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The formation of gravitationally bound systems from primordial gas is studied by . means 

of Tolman's solution for dust-like matter. The critical values of density contrast and its growth 

rate at an initial epoch are derived, which are necessary for an inhomogeneity to condense into 

a bound system before the appearance of the oldest stars. The matter distributions in an 

. isolated inhomogeneity and an inhomogeneity included in a larger one (which will be a 

cluster of gas clouds) are followed with time by assuming simple models for inhomogeneities, 

and it is shown how the bound region spreads outwards. Moreover, the minimum mass of 

fragments into which the gas clouds may break up is examined. 

§ 1. Introduction 

9 

The formation of galaxies which are dispersed everywhere at present in 

the universe has been studied by many authors. Some of them have assumed 

that small density fluctuations in an early stage of cosmic evolution grow owing 

to gravitational instability, until they condense into protogalaxies. However, 

on Lifshitz's assumption!) that the early stage was very quiet and the fluctua

tions were statistical, gravitational instability was not effective. This is because 

the density contrasts of the statistical fluctuations corresponding to galaxies are 

too small (r-J 10-34
) to grow to gravitationally bound systems within the cosmic 

age. The linearized theories were sufficient for the description of such small 

fluctuations. After Lifshitz, the behavior of the fluctuations has been studied 

successively in the linear approximation,2) while Lifshitz's assumption was not 

always used. 

On the other hand, it has been assumed that an early stage of the UnIverse 

was very turbulent and density fluctuations were not small. S
) At the stage when 

radiation density was larger than matter density and matter was wholly ionized, 

matter was strongly kicked by photon particles and hindered from condensing. 

But, once matter was neutrarized, density fluctuations condensed promptly into 

bound systems. 

However, we do not know at present how quiet or turbulent the early stages 

were. Accordingly, still we could assume the existence of fluctuations with vari

ous amplitudes. In the process of their condensation, gravitation would have 

played the main role, and, as the density contrasts increased to the order o£ 
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10 K. Tomita 

magnitude of unity, the process would have been accelerated by the non-linear 

effect of gravitation. The non-linear analysis has been performed at first by 

Bonnor4
) in a simplified model. After that, it has been studied by the author5) 

according to perturbation method to the second-order terms. Recently, Kihara6
) 

and Kond0 7
) have investigated the process of condensation (especially in the 

center) on the basis of fluid dynamic equations in an expanding universe, which 

have been derived approximately by Nariai and Deno,S) and Irvine. 9
) 

In this paper, we shall study the problem on the growth of a spherically 

symmetric inhomogeneity from a small, but non-statistical fluctuation to a gravi

tationally bound system, to be formed before the birth of a galaxy. Our method 

is due to Tolman's solution10
) for dust-like matter. Accordingly the analysis will 

be confined to such a stage, that the effect of radiation can be approximately 

neglected, but that the initial epoch t = ti of this stage is close to the epoch of 

the decoupling between matter and radiation. Gas pressure also will be neglected, 

as long as we consider the inhomogeneity with a size larger than Jeans' wave

length. 

In § 2 we review Tolman's solution and the basic information about the 

background universe. In § 3 we express the spatial curvature difference, time 

delay, and total energy difference in and around the inhomogeneity from the 

background, in terms of the initial density contrast and growth rate, and derive 

the condition of gravitational binding. In § 4 we analyze the behaviors of the 

inhomogeneity in the central region and examine the critical initial density con

trast and growth rate necessary for galaxy formation. In § 5 we assume the 

simple forms of density contrast, distinguishing whether the inhomogeneity should 

condense to an isolated gas cloud or a gas cloud in a cluster, and follow with 

time the change of density distributions in the inhomogeneities. In § 6 we derive 

the minimum mass of fragments into which the gas cloud may be broken up and 

examine whether it can evolve to the galaxy. Section 7 is devoted to concluding 

remarks. In the Appendices A, Band C, the spatial curvature and time delay, 

the relative density ratio and boundary conditions on the initial density contrast 

and growth rate, respectively, will be derived. 

