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ABSTRACT

Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at
very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or
even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar
medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase
transition.
Aims. We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase
transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general.
Methods. First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equi-
librium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials,
the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS.
Results. Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in
a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable
situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs.
Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses
starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity
are limited.
Conclusions. Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2 planetoids
are favoured by high density, low temperature and low mass, while He planetoids need more mass and can form at temperature well
above the critical value.

Key words. instabilities – ISM: clouds – ISM: kinematics and dynamics – ISM: molecules – methods: numerical –
methods: analytical

1. Introduction

Typically, the Milky Way molecular clouds consist of molecular
hydrogen (1H2) and helium (4He) in the respective mass frac-
tion of ∼74% and ∼24% and traces of heavier elements in the
form of atoms, molecules, and dust grains (Draine 2011). The
He mass fraction is thus non-negligible. Even though H2 and
He are by far the most abundant chemical components, they re-
main hardly detectable, and most of the time they are inferred
from CO emissions (Bolatto et al. 2013). Thus, the dynamical
and chemical processes associated with H2 and He in molecu-
lar clouds are still poorly known, especially when considering
sub-AU scales.

In Füglistaler & Pfenniger (2015, hereafter FP2015), we
discussed substellar fragmentation including gravity in single
species fluids presenting a phase transition, such as very cold
molecular hydrogen in molecular cloud conditions. We showed
that fluids in a phase transition (i.e. subject to a chemical instabil-
ity) are anyway also gravitationally unstable because any density
fluctuation is not compensated by a pressure variation, but by a
change in condensed matter fraction. In phase transition condi-
tions arbitrary small condensed clumps can form. The possibility
of forming H2 ice clumps in the interstellar medium (ISM), from

grains, to comet-like bodies to rocky or gaseous planet-like bod-
ies provides a scenario for baryonic dark matter extending the
scenario of Pfenniger et al. (1994), Pfenniger & Combes (1994)
towards micro-AU scales. However, since molecular clouds con-
tain a substantial fraction of He, it is necessary to investigate how
this component might modify the findings of our previous study.

Although at first sight from the chemical point of view both
H2 and He present an outer electronic shell made of two elec-
trons, their chemical properties differ markedly, mainly because
of quantum physics. The individual properties of H2 and He are
well known from laboratory data (Air Liquide 1976) and shown
in Fig. 1. H2 and He are in a phase transition when on the con-
densation wall linking the gaseous and solid or liquid phase. He
has a lower critical temperature than H2 (5.2 K vs. 32.9 K) and a
lower critical pressure (0.227 MPa vs. 1.286 MPa). In the highly
dynamical conditions present in molecular clouds, such as su-
personic turbulence (Elmegreen & Scalo 2004), phase transition
conditions may be reached thanks to a combination of pressure
increase and/or temperature decrease. In such a case, phase tran-
sition conditions are reached for H2 well before He. The con-
ditions of phase transition of the mixture H2-He may, however,
change the conclusions made in the single species case.
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The properties of H2-He mixtures has been mostly studied
in detail for temperatures above the critical and at high densities
(e.g. Streett 1973; Koci et al. 2007; Becker et al. 2014) and espe-
cially in conditions similar to gas giant planets (Vorberger et al.
2007; Saumon et al. 1995). Taking quantum effects into account,
Safa & Pfenniger (2008) calculate the thermodynamic proper-
ties of H2-He mixtures below critical temperature from the
known intermolecular potentials and obtain the critical point and
stability of the mixture itself.

The gravitational stability of self-gravitating binary and mul-
ticomponent fluids has been studied by Grishchuk & Zeldovich
(1981), who showed that there can be only one unstable solution.
If a fluid mixture is gravitationally unstable then all components
are affected. They note that in the case (∂P/∂ρ)s = 0 (i.e. the
sound-velocity formally vanishes), which is the case in a phase
transition, the fluid is always gravitationally unstable, but they
do not go into more detail on that specific case. Jog & Solomon
(1984a,b) first discussed the stability of two-component disks. In
a similar fashion de Carvalho & Macedo (1995) studied oscilla-
tions and resonances in a binary fluid mixture. Volkov & Ortega
(2000) discussed the stability of self-gravitating systems with a
spectrum of particle masses and consider rotating mediums.

When a phase transition occurs in the presence of external or
internal gravity, the fluid dense phase may precipitate in the form
of rain, snow, or hail in the atmosphere, leading to a fragmen-
tation that is impossible to describe with usual hydrodynamic
codes, in which a single phase in local thermal equilibrium is
implicitly assumed. In FP2015 we showed that method phase
transition and precipitation can be simulated for a single species
with molecular dynamics. The possible objects condensing from
the gaseous phase can take various masses, typically covering
the entire range from grains, comets to planets or larger. With
two species with different molecular weights the number of pre-
cipitation scenarios that can be envisioned increases. Could it
be, for example, that bodies form with a core made of solid H2

surrounded with an atmosphere of H2 and He or that a solid H2

crust floats on a gaseous He core?
To answer such questions we use the same molecular dynam-

ics code as in FP2015 just adding a second species, and scaling
the particles properties to the respective properties of H2 and
He. We control the finite number resolution effects by perform-
ing simulations over a range from 1.25 × 105 to 80 × 105 par-
ticles. We restrict the investigations to the simplest set-up com-
bining gravity with molecular dynamics. To control gravitational
instability, we investigate a single plane-parallel collapse in one
direction of a periodic cube, where the initial temperature and
density are simulation parameters. As explained in Sect. 2.2 and
Appendix B, the collapse geometry (sheet-, filament-, or point-
like) is crucial to reach phase transition conditions starting from
typical ISM conditions. Sheet-like collapses (pancakes) can in-
deed lead temporarily to very dense conditions without much
heating, contrary to the other cases.

2. Gravitational stability of a fluid mixture

In a fluid consisting of K different components i, the total mix-
ture number density is n =

∑

i ni, the mixture mass density is
ρ =

∑

i ρi with ρi = mini, and the mixture pressure is P =
∑

i Pi.
In the case of an ideal gas, Dalton’s law states P =

∑

i xiPi. Each
component has a molecular fraction xi = ni/n and a mass frac-
tion wi = mi/m with m =

∑

i ximi.
The notion of global temperature in a system with long-range

forces is an unsettled topic as the key assumption of extensiv-
ity in thermodynamics breaks down in long-range force systems

Fig. 1. H2 (blue) and He (red) phase diagrams. For clarity, only a part
of the upper, almost constant density condensed phases of both species
and the low-density gas phase of He are shown.

