussions, we propose using LSTM to control the formation of
non-holonomic differential drive AGVs in the presence of packet loss. LSTM is a powerful
technique for forecasting time series and classifying data [30]. The LSTM algorithm is
capable of extracting features from time series over a longer time span and of solving the
vanishing gradient problem [31]. In this study, the leader follows a trajectory, which is a
sequence of locations over time. Thus, LSTM is proposed to forecast the leader’s position,
and followers use this predicted value as needed (whenever the position data sent by
the leader is lost by the wireless network). As the quality of the wireless communication
deteriorates, followers frequently predict the leader’s position using LSTM for tracking
the leader’s trajectory. Our results show that LSTM outperforms gated recurrent units
(GRUs) and memory consensus protocol (MCP). MCP is a well-known technique that
stores each neighbour’s previously received data and uses them when a packet is not
received by a neighbour [32]. MCP becomes inefficient as the number of consecutive packet
losses increases [33]. The GRU architecture is similar to the LSTM, but it lacks an output
gate, which reduces the calculation burden and simplifies implementation [34]. However,
LSTM prediction usually outperforms GRU prediction [35]. We model the packet loss
using a Bernoulli distribution and evaluate LSTM predictions with a packet loss of 30 and
50 percent.

The following are the major contributions of this paper:

• Study of decentralized leader–follower formation control for non-holonomic auto-
mated guided vehicles using linear quadratic regulator (LQR). LQR is a simple yet
popular control approach that can be easily implemented and that has not yet been
used for formation control.

• Analysis of the impact of packet loss on the formation control of AGVs.
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• Improving the performance of a linear quadratic regulator (LQR) controller via ma-
chine learning, e.g., LSTM, to deal with packet losses, rather than using a highly
non-linear and complicated controller such as a sliding mode controller.

• Development of a mechanism to compensate for packet loss with LSTM and the
application of the mechanism to the formation control of non-holonomic differential
drive robots, which are more sensitive to network uncertainties due to non-holonomic
constraints.

• Comparing LSTM with GRU and MCP for the compensation of 30 and 50 percent
packet loss through simulation in MATLAB/SIMULINK.

The rest of this paper is organized as follows. In Section 2, related work focused on
the compensation of packet loss for AGVs is presented. Section 3 discusses how to model
differential drive robots mathematically. A controller is designed in Section 4. In Section 5.1,
the vulnerability of the system to packet loss is demonstrated. In Section 5.2, an LSTM
network is used to counteract the negative impact of packet loss. Prediction accuracy of
LSTM, GRU, and MCP are compared in Section 6.1. Simulations are used to evaluate the
proposed method’s performance in Section 6.2. Finally, the conclusion and suggestions for
future work are presented in Section 7.

2. Related Work

In this section, we mainly discuss prior research that has developed algorithms and
controllers to deal with packet loss in the formation control of AGVs. The authors in [36]
concluded that by reducing the number of control updates and transmissions, the wireless
communication channel is less congested and hence packet losses can be minimized.
However, the authors did not propose any mechanisms to address the effect of packet loss,
which can affect the performance of their formation control.

In [33], a networked predictive controller and two algorithms are developed to cope
with consecutive packet loss and communication delay for non-linear wheeled mobile
robots. The authors simulated the effect of packet loss by considering a tunnel the robot
travels through that is no longer detectable with cameras and associated servers [33].
A well-quantified analysis of packet loss and its effects is missing.

A consensus-based tracking control strategy was studied for leader–follower forma-
tion control of multiple mobile robots under packet loss [37]. A novel multiple Lyapunov
functional candidate and linear matrix inequality (LMIs) ensure that the robots reach con-
sensus when packet loss and communication weight (representing the rate of information
flow between agents) are taken into account. Packet loss is modelled using a Bernoulli
distribution and assumed to be 20% in the majority of scenarios. It is shown that the system
can achieve consensus under high packet loss, but it also takes a long time to reach consen-
sus. Their simulation results consider that one of the agents has access to the maximum
amount of information, implying that their communication weight is equal to one.