§ 2. Dynamics of a spherically symmetric dustmlike m.atter 

The spherically symmetric adiabatic dust-like matter is described by a line 

element 

ds2 = c2dt2 S2 (1 + rS' / sy dr2 _ S2r2 (dfj2 + sin2 ed(/) , 
1-ka(r)r2 

(2·1) 

where r, e, (jJ are comoving spatial coordinates, S = S (t, r), and S' = as/or. The 

scalar curvature of three-dimensional space (t = const) is expressed as ka (r), in 

which k = 1, 0, - 1 represent signs of the curvature. Here a (r) (>0) must 

satisfy an inequality 1-ka (r) r2>0. 
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Formation of Gravitationally Bound Primordial Gas Clouds 11 

From Einstein's field equations, *) we have equations for S and mass density p: 

(sy - (3c2
/ S = - kc2a (r), 

tcp = 3(3S-3 (1 + rS' / S)-\ 

(2·2) 

(2·3) 

where S denotes as/at, tc=8nG/ c2 (G is Newton's gravitational constant), and 

(3 is an integration constant. By the linear transformation of radial coordinate 

r--7r = ar (a = const), (3 can be given an arbitrary value. Integrating Eq. (2·2), 

we obtain Tolman's solution :10),11) 

S = (31/3 (3c /2Y/3 (t - T (r) Y/3, (k=O) 

c(t-T(r)) =_(3_(Ij-(J(Ij)), S= 2k(3a (1-(J'(1j)), (k= ±1) 
2ka3/2 

(2·4) 

where (J (Ij) = sin Ij, sh'1 for k = 1, -1, respectively, and (J' (Ij) = d(J (Ij) / dlj. 

In the background universe which is homogeneous and isotropic, S ( = S (t)) 

is given without loss of generality by putting T (r) = 0 and a (r) = const (= a) 

in Eqs. (2·2), (2·3) and (2·4). In the following, bars on letters will be used 

to represent background quantities. Hubble's expansion constant and decelera-
. .. . 

tion parameter are defined as usual by Ho = (S/ S)o and qo = - (SS/ S2)0. Here the 

suffix 0 stands for the present epoch. In order to fix the above-mentioned con

stant (3, we put (3=CHO-1. Then, from Eq. (2·2) we obtain 

a = Ii (2qo -1) (2qO)-2/3, 

1 So = cHo -1 (2qol -1J', 

Po = 3H02qO/ (4nG) =2.06 x 10- 29qo (g/cm3
). 

(2· 5) 

Here we adopt Ho=75 km/sec/Mpc. 12
) The numerical values of a, So are shown 

in Table I for the values of qo consistent with the current astronomical obser-

vations.13) 

Table 1. Some values of background quantities. 

_. --_ .. _--_.- ---

I 1 0.63 1.26 2.06 0.5708 46 1.805 
- ._------

0 0.5 0 1 1.03 2/3 23 2.108 
----------- -~------ .. 

0.25 0.79 0.79 0.515 0.7536 I 12 2.383 
-1 _.-

0.05 4.18 0.46 0.103 0.8981 2.3 6.667 

§ 3. Description of a local inhomogeneity 

Now we consider a local inhomogeneity which was born as a small fluctu

ation from the background at the early stage. Our analysis must be limited to 

*) In this paper, the cosmological constant A is taken to be zero, only for simplicity. 
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12 K. Tomita 

the stage after an initial epoch ti when the scale factor Si IS one thousands the 

present one So. This comes from the applicability of Tolman's solution. Here 

the epoch ti has the following properties. (1) At this epoch t i , the temperature 

(Tr)i of cosmic radiation is 2700oK, if its present temperature is assumed to be 

2.7°K,14) and is close to the temperature 40000K at which matter and radiation 

decouple. (2) The ratio of the matter density p to the radiation density Pr at 

the epoch is larger than unity, as shown in Table I, and the effect of radiation 

can be approximately neglected after the epoch. Also the gas pressure smaller 

than the radiation pressure can be neglected as long as the size of the inhomo

geneity is large compared to Jeans' wavelength. 

For the matter distribution in the inhomogeneity, we assume that the den

sity contrast and its growth rate were small enough at the initial epoch, so that 

their products were negligible. These quantities are written as . 