(e.g. Padmanabhan 1990). When dealing with particle systems
we can however always define the temperature as proportional
to the residual kinetic energy when the bulk translational, ex-
pansional, and rotational velocities are subtracted, be it glob-
ally or locally. Strictly, this definition is operational and useful
only if the velocity distribution is unimodal and its second or-
der moment exists. Further detailed discussion about this topic
would be out of scope, as in this article we consider either global
or local temperatures for particle systems with no or negligible
amount of ordered motion, so the stated temperature is equiva-
lent to the particle kinetic energy. The high degree of collisional-
ity in molecular interactions ensures the rapid destruction of any
initial correlations leading to the convergence towards thermal
states.

2.1. Jeans instability

Considering a fluid mixture as a one-component fluid using av-
erage quantities such as the density ρ and pressure P, the Jeans
instability criterion (see Appendix A.1) would be

k2 < k2
J ≡

4πGρ

(∂P/∂ρ)s

, (1)

where k is the wavenumber, kJ the critical Jeans wavenumber,
and G the gravitational constant. This is, however, inappropriate
if each component has a different mean square velocity, which is
the case for an isothermal fluid with different molecular masses.

In order to correctly predict the stability of a many-
component fluid mixture with different densities ρi and partial
pressure Pi, each component has to be treated individually: the
Grishchuk-Zeldovich criterion (see Appendix A.2), which is the
sum of each component Jeans’ criteria, reads

k2 < k2
GZ ≡

∑

i

4πGρi

∂Pi/∂ρi

· (2)
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2.1.1. Ideal gas mixture

A fluid far from the condensed phase can be approximated with
the ideal gas law

P = nkBT, (3)
(

∂P

∂ρ

)

s

= γ
kBT

m
, (4)

where kB is the Boltzmann constant, γ the adiabatic index, and
m the molecular mass. The partial pressures can be calculated
using Dalton’s law. Equation (2) becomes

k2
GZ,id =

4πG

γkBT

∑

i

nim
2
i , (5)

where id stands for ideal gas. This equation differs from Eq. (1),
which in the ideal gas case becomes

k2
J,id =

4πG

γkBT
nm2. (6)

In the case where all components have the same temperature
kGZ,id ≥ kJ,id independent of the molecular fractions xi = ni/n
and molecular mass mi. In the case of a H2-He mixture, the max-
imum k2

GZ,id
/k2

J,id
= 1.12 at xH2

= 0.67.

2.1.2. van der Waals fluid mixture

When approaching a phase transition, the ideal gas law does not
take into account condensations and does not yield correct values
anymore. We showed in FP2015 that the van der Waals equation
of state (van der Waals 1910) describes a phase transition rather
well provided that the Maxwell construct is taken into account
(Clerk-Maxwell 1875; Johnston 2014), i.e.

Pr =
8Tr

3
nr
− 1
− 3n2

r , (7)

(

∂Pr

∂ρ

)

s

= γ

(

24Tr

m(nr − 3)2
− 6nr

m

)

, (8)

in gaseous and solid/liquid form with the reduced values Pr =

P/Pc, Tr = T/Tc, nr = n/nc and the critical pressure, temperature
and density Pc, Tc and nc. In the case of a phase transition, Pr =

const (Maxwell construct) and (∂Pr/∂ρ)s = 0.
The Maxwell line is very similar to the laboratory condensa-

tion line for H2 in a T −P diagram as can be seen in Fig. 2, but is
rather off for He, especially at low temperatures. As in the astro-
physical context, correctly representing the H2 phase transition
is essential for our study. A H2 phase transition always occurs at
a lower pressure-temperature ratio than for He.

In the phase transition regime (∂P/∂ρ)s = 0, varying density
allows the pressure to remain constant. This is a crucial prop-
erty for this work, since gravitational contraction is no longer
compensated by pressure increase. We show in Appendix A.2
that a two-component fluid is always gravitationally unstable
as soon as (∂Pi/∂ρi)s = 0 for any component i. In a simi-
lar fashion, the same can be deduced for n-component fluids
(Grishchuk & Zeldovich 1981).

2.2. Plane-parallel collapse

Lin et al. (1965) and Zel’dovich (1970) show that a plane-
parallel collapse, leading to a sheet-like geometry, is a faster col-
lapse than filament- or point-like geometries. This has been con-
firmed using numerical simulations by Shandarin et al. (1995).

Fig. 2. H2 and He laboratory data and van der Waals vapour curve de-
rived from Maxwell construct. Adiabatic compression curves of an ini-
tial sphere to sheet-, filament- and point-like geometries for interstellar
conditions (T = 10 K, P = 10−12 Pa) are shown, as explained in Ap-
pendix B. Sheet-like collapses are allowed to reach the phase transition
regime even without cooling. Cooling would displaces the curves to
lower temperature.

In addition, as shown in Appendix B.1, the adiabatic mat-
ter compression of a sheet-like geometry leads to a finite in-
crease of potential energy, leading to a maximum relative tem-
perature increase of only 2.1, while the energy diverges logarith-
mically in a filament-like geometry and as Z1/3 in a point-like
geometry, where Z = ρfinal/ρinitial is the density compression.
This can be seen in Fig. 2 which shows how a sphere moves
in this diagram when adiabatically compressed towards a sheet,
filament, or point initially in interstellar conditions (T = 10 K,
P = 10−12 Pa). Whereas the temperature is quickly increasing
with filament- and point-like geometries, in the sheet-like geom-
etry it only rises to ∼21 K, which is well below the 33 K critical
temperature of H2.

When taking radiative cooling into account, the temperature
increase by contraction is even smaller. In Appendix B.2 we
show that the opacity of a sheet-like collapse is barely increas-
ing. If the initial medium is transparent, the final sheet is also
transparent. On the other hand, in filament- and point-like col-
lapses the opacity increases approximately as a power 1/2 or
2/3 of compression, quickly reaching a full opacity regime able
to stop the collapse.