In [13], event-triggered second-order sliding mode control is designed for consensus-
based formation control of non-holonomic robots. Although sliding mode control is a robust
method for counteracting packet loss and delay, the second-order sliding mode controller
is a difficult controller to implement in real-world industrial scenarios. Furthermore, the
main focus of this article is on event-triggered control, and the highest packet loss rate
considered is 20%, modelled using the Bernoulli distribution for a circular trajectory.

Among the learning methods used to address packet loss, iterative learning control
(ILC) design has been used to cope with packet loss in several articles [38,39]. ILC is based
on the concept of learning from previous iterations in order to improve the performance
of a system that repeatedly performs the same task [40]. In [41], ILC is applied to a linear
system that suffers from 15% and 25% packet loss. The authors show that after 50 iterations,
the system compensates for this packet loss. ILC is also used in non-linear multi-agent
systems to solve the consensus problem of a leader–follower use case with packet dropouts
of 10% and 40% [42]. None of these ILC studies [38,39,41,42] were conducted with non-



Sensors 2022, 22, 3552 4 of 18

holonomic AGV formation control, which is a more challenging system because of the
non-holonomic constraints.

It is worth noting the difference between the methods proposed in this research and
the dead reckoning method. They might seem similar in definition but they have totally
different approaches and functions. Dead reckoning (the “deduced reckoning” of sailing
days) is a simple and basic mathematical procedure for finding the present location of a
vessel by advancing some previous position through a known course and using the velocity
information of a given length of time [43]. In dead reckoning, the Global Positioning System
(GPS) is not available, e.g., no GPS receiver, indoor environment, etc. [44]; therefore, dead
reckoning is used as a localization method that estimates the robot’s position, orientation,
and integrates local sensor information over time, which usually suffer from drifts [45]. In
this research, we do not address localization, and it is considered that each robot knows its
own position accurately (e.g., the global reference is available).

In contrast to previous research, this study focuses on the use of deep learning to
compensate for packet loss while robots maintain their formation. When packet loss
occurs, LSTM, GRUs, and MCP are optional methods for predicting the leader position.
LSTM is used for AGVs in various fields such as path planning [46], state estimation
and sensor fusion of holonomic robots [47], data fusion of the odometry and IMU [48]
anomaly detection [49] and fault detection [50]; however, no research has been conducted
to compensate for packet loss in the formation control of AGVs via deep learning.

3. Mathematical System Model

In this section, we consider the generic mathematical system model of non-holonomic
robots moving in the X–Y plane [51]. We chose a non-holonomic differential drive robot,
which is widely used for AGVs in industry, as detailed in Section 1. In non-holonomic
robots, the number of control variables is less than the number of state variables, which
complicates formation control. This section discusses non-holonomic constraints to derive
a kinematic model of non-holonomic robots. The differential robot’s kinematics can be
simplified using unicycle model equations [51] in which the wheel is assumed to have a
desired velocity at a specified heading angle. As shown in Figure 1, the robot’s position
is determined by the co-ordinate (x, y, θ), which is the robot’s orientation relative to the
axes (X and Y). There are also two control inputs denoted by v and ω, which correspond to
linear and angular velocity, respectively.

ẋ = vcosθ
ẏ = vsinθ
θ̇ = ω

(1)

X

Y

x
y

Figure 1. Kinematic model of non-holonomic robot.
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The reference trajectory followed by the leader is represented by Equation (xre f , yre f , θre f ),
where θre f is the reference heading angle (tangent angle of each point on the path), which
can be obtained from the reference positions (xre f , yre f ) given by Equation (2).

θre f = arctan
ẏre f

ẋre f
+ kπ, kε(0, 1) (2)

k = 0 represents the forward drive direction and k = 1 represents the reverse drive
directions.

The linear velocity vre f of the robot is obtained with Equation (3) and the reference
angular velocity ωre f is obtained with Equation (4).

vre f = ±
√

ẋ2
re f + ẏ2

re f (3)

where the sign relates to the desired drive direction (+ for the forward direction and − for
the reverse direction)

ωre f =
ẋre f .ÿre f − ẏre f .ẍre f

(ẋre f )2 + (ẏ2
re f )

(4)