E1 (r) - (P/P)i -1 = (op/ P)i (3 ·1) 

and 

E2 (r) = 1- (In p);/ (In p); . (3·2) 

While lEI (r) I and I E2 (r) I are small compared to unity, the difference of the 

curvature a (r) in the inhomogeneity to the background curvature a is not neces

sarily small compared to a. As will be derived in Appendix A, the difference 

ka - ka and the time delay T (r) can be expressed as some integrations of E 1 (r) 

and E2 (r) : 

where 

ka (r) - ka = (3(3/ Si) (11 + 212), 

T(r)/t i = (3/5) (11+312), 

1 
I, = r-" s,~ E, (r) r'dr, 

12 = r- S 1 E2 (r) r 2dr . 

(3·3) 

(3·4) 

(3 ·5) 

These formulas (3·3) and (3·4) hold for IEII and IE21<1 (if k=O) and for 

1> I Ell + I E21 > (aSd(3Y (if k = ± 1), which will be satisfied through our analysis. 

When we give El (r) and E2 (r) at the epoch t i , we can obtain the density 

distribution at any epoch after t i , using Eqs. (2·3), (2·4), (3·3) and (3·4). 

The formulas for pip will be summarized in Appendix B. In order to get its 

characteristic value, we shall discuss the condition for the gravitational binding 

of a spherical surface (r = const) . By use of Eqs. (2·3) and (B· 2), P can be 

expressed as a function of only rand S. When the surface is bound, i.e. the 

density in the surface reaches the minimum, we have, therefore, S = 0 or S /(3 

( = R) = 1/ (ka) from Eq. (2·2). This condition is satisfied only in the case 

k = 1 and r; in Eq. (2·4) must be rc at that time. The ratio of the density in 
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Formation of Gravitationally Bound Primordial Gas Clouds 13 

the surface to the background density at the critical epoch IS expressed simply 

in the special case k = 0 : 

_ 97l'2 
(pi p)o =-/ {4 - (E1 + 2E 2) I (11 + 2I2)}. 

16 
(3·6) 

It is interesting also to express with Eland E 2 the total energy difference 

111 or around the inhomogeneity, since it may be closely related to the type of 

possible fluctuations. Before we define the difference, we must give the number 

of constituent particles and the total mass. The number of particles from the 

center to the surface r is expressed at any time by 

N(r) = rr (plm)S3(1+rS' IS) (1-kar2)-1/247l'r2dr 

= (127l'/3 I ICm) rr (1- kar2)-1/2r2dr , 

where m is the mass of a particle. The second line is derived by use of Eq. (2·3). 

The total mass is expressed as 

(3·7) 

In fact, if we imagine an virtual empty region r 1<r<r2' M(r1) would be equal 

to the Schwarzschild mass which should be interpreted as the total mass in the 

region r<r1.15 ) The number N(r) and total mass M(r) are independent of t. 

On the other hand, the particle number and total mass in the background 

are similarly given by 

N(r) = (127l'/3llCm) 11' (1-kar)-1/2r 2dr, 

M(r) = (47l'/3IIC)r3. 

(3 ·8) 

It is to be noticed, here, that the background radial coordinate r should in gen

eral be distinguished from r in the universe containing the inhomogeneity. Since 

the particle numbers in both universes from the centers to the corresponding 

surfaces rand r are equal, it follows that 

for (1- kar2)-1/2r 2dr = rr (1-kar2)-1/2r 2dr. (3·9) 

Now we define the total energy difference (in mass unit from the center to 

the shell r) by f1lVl=M(r)-M(r), where rand r satisfyEq. (3·9). Then,we 

obtain from Eqs. (3·7) and (3·8) 

f1M(r) IM(r) = 1- (rlr) 3, 

For the mass range M<10 12M(O) with which we are concerned, rb (correspond

ing to the boundary of the inhomogeneity) is less than 10-\ as seen from Eq. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

2
/1

/9
/1

8
9
6
8
4
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



14 K. Tomita 

(3·7), and Eq. (3·9) can be expanded as the power series of rl/ «10- 8
). Sub

stituting Eq. (3·3) for Eq. (3·9) and integrating partially, we obtain 

X {x2
- (r/rbY}dx+0{(a2 -ce)r4}. 