2.3. Lennard-Jones mixtures

The Jeans instability of Eq. (2) requires thermal equilibrium and
is simplified by only considering linear perturbations. It does not
predict its non-linear evolution when unstable. This is a motive
to use molecular dynamical simulations with a Lennard-Jones
potential in addition to gravity for studying such non-linear
phenomena.

The Lennard-Jones potential

ΦLJ(r) = 4
ǫ

m

[(
σ

r

)12

−
(
σ

r

)6
]

(9)
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reproduces the van der Waals equation of state when in equilib-
rium conditions using the following relations (Caillol 1998):

Tc = 1.326
ǫ

kB

, (10)

nc = 0.316σ−3, (11)

Pc = 0.157
ǫ

kBσ3
· (12)

For a fluid mixture, we use the usual Lorentz-Berthelot combin-
ing rule for the Lennard-Jones potential between two molecules

ΦLJ(ri j) = 4
ǫi j

mi





(
σi j

ri j

)12

−
(
σi j

ri j

)6


 , (13)

where σi j =
1
2
(σi+σ j) and ǫi j =

√
ǫiǫ j (Lorentz 1881; Berthelot

1898). The most accurate mixing rules for energy and distance
are (Banaszak et al. 1995; Chen et al. 2001)

σ3 =

K∑

i

K∑

i

xix jσ
3
i j, (14)

ǫ =

∑K
i

∑K
i xix jǫσ

3
i j

σ3
· (15)

Since Tc ∝ ǫ and nc ∝ σ−3, we have nc/nc,α = (σ/σα)
−3 and

Tc/Tc,α = ǫ/ǫα. Using Eq. (7), we find Pc = (8/3)Tcnc, and
therefore Pc/Pc,α = (σ/σα)

−3 · (ǫ/ǫα).
As in the ideal gas case, using these mixing properties to cal-

culate kJ in analogy to Eq. (1) instead of using Eq. (2) would lead
to different results. In the ideal gas case, the biggest difference is
∼10%, but in the present case of a van der Waals fluid the differ-
ence can be much bigger, for example kJ always returns a finite
number if the critical temperature of the mixture Tc > 1, whereas
kGZ can nevertheless be infinite if one of the components is in a
phase transition.

2.3.1. Binary mixture

Considering a fluid consisting of two components α and β, we
define

θ =
Tc,β

Tc,α

=
ǫβ

ǫα
, (16)

ν =
nc,β

nc,α

=

(
σβ

σα

)−3

, (17)

µ =
mβ

mα
· (18)

The following Lennard-Jones properties can be derived using
Eqs. (13)–(18):

σαβ =
1

2
σα

(

1 + ν−1/3
)

, (19)

ǫαβ = ǫαθ
1/2, (20)

and the following van der Waals mixture properties:

nc,x

nc,α

=



x2
α +

xαxβ

4

(

1 + ν−1/3
)3
+

x2
β

ν





−1

, (21)

Tc,x

Tc,α

=
nc,x

nc,α



x2
α ν

1/3 +
xαxβ θ

1/2

4

(

1 + ν−1/3
)3
+

x2
β
θ

ν



 , (22)

Pc,x

Pc,α

=
nc,x

nc,α

· Tc,x

Tc,α

, (23)

Fig. 3. van der Waals phase diagram with Maxwell construct for the
H2 – He mixture, each species considered as independent.

where xβ = 1 − xα. Without loss of generality we choose θ < 1.

Three different cases can be distinguished, as shown in
Fig. 3:

(A) Tc,β < Tc,α < T
Having the temperature above both critical values, neither
component can be in a phase transition and kGZ is always
finite.

(B) Tc,β < T < Tc,α

β is still above the critical temperature and cannot be in a
phase transition, but α may or may not be in a phase transi-
tion depending on nα.

(C) T < Tc,β < Tc,α

Having the temperature below both critical temperatures,
both components can be in a phase transition. At equal com-
ponent number density, α is faster in a phase transition, but
theoretically, at low nβ, β could be in a phase transition with-
out α, but this hardly ever happens in reality.

These three cases are studied using computer simulations (see
Table 1).

2.3.2. Hydrogen-helium mixture

The critical temperature of H2 and He are 32.97 and 5.19 K,
whereas their usual Lennard-Jones ǫ values are 36.4 and
10.57 kBK. This is in conflict with the temperature conversion
of Eq. (16), as θH2−He = 6.35 using critical temperatures whereas
θH2−He = 3.44 using the Lennard-Jones ǫ values. The same is the
case to a lesser degree for the critical density.

All performed simulations are molecule independent, but
θ, ν, and µ need to be defined. These values were set using
Tc, nc, and the molecular mass of laboratory He and H2 data
(Air Liquide 1976). The goal of this article is to understand the
role of a secondary component in a fluid presenting a phase tran-
sition together with gravity. In molecular clouds, the most likely
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Table 1. Simulation parameters.

Name xα n T γJ Ntot Mtot/M⊕a ,b L/R⊕a ,b τ/kyra

[nc,α] [m−3]a [Tc,α] [K]a ( f ) (g) ( f ) (g) ( f ) (g)

A10 1.0

10−2 9.3 × 1025 1.5 49.5 0, 0.5, 1.5 1003

0.34 1.7 27 47 0.86 1.5
A75 0.75 0.094 0.49 16 28 0.58 1.0
A50 0.5 0.039 0.2 11 20 0.45 0.78
A25 0.25 0.019 0.1 8.6 15 0.36 0.64
A00 0.0 0.011 0.056 6.8 12 0.31 0.53

A75S 0.75
10−2 9.3 × 1025

1.5 49.5
1.5 503–1603 0.49 18 1.0

A7501 10−1 9.3 × 1026 0, 1.5 1003 0.16 9 0.29

B10 1.0

10−2 9.3 × 1025 0.24 7.8c 0, 0.5, 1.5 803

0.021 0.11 11 18 0.86 1.5
B75 0.75 0.0059 0.031 6.5 11 0.58 1.0
B50 0.5 0.0024 0.013 4.5 7.9 0.45 0.78
B25 0.25 0.0011 0.0063 3.4 5.9 0.36 0.63
B00 0.0 0.00068 0.0035 2.7 4.7 0.31 0.53