4. Controller Design

In this section, we detail the design of the linear quadratic regulator (LQR) tracking
controller used for controlling the non-holonomic robots, so that they follow a desired
trajectory through a leader–follower strategy. A similar design is detailed in [52] for a single
robot following a reference trajectory. LQR is an optimal control technique which considers
the states of the system and control inputs when making optimal control decisions and
computes the state feedback control gain [53]. LQR was chosen because of its simplicity and
ease of implementation, while providing good accuracy, as shown in [52] for a single AGV.
The designed LQR is a simple controller in comparison with non-linear controllers such
as a sliding controller, which has been widely used for AGVs in recent years. As shown
in Figure 2, the kinematic controller (LQR controller) generates two control signals, the
angular velocity (ωcl) and the linear velocity (vcl), for each robot’s trajectory tracking. The
current position of the robot (x, y, and θ) is compared with its expected reference trajectory
(xre f ,yre f and θre f ) and the trajectory tracking errors are fed to the LQR controller after the
required transformations [52].

To design the LQR controller, let us consider a linear time-invariant (LTI) system:

ẋ = Ax(t) + Bu(t), t ≥ 0, x(0) = 0
ẏ = Cx(t) + Du(t), t ≥ 0

(5)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are the system matrix, control
matrix, output matrix, and feed forward matrix, respectively, representing the state space
model. The dimensions of these matrices are depicted with n state variables, m inputs,
and p outputs. x is the state vector, u is the control vector, and y is the output vector. The
LQR controller generates the control input that minimizes the cost function [54] given by
Equation (6).

J(u) =
∫ ∞

0
[ xT(t)Qx(t) + uT(t)Ru(t)]dt (6)

where Q = QT is a positive semi-definite matrix that penalizes the departure of system
states from the equilibrium, and R = RT is a positive definite matrix that penalizes the
control input [55]. The feedback control law that minimizes the value of the cost function is
given by Equation (7):

u = −Kx (7)
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where K, the optimal state feedback control gain matrix, is obtained with Equation (8):

K = R−1BT P (8)

and P is found by solving the algebraic Riccati Equation (ARE) (9) [56]:

AT P + PA + Q− PBR−1BT P = 0 (9)

Thus, to design an LQR controller, the trajectory tracking problem should be writ-
ten in the form of Equation (5). This gives the trajectory tracking errors in the form of
Equation (10). ex

ey
eθ

 =

 xre f − x
yre f − y

θre f − theta

 (10)

where ex, ey, and eθ are errors in x, y, and heading angle, respectively. To transform
these errors into robot coordinates, a rotation matrix was applied to the system as stated
in Equation (11). e1

e2
e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

.

ex
ey
eθ

 (11)

The transformed errors (e1, e2, e3) are fed to the LQR controller and it generates the
required control signals ωcl and vcl , as shown in Figure 2.

Reference 
 Trajectory

Transformation
to Robot 

Coordinates

LQR Controller 
 

Mobile Robot 
 System

Feedforward  
Inputs 

Optimal control system

Figure 2. Mobile robot controller.

Applying Equation (1) to the time derivative of Equation (11) yields the state space
model given by Equation (12).ė1

ė2
ė3

 =

cos e3 0
sin e3 0

0 1

.
[

vre f
ωre f

]
+

−1 e2
0 −e1
0 −1

.
[

v
ω

]
(12)

where
vs. = vre f cos e3 − vcl
ω = ωre f −ωcl

(13)

Applying Equation (13) to Equation (12) results inė1
ė2
ė3

 =

 0 ω 0
−ω 0 0

0 0 0

.

e1
e2
e3

+

 0
sin e3

0

.vre f +

1 0
0 0
0 1

.
[

vcl
ωcl

]
(14)
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Linearizing Equation (14) around the operating point (e1 = e2 = e3 = 0, vcl = ωcl =
0) [51], the state space model of the linear system given by Equation (15) is obtained.ė1

ė2
ė3

 =

 0 ωre f 0
−ωre f 0 vre f

0 0 0

.

e1
e2
e3

+

1 0
0 0
0 1

.
[

vcl
ωcl

]
(15)

Comparing Equation (15) with the standard form in Equation (5), the system is con-
trollable if and only if its controllability matrix (R = [B, AB, A2B]) has a full rank. However,
rank (R) = 3 if either vre f or ωre f are non-zero, which is a sufficient condition only when
the reference inputs vre f and ωre f are constant. This happens only when the trajectory is a
line or a circular path. The controllability of a driftless system can be derived from Chow’s
theorem if the system is completely non-holonomic [51]. The robot model represented by
Equation (1) is completely non-holonomic since it has only one non-holonomic constraint,
which is represented by Equation (16):

ẋ sin θ − ẏ cos θ = 0 (16)

Therefore, the robot cannot move in a lateral direction due to its wheels and it is
controllable [51], as shown in Figure 2, where the LQR controller is given by Equation (17)
and K2×3 is the gain matrix with three states and two inputs.