At the boundary, ilM/1\1 is of the order of ({3rb/ Si) (El (0) + 2E2 (0)) < (El + 2E 2) (0) 

and it can vanish only when A = B. Here A= H (El + 2E2) x
4dx and B= H (El 

+ 2E 2) x
2dx. Outside the boundary, where Eland E2 can be assumed to be zero, 

we have ilM(r)/M(r) = (9/4) ({3rb2/Si) {(rb/r)3A- (rb/r)B}. In general, I1M(r)/ 

M(r) cannot vanish everywhere outside the boundary and it decreases with l/r. 

Only when B=O or ka=ka (d. Eq. (3·3», it decreases with 1/r3
• 

§ 4. Central region of an inhomogeneity 

In this section, we deal with the central region of an inhomogeneity. It 

follows from Eqs. (3·3), (3·4) and (3·5) that 

ka(O) =ka+ ((3/Si) (E1(0) +2E 2 (0)), (4·1) 

T(O)/t i = (1/5) (E 1 (0) +3E 2(0)). (4·2) 

The numerical values of a (0) are given in Table II for several values of El (0) 

+2E 2 (0). 

Table II. The values of a(O). The case k= -1 is denoted by asterisks. In the case k=O, 

a(O) =0. 

I E1(0) +2E2 (0) 
I ______ ~------------~-~----------~-------------------- _________ ~ __ _ 

I 10-4 I 10-3 I 3X1O~3 I 6X1O~3 I 10-2 I 3X1O-2 
--------------~----7---

1 1 1

1

1

1

- 0.756 I 1.890 4.410 8.190 13.23 37.80 
-------1---- ---------~- -------~~----- --~----------------------- --~----------

o 0.5 0.1 1.0 3.0 6.0 10.0 30.0 
----, - ------~---~ ---- ~-~---- ------, ------------------ -~~------I-----

0.25 0.715* o 1.588 3.970 7.146 23.82 
-1 ------- ------1------------ ------- ---------~------- ------I---------~~~---------

0.05 4.131 * 3.713* 2.785* 1.393* 0.463 9.740 

We find from Table II that, in spite of smallness of El (0) and E2 (0), the cur

vature in the inhomogeneity can take large values. This situation was already 

explained by Peeblesll
) in an analogue of "a slightly dried-out apple." Here, l/a 

and 1/ a correspond to the radius of the apple and the radius of curvature of 

the wrinkled skin, respectively. 

Now we consider the epoch to (0) when the central region is gravitational

ly bound. Since the central density Po (0) is derived from Eqs. (2·3) and (2·4) 
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Formation of Gra'vitationally Bound Primordial Gas Clouds 15 

by putting 1J = nand k = 1, the ratio of Po (0) to the background density p can 

be expressed as 

(4·3) 

where 

(= {I-"6' (n)} / (ilia) for Ii = ± 1. 

In the case Ii = 0, we obtain the central value of Eq. (3·6), I.e. 

(p (0) /p)o = (9/16) nZ 
'. 5.55 , 

which is independent of E1(0) and Ez(O). Here T(O)/tb(O) «T(O)/ti<I) was 

neglected. The above value of (p (0) /0)0 is consistent with the one derived by 

Kihara 6
) in a different approach. The values in the cases Ii = ± 1 are evaluated 

and shown in Table III. In the case Ii = 1, (p (0) /p)o becomes smaller (and 

Table III. (p (0) /p) b' 

El (0) + 2E2 (0) 

k qo 
10-4 10-3 3XlO-3 6X10-3 10-2 3XlO-2 

1 1 1.55 3.72 4.73 5.10 5.27 5.46 
- _._---- --------- -~-.-"--~ -_ .. _-- .. _._-_._------

0 0.5 5.55 5.55 5.55 5.55 5.55 5.55 
----_ ... ------------ ---.-~-.--- .. --------- -~--.-