B75γ 0.75
10−2 9.3 × 1025

0.24 7.8
0.5–1.5

803 0.0059–0.031 6.5–11 0.58–1.0

B7501 10−1 9.3 × 1026 0, 1.5 0.0097 3.6 0.32

C10 1.0

10−2 9.3 × 1025 0.082 2.7d 0, 0.5, 1.5 803

0.0043 0.022 6.3 11 1.5 0.86
C75 0.75 0.0012 0.0063 3.8 6.6 1.0 0.58
C50 0.5 0.00049 0.0026 2.7 4.6 0.78 0.45
C25 0.25 0.00025 0.0013 2.0 3.5 0.63 0.36
C00 0.0 0.00014 0.00072 1.6 2.8 0.53 0.31

SSM01

0.84
10−1 9.3 × 1026

0.3 10
1.05

803
0.012e 3.9 0.3

SSM02 10−2 9.3 × 1025 0.48 0.012e 8.5 0.65

SSE04 10−4 9.3 × 1023 1.98 1.0 171 13

Notes. All simulations are initially perturbed by a small plane sinusoidal wave in the x-direction as in FP2015. (a) Considering α = H2 and β = He.
(b) ⊕ ≡ Earth. (c) T = 1.5Tc,He.

(d) T = TCMB. (e) M = MMoon. ( f ) γJ = 0.5. (g) γJ = 1.5.

case of a phase transition is Tc,H2
> T > Tc,He, thus it is impor-

tant to have a correct (Tc,He/Tc,H2
) fraction.

2.3.3. Virial theorem

In FP2015, the Lennard-Jones potential has been decomposed
in attractive and repulsive terms: ΦLJ = Φa + Φr. In a binary
mixture, we have to further distinguish the one-component terms
Φα2 and Φβ2 , and the cross-terms Φαβ and Φβα (see Eq. (13)).

In analogy with Eq. (5) of FP2015, the virial theorem be-
comes as follows:

0 = 2Ekin + 12Er
︸         ︷︷         ︸

>0

+ 6Ea + EG
︸     ︷︷     ︸

<0

. (24)

There are two negative, attractive terms, and two positive, re-
pulsive terms. If the attractive and repulsive terms equalize each
other, the system is in virial equilibrium.

In the case of a homogeneous density and species distribu-
tion of mass M, the energy terms are

Ekin =
3kBT

2m
M, (25)

Er = R
ǫασ

12
α n4

m
M, (26)

Ea = −A
ǫασ

6
αn

2

m
M, (27)

EG = −G fG (n,m) M5/2, (28)

Fig. 4. R/cr and A/cavalues as a function of xα for a H2-He mixture.

with fG > 0 depending on the geometry. The repulsive and at-
tractive constants are

R = cr

[

x5
α + θ ν

−4x5
β +
θ1/2

212

(

1 + ν−1/3
)12 (

xαx4
β + x4

αxβ
)
]

,(29)

A = ca

[

x3
α + θ ν

−2x3
β +
θ1/2

26

(

1 + ν−1/3
)6 (

xαx2
β + x2

αxβ
)
]

, (30)

where the lattice coefficients cr and ca depend on the specific
crystal lattice (FP2015), which are of importance for the solid
phase. Figure 4 shows R and A as functions of an abundance
number fraction.

The above terms are for a fluid with no spatial separation
of the species, i.e. a fluid in its initial state. The terms predict
how an unstable fluid evolves. However, once a phase transition
or a gravitational collapse happens, the species may separate.
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Fig. 5. van der Waals phase transition and unvirializable density for a
binary mixture with xα = 0.75.

In that case, the terms have to be calculated for each species
independently, using xα = 1 and 0, respectively.

2.3.4. Unvirializable densities

The sum of the Lennard-Jones and kinetic terms must be positive
as the gravitational term is negative: EG < 0 < Er + Ea + Ekin.
This is the case if

2Aǫα
(

σ3
αn

)2 ≤ kBT + 4Rǫα
(

σ3
αn

)4
. (31)

There can be no virial equilibrium for any mass M > 0, if the at-
tractive Lennard-Jones term dominates the kinetic and repulsive
terms. We define the unvirializable density domain as follows:

D ≡ {n : n− < n < n+}

n2
± = σ−6

1 ±
√

1 − 4 R
A2

kBT

ǫ

4 R
A

· (32)

If the term in the square root is negative, there is no real solution
and therefore no unvirializable densities. This is the case if

T > Tmax ≡
A2

4R

ǫ

kB

· (33)

Figure 5 shows the n± values and the domain of the van der
Waals phase transition for H2-He mixtures with a molecular frac-
tion of xα = 0.75. There are unvirializable densities above the
critical temperature Tc up to Tmax even though no phase transi-
tion is possible.

The domain of phase transition does not change a lot for the
different xH2

> 0, as the H2 phase transition temperature remains
the same and the density changes as nx = x · n. It is at much
lower temperatures for xH2

= 0, as there is no H2 anymore and
the phase transition domain switches to He.

The evolution of fluids with unvirializable densities depends
whether they are in a phase transition or not. If these fluids are in
a phase transition, there is a gravitational instability independent
of M (see Sect. 2.1.2), which leads to a collapse and the forma-
tion of bodies of small mass. If they are not in a phase transition,
there is only a gravitational collapse above a certain mass M (see
Eq. (2)). Below that mass, clumps form, which leads to an aug-
mentation of the kinetic and repulsive Lennard-Jones terms until
Eq. (31) is fulfilled, at which point an equilibrium is reached and
the fluid may remain stable.

2.3.5. Dynamical friction

When discussing gravitational collapses, the concept of dynam-
ical friction (Chandrasekhar 1943) is important, since heavy ob-
jects may condensate from the gas and start to precipitate, i.e.
move with respect to the gas in the local gravity field. Consider-
ing a uniform density and Maxwellian velocity distribution, the
dynamical friction of a heavy object of mass mh reads

duh

dt
= −4πG2mh ρ log(Λ)

v3
h

[

erf(X) − 2X√
π

exp
(

−X2
)
]

uh, (34)

where log(Λ) is the Coulomb logarithm and X = vh/
√

2σv. For
the qualitative analysis needed in this work, it is enough to state

duh

dt
∝ −mh. (35)

This can be used in different cases. First, He is twice as heavy as
H2 and can therefore be considered a heavy object and in some
conditions lead to sediment faster than H2. Secondly, when H2 is
in a phase transition, H2 ice grains may sediment faster than He.