[
vcl
ωcl

]
= −

[
k11 k12 k13
k21 k22 k23

]
.

e1
e2
e3

 (17)

To obtain the LQR controller gain (K2×3), matrices Q and R are tuned, where Q is a
positive-definite/semi-definite diagonal matrix related to the state variables, and R is a
positive-definite diagonal matrix related to the input variables [57]. The following Q and R
were selected according to [52] for the evaluation of our tracking system.

Q =

1 0 0
0 1 0
0 0 10

, R = 0.0001
[

1 0
0 1

]

5. Formation Control under Packet Loss

In this section, we first evaluate the controller’s performance under various packet
loss conditions. Following that, we discuss the application of an LSTM model to a follower
in order to predict the position of the leader when packet loss occurs.

5.1. Impact of Packet Loss on Formation Control

As demonstrated in [52], the LQR controller performs admirably in tracking the
trajectory of a single robot along a variety of paths. Here, we extend the LQR tracking
control problem [52] to the formation control of multiple robots in various packet loss
scenarios. In the leader–follower approach, the leader’s position is communicated to all
followers at regular intervals. The communication interval is considered to be 0.05 s and
the sampling interval is 0.005 s. The effects of packet loss are depicted in Figure 3, which
illustrates how packet loss results in an increased follower position error of around 4 cm.
The simulation results in Figure 3 were obtained by considering a memory element in each
follower robot that stores the most recent position of the leader. That is, whenever packet
loss occurs, a follower makes use of the last received data stored in its memory to track the
reference (leader) trajectory. This approach is called MCP, as detailed in Section 2. Here, we
apply an LSTM prediction model to alleviate the impact of packet loss and we compare the
system’s performance with MCP and GRU.
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Figure 3. Effect of packet loss.

5.2. Long Short-Term Memory to Cope with Packet Loss

Our objective is to enhance the optimal control system (as shown in Figure 2) using
LSTM rather than designing a highly non-linear tracking controller. We believe that, with
the recent advancements in machine learning techniques, the existing industrial controller’s
performance can be improved in the presence of various network uncertainties such as
packet loss, delays, etc. We propose to use LSTM, a type of recurrent network that reuses
previously stored data and its dependencies, for predicting the latest position of the ref-
erence trajectory (leader). LSTM has been widely used for the prediction of time series
data [58–60]. As we are attempting to predict the leader’s trajectory, which is a time-based
ordered sequence of locations, this problem fits within the LSTM framework. LSTM has
been addressed in numerous articles [61–63] in order to learn and remember long-term
dependency and information. By incorporating various gates, such as an input gate, an
output gate, and a forget gate, LSTM is expected to improve traditional recurrent neural
networks (RNNs). These various gates enable LSTM to achieve a trade-off between the cur-
rent and the previous inputs while alleviating an RNN’s vanishing gradient and exploding
gradient problems [61]. We detail the LSTM model along with various gates/parameters
and evaluate the system’s performance in the following sections.

5.2.1. Architecture of LSTM Prediction and Control

A basic LSTM network for prediction begins with an input layer, followed by an LSTM
layer, a fully connected layer, and finally, a regression output layer. The input layer provides
the position of the leader to the LSTM layer. The hidden layer is in charge of storing and
remembering the position data received from the leader. The output layer provides the
leader robot’s predicted position. Since the position of the leader is characterized by its x
and y position and heading angle, we use three independent LSTM neural network models
for predicting each of these states.

As illustrated in Figure 4, LSTM is equipped with a “gate” structure that enables it to
add or remove cell state information and selectively pass the information while passing
through different gates as detailed below [61]:
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tanh

tanh

Input gate Output gateForget gate

Cell state

Figure 4. LSTM architecture.