I.~---~= ///~-~ 0.25 8.79 6.78 6.22 5.75 
-1 

~~~.-----~ --:--~ 
---~/~~~/ .~~ 

------- ---. 

0.05 121 8.29 

t l1 (O)/to larger) with the decrease of E1(0) +2E 2 (0). If E1(0) =Ez(O) =0, (p(O)/ 

p)o is of course unity and tb (0) is the epoch of the maximum expansion of the 

background universe itself. In the case Ii = --1, (p (0) /P)b becomes larger with 

the decrease of El (0) + 2E2 (0), and at last reaches infinity for some finite value of 

El (0) + 2E z (0). This means that the condensation of density fluctuation is more 

difncult in the open model, since the expansion rate is larger. 

'The ratio of to (0) to the present age to is also evaluated and tabulated in 

Table IV. The subsequent epoch tinf(O) at which the central region collapses 

Table IV. tb(O)/tO' Daggers denote the case t o(O)/to>1. Oblique lines denote the case in 

which there exists no gravitationally bound state. 

El (0) + 2E2 (0) 

3XlO-3 6 X 10-3 10-2 3XlO-2 

1 1 4.19t 0.297 0.117 0.0572 0.0118 
- .. - .. ----- ------.-- ···_···· __ ··· __ ·······_--··_·1-·--·-_··_·_··_·· __ · __ ··1·-····---·-··-·--·-1·--·-·-··--··1- --_._ ... ----------- --------

o 0.5 74.5'f 2.361" 0.454 0.160 0.0745 0.0143 
_ ... -.-.---". _____ 0._.-_- - - ----.-._-----_._---_. --~-.--------

1.04t 0.264 0.109 0.0179 

_ ......... __ ._ ... _ .... _._. __ .. _._--- .... _ ... __ ._ .. _- ........ > --.. ----.-.:~.~.::;- .. 

0.25 1.--------· ~/~ 
-1 --·---·I~:--·--·__cc-....- --.-.-.... -... -..... --.. -.--.. -.. -.. --------- ... -.. -.-.--.-........ --

0.05 ~~~~.~ ---.. ~. ----//~ ~ 

--- ~ ------~- ~ 
5.55t 0.0575 
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16 K. Tomita 

and reaches the state of infinite density in the limit is gIven by putting 1j = 2n 

and its values are equal to 2 times tb (0). 

The present age of the background universe IS (7 ~ 12) X 109 y, if Ho -1 = 13 

X 109 y (d. Table I). But the ages of some old stars are estimated to be 

~ 1010 y,16) according to the theory of stellar evolution. Hence, the protogalaxies 

in which the stars were born must have been formed at the epoch whose age 

is less than to by a factor of about 10 at least. Moreover, the primordial gas 

clouds would have condensed before the formation of protogalaxies. It follows, 

therefore, that tinf(O) Ito = 2tb (0) /to<1/10. In comparison with Table IV, we find 

that, in the cases k=O, l(qo=l) and -1(qo=0.25), E1(0)+2E 2 (0»10- 2
, and, 

in the case k = -1 (qo = 0.05), E1 (0) + 2E2 (0) >3 X 10-2. 

§ 5. Simple models of inhomogeneities 

Some bound gas clouds may have been born as members of a cluster. 

They would have been formed from inhomogeneities included in a larger in

homogeneity isolated in the expanding universe. But there may be an another 

type of bound gas clouds, which themselves are isolated in the universe. They 

would have condensed from a single inhomogeneity. In this section, we follow 

with. time the change of the density distributions in the inhomogeneities of these 

two types separately. 

As for the background universe, we adopt only the flat model (k = 0) in 

this section.*) For the functional forms of El (r) and E2 (r), it should be noticed 

that E2 plays effectively the same role as El/2 in the system of equations for p.**) 

Accordingly, we shall put E2 (r) = 0 without loss of generality and assume for 

El (r) the simple form which has the single peak in the center and satisfies the 

boundary conditions given in Appendix C. 

(a) An isolated inhomogeneity 

We take the functional form E1(r) =E1(O) xf(x) , where f(x) = (l-xY(l 

+ 2x- (27/5)x 2
) for x<l and 0 for x>l with x=r/rb. This form was chosen 

as example in such a way that El (r) may be a smooth function expressed as a 

polynomial of r of the lowest order for mathematical simplicity and A = n E1x
4
dx 

(d. § 3) vanish. The corresponding Il(r) is given by (1/3) E1(0) xg(x), where 

g(x) =1- (126/25)x2 + (32/5)x3
- (81/35)x 4 for x<l and (8/175)x-

3 
for x>l. 

The behaviors of f(x) and g(x) are shown in Fig. 1. 

If we adopt the value 10-2 for E1 (0) so as to make a galaxy formation 

possible i~l a reasonable way, then the ratio of the density in the inhomogeneity 

*) The density distribution in the case of the other models will have forms similar to the one 

in the flat case, while the growth rate is somewhat different, as the results in the previous section 

show. 

**) As can be seen from the formulas in Appendix B, El and E2 appear in the form of either 

E1 + 2E2 or E1 +3E2, but the terms containing the latter do not contribute to the value of pip, because 

they are much smaller. 
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Formation 0/ Gra'uitationally Bound Primordial Gas Clouds 17 

to that of the background is calculated (d. 

Appendix B) and found to change as shown 

in Fig. 2. The central region is bound first 

at r (=Hot) = 0.05 and thereafter the bound 

region expands gradually to the outside di

rection. Till r = 0.2, a nucleus with high 

density is formed and the mass in the range 

r/rb<0.6 is bound. This mass contracts 

further and the mass in the range r/rb<0.7 

is bound at present. 

The density ratio in the trough decreases 

x 

-------

OL---------~~~~_=--~-----

Fig. 1. The initial density contrast (DC f(x» 

and the curvature difference (ocg (x» 

in an isolated inhomogeneity. 

first with time, but tends after r = 0.2 to increase from internal region. Even 

in the range r>rb' we find that the density ratio increases in a monotonic way. 

These are because a posItIve curvature is given to the spaces in such regions 

(or in the Newtonian language a negative energy is given to the matter) owing 

0.8 
D E 

0.6 

0.4 

0.2 

log (Pip) 

, / 
' ..... __ .... 

A: r = 0.0248 

B:r =0.0497 

C: r = 0.0993 
D:r=0.1988 
E: r = 0.6667(Present) 

/--------- --Sound ---------
/ 

Fig. 2. The ratios of the matter density in an isolated inhomogeneity to that of the back

ground universe (k=O), at times between 7:"i=Hoti=2XlO-5 and 7:"0 = Hoto = 2/3. The 

broken line represents the ratio in each surface at the epoch when it is gravitatio

nally bound. 
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18 K. Tomita 

to the appearance of the inhomogeneity. 

(b) A large-scale inhomogeneity 

Let us consider an inhomogeneity in another large-scale inhomogeneity which 

was uniform in the neighbourhood of the smaller one. The density contrast El in 

the larger one is estimated to be r'J3 X 10-3
, because it must be bound and con

tract only by the present epoch. So, we shall take E 1 (r) = 3 X 10-3 + 10-2f(x) 

as the functional form in the neighbourhood of the smaller inhomogeneity. The 

0.003 ----- --"...___-----1 

O~----~--------~ 
rb 

r 

Fig. 3. The initial density contrast in an inhomogeneity included in a larger inhomogeneity. 

0.8 

0.6 

0.4 

0.2 

log (Pip) 

o E 

A: T ::0.0168 

8: T ::0.0335 

C: T ::0.0670 
0: T ::0.1500 

E: T =0.3 

O~ __________ -L ____________ L-__________ ~ ______ _ 

0.5 1.0 1.5 

Fig. 4. The ratios of the matter density in an inhomogeneity included in a larger inhomogeneity to 

that of the background universe (k=O). The broken line represents the ratio in each surface 

at the epoch when it is gravitationally bound. 
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Formation of Gravitationally Bound Primordial Gas Clouds 19 

behavior of El (r) is shown in Fig. 3. The density distribution in the inhomo

geneity is calculated at several epochs and is shown in Fig. 4. 

