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Formation of beads-on-a-string structures during
break-up of viscoelastic filaments
Pradeep P. Bhat1, Santosh Appathurai1, Michael T. Harris1, Matteo Pasquali2,3, Gareth H. McKinley4

and Osman A. Basaran1*

Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of
saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of
several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string
(BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics
leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity
alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for
its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively
long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form
as seen in experiments.

Take a drop of saliva from the top of your tongue or between
your cheek and gums, place it between your thumb and
forefinger, and then pull your fingers slowly apart to a

distance of about a centimetre. With a little practice, you will
see a complex, poorly understood and practically relevant non-
Newtonian fluid dynamical process evolve before your eyes. The
small thread of fluid saliva first starts to thin and drain under the
action of capillarity, but rather than rapidly breaking—as a thread
of a Newtonian fluid such as water would—it persists and evolves
into a periodic pattern of beads strung together as a fluid necklace,
as shown in Fig. 1a. What forces are at play here? What determines
the lifetime of the filament?

On closer observation, such phenomena can be found per-
vasively in nature, such as in fish slimes, cellular protoplasm
and silk threads1. They are also encountered in important com-
mercial processes, such as anti-misting2 and electrospinning3. As
Thompson4 noted in his observations of viscous plant protoplasm
squirted out into a sugar solution of equal density, ‘the protoplasmic
cylinder. . . shows signs of instability and commences to disrupt; it
tends to gather into spheres. . . and in between these spheres we have
more or less regularly alternate ones of smaller size.’

In his seminal work, Boys1 demonstrated that a BOAS
morphology can be reproduced by considering the capillary
thinning of an annular film of a viscous Newtonian liquid on a
central rigid core fibre, for example, a piano wire. Subsequently,
careful experiments and simulations of this process5–7 have revealed
the essential physics: the initial wavelength of capillary instability
in a cylindrical jet8 is modified by the solid core and the break-up
of the fluid layer is suppressed by the viscous stress acting between
the thinning fluid interface and the central fibre. This leads to a
new annular film or ‘collar’ that thins further and subsequently
becomes unstable once more, resulting in an iterated instability. In
contrast, the drop of saliva shown in Fig. 1a has no rigid cylindrical
core; yet, in our digital rheometer, it exhibits a BOAS morphology.
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Therefore, the formation of the bead necklace must have a different
origin in such fluids. One key requirement for the formation of
beads in whole saliva is the presence of long chains of highly
extensible polymer molecules such as mucopolysaccharides9 that
impart viscoelasticity to the fluid. It is widely accepted that the
large viscoelastic stresses resulting from the elongation of these
macromolecules resist thinning and play the same role as the rigid
core. Here we show that, although necessary, viscoelasticity alone is
not sufficient for the formation of beaded structures. Moreover, we
show that the BOAS phenomenon relies on the delicate interplay of
four forces: capillary, viscous, elastic and inertial. Indeed, when any
of these forces dominates the others, it can overwhelm the dynamics
of bead formation.

The materials properties of saliva vary across the population
but typical values of saliva’s density ρ, zero-shear-rate viscosity
η0 and surface tension γ (ρ ∼ 1,000 kgm−3, η0 ∼ 1mPa s and
γ ∼ 60mNm−1; refs 9,10) are not markedly different from those
of water—a low-viscosity or nearly inviscid fluid. However, the
lifetime of the thread of saliva (with an initial radiusR of, say, 1mm)
is markedly longer than the simple estimate obtained by Rayleigh11