• Forget gate: The forget gate ( ft), given by Equation (18), decides whether the informa-
tion from the previous cell state Ct−1 should be discarded or not.

ft = σ(W f .[ht−1, xt] + b f ) (18)

where ft is the forget gate, σ is the sigmoid function, W f is the weight matrix, b f is the
bias term, ht−1 is the previous hidden layer output, and xt is the new input.

• Input gate: This gate determines the information that has to be stored in the cell states
that includes two parts given by Equation (19). The first part in Equation (19) consisting
of σ identifies which value is to be updated, and the second part in Equation (19)
including tanh generates the new candidate values.

it = σ(Wi.[ht−1, xt] + bi)
C̃t = tanh (WC.[ht−1, xt] + bC)

(19)

where it is the input gate, C̃t is the candidate state of the input, and σ and tanh are the
sigmoid and hyperbolic tangent functions, respectively. Wi and WC are the weight
matrices, bi and bC are the bias terms, ht−1 is the previous hidden layer output, and xt
is the new input.

• Updating cell state: Updating the cell state considers the new candidate memory and
the long-term memory given by Equation (20).

Ct = ft × Ct−1 + it × C̃t (20)

where Ct and Ct−1 are the current and previous memory states, ft is the forget gate, it
is the input gate, and C̃t is the input candidate state.

• Output gate: This gate determines the output of the LSTM given by Equation (21).

ot = σ(Wo.[ht−1, xt] + bo)
ht = ot × tanh Ct

(21)

where ot is the output gate. Wo and bo are the weight matrix and bias terms, respec-
tively. ht−1 and ht are the previous and current hidden layer outputs, xt is the new
input, and Ct is the current state of the memory block. The first part in Equation (21),
which includes σ, determines which part of the cell state will be output (ot), and the
second part in Equation (21) processes the cell state by tanh multiplied by the output
of the sigmoid layer.
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5.2.2. Application of LSTM for Leader Position Prediction

As previously stated, follower robots should have access to the latest position of the
leader in order to maintain accurate formation control. When packet loss occurs, followers
are unaware of the leader’s true position. To cope with this, we use an LSTM for predicting
the leader’s trajectory. The LSTM network is trained using the leader trajectory and then its
states are updated.

As shown in Figure 5, when no packets are lost, network states are updated with the
actual observed leader position. In the event of packet loss, network states are updated
using previous LSTM predictions, as observed leader position values are unavailable.

Start

Sending leader
position to

follower

Is packet lost?

No

Yes Update LSTM
model with LSTM

prediction

Set predicted
leader position by
LSTM as follower

reference

Update LSTM
model with leader

position

Set real leader
position as

follower reference

End

Figure 5. The flowchart of the proposed approach of sending the leader position to the follower.

6. Performance Evaluation

In this section, we evaluate the performance of the different prediction schemes
LSTM, GRU, and MCP. We also evaluate the performance of the leader–follower formation
control system with these prediction methods in different packet loss scenarios. All the
performance evaluations are carried out through MATLAB/SIMULINK simulations.

6.1. Prediction Accuracy of LSTM, GRU, and MCP

Here, we discuss the prediction performance of LSTM, GRU, and MCP for a circular
trajectory for 30% and 50% packet loss. LSTM was trained with the leader’s trajectory
positions; 80% of these data were used for training the LSTM and 20% was used for
validation. Figure 6 shows the validation and training loss for LSTM. Over the 400 time
periods, the proposed LSTM model was able to learn to predict with the desired accuracy.

The errors between the actual and the predicted positions of the leader trajectory (X, Y,
and heading angle) are shown in Figure 7. As shown in the figure, LSTM provided more
accurate predictions than GRU and MCP. The root mean square error (RMSE) between
the actual and predicted positions is shown in Table 1. From Table 1, it is clear that LSTM
provided the most accurate prediction in comparison with GRU and MCP for both 30%
and 50% packet loss scenarios. MCP had the worst prediction performance.
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Figure 6. Training and validation loss for LSTM: (a) loss for X; (b) loss for Y; (c) loss for heading angle.
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Figure 7. Prediction errors: (a) error for X; (b) error for Y; (c) error for heading angle.

Table 1. RMSE of prediction error.