It is seen from Fig. 4 that at time r = 0.034 the central region is bound. 

Till r=0.2, a nucleus is formed and the mass in the range r/rb<0.7 is bound. 

The process of condensation is rapid in comparison with that of an isolated inhomo

geneity. At time r=0.3, the region r/rb<l also is bound and subsequently the 

gas density outside the bound region continues to increase with time. However, 

if a large-scale angular momentum is contained in the larger inhomogeneity, the 

rotational motion of condensed inhomogeneities becomes rapidly large, so that a 

cluster of inhomogeneities and the gas among them can avoid the collapse by 

centrifugal forces. 

§ 6. The minimum mass of fragments in the primordial gas cloud 

The bound gas cloud formed from the primordial gas may break up into 

small-scale fragments owing to gravitational instability, if density fluctuations 

arise in the gas cloud. The minimum size of fragments is given by Jeans' 

wavelength AJ= {2nkTm/(Gpm p)r/2
, where Tm is the gas temperature, mp the 

proton mass and k the Boltzmann constant. The minimum mass of fragments is 

of the order of MJ= (4/3) npA}. Since T mocp2/3 for adiabatic process, AJOCp-l/6 

and hence MJOCpl/2. 

Now let us evaluate MJ at the epoch tb of gravitational binding (p = 0), 

when MJ reaches the minimum ((MJ)b). If we assume Tm= Tr (=40000K) at 

the decoupling time, we obtain by use of Eqs. (2·3), (2·4) and (2·5) 

(MJ)b = 2.6a3/2 (0) qo -lMe 

at the center. Since a (0) must be rv 10 (d. § 4), it follows that 

(MJ)b = (8.1 X 102
, 1.6 X 103

, 3.2 X 103 and 1.6 X 104
) Me 

at the center for qo = 1, 0.5, 0.25 and 0.05, respectively. In the envelope, the 

density Pb at time tb is smaller than the central one Pb (0) by a factor of <102
, 

so that (MJ)b (OCPb1
/

2
) is smaller than the above values by a factor of 10 at 

most. We conclude, therefore, that, as long as the cloud is not much cooled 

at the contracting stage, ordinary stars with mass M rv Me cannot be formed in 

the primordial gas cloud and it will evolve to a supermassive star17
) or a system 

of massive stars with mass M>10 2Me . In either cases, the primordial gas cloud 

will not become directly the ordinary galaxy we observe at present, but will 

explode after the rapid evolution. 

§ 7. Concluding remarks 

In this paper, the cosmological constant A has been neglected for simplicity. 

However, if we assume the background model which has a longer time scale 
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20 K. Tomita 

and is consistent with the present observations/8
) we could make somewhat 

smaller our critical values of the initial density contrast and growth rate. 

The primordial gas clouds will condense to supermassive stars or systems 

of massive stars and evolve rapidly to release hot gas to the surroundings through 

explosive phenomena. Thereafter, galaxies may be formed in the turbulent, hot 

gas, as was proposed by Doroshkevich et al. and Takeda et al. l7
) At this stage, 

condensation due to thermal instabili ty l9) will play some role. Moreover, the 

remnants of exploded supermassive or massive stars may be the nuclei of newly 

born galaxies. The exploded gas will be able to accrete again to the remnants 

through gravitational attraction, and ordinary stars will be formed around them, 

as the gas will be cooled by the heavy elements in the exploded gas. 

Acknowledgements 

The author wishes to express his thanks to Professor H. Nariai for valua

ble discussions. He is also indebted to Dr. H. Sato for stimulating discussions. 

Appendix A 

a(r) and T(r) 

Equation (2·3) can be rewritten as 

(S3r3), = 9{3r2/ ICp . 

If we integrate it with :-espect to r at time t = t i , we obtain 

Si3 = (9{3/ICr3) SaT Pi-lr2dr 

= (9{3/ICPir3) {r3/3- SaT El(r)r
2
dr+r

3
0(E/)} 

by use of Eq. (3 ·1). Since Si3 is given by 3{3/ICPi' it follows that 

OSdSi =SdSi-I = -II (r) + O(E I
2
), 

where II (r) is defined by Eq. (3·5) in the text. 

(A·I) 

Next, if we differentiate Eq. (2·3) with respect to t and consider the values 

at time t = ti, we have 

(p/p\= -3(S/S)i- r (S' /S)~+O(EI2), (A·2) 

where we should notice that (S' / S)i = {(oS)' / Shr'J E1• Eliminating Sand S' in 

Eq. (A· 2) by use of Eq. (2·2), we obtain from Eq. (3·2) 

E2 = - % (oS/ S)i - tkaSi/ {3 + tkaSd (3 - -gr(Sd (3) (3{3S/ / Si
2 + ka') 

+ 0 (Second order terms with respect to E 1 , aSi/ {3 and aSi/ (3). 

(A·3) 
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Formation of Gravitationally Bound Primordial Gas Clouds 21 

Here, (8i /(3Y is about 10-5,,-,10-6
, since 8i /80 =10- 3 and So/(3=1,,-,5 (d. Table 

I). If we insert Eq. (A ·1) into (oS\ in Eq. (A· 3), we obtain 

k( a+ ; a l
) - ka = ((3/Si) (E1 + 2E 2) 

+ ((3/ Si) {O (E 12) + 0 (aSi/ (3Y + 0 (aSi/ (3Y}. 

This is integrated as 

where 12 (r) is defined by Eq. (3·5). 

Moreover, if we substract from T(r) in Eq. (2 ·4) the counterpart for the 

background universe and eliminate 'lj, we obtain 

cT(r) = {,lS({3-kaS)/(ka) - JS((3-kaS)/(ka)h 

- (3 {(J-1 (v as/ (3) / (a 3
/

2k) - (J-1 ( V as/ (3) / (as/2k) h , (A· 5) 

where the case k = 0 or k = 0 is included in the above equation as the limit k~O 

or k~O. Expanding the right-hand side of Eq. (A· 5) as a power series of 

(OS)i' aSi and aSi and eliminate OSi and a by Eqs. (A ·1) and (A· 4), we have 

T(r)/t i = ~(11+312) +0(E12) +0(aSd(3Y+0(aSi/(3)2. (A·6) 
5 

Appendix B 

The density distribution at any epoch is described by the formulas sum

marized below, which are derived by eliminating S', a(r) and T(r) from Eq. 

(2·3). Instead of S, Sand t, we employ R=S/(3, R=S/(3 and r=ct/(3=Hot 

for convenience. Then we have 

where 

pip = (R/ RY/ (1 + (j)), (B· 1) 

3 1 / /- /-+ - --{R(3-kaR)/v R(l-kaR) -3(J-1( vaR)/v a} 
2 Ria 

x {E1+2E2-3(11+212)} J 
r=~ri(11+312) + {-J R(l-kaR) +(J-1(vaR)/va}/(ka) 

5 

= { - V R (1- kaR) + (J-1 ( JaR) / V a} ! (ka) . 

(B·2) 

(B·3) 
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22 K. Tomita 

If El and E2 are given, we can calculate Rand R at time r by use of Eq. (B· 3), 

and, inserting them into Eqs. (B ·1) and (B· 2), we can obtain p/p. 

Appendix C 

Boundary conditions for the differences Eland E 2 

The functional forms of El (r) and E2 (r) cannot be arbitrary, because the 

metric (2 ·1) should be smoothly adjusted in any interface. This condition has 

been derived as the boundary condition by O'Brien and Synge. 20
) 

Between the quantities interior and exterior to the interface, we have three 

equations from the boundary condition: 

(S\n = (S)ex , 

(S')in = (S')ex , 

(a)in = (a)ex . 

(C ·Ia) 

(C ·Ib) 

(C ·lc) 

On the other hand, the curvature a (r) in Eq. (3·3) is continuous, because 

it is given as an integration of El and E2, and the condition (C ·Ic) is automati

cally satisfied. Now, let us examine conditions (C ·Ia) and (C ·Ib) at time h 

The difference oS = S - S IS also continuous, because it is expressed as an in

tegration of E1, as shown in Appendix A. However, it is necessary that 

(C·2a) 

111 order that S' (=oS') is continuous. At an arbitrary epoch t(>ti ), S is still 

continuous, because, in Eq. (2·4) determining S, T(r) is continuous as well as 

a (r). However, by differentiating Eq. (2·4) with respect to r, we find that 

E2 (r) must be continuous in order that S', and therefore 12, are continuous: 

(C ·2b) 

Equations (C· 2a) and (C· 2b) are the necessary and sufficient conditions for 

the adjustment of metric. 
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