for an inviscid fluid tc =
√
ρR3/γ ∼ 4ms. Viscous threads, for

example the threads formed by a thumb and forefinger separating
a thin film of pancake syrup (a viscous but essentially Newtonian
fluidwith constant viscosity η0), livemuch longer with lifetimes that
scale with viscosity tv = η0R/γ . Viscous threads can also undergo
iterated instabilities and form small, satellite droplets12; however,
they do not form a long-lived BOAS structure. Excessive elasticity
also suppresses the formation of a BOAS structure13. This can be
easily demonstrated with our own ‘digital rheometer’, as indicated
in Fig. 1b.Moisten the lubricating strip at the leading edge of a razor
cartridge assembly and let the water-soluble polymer film swell.
When the swollen film is subsequently pressed onto a thumb or
finger and withdrawn, several stable threads are formed. The long
flexible polymer chains in the fluid elongate as the fluid columns
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Figure 1 |Using a ‘digital rheometer’ to measure the stringiness or pituity of various complex liquids, and filament morphologies near pinch-off.
(See the Methods section for the definition of pituity.) a, A drop of sublingual saliva placed between a thumb and forefinger and elongated to form a BOAS
morphology. b, A film of water-soluble polymer elongated from the lubricating strip on a disposable razor. The enhanced viscosity and elasticity of the
synthetic polymer solution in b results in a slippery and lubricious film but inhibits the formation of beads. c, Sketches of viscoelastic filaments exhibiting
different BOAS morphologies reported in the literature (see text for details). d, Computed interface shapes of pinching Newtonian liquid bridges with
aspect ratio Λ= 3. Left: break-up of a high-viscosity filament (Oh= 2), and right: break-up of a low-viscosity filament (Oh=0.4). The dash–dot line in
c,d is the axis of symmetry.
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Figure 2 | Liquid-bridge definition sketch. ρ is the density of the liquid, η0

is the zero-shear-rate viscosity and γ is the surface tension. L is the length
of the bridge, R is the radius of the discs and h(z) is the initial shape of the
interface. Using symmetry, only the domain highlighted in red is solved for
in computations. Sf, Sa and Sp denote the liquid/gas interface, axis of
symmetry and plane of symmetry, respectively.

thin under the action of capillarity. The resulting balance between
elastic and capillary forces14 leads to a distinctive exponential rate of
thinning in the filament diameter and provides a way of quantifying
the characteristic relaxation time of themacromolecules15,16.

The importance of the different forces relative to one another in
the dynamics of thinning and break-up of viscoelastic filaments is
given primarily by two dimensionless parameters: the Ohnesorge
number Oh ≡ tv/tc = η0/

√
ρRγ , which represents the ratio of

viscous to inertial forces (when the characteristic velocity scale
is taken to equal R/tc), and the Deborah number De = λ/t̃ ,
which represents the ratio of the relaxation time λ of the polymer
molecules to the characteristic process time t̃ . Depending on
whether viscous or inertial force is dominant, the characteristic
process time t̃ is either tv or tc.

Numerous different configurations of fluid drops intercon-
nected by thin filaments have been reported in studies of viscoelastic
fluid pinch-off. Figure 1c depicts three of the most commonly
occurring morphologies. The first consists of two primary or
main drops connected by a thin and uniform fluid filament. This
configuration has been studied by a number of authors16–19. The
second consists of a satellite bead formed in between the main
drops13,19–23 and the third consists of successive generations of
smaller sub-satellite bead(s) formed in between the main drop
and a satellite bead23–26. The first configuration is also seen in
the pinch-off of very viscous (Oh> 1) Newtonian filaments27, as
shown by the computed interface shape of a Newtonian liquid
bridge, that is, a column of a Newtonian liquid constrained between
two coaxial discs of equal radii, with Oh= 2 in Fig. 1d. However,
unlike the viscoelastic case, the shapes of filaments connecting the
beads in the Newtonian case are not axially uniform but show
a smooth variation in the axial direction. The second configu-
ration is also observed in the pinch-off of Newtonian fluids but
only in the limit of low viscosity (Oh < 1; refs 28,29). This is
evident from the shape of the pinching Newtonian filament with
Oh= 0.4 in Fig. 1d. The third configuration, however, is observed
only in the pinch-off of viscoelastic fluids, and computations
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Figure 3 | Filament thinning and satellite bead formation in Newtonian and Oldroyd-B filaments. a, Variation of the minimum neck radius hmin/R with
time in thinning Oldroyd-B filaments. The parameters are Oh=0.2, β =0.85 and Λ= 1.5 in all panels. The insets show the details of the interface at the
very centre of the liquid bridge. tp is the time at which hmin/R= 10−4 in the Newtonian (De=0) case. Formation of a satellite bead is seen when the
Deborah number is small (here, De=0.02) but not when it is high (De=0.1 and 0.5). b, Top: interface shapes of Oldroyd-B (red line) and Newtonian
(black line) filaments near pinch-off. In the viscoelastic fluid De=0.02, and hmin/R≈ 1.18× 10−3 in both cases. Satellites form in both filaments, but in the
viscoelastic case, the satellite bead formed is more spherical and has a volume that is roughly 1.6 times greater than that in the Newtonian case. Bottom:
highly enlarged views (around the pinch point) of the interface shapes of the Oldroyd-B filament at different dimensionless times (t− tp)/tc before
(negative) and after (positive) the time of pinch-off tp for the Newtonian fluid.

so far have been unable to capture the formation of the sub-
satellite beads.

As there are many different potential drop–filament configura-
tions, and because there are several forces at play, the physics of
bead formation is still unclear, and the morphology in Fig. 1c has
been attributed to several different causes. For example, whereas
Chang et al.21 predict that instability at the necks connecting the
filaments and drops leads to successive generation of beads in an
iterative fashion, Sattler et al.26 show that a sinusoidal instability
that exists along the surface of the filament, together with suc-
cessive contractions and relaxations of the interface at the ends
of the filament can cause the formation of a beaded structure.
Furthermore, the recursive relation proposed by Chang et al.21 for
the radii of successive generations of filaments is inconsistent with
experimental observation24 and their results showing the formation
of a satellite bead when viscous force dominates the inertial force
could not be reproduced in other simulations16. (For a detailed
discussion, see pp. 69–70 of the review by Eggers and Villermaux30.)
More importantly, the role of inertia in the dynamics has been either
neglected or not clearly understood. Here, we elucidate the physics
of bead formation during capillary-driven thinning of viscoelastic
fluid filaments at finite De and Oh.

The spatiotemporal dynamics of fluid pinch-off is studied by
computing the rupturing of an axisymmetric liquid bridge that is
extended beyond its Rayleigh–Plateau stability limit31. A schematic
of such a liquid bridge is shown in Fig. 2. As the problem is
axisymmetric and gravity is not considered, only the domain high-
lighted in red is used in computations. The set of governing partial
differential equations are solved using a robust finite-element
method32 that employs an elliptic mapping method33 to compute
the deforming mesh. This method has been well benchmarked in
diverse situations including analyses of coating flows34, Newtonian
drop and filament break-up35,36, electrohydrodynamics37 and
viscoelastic pinch-off38. (See the Methods section for the governing
equations and the complete description of the problem.) Earlier
experiments reporting BOAS formation in dilute solutions of
polyethylene oxide (PEO) in water23,39,40 yield the following range

for the dimensionless parameters that we use in our simulations:
0.004≤De≤ 0.5, 0.01≤Oh≤ 0.5 and β≥ 0.5, where De is defined
as De = λ/tc and β = ηs/η0 is the viscosity ratio that represents
the relative contribution of the solvent (ηs) to the total viscosity
η0=ηs+ηp, where ηp is the polymer viscosity.

In recent experiments13, a single satellite bead was shown to
form during the dripping of drops of different PEO solutions
that had similar viscosity and surface tension but different elastic
properties. In particular, the satellite bead was found to form only
at a low Deborah number (De= 0.0043, 0.014 and 0.031) but not
at higher values (De= 0.1 and 0.45). A similar result is obtained
here through computations, as shown in Fig. 3a. A single satellite
bead forms at De= 0.02 but not at De= 0.1 and 0.5. Moreover,
as De increases and elasticity becomes increasingly important, the
filament initially thins faster and then slows down at later stages of
pinch-off, in accord with an earlier nonlinear analysis20. All of the
fluids used in ref. 13 and in the other studies reporting the BOAS
formation are low-viscosity fluids and, in particular, have low values
of the Ohnesorge number22–26,39. Motivated by this observation,
we next study the role of fluid inertia (that is, 0 < Oh < 1) in
the formation of beads.

It is well known that satellite drops also form during the pinch-
off of low-viscosity Newtonian fluids29,41. Figure 3b shows the
details of interface shapes of Newtonian and Oldroyd-B filaments
near pinch-off (minimum neck radius hmin/R≈ 1.18×10−3) at the
same Ohnesorge number as in Fig. 3a. Satellites form in both cases;
however, in the viscoelastic case, the resulting satellite bead lives
longer (because the thin interconnecting filament takes more time
to break), becomes more spherical and is roughly 1.6 times larger
in volume than the Newtonian satellite. One may ask, how does
inertia cause the bead to form? A closer observation of the interface
reveals that it evolves from an initially symmetric shape about the
location of the minimum in the neck radius to an asymmetric
shape. This is evident from the series of highly enlarged interface
profiles shown at different times for a thinning Oldroyd-B filament
in the lower part of Fig. 3b. The asymmetry that develops about
the point of break-up (because of inertia28) leads to the creation of
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Figure 4 | Influence of fluid inertia on the dynamics of satellite bead formation, and formation of sub-satellite beads in viscoelastic filaments.
a, Variation of the axial velocity along the interface in Newtonian filaments at Oh=0.7 (blue line) and Oh=0.4 (black line). The minimum neck radius
hmin/R≈ 2.5× 10−4 in the two cases. The aspect ratio Λ is 3 in all panels. b, Interface shapes (solid lines) and the axial component of the rate-of-strain
tensor Dzz (dashed lines) along the free surface in Newtonian filaments at the same values of the Ohnesorge number as studied in a. c, Formation of a
secondary satellite bead in an Oldroyd-B filament. Here, hmin/R= 2.2× 10−4. The inset shows the magnified view of the region containing the satellite
and the sub-satellite bead. The parameters are Oh=0.4, De=4× 10−3 and β =0.5. d, Variation of σ:D (blue line) along the free surface and the
interface shape profile (black line) in an Oldroyd-B filament. The parameters are the same as in c.

a satellite in both cases. However, the extended lifetime conferred
by viscoelasticity enables the growth of the proto bead into a more
spherical structure. As will be shown shortly, the extra stresses from
the dissolved polymer molecules modify the flow and enhance the
growth of the bead.

In earlier jet break-up experiments with different PEO
solutions23, small, sub-satellite drops were shown to form when
the wavelength of disturbance is long (see Fig. 4 of ref. 23,
where the authors refer to these drops as sub-main drops). A
similar behaviour is also seen in the pinch-off of surfactant-laden
Newtonian jets42. It is therefore natural to study the effect of domain
size, specifically a higher aspect ratio Λ= L/R, on the formation
of BOAS structures. Before we analyse viscoelastic break-up in
the case of high-aspect-ratio threads, it proves informative to
first investigate the corresponding effects for thinning Newtonian
filaments. Thus, we consider the spatiotemporal dynamics of
Newtonian filaments at an aspect ratioΛ=3 for two different values
of Ohnesorge number; Oh= 0.4 (high inertia) and 0.7 (moderate
inertia). Figure 4a makes it clear that close to pinch-off, the axial
velocity profile in the Newtonian filament with larger inertia falls
gradually near the centre of the filament (z/R = 0) as opposed
to that in the filament with lower inertia, where the fall is sharp.

Indeed, at Oh = 0.4, the axial velocity vz in Fig. 4a shows two
maxima.Moreover, the axial component of the rate-of-strain tensor
Dzz = ∂vz/∂z forms a second local maximum close to z/R≈−0.27,
in addition to the one near the point of break-up. This can be seen
in Fig. 4b, which also shows the interface shapes of the filaments
in the same figure. A local maximum in the axial component of
the rate-of-strain tensor corresponds to localized ‘pinching’ and
a local minimum in the neck radius. A second local maximum
in Dzz appears to form only at high inertia. This suggests that a
thinner neck may develop locally in the region where Dzz appears
to form the second maximum. In the axial region between the two
pinch points (where Dzz is a local maximum at Oh= 0.4), there is
a range of axial positions over which Dzz is negative. As the bridge
shape over these values of z is a slender thread, the flow is nearly
one-dimensional and vr = −(r/2)∂vz/∂z , where vr is the radial
velocity28. Consequently, the radial velocity over this range of values
of z where Dzz < 0 is positive and drives a local thickening of the
neck. However, the filament pinches off at the first location before
this thickening can develop. Thus, only one satellite forms in the
Newtonian case.

Figure 4c shows that in a viscoelastic filament of Oh that is the
same as the inertially dominated Newtonian filament (Oh= 0.4), a
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Figure 5 | Phase diagram depicting the regions showing different BOAS morphologies in the De and Oh space for Oldroyd-B filaments with β=0.6 and
Λ= 3. The blue squares represent uniform cylindrical threads (that is, no satellite beads); the red triangles indicate the occurrence of a single satellite
bead; and the magenta circles indicate that sub-satellite beads develop between the main drop attached to the end plates and the primary satellite bead
that is at the centre of the filament. The filled triangles represent the first occurrence of the single satellite bead morphology when transitioning from either
of the other two regions. Representative filament shapes corresponding to each of the three morphologies (points A, B and C in the phase diagram) are
shown on the right.

small, sub-satellite bead forms between a main bead and a satellite
bead. We next seek to understand what causes the formation of
these secondary beads in the viscoelastic case. As in the case of the
Newtonian filament at Oh= 0.4, once a viscoelastic filament has
thinned sufficiently, there exists a range of values of z for whichDzz
is negative, which indicates that the radial velocity is positive and the
flow is not extensional. Further insights into the way viscoelasticity
can impact the pinch-off dynamics beyond this stage can be gained
by analysing how the scalar quantity σ:D (plotted in Fig. 4d) varies
along the filament length between the main drop and the satellite
bead (see the Methods section). In regions where σ:D is negative,
an enhanced radial flow occurs. This leads to incipient growth
of a small bead in the region −0.49 ≤ z/R ≤ −0.46, as evident
from Fig. 4d. Unlike Newtonian filaments, pinch-off in viscoelastic
filaments is delayed owing to high extensional stresses in the vicinity
of the pinch point(s). Thus, this nascent bead has time to grow and
a persistent BOAS structure ensues.

We next set out to map the range of De–Oh space into regions
that exhibit, or do not exhibit, BOAS structures. To accomplish
this, and to cover a wide range of De and Oh values expeditiously,
we use a simplified one-dimensional analysis (see the Methods
section for details). The aspect ratio is set as Λ = 3 so that
sub-satellites can also be seen in the dynamics, and the viscosity
ratio is set as β = 0.6. Figure 5 shows the corresponding phase
diagram and indicates three distinct regions: those that show (1)
no satellite bead formation, (2) a single central satellite bead and
(3) multiple generations of beads or a satellite and two sub-satellite
beads. As is evident from the figure, inertia is necessary (that
is, Oh should be sufficiently small) for the formation of a bead,
and sub-satellites form when both De and Oh are small. For a
given Oh, the morphology changes from a beaded structure to
an axially uniform structure with increasing elasticity, confirming
experimental observations13. The product, De · Oh = λtv/tc2,

includes all three relevant timescales λ, tv and tc entering the
problem, and it can be seen that the delineation of the region with
no satellite beads from the one with a single satellite bead in Fig. 5
is prescribed roughly by the curve De ·Oh = 0.2(Oh+ 0.05) for
0.1≤Oh≤ 1 (curve not shown)—an observation that supports our
argument that all relevant forces influence the detailed dynamics of
bead formation. This local delineation of the two regions is not valid
for higher Ohnesorge numbers (Oh> 1) where the viscous force is
dominant and the bead formation is suppressed.

The aforementioned results conclusively show that inertia is
needed to induce the formation of a satellite bead. Indeed, when
inertia is small, no bead formation is seen experimentally even at
very high aspect ratios (see, for example, Fig. 1 of Clasen et al.16,
where the authors show experimental images of the thinning of a
high-viscosity, low-surface-tension polymeric thread at Oh= 222).
In simulations, however, there have been reports of bead formation
in the absence of inertia43 but only when the fluid was modelled
using the Phan-Thien/Tanner network model incorporating non-
affine motion. A recent study of this phenomenon establishes that
the formation of a bead-like structure in these simulations is due
to the unphysical behaviour of the Phan-Thien/Tanner model in
strong transient flows that leads to spurious oscillations in the
shear stress44.

Although the analysis presented in this article answers the long-
standing question of how BOAS morphologies form, a number of
unanswered questions and avenues for further enquiries remain.
First, the system studied here pertains to dilute polymer solutions
with infinite chain extensibility. Incorporating finite extensibility
(using the finitely extensible nonlinear elastic dumbbell model, for
example) ensures that the viscoelastic filament will always break
eventually when the chains reach full extension21,38,45. This local
pinch-off truncates the lifetime of the thinning filament and can
interfere with the formation of multiple generations of beads.
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The corresponding phase diagram would then depend on another,
independent dimensionless parameter (the chain extensibility). We
have deliberately excluded such complications in the present study
to focus exclusively on the key interactions of inertia, elasticity and
viscosity in controlling bead formation.

In a recent study involving more concentrated polymer
solutions26, evaporation is observed to play a key role as a solidified
beaded structure results at the end of the experiment. For these
systems, more physics, such as mass transfer at the liquid/gas inter-
face because of drying, must be incorporated into the analysis. The
occurrence of a solid beaded structure naturally leads one towonder
whether different types of structure can be obtained by incorporat-
ing noise into the simulations. Whereas the influence of noise in
pinch-off dynamics has been considered in studies of Newtonian
filaments46,47, no such studies have been carried out so far with vis-
coelastic filaments. Comparison of experimental observations with
computational predictions of pinch-off dynamics of viscoelastic
filaments and formation of BOAS morphologies can also provide
stringent tests for validating existing constitutive equations and
may offer a heretofore unexplored way of developing improved
constitutive relations formaterials deformed far fromequilibrium.

Methods
Governing equations. The dynamics of pinch-off of fluids is governed by the
conservation of mass and momentum. For incompressible fluids, in the absence
of gravity (neglected here as it is unimportant in most applications involving
drop formation and in capillary thinning studies of thin fluid filaments), the
conservation equations are

0=∇ ·v (1)

ρ

(
∂v
∂t
+v ·∇v

)
=∇ ·T (2)

where v is the fluid velocity, T is the Cauchy stress tensor and ∇ = ∂/∂x is the usual
spatial gradient operator. The stress tensor T is split into an isotropic part, a viscous
part and an elastic part as T=−pI+τ+σ, where p is the pressure, I is the identity
tensor and the viscous stress tensor is τ= 2ηsD, where D= (1/2)[∇v+ (∇v)T ] is
the rate-of-strain tensor.

The elastic contribution to the Cauchy stress is obtained here using
a conformation-tensor-based formalism48, and the Oldroyd-B constitutive
equation is used to model the viscoelasticity of dilute polymer solutions. For
this model, the transport equation for the dimensionless conformation tensor
M of the molecules is

∂M
∂t
+v ·∇M− (∇v)T ·M−M ·∇v=−

1
λ
(M− I) (3)

and the relation between the elastic stress tensor and conformation tensor is
σ=G(M−I), whereG=ηp/λ is the elastic modulus.

Problem description. Figure 2 is a schematic of an entire liquid bridge of
volume V and length L held between two axisymmetric discs with equal radius
R. The problem domain is highlighted in red colour. Computations start with a
quiescent fluid (v= 0, p= 0, and σ= 0) that has an initially deformed interface
h/R= 1− 0.8cos(πz/L), where −L/2≤ z ≤ 0. The dimensionless volume
V =V /πR2L of this liquid bridge is 0.30141, which, for the liquid bridge aspect
ratios studied here, is unstable to axisymmetric perturbations31.

The no-slip and no-penetration boundary conditions are applied along
the solid disc. Along the axis of symmetry Sa and the plane of symmetry Sp, no
penetration and vanishing tangential stress conditions are applied. Finally, along
the free surface, the traction boundary condition and the kinematic boundary
condition are imposed.

The scalar quantity σ:D. A positive value of this quantity in a region indicates
that polymer molecules in that region undergo axial elongation because of the
local fluid motion, and a negative value of this quantity indicates that polymer
molecules in that region undergo recoil; that is, the conformation of the polymer
chains evolves such that the molecules exert an axial traction on fluid elements and
(through incompressibility) a radial thrust38.

One-dimensional analysis. The field variables (pressure, velocity and the elastic
stress) can be expanded in Taylor series in the radial coordinate r and substituted
in the governing equations and boundary conditions. Including only the terms
of leading order in the resulting expressions, a set of one-dimensional (in space)

partial differential equations is obtained (see refs 18,49 for more details). These are
solved here using the finite-element method41,50. We have verified by comparing
one- and two-dimensional computations that the one-dimensional algorithm
captures the details of the phase diagramwith quantitative accuracy.

Pituity. The tendency to retard capillary break-up and extend the lifetime of
low-viscosity polymeric filaments is sometimes referred to as ‘pituity’.
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