Packet Loss 30% 50%

RMSE X Y Heading Angle X Y Heading Angle

LSTM 3.19 × 10−2 3.46 × 10−2 9.8 × 10−3 3 × 10−2 3.71 × 10−2 1.01 × 10−2

GRU 3.35 × 10−2 3.52 × 10−2 1.17 × 10−2 3.41 × 10−2 3.72 × 10−2 1.43 × 10−2

MCP 3.47 × 10−2 4.28 × 10−2 1.10 × 10−2 5.53 × 10−2 5.70 × 10−2 1.59 × 10−2

6.2. Simulation Results

Here, we discuss the formation control performance of four robots with one of them
acting as leader. For each robot, the controller diagram depicted in Figure 2 was simulated
using MATLAB/SIMULINK. The followers and the leader attempted to maintain their
formation as they travelled along a pre-defined path. At regular communication intervals,
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the leader’s position was communicated to all the followers via wireless broadcast commu-
nication. In the event of packet loss, LSTM predicted the leader’s position for the followers.
The LSTM and GRU model settings were identical and they are listed in Table 2. The LSTM
and GRU model parameters were carefully chosen to maintain a balance among prediction
accuracy, computing resources, and calculation time.

Table 2. LSTM and GRU model setting.

LSTM X Y Heading Angle

Epox 400 400 400
Hidden nodes 10 10 7

Batch size 128 128 128
Learning rate 0.005 0.01 0.1

Learning rate drop
factor 0.2 0.2 0.2

In our use case, the follower robot was expected to maintain a predefined distance
from the leader. The accuracy of the LSTM location prediction was measured using the
RMSE given by Equation (22). RMSE is a frequently used measure of the difference between
the predicted and the actually observed values.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)2 (22)

where xi is the observed value, x̂i is the predicted value, and N is the number of data points.
The simulations were carried out with a sampling time of 5 ms and a communication

interval of 50 ms. The leader positions communicated to the followers were vulnerable
to packet loss, which was modelled using a Bernoulli distribution with a probability of ρ
equal to 0.3 and 0.5. Packet loss had a more significant impact on the formation control
when the trajectory followed was not simple in nature (e.g., straight line or its variants).
We chose circular and eight-shaped paths for our evaluations.

6.2.1. Circular Path

Here, we consider the leader and the followers as moving through a circle while packet
loss is considered to be 30%. As illustrated in Figure 8, LSTM prediction compensated for
packet loss better than GRU and MCP. The distance from the leader is also depicted in
Figure 9, which compares the prediction performance of MCP to those of LSTM and GRU.
The RMSE values of X, Y, and the heading angle of the follower are shown in Table 3. From
Figure 8, it is clear that LSTM-based prediction can provide formation control performance
that is comparable to that in perfect communication scenarios (0% packet loss), even with
30% packet loss. This is clearly observed in the RMSE as well. A lower RMSE for X and a
close enough RMSE for Y and heading angle can be observed in Table 3 when comparing
0% and 30% packet loss scenarios. This demonstrates how well LSTM prediction can
compensate for packet loss. Overall, LSTM performed 10% better than GRU and 148.07%
better than MCP.
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Figure 8. Trajectory of the robots during formation control (packet loss—30%).
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Figure 9. Distance of the follower from the leader for the circular trajectory (packet loss—30%).

We repeated the circular trajectory scenario with a 50% packet loss. The follower
performance is illustrated in Figure 10. LSTM again outperformed GRU and MCP in
terms of prediction. The distance from the leader is depicted in Figure 11 and the MCP’s
performance is compared to those of LSTM and GRU. RMSE was calculated for the X and
Y positions and the heading angle of the follower in Table 3 for a 50% packet loss. Here,
LSTM outperformed GRU and MCP; while packet loss was 50%, LSTM performance was
only slightly worse than it was with 0% loss. Overall, LSTM performed 21.41% better than
GRU and 223.17% better than MCP.
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Figure 10. Trajectory of the robots during formation control (packet loss—50%).



Sensors 2022, 22, 3552 14 of 18

0 5 10 15 20 25 30

Time (s)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

D
is

ta
n

c
e
 f

ro
m

 L
e
a
d

e
r 

(m
)

Without Loss

MCP

GRU

LSTM

Ideal sepration

Figure 11. Distance of the follower from the leader for the circular trajectory (packet loss—50%).

Table 3. RMSE of follower error for the circle path.

Packet Loss Prediction Method RMSE-X RMSE-Y RMSE-Heading Angle

0% - 2.76 × 10−2 2.77 × 10−2 7.8 × 10−3

LSTM 2.45 × 10−2 2.81 × 10−2 8.3 × 10−2

30% GRU 2.55 × 10−2 3.07 × 10−2 9.7 × 10−3

MCP 6.23 × 10−2 7.20 × 10−2 1.94 × 10−2

LSTM 2.39 × 10−2 3.04 × 10−2 9.1 × 10−3

50% GRU 2.60 × 10−2 3.49 × 10−2 1.28 × 10−2

MCP 8.94 × 10−2 9.15 × 10−2 2.68 × 10−2

6.2.2. Eight-Shaped Trajectory

Here, we detail the formation control performance of the leader and the followers
while following an eight-shaped trajectory in different packet loss scenarios. Figure 12
shows the system’s performance while the packet loss was 30%. It is clearly visible that the
LSTM prediction was very close to the perfect communication scenarios when compared
with GRU and MCP. The distance from the leader is depicted in Figure 13. Table 4 gives the
RMSE for the X, Y, and heading angle of the followers. LSTM performance (RMSE of X, Y,
and heading angle) while having 30% packet loss was even better than it was in the perfect
communication scenarios (0% packet loss). This demonstrates that LSTM prediction can
completely compensate for packet loss and even compensate for the quantization error in
the leader positions due to discrete communication intervals. Overall, LSTM performed
5.20% better than GRU and 156.14% better than MCP.
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Figure 12. Trajectory of the robots during formation control (packet loss—30%).
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Figure 13. Distance of the follower from the leader for the circular trajectory (packet loss—30%).

The formation control experiment along the eight-shaped trajectory was repeated
with 50% packet loss. As illustrated in Figure 14, LSTM again outperformed GRU and
MCP in terms of prediction. The distance from the leader is depicted in Figure 15. MCP
had a weaker performance compared to LSTM and GRU. The RMSE for the X, Y, and
heading angle of the follower is presented in Table 4 for the 50% packet loss scenario. As
observed earlier, LSTM outperformed GRU and MCP. LSTM’s prediction performance is
comparable with that in a perfect communication scenario (0% packet loss) even when
sustaining 50% packet loss. Overall, LSTM performed 14.49% better than GRU and 250.53%
better than MCP.
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Figure 14. Trajectory of the robots during formation control (packet loss—50%).
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Figure 15. Distance of the follower from the leader for the circular trajectory (packet loss—50%).
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Table 4. RMSE of follower error for the eight-shaped path.

Packet Loss Prediction Method RMSE-X RMSE-Y RMSE-Heading Angle

0% - 2.39 × 10−2 2.74 × 10−2 1.25 × 10−2

LSTM 2.08 × 10−2 2.63 × 10−2 1.18 × 10−2

30% GRU 2.18 × 10−2 2.58 × 10−2 1.33 × 10−2

MCP 5.35 × 10−2 6.67 × 10−2 3.04 × 10−2

LSTM 2.09 × 10−2 2.77 × 10−2 1.45 × 10−2

50% GRU 2.57 × 10−2 2.67 × 10−2 1.80 × 10−2

MCP 7.94 × 10−2 9.36 × 10−2 4.84 × 10−2

7. Conclusions

The formation control problem of non-holonomic AGVs is presented in this study.
Decentralized formation control of multiple AGVs is presented based on leader-follower
formation control by an LQR controller. The performance of the LQR controller is analyzed
when sustaining packet loss and with packet loss compensation using an LSTM neural
network model. The LSTM algorithm is in charge of forecasting the leader’s position
based on the previous leader’s position. When packet loss occurs, followers rely on LSTM-
generated predicted position values to maintain their formation accurately. Numerous
simulations were run to compare the performance of the LSTM to that of MCP and GRU.
LSTM prediction significantly aids in compensating for packet loss along a variety of trajec-
tories. Overall, LSTM performs 12% better than GRU and 194% better than MCP. In future
research, we will consider communication delay and other details of connectivity aspects
and plan to also implement our proposed approach in a physical robot test environment.
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