
In mammals, fertilization and early embryo development
occur in the oviduct (Fallopian tube). The oviduct also acts
as a sperm reservoir after mating. Anyone unfamiliar 
with this information might imagine that the formation of
oviductal fluid, the medium in which these processes occur,
had been studied extensively. They would be wrong.
Compared with the wealth of data on other epithelial
tissues, for example, those lining the gastrointestinal tract,
kidney tubules and airways, there is a paucity of informa-
tion on the formation of oviductal fluid. A major reason for
the lack of investigation is the success of in vitro fertilization
(IVF) and embryo transfer (ET) techniques, in which the
oviduct is bypassed, creating the impression that the study
of oviductal fluid is somewhat redundant. However, this is
akin to saying that there is no need to study the intestine,
kidney or airways since people can be kept alive
parenterally, by kidney dialysis or by artificial respiration,
respectively. Undoubtedly, there is a practical need to
improve IVF success rates, ensure the normality of the
embryos created and increase knowledge about the first
environment to which embryos are exposed.

Because the mechanisms underlying oviductal fluid
formation have yet to be elucidated in any detail, the
hormonal and nervous control of the processes involved are
not fully understood, nor are the possible pharmacological
effects, which might have a clinical role. By the same token,
the mechanisms that integrate the actions of the myosalpinx
(the muscle component of the oviduct) and the endosalpinx
(the mucosal lining) have yet to be explored.

This review considers: (i) key features of the composition

of oviductal fluids; (ii) the few studies that have addressed
the mechanisms that underlie oviductal fluid secretion; (iii)
the effect of modulators of oviductal fluid secretion and
their functional significance; and (iv) clinical implications of
research on oviductal secretion.

Oviductal fluid composition and rate of formation

The composition of oviductal fluid is well documented
(Miller and Schultz, 1987; Hunter, 1988; Leese, 1988; Nichol
et al., 1992; Dickens et al., 1995; Boatman, 1997; Tay et al.,
1997). With regard to ions, oviductal fluid is rich in K+ and
HCO3

– in comparison with plasma. The concentrations of
nutrients also differ from those in plasma, and vary with
endocrine state. For example, the concentration of glucose in
pig oviductal fluid decreases tenfold after ovulation (Nichol
et al., 1992, 1998) and sixfold in human oviductal fluid
between the follicular phase and midcycle (Gardner et al.,
1996). The amino acids present in the highest concentrations
are arginine, alanine and glutamate in human (Tay et al.,
1997) and glycine, glutamate and alanine in rabbit oviductal
fluid (Miller and Schultz, 1987). Glycine, alanine, leucine
and phenylalanine are transported to the greatest extent
from the vascular compartment into the lumen of the rabbit
oviduct (Leese and Gray, 1985). Glycine protects pre-
implantation mouse embryos against the detrimental effect
of inorganic ions (Van Winkle et al., 1990), probably due to
its capacity to act as an organic osmolyte (Dawson et al.,
1998). Taurine and hypotaurine are major constituents 
of oviductal fluid and are important in supporting the
viability of gametes and preimplantation embryos
(Boatman, 1997). In rabbits, fluid production is highest at
oestrus, then declines during pseudopregnancy (Bishop,
1956; Richardson and Oliphant, 1981; Gott et al., 1988). In
monkeys, there is an increase in oviductal fluid secretion at
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ovulation (for review, see Perkins, 1974). In cows, oviductal
fluid is produced at a rate of 0.2 ml per day at dioestrus and
at 2.0 ml per day at oestrus (Roberts et al., 1975). More fluid
is produced by cells in the rabbit ampulla than by cells in
the isthmic region, reflecting the greater surface area of the
ampulla cells (Leese, 1983). In ewes, oestrogen treatment
increases fluid secretion, whereas progesterone decreases
fluid secretion and antagonizes the effect of oestrogen
(Mastroianni et al., 1961, McDonald and Bellvé, 1969). In
ovariectomized rabbits and ewes, the secretory rate of the
oviduct is maintained at a steady level a little below that
observed for the luteal phase of the cycle (Perkins, 1974).
Treatment of ovariectomized females with even low doses
of oestradiol results in a marked increase in oviduct
secretion. The mechanism by which ovarian steroids
modulate oviductal fluid secretion is not fully understood.
Both ciliated and non-ciliated secretory cells of the oviduc-
tal epithelium are sensitive to variations in circulating
steroid concentrations (Murray, 1995). Oestrogen induces
hypertrophy, maturation and increases in cell height of 
non-ciliated secretory epithelial cells and can partially
restore the ciliated phenotype in vitro (Comer et al., 1998),
whereas progesterone causes atrophy and diminished
secretory activity. Such changes to cell morphology
indicate changes in synthetic activity that contribute to the
variation in oviductal fluid production. Steroid hormones
may influence the rate of fluid secretion by modulating the
movement of ions across the oviductal epithelium. In
cultured tracheal cells, steroid hormones regulate the balance
of Na+ absorption and Cl– secretion (Zeitlin et al., 1989) and,
in the kidney tubule, oestrogen enhances Na+ and Cl–

transport (Verlander et al., 1998). Therefore, it is possible that
steroid hormones have similar effects in the oviduct.

Oviduct-specific glycoproteins

Glycoproteins specific to the oviduct are synthesized and
secreted into the oviductal fluid in all species that have
been examined. The quantities of oviductal glycoproteins
are highest during the periovulatory period and decrease
thereafter. Thus, the synthesis and secretion of oviduct-
specific glycoproteins occur in response to oestrogen
stimulation (Abe et al., 1998), whereas progesterone
appears to have little influence. However, Sun et al. (1998)
suggested that LH rather than oestrogen is the stimulus for
oviduct-specific glycoprotein synthesis and secretion.
Oviduct-specific glycoproteins bind to the zona pellucida
of oocytes and embryos, indicating a role in early
development (Verhage et al., 1997, Staros and Killian,
1998). Oestrus-associated oviduct-specific glycoprotein
(OSGP) from different species shows strong sequence
homology, indicating conservation of amino acid sequence
and structure during evolution. In hamsters, the carbohy-
drate portion of the glycoprotein may mediate adherence of
spermatozoa to the epithelium of the lower isthmus (Demott
et al., 1995). Binding of OSGP to the oocyte may enhance
fertilization (Martus et al., 1998) and OSGP has been

reported to enhance sperm capacitation and binding to the
zona pellucida and to facilitate sperm penetration (for
reviews, see Abe and Hoshi, 1997; Verhage et al., 1997).
The hamster OSGP associates with both the oocyte and the
spermatozoon, possibly enhancing penetration and
fertilization by influencing the time course of acrosomal
enzyme secretion or degradation (Boatman and Magnoni,
1995). Hunter (1994) proposed that, by increasing the
viscosity of luminal fluid, oviduct glycoproteins could
stabilize the microenvironments immediately surrounding
the gametes and embryo, preventing dispersal of essential
nutrients and ions, particularly during ciliary beating or
muscular contraction. This increase in viscosity would
buffer the embryo against osmotic changes and fluctuations
in the constituents of luminal fluid. Production of a more
viscous fluid could also reduce loss of luminal fluid into the
peritoneal cavity.

Although the oviduct-specific glycoproteins have been
examined in detail, their physiological roles remain elusive.
Since eggs, spermatozoa and early embryos can survive in
vitro, it is logical to postulate a putative function for these
glycoproteins unique to the situation in vivo. One
possibility relates to the need for immunological protection,
which is required in vivo but not in vitro. Indeed, Oliphant
et al. (1984) suggested that rabbit oviductal fluid contains
an inhibitor of complement activity that prevents the
immobilization of spermatozoa, and that this inhibition may
be attributed to oviduct-specific sulphated glycoproteins.

Mechanisms of oviductal fluid secretion

Fluid movements across secretory epithelia are secondary
to the movements of solutes, particularly ions. In secretory
epithelia, chloride ion movements from the basal to apical
poles of the cells play a significant role in providing the
driving force for water movement (Quinton, 1990). A lower
intracellular Na+ concentration is maintained by the
Na+–K+ATPase, with uptake of Cl– via the Na+–K+–Cl–

cotransporter at the basolateral membrane. The apical
surface becomes permeable to Cl–, which allows the anion
to move down an electrochemical gradient into the lumen.
The ion movements generate an electrical force that drives
Na+ paracellularly through the tight junctions between the
cells. In other secretory epithelia, localized accumulation of
ions in the intercellular spaces is thought to create areas of
high osmotic pressure. Water follows these ion movements
to restore the osmotic equilibrium and thus accumulates in
the lumen (Diamond, 1971; Quinton, 1990). Similar
mechanisms are likely to operate in the oviduct. Epithelial
cells increase in height at oestrus (Murray, 1995), when
fluid production is maximal. This increase in height may
increase the area of intercellular space available for
localized accumulation of ions. Increased viscosity of
luminal fluid, due to production and secretion of oestrus-
associated glycoproteins, may also prevent rapid diffusion,
thereby assisting accumulation of ions into microenviron-
ments with high osmolarity (Hunter, 1994).
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In the oviduct, these mechanisms are probably localized
to the non-ciliated, as opposed to the ciliated, cells that
comprise the epithelial lining, but only limited phenotypic
characterization of the two cell types has been carried 
out (Comer et al., 1998). The epithelial cells must be
maintained in a functioning state in vitro for their transport
properties to be examined. Brunton and Brinster (1971)
used the method of Ussing and Zerahn (1951), originally
developed for frog skin, and mounted whole segments of
rabbit oviduct between two identical solutions bathing the
apical and basal sides. The tissue maintained a transmural
electrical potential difference and Cl– ions were shown to
move preferentially in the secretory (that is, basal to apical)
direction, a finding confirmed by Gott et al. (1988) using a
vascular perfusion preparation of the rabbit oviduct. Gott 
et al. (1988) also found that ion secretion could be blocked
by inhibitors of Cl– transport. Although it is likely that 
the data obtained using the Ussing preparation and vascular
perfusion reflect epithelial cell secretory activity, the inter-
pretation of the results is confounded by the presence of
underlying stroma and muscle tissue. This problem may be
overcome by using a preparation for the maintenance of the
epithelial cells as a polarized confluent layer in primary
culture (Dickens et al., 1993, 1996). The great advantage of
this technique is that the epithelial cells are maintained in
their correct spatial arrangement, with the basal medium
(which is equivalent to extracellular fluid in vivo) separated
from the apical medium (which is equivalent to the oviduct
lumen) (Fig. 1).

Changes in ion fluxes may be detected by monitoring the
transepithelial potential difference, which represents the
difference in ion concentration across the epithelium, and
the short circuit current (Iscc; the current required to clamp
the transepithelial potential difference to 0 mV) which
represents the net active transepithelial ion transport.
Treatment of cultured epithelial cells with blockers of
chloride channels or incubation in chloride-free medium
reduced potential difference and Iscc markedly, confirming
that chloride ion flux is important for the generation of
transepithelial potential difference and fluid secretion in this
tissue (Downing et al., 1997; Reischl et al., 2000).

The same method was used to examine the transport 
of non-electrolytes into the rabbit oviduct lumen. Thus,
Edwards and Leese (1993) showed that glucose was
transported preferentially in a basal to apical direction 
by facilitated diffusion. Lactate formed as a result of 
glucose metabolism and appeared predominantly in the
basal medium, further confirming the polarity of the
preparation (Fig. 1). The same phenomenon is found in
human oviductal epithelial cells (Dickens et al., 1996). A
decrease in the rates of glucose and lactate appearance 
on the apical side of the rabbit epithelial cells was apparent
by 3 days after mating, coincident with the time in vivo
when the embryos would have passed from the oviduct 
into the uterus. This decrease in glucose and lactate
appearances may be due to the decrease in oestrogen or 
the increase in progesterone concentrations, or both, after
ovulation.
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Fig. 1. Schematic diagram of oviduct epithelial cells grown in primary culture as a polarized layer on a
permeable support (shown as a heavy dashed line). The diagram represents the (cilated and non-ciliated)
cells as a confluent monolayer, and shows the movement of ions across the monolayer with the apical
medium negative with respect to the basal medium. Movement of glucose is shown predominantly from
the basal medium into the cells and into the fluid secreted into the apical medium. Movement of lactate
is predominantly into the basal medium. 
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Effect of modulators of oviductal fluid secretion

The effect of agonists that influence fluid secretion can be
assessed electrophysiologically. In the intestine, histamine,
platelet-activating factor (PAF), prostaglandin and ATP
increase the potential difference, Iscc and Cl– flux, thereby
activating the secretory process (Hardcastle and Hardcastle,
1987; Hanglow et al., 1989). Brunton and Brinster (1971)
applied the Ussing preparation to rabbit oviduct sheets and
found that the potential difference and Iscc were increased
sharply by adrenaline, noradrenaline, isoproterenol and
phenylephrine applied to the basal compartment. These
responses were completely blocked by propranolol,
indicating the presence of β-adrenergic receptors. Since
such agents act in other systems by increasing cyclic AMP
concentrations, Leese and Gray (1985) and Gott et al.
(1988) tested the effect on oviductal fluid secretion of
addition of cAMP to the medium perfusing the aviculture of
isolated rabbit oviducts. cAMP and agents that mimicked its
effect (cholera toxin, forskolin and theophylline) abolished
oviductal fluid appearance and inhibited chloride secre-
tion. This was an unexpected finding since, in other Cl–

secretory epithelia, cAMP stimulates Cl– and water
transport. However, confirmation of this finding was
provided by Dickens and Leese (1994) and Tay et al.
(1997) using vascular perfusion of rabbit and human
oviducts, respectively, and by Dickens et al. (1993, 1996)
using the preparation for maintaining rabbit and 
human polarized oviduct epithelial cells grown in primary
culture already described. In the human oviduct, Tay et al.
(1997) showed that isoproterenol increased oviductal 
fluid formation sharply and could induce fluid appearance
in the lumen of oviducts in which no fluid was being
produced. Similarly, adrenaline, administered to the
medium bathing the basal surface of rabbit epithelial 
cells increased basal to apical Cl– flux, as would be
expected for an agonist that stimulated secretion.
Conversely, addition of cAMP, the putative mediator of
adrenaline action, to the basal medium increased apical 
to basal Cl– flux, that is, increased flow in the absorptive
rather than the secretory direction. A similar paradox is
observed in human tracheal epithelium in which agents
expected to increase cAMP have little or no effect on Cl–

secretion. In this tissue, it was concluded that agents 
that increase cAMP failed to alter Cl– flux because the 
apical tissue-membrane conductance regulator (CFTR) 
was already fully open at resting cAMP concentrations. If
Cl– channels are substantially open at basal cAMP
concentrations, activation of Ca2+-dependent basolateral K+

channels, resulting in hyperpolarization of the apical
membrane, can provide the driving force for net efflux 
of Cl– through the open CFTR (Yamaya et al., 1993). In other
words, it is possible that, in the oviduct, as in human
tracheal epithelium, Cl– flux increase is effected via Ca2+-
dependent mechanisms rather than by cAMP, providing an
explanation for the paradoxical effect of cAMP in
diminishing oviductal fluid production.

Purinergic agents

Biological responses to extracellular ATP have been
documented in virtually every major organ or tissue studied
(for review, see Dubyak and El-Moatassim, 1993). Although
ATP is present in millimolar concentrations in the cyto-
sol of all cell types, extremely low extracellular concentra-
tions of the nucleotide are normally maintained by the
activity of ATPases and phosphatases and by the low per-
meability of ATP across lipid bilayer membranes. Therefore,
appreciable concentrations of extracellular ATP will occur
only transiently and in response to specific physiological
conditions or stimuli or to pathological conditions. Such
mechanisms include exocytotic release of ATP specifically
concentrated within secretory granules, release of cytosolic
ATP via intrinsic plasma membrane channels or pores, or
sudden breakage of intact cells as in trauma or cell death.
Effects of ATP are mediated through specific receptors
termed P2-purinergic receptors (P1-purinergic receptors are
those mediating the effects of adenosine). There are at least
four major classes of P2-purinergic receptors for ATP: P2x-,
P2y-, P2u- (or 59-nucleotide) and P2z-receptors. P2y-receptors
function as G protein-coupled Ca2+ mobilizing ATP
receptors, P2x-type receptors act as ligand-gated ion
channels and P2z-receptors are associated with ATP-
induced pore formation. In addition, there is another 
G protein-coupled Ca2+-mobilizing nucleotide receptor, the
P2u-receptor. This receptor is functionally similar to, but
pharmacologically distinct from, the P2y-receptor in that
UTP is a more potent agonist for it than is ATP. It is the P2u-
receptor that appears to predominate in oviductal epithelial
cells; in fact, this receptor may be one of the more widely
expressed of the various ATP receptors. Activation of the
P2u-receptor will be associated with an increase in
intracellular calcium ([Ca2+]i). Cox and Leese (1995)
showed that ATP induced a transient increase in
transepithelial potential difference and [Ca2+]i in bovine
oviductal epithelial cells, a finding confirmed by Squires et
al. (1995). Comparison of the effects of ATP, UTP and ADP
showed that the receptors involved were, indeed, of the P2u
class. Similar effects of ATP have been reported for the
oviduct from rabbit and human (Dickens et al., 1996;
Downing et al., 1997; Fig. 2). Downing et al. (1997) and
Reischl et al. (1999) showed that these ATP effects were, in
part, mediated by Cl– ions, since the increase in
transepithelial potential difference in response to ATP was
reduced or abolished by pretreatment of the cells with
chloride-channel blocking agents. Enhanced chloride
secretion has been shown to be dependent on an increase
in [Ca2+]i effected either by the release from intracellular
stores or influx of extracellular Ca2+. Increased
transepithelial flux of chloride ions would result in
increased oviductal fluid secretion. The functional
significance of ATP actions is unknown but they might
provide a means by which spermatozoa and early embryos
signal to the maternal tract. This hypothesis requires that
spermatozoa and early embryos release ATP. Interactions
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between oviduct epithelia and spermatozoa (Baillie et al.,
1997; Suarez, 1998) include the observation that the
frequency of ciliary beat of oviduct ciliated cells increases
markedly after spermatozoa are added to oviductal cell
monolayers (Morales et al., 1996). Interactions between the
early embryo and the oviduct have also been noted;
fertilized embryos are transported down the oviduct at a
faster rate than unfertilized ova in hamsters (Ortiz et al,
1986) and mares (Weber et al., 1991). Prostaglandins and
PAF released by the embryo have been suggested as the
signalling factors. Embryo-secreted factors also stimulate
the frequency of ciliary beat in oviduct ciliated cells
(Hermoso and Villalon, 1995). ATP also increases the beat
frequency of human oviductal ciliated cells (Villalon et al.,
1989), an effect associated with transient increases in
[Ca2+]i, indicating that ATP is a candidate for a sperm–
embryo secreted signalling factor acting on the oviduct
epithelium.

Nervous control of oviductal fluid

The role of the autonomic nervous system in oviductal
function is understood only partially. Sympathetic neuro-
transmitters undoubtedly modulate smooth muscle contrac-
tions of the oviduct, which, in turn, may influence oviductal
transport of gametes and embryos. The innervation of the
oviduct may also influence oviductal fluid production and
secretion indirectly via an effect on blood flow since blood
flow to the oviduct is implicated in the production and
maintenance of oviductal fluid. Factors controlling the tone
of the blood vessels supplying the oviduct would be
expected to affect its luminal environment. A dense sympa-
thetic adrenergic innervation exerts tonic vasoconstrictor
control on the vasculature of the oviduct (for review, see
Garcia-Pascual et al., 1996). Cholinergic innervation of the
oviduct is scarce, although acetylcholine has a vasodilatory
effect, possibly acting on endothelial receptors, stimulating
release of nitric oxide, which relaxes oviductal arteries. A
high density of neuropeptide Y- and vasointestinal peptide-
containing nerve fibres has been observed in relation to
oviductal blood vessels, but their roles remain to be
established. Further work is necessary to determine the
extent of nervous control of oviductal secretion and to bring
the level of understanding of the integrated control of
oviduct function up to that available for epithelia of other
tissues (Cooke, 1994).

Clinical implications

Inflammatory mediators

Infection of the female upper genital tract leading to
inflammation is an increasing major health problem
worldwide. Pelvic inflammatory disorder (PID) is a genital
tract infection that affects at least 1 in 100 sexually active
women. Undetected and untreated, PID can lead to chronic
pelvic pain, oviductal damage, infertility and ectopic
pregnancy. However, little is known about the biological

basis of the oviductal inflammation and the mechanisms by
which the inflammatory response is sustained (Leese et al.,
1996). Infection by Chlamydia trachomatis or Neisseria
gonorrhoeae appear to be the commonest causes of PID,
although with somewhat different results. Oviductal
infection by N. gonorrhoeae results in loss of ciliated cells,
whereas repeated Chlamydial infections result in intra-
oviductal adhesions and distal oviductal obstruction. The
risk of oviductal damage after the first episode of PID is
12.8%, increasing to 35.5% after the second and 75% after
the third episode (Westrom, 1975). 

Downing et al. (1999) reported pronounced effects of 
the inflammatory agent histamine on human oviductal
epithelial cell electrophysiology, on [Ca2+]i and on contrac-
tions of the myosalpinx. The effects of histamine are largely
mediated by H1 receptors. Histamine was more active when
applied basally than when applied apically, indicating that
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Fig. 2. Transepithelial potential difference (pd) and Iscc of human
Fallopian tube epithelial cells grown in primary culture to
confluency on a permeable support (see Fig. 1). Transepithelial
potential difference and short circuit current (Iscc) are measured
using pairs of glass KCl-filled electrodes and the cells are
alternately clamped electrically at 0 mV for 5 s and +5 µA for 1 s,
which permits almost simultaneous recording of potential
difference and current, and allows resistance to be calculated using
Ohm’s law. The effect of ATP (10 µmol l–1) added to the medium
bathing the apical surface of the cells can be seen as a marked
increase in both potential difference and Iscc. 

Downloaded from Bioscientifica.com at 08/24/2022 07:19:20PM
via free access



its physiological origin in the oviduct is from mast cells. In
contrast, PAF produced a marked increase in transepithelial
potential difference when applied to the apical surface,
indicating that, physiologically, it originates from the
embryo, as proposed by Velasquez et al. (1995) and
Stoddart et al. (1996). Histamine, together with prosta-
glandin E2, also increases the contraction of oviductal

circular and longitudinal muscle. These effects, summarized
in Fig. 3, indicate that anti-inflammatory agents could
benefit women with PID. Ironically, physicians may
prescribe anti-inflammatory agents to patients with acute
pelvic pain, by which treatment they may unwittingly have
selected the appropriate drugs for reducing oviductal
inflammation and excessive smooth muscle activity. The
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Fig. 3. Schematic diagram of a Fallopian tubal epithelial cell showing some of the influences on secretion of oviductal fluid and
contraction of the oviductal smooth muscle. Oestrogen (E) and progesterone (P4), transported to the oviductal epithelium by the blood
supply, may influence transepithelial flow of chloride ions and thus fluid secretion. Similarly, histamine secreted by mast cells in the blood
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(Reproduced, with adaptations, with kind permission of Biology of Reproduction.)
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true potential for anti-inflammatory agents to alleviate PID
needs to be tested in a properly conducted clinical trial.

Hydrosalpinx

Pelvic inflammatory disorder causes damage to the
oviductal epithelial surface, fibrosis of the fimbriae and may
lead to complete oviductal closure or extensive peri-
oviductal adhesions. These effects result in the accumula-
tion of oviductal fluids, which normally would drain into
the pelvic cavity via the fimbrial ostium, and leads
eventually to hydrosalpinx formation and infertility, since
ova cannot enter the oviduct. In vitro fertilization or embryo
transfer treatment of women with hydrosalpinx has been
associated with reduced pregnancy rates after IVF and an
increased incidence of miscarriage in the first trimester
(Katz et al., 1996). Granot et al. (1998) suggested that the
constant passage of fluid into the uterine cavity produces
mechanical interference that is responsible for the failure of
implantation. Release of cytokines, prostaglandins and
inflammatory components may also reduce endometrial
receptivity. Hydrosalpinx fluid may be embryotoxic or may
lack components essential for early embryo development
(for review, see Lass, 1999), accounting for the poor
outcome after IVF. Agents such as propranolol, which
reduce oviductal fluid production, could be valuable in the
prevention of hydrosalpinx formation. As with the use of
anti-inflammatory agents in treating pelvic pain, this
possibility needs to be subject to clinical trial.

Conclusion

The Fallopian tube is lined by a transporting epithelium, no
different, in essence, from those that line the other internal
and external surfaces of the body. It is hoped that this review
will stimulate further research into oviductal epithelial
transport mechanisms, ultimately, to help understanding
and recreate the first environment of the embryo and
develop improved therapies for oviductal disorders.

The authors’ studies included in this review were funded by the
Medical Research Council, the Wellcome Trust and the European
Commission.
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