3. Method

For all of the simulations, the Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) is used (Plimpton
1995). The use of its short-range Lennard-Jones solver and long-
range gravitational solver, super-molecules, and the rRESPA
time integrator are discussed in FP2015.

We recall the following super-molecule properties, where η
is the number of molecules per super-molecule,

mSM = ηm, (36)

ǫSM = η ǫ, (37)

σSM = η1/3σ, (38)

where m, σ, and ǫ are the values for one molecule. The gravita-
tional constant, described in molecular dynamics units (σ = ǫ =
m = 1), is

GSM =
Gm2

σǫ
η2/3. (39)

In order for the gravitational force between two super-molecules
to be consistently small compared to the intermolecular forces,
η should satisfy the following constraint:

η
2
3 ≪ 24ǫσ

G m2

(

r−5
c − 2r−11

c

)

, (40)

where rc is the cut-off radius in σ units (set to rc = 4 in the
simulations).

Two molecules are considered as bound in LAMMPS if their
distance is smaller than 1.3625σ. A clump of bound molecules
can be either gaseous or condensed, dependent whether its tem-
perature is above or below the critical value.

Initially, the fluid is uniformly distributed in a periodic cu-
bic box. To reproduce the most generic plane-parallel collapse
first, as explained in Sect. 2.2, a velocity perturbation in form of
a small plane sinusoidal wave in the x direction is superposed
to the fluid’s Maxwellian velocity distribution. The perturba-
tion strength is of 1%; see FP2015 for how the perturbation is
calculated.
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3.1. Units

All simulations are performed in dimensionless units and only
the ratios of physical quantities matter. The initial properties of
a fluid are the ratios of its temperature to the critical value Tc, its
number density to the critical value nc, the Lennard-Jones con-
stant ratios θ, ν, the mass ratio µ, the molecular fraction xα and
the gravitational potential strength γG. The needed molecule pa-
rameters were set in accordance to laboratory H2 and He values

θ =
Tc,He

Tc,H2

= 0.157, (41)

ν =
nc,He

nc,H2

= 1.12, (42)

µ =
mHe

mH2

= 2. (43)

The time unit is defined as the particle crossing time for the box
of length L, i.e.

τ =
L

V
, (44)

where V2 = 3NkBT/
∑

i mi, i = 1 . . .N.
The gravitational constant strength is measured by a factor

γJ relative to the ideal gas Jeans limit strength GJ, defined as

γJ =
G

GJ

,

GJ =
πγkBT

L2
∑

j=α,β

n jm
2
j

· (45)

3.2. Visualization

In order to visualize the particle snapshots, two-dimensional
number density maps are used. The introduced perturbation is
along the x-axis, thus the sheet-like collapse is parallel to the
yz-plane. For that reason, the density map shows the y- and z-
axes where most of the relevant events can be observed. When
showing all N particles, smaller aggregates are washed out and
barely visible, which is why only a slice of the whole simula-
tion box is shown. Figure 6 shows how this slice is selected: The
highest number density is determined in the x direction in order
to be centred around the collapse region. From there, the slice
width ∆x is calculated in order to contain Nslice = fsliceN parti-
cles. In that way, the slice width ∆x differs for every snapshot,
but always contains the same number Nslice of particles.

The number density n and number fraction xα are represented
by brightness and colour. As at low density the brightness is
maximum and the colour is simply white, the colour map is best
visualized in polar coordinates, where n is the radius and xα the
angle. Figure 7 shows the colour map used, for better contrasts,
the brightness is represented in logarithmic scale.

4. Simulations

In FP2015, we simulated fluids with only one component. We in-
troduced the terms comets for clumps that are principally bound
by the Lennard-Jones potential and planetoids for clumps that
are principally bound by gravity. If a fluid is in a phase transi-
tion, it is important to distinguish between a strong gravitational
potential above the ideal gas Jeans criterion and a weak grav-
itational potential below it. In the strong gravity case, a grav-
itational collapse happens, leading to the formation of a hot,

Fig. 6. Two-dimensional density map of three-dimensional space.

Fig. 7. Colour mapping of density map.

gaseous planetoid. Phase transitions only happen at the begin-
ning as the fluid heats up above the critical temperature where
no solid comets can form.

In the weak gravity case, no gravitational collapse happens
and solid comets form thanks to the phase transition. The comets
attract each other gravitationally, which leads to the formation
of a solid planetoid. During the comet aggregation, the number
of bound molecules does not rise. This means that the plane-
toid only captures comets and no single molecules. Therefore,
the fraction of bound molecules is identical to the number of
molecules that underwent phase transition.

In this article, we compare fluids with different molecu-
lar fractions by keeping the physical properties alike (con-
stant T/Tc,α and n/nc,α). By decreasing xα the mean mass per
molecule m increases, since mα < mβ. It is therefore not possi-
ble to have the same number of molecules per super-molecule η,
the same super-molecule mass MSM = mη, and the same gravity
GJ ∝ m2η2/3 at the same time.

Since we want to study the reaction of fluids with different xα
above and below the ideal gas Jeans criterion, we need to ensure
that γJ is >1 or <1 in the compared simulations. For that reason,
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Fig. 8. Global temperature as a function of time of the A simulations
with γJ = 1.5 and 0.5.

neither the total mass nor the number of molecules remains the
same when comparing fluids with different xα, while γJ remains
the same. Since G ∝∼ m−2 (Eq. (45)) and η2/3 ∝ m−2G (Eq. (39)),
then η ∝∼ m−6 and thus M = mη ∝∼ m−5. Therefore, changing m
by a factor 2 leads to a total mass factor decrease of 32.

Different cases are studied: T = 1.5Tc,α, T = 1.5Tc,β and

T = (TCMB/Tc,H2
) Tc,α with n = 10−2nc,α and xα = 1, 0.75, 0.5,

0.25, and 0. These initial parameters are shown in Fig. 3. In ad-
dition, different densities are used for simulations B75 and C75
to compare cases with n > n− with n < n− (see Sect. 2.3.3). We
also study solar system abundances for different total masses and
number densities. The simulations are summarized in Table 1.

The simulations with γJ < 1 were run until a steady-state so-
lution was reached. Most simulations with γJ > 1 were stopped
once a planetoid formed, which typically happens after ∼5τ.
Even if the resulting fluid did not reached a steady state then,
no further developments are expected, as checked in FP2015. A
few simulations were run for 15τ to confirm this. At t = 5τ,
the planetoid of B75 with γ = 1.5 is 15% hotter than average,
whereas unbound molecules are 5% colder. After another 10τ,
however, at t = 15τ, the temperature differences are below 1%.
Similarly, at t = 5τ, there are very strong regional temperature
differences of ≥10% considering subdomains of 1% volume. At
t = 15τ, they are ≤5%.

4.1. Above critical temperatures

In this Section, we consider fluids where both Tα and Tβ are
above the critical temperature. The number densities correspond-
ing to the different abundance number fractions can be seen in
Fig. 3.

4.1.1. Time evolution

Figure 8 shows the global temperature evolution of the A simula-
tions (see Table 1). In all simulations, the weakly self-gravitating
fluids with γJ = 0.5 and the fluids without gravity are very simi-
lar and do not react significantly to the velocity perturbation. On
the other hand, as expected for the sufficiently self-gravitating
fluids with γJ = 1.5 the introduced perturbation rises exponen-
tially. The reaction time is similar for all number fractions, but
the mixtures reach slightly higher temperatures. Keeping in mind
that all simulations have the same γJ value, but the total mass dif-
fers with M1/M2 = (m1/m2)−5.

To get a deeper understanding of the internal processes, we
need to distinguish between the α and β component. Figure 9A
shows the fraction of bound molecules in the simulations as a
function of time. No phase transition happens above the critical
temperature, therefore no comets form in the simulations with
γJ = 0 and 0.5. With γJ = 1.5, the gravitational collapse leads to
the formation of a planetoid. In its centre, the gravitational pull
is strong enough to keep the molecules bound even though the
temperature is well above the critical value.

The β-molecules, as they are twice as heavy as the
α-molecules, fall faster into the forming planetoid. Indeed, even
in A75, with only xβ = 0.25, the fraction of bound β-molecules
surpasses the fraction of bound α-molecules for τ > 2.

4.1.2. Planetoid formation

Figure C.1a shows a time sequence of snapshots and super-
molecule, comet-size distributions condensed as grains or
comets. The parameter Ncomet is the number of super-molecules
in one comet and f (NB) is the comet size distribution func-
tion. At the beginning with t < 3τ, small comets of either α- or
β-molecules form. At t = 3τ, a planetoid with N ≈ 0.1Ntot forms
consisting of both components. One can already see a dominance
of β-molecules, especially in the centre.

Beginning at t = 3τ, and even more clearly at t = 4τ, one
can observe the formation of a big core consisting only of β-
molecules (isolated β-dot). In the snapshots this corresponds to
the planetoid shown as a β-core surrounded by α-molecules.
Once the planetoid has reached this form, it reaches a steady
state. Its temperature matches the gas temperature, and the tem-
perature fluctuations level out (see FP2015 for more details on
planetoid and comet temperatures).

Figure 10 (top) shows the planetoid density of simulation
A75 as a function of radius. Even though the fluid consists
of only 25% β-molecules, the planetoid consists mostly of
β-molecules with fβ = 0.86. The α-molecules are only a small
fraction and mostly present in the outer part. The gaseous nature
of this body is visible as the density regularly decreases in radii.

4.1.3. Scaling

The scaling of simulations using super-molecules has already
been discussed in FP2015. In order to obtain the correct be-
haviour, the gravitational forces FG need to be small on inter-
molecular scales compared to the Lennard-Jones forces FLJ, i.e.
FG(rc) < FLJ(rc), where rc is the cut-off radius (see Eq. (40)). A
turning point can be identified up to which NB (Ncomet) follows

the power-law NB (Ncomet) ∝ N
ξc
comet with negative index ξc < −1,

whereas after the turning point NB (Ncomet) follows a second
power law with index ξp = 1 (see Fig. C.1a). The appearance
time of this turning point is independent of Ntot, whereas the size
of the comet at the turning point scales as Ncomet/Ntot ≈ 10 N−1

tot ,
thus Ncomet ≈ 10. This corresponds roughly to the smallest num-
ber of nearest neighbours in the condensed phase in 3D for which
surface effects start to be dominated by volume effects.

Figure 11 shows the fraction of bound molecules as a func-
tion of time for all A75S simulations with Ntot = 503 to 1603. As
shown in FP2015, the slight time delay between the simulations
can be attributed to the random seed. In any case, the asymp-
totic final value is physically more important, and is the same
for all Ntot when considering both components. The final value
of the β-molecules, on the other hand, very slightly declines with
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Fig. 9. Evolution of the number of bound molecules as a function of time of the A), B), and C) simulations with γJ = 1.5 and 0.5. The simulations
with γJ = 0.5 are stopped after 5τ, 30τ, and 20τ for the A), B), and C) simulations, respectively, when no further significant development is
expected.

increasing Ntot as can be seen in Fig. 12. It follows the power-law
NB/Ntot ≈ 0.213 N−0.017

tot over the range Ntot = 105−106.5.

4.1.4. Extrapolation to physical scale

The simulations should actually represent a H2-He fluid mixture
with ∼1050 molecules. As outrageous as this extrapolation might
appear, this is exactly what usually takes place in many other
types of simulations (cosmological, galactic, or stellar simula-
tions) because as long as the physical scale invariant aspect of
the physics between the macro- and micro-scales are separated
by enough orders of magnitude the exact range of scale differ-
ence does not matter over dynamical timescales. For longer sim-
ulation timescales one can check how the results scale with N
by running simulations with different N, which is the reason
why we always run the simulations with several N. Extrapolating
the previous power law to physical scales, we find that ∼3% of
β-molecules settle inside the planetoid, instead of ∼15%. Thus
the simulations overestimate species segregation, which is to be
expected in view of the increased fluctuations when the number
of particles decreases. Segregation effects should be treated with
caution, as we are extrapolating values in a range that is less
than two orders of magnitude or 45 orders of magnitude away.

Larger simulations should allow us to better constrain the effec-
tive species segregation in realistic conditions.

4.2. Between critical temperatures

In this section, we consider fluids with Tα < Tc,α and Tβ > Tc,β

with different component fraction xα. The number density n has
been chosen in such a way that for the molecular fractions xα >
0, the α-component with number density nα = xα ·n is in a phase
transition.

As the temperature of the B simulations is an order of mag-
nitude smaller than in the A simulations, the same is the case
for the gravitational potential (see Eq. (45)). For that reason, it is
sufficient to use Ntot = 803 for these simulations.

4.2.1. Above the ideal gas Jeans criterion

Figure 9B on the left side shows the time evolution of the fraction
of bound molecules for the B simulations with γJ = 1.5. One
can see the similarity to Fig. 9A, but the fluids with a high xα
value are rising to higher values even before the perturbation is
becoming dominant. This is because the α-portion of the fluid
is in a phase transition and small ice grains are forming even
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Fig. 10. Density of planetoid as a function of the radius of the simula-
tions A75 and B75 with γJ = 1.5 at t = 5τ and B75 with γJ = 0.5 at
t = 30τ.

Fig. 11. Fraction of bound molecules as a function of time for the sim-
ulations A75S with γJ = 1.5 and different Ntot.

Fig. 12. Fraction of bound β-molecules as a function of Ntot for the
simulations A75S.

without the help of gravity. The formed planetoid is gaseous,
as can be seen in Fig. 10 (middle). This shows that the phase
transition does not have an important effect if γJ > 1 and that the
instability can be predicted by the ideal gas Jeans criterion.

The density at the core of the planetoid of simulation B75
is lower than that of A75. This is explained by the fact that by

keeping γJ = 1.5, the value for GJ is lower for the B simulations
than for the A simulations as GJ ∝ T (see Eq. (45)). Having
a lower gravitational potential, the density at which the repul-
sive Lennard-Jones term and the attractive gravitational term are
equal is lower.

The planetoid is still dominated by β-molecules, but there are
more α-molecules than in the A75 simulation with fα = 0.26 and
fβ = 0.74. As in the A simulations, the core consists of gaseous
He, as is clearly visible in Fig. C.1b.

4.2.2. Below the ideal gas Jeans criterion

As can be seen in Fig. 3, the α-component of the simulations
B10, B75, B50, and B25 all lie on the Maxwell line and are thus
in a phase transition, which implies, according to Eq. (2), that
they are gravitationally unstable even with γJ < 1.

The right side of Fig. 9B shows the evolution of the frac-
tion of bound molecules of the B simulations with γJ = 0.5.
The timescale is much larger (30τ instead of 5τ in the case of
γJ = 1.5), having a smaller gravitational potential, the long-
range gravitational term is lower, and therefore the creation of
any potential comet or planetoid takes more time.

The one-component fluids, consisting of either uniquely
α-molecules (B10) or β-molecules (B00) have already been stud-
ied in detail in FP2015. The α-fluid B10 is unstable as it is in a
phase transition, whereas the β-fluid B00 is stable as its tempera-
ture is above the critical value and no phase transition is possible.

The simulations of fluid mixtures B25, B50, B75 with γJ =

0.5 are all unstable, even gravitationally. We can distinguish a
clear difference in the simulations with γJ = 1.5 in that only the
α-molecules form comets, whereas the β-molecules remain in
gaseous form. Even in the simulation B25, which has only 25%
α-molecules, the comets and planetoid consist almost exclu-
sively of α-molecules. This difference between γJ = 1.5 and 0.5
can also be seen when comparing Fig. C.2a with Fig. C.1b.

Figure 10 (bottom) shows the radius of the planetoid at
t = 30τ of B75 with γJ = 0.5. Comparing with the planetoid
of B75 with γJ = 1.5, we see that the high-gravity planetoid
consists mostly of β-molecules in gas phase, whereas the low-
gravity planetoid consists of mostly α-molecules in solid phase,
surrounded by an atmosphere. Very few β-molecules have been
trapped during the planetoid formation, providing an interesting
example of a body forming with a distinct composition from the
original medium as a result of the initial phase transition state.

4.2.3. Different γJ values

The previous sections show that a fluid in a phase transition
above the ideal gas Jeans criterion, i.e. with γJ = 1.5, forms
a gaseous planetoid consisting mostly of β-molecules due to a
classical ideal gas Jeans collapse. On the other hand, a fluid in
a phase transition with γJ = 0.5 forms small α-comets due to
the phase transition. These comets are attracted to each other by
gravity, leading to the formation of a rocky planetoid, consisting
almost exclusively of α-molecules. In this section, we vary γJ

from 0.5 to 1.5.

Figure 13 shows the fraction of bound β-molecules. It is ris-
ing steeply for fluids with γJ > 1 in accordance with the ideal gas
Jeans criterion and the formed planetoid is gaseous and consists
mostly of β-molecules. The fluid with γJ = 1 also produces a
gaseous planetoid, but the percentage of β-molecules is already
dropping a little. Interestingly, in the fluids with 0.7 ≤ γJ < 1,
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Fig. 13. Fraction of bound β-molecules as a function of time for the sim-
ulations B75γ. The simulations are stopped once they reach asymptotic
values.

the β fraction is also rising. The instability criterion of Eq. (2) is
for all components, not only one of them.

Figure C.2b shows snapshots and comet-size distributions of
simulation B75γ with γJ = 0.8. One sees that at first (t ≤ 8τ) only
the α-molecules are collapsing and forming a rocky planetoid.
Then, owing to the great attractive force of the α-planetoid, many
β-molecules gather around it, forming an atmosphere (t = 12τ).
A β-atmosphere can also be observed, in a less striking way, for
the simulation with γJ = 0.5 in Fig. C.2a. What happens after-
wards is very interesting: at t = 16τ, one sees that the rocky plan-
etoid swaps the α- and β-molecules and the heavier β-molecules
replace the α-molecules near the centre.

4.3. Below critical temperatures

In this section, to complete the study of binary fluid mixtures,
we consider fluids where both Tα and Tβ are below the critical
temperature. The number density n has been chosen in such a
way that for the molecular fractions xα > 0, the α-component
with number density nα = xα · n is in a phase transition.

4.3.1. Above the ideal gas Jeans criterion

The left side of Fig. 9C shows the time evolution of bound
molecules of the C simulations with γJ = 1.5. There is a dis-
tinct difference compared to the A and B simulations, which
form β-planetoids; only the percentage of bound α-molecules
rises and the forming planetoid only consists of α-molecules (see
Fig. C.3). This is slightly counter-intuitive at first, as one could
expect the β-molecules to be even more eager to fall into the
planetoid than in the A and B simulations, since the temperature
is lower.

Owing to the very low temperature of the C-simulation, how-
ever, the α-molecules quickly form comets from the very begin-
ning. These comets are heavier than the β-molecules and decel-
erate faster into the planetoid.

4.3.2. Below the ideal Gas Jeans criterion

The evolution of the simulations below the ideal gas Jeans cri-
terion is analogous to the B simulations. The fraction of bound
α-molecules in the pure α-fluid and the mixture rise, and the
fraction of bound molecules of the pure β-fluid remains very
low. This is in accordance with Fig. 3 where the α-molecules are

Fig. 14. Fraction of bound molecules with cluster mass mcl > mHe as a
function of time of simulations in and out of the unvirializable density
domain.

unstable but the β-molecules are stable. The simulations C10,
C75, C50, and C25 form a rocky α-planetoid, as already seen in
the B simulations (see Fig. C.2a).

4.4. Virial theorem

When comparing the simulations above the ideal gas Jeans in-
stability, there is a clear difference between the A and B simula-
tions on one side, and the C simulations on the other. A gaseous
β-planetoid forms in the first two, whereas a rocky α-planetoid
forms in the latter. Looking at the virial terms of the fluids (see
Sect. 2.3.3), Eq. (31) is fulfilled in the A and B simulations,
whereas for the C simulation, the density is in the unvirializ-
able domain D. In this Section, we vary the densities of the A
and B simulations in order to be in and out of the unvirializable
domain.

Figure 14 shows the time evolution of clusters that have a
higher mass than one β-molecule (Ncl,α > 2) for the simulations
in the unvirializable domain (A7501 and B7501) and below (A75
and B75). A very quick rise of H2 comets for the unvirializable
fluid happens, both with and without gravity, which is in accor-
dance with Eq. (31), as neither the repulsive Lennard-Jones term
nor the kinetic energy can withhold the attractive Lennard-Jones
term thus leading to the formation of comets. Even in simula-
tion A7501, with a temperature above the critical temperature,
this comet formation is taking place, even though a phase transi-
tion is officially not possible. A slow comet formation only takes
place for the virializable fluids.

Once the exponential growth of the perturbation becomes
important (t ≥ 2τ), the unvirializable fluids have created an im-
portant number of comets heavier than the β-molecules, which
fall faster in the forming planetoid as a result of dynamical fric-
tion. This can be seen in Fig. 15 where the planetoids of the sim-
ulations A75 and B75 consist mostly of β-molecules, whereas
the planetoid of B7501 consists mostly of α-molecules. A some-
what special case is A7501, where the planetoids composition is
almost perfectly fifty-fifty. This can be explained by the fact that
because is is above the critical temperature, the comets are not
really solid, but consist of a dense gas that is able to mix easily
with β-molecules. Thus, once a α-planetoid has formed using all
the heavy α-comets, the β-comets fall into the planetoid and mix
with it.
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Fig. 15. Density of planetoid at t = 5τ as a function of the radius of the
simulations in and out of the unvirializable density domain.

Fig. 16. Fraction of bound molecules as a function of time of the simu-
lations B75, B75 with removed β-molecules and B10. γJ = 0.5.

4.5. Influence of β-molecules on α-molecules below the ideal
gas Jeans criterion

As can be seen in Fig. 9C, almost no β-molecules form comets
if γJ = 0.5 and the percentage of β-molecules in the planetoid
is negligible. Granted, the concentration of He around the plan-
etoid rises slightly as can be barely seen in Fig. C.2a. Thus the
question can be raised whether a small fraction of a secondary
molecule (such as He in the case of molecular clouds) needs to
be included in low-gravity simulations. To answer that question,
simulation B75 with γJ = 0.5 was run again, but all β-molecules
were removed and their mass was equally distributed to the
α-molecules to maintain the same gravitational potential.

Figures 16 shows the time evolution of the fraction of bound
molecules of the simulations B75, B75 without β-molecules and
B10 for comparison. Even though the two B75 simulations are
similar, there are differences to be observed. The fraction of
bound α-molecules of the simulation B75 should correspond to
the total fraction of bound molecules of the simulation without
β-molecules, but the latter is higher; the β-molecules in B75 have
a damping effect on the comet formation. In addition, the simu-
lation without β-molecules is rising to a higher value at the end
of the simulation.

The inclusion of a small fraction of a secondary molecule
does change the look of the simulation by damping the comet
formation of α-molecules. For that reason, the inclusion of sec-
ondary molecules in more realistic simulations is useful.

4.6. Physical systems

Up to now, we have looked at theoretical models, varying xα
from 0 to 1, and setting the temperature and density as a frac-
tion of the respective α critical values. The critical values for H2

Fig. 17. γJ of different total fluid masses at T = 10 K, as a function of
number density, indicating either ideal gas Jeans instability, or instabil-
ity owing to phase transition.

are Tc = 32.97 K and nc = 9.34 × 1027 m−3. In astrophysical
conditions, the He mass fraction is between wHe,SS = 0.2741 for
the solar system (Lodders 2003) and wHe,MW = 0.2486 for the
initial Big Bang mixture (Cyburt et al. 2008), which translates
to number fractions xHe,SS = 0.1598 and xHe,MW = 0.1428.

Figure 17 shows γJ as a function of the number density for
solar system abundances (x = 0.16) and T = 10 K with total
masses equal to the Moon, Earth, Jupiter, and Sun. H2 is then in
a phase transition for n > 4 × 1024 m−3; only a Moon mass or
below can be in a phase transition and below the Jeans criterion.
The fluid is unvirializable for n > 6 × 1026 m−3.

If we go to a lower temperature, say the CMB 2.7 K, a H2

phase transition takes place for n > 1012 m−3. In that case, fluids
with Earth mass would be chemically unstable below the ideal
gas Jeans criterion for n ≤ 3×1021 m−3 and with Jupiter mass for
n ≤ 3× 1016 m−3. Fluids with Sun mass, on the other hand, cross
γJ = 1 only in the gaseous phase of H2. The lowest unvirializable
density n− = 6×1026 m−3 does not change a lot with temperature.

The number of FFT mesh cells NFFT ∝ L3 and the simula-
tion timescale τ ∝ L both directly depend on L ∝ n−1/3, and the
total calculation duration scales as tsim ∝ τ · NFFT ∝ n−4/3. For
that reason, simulating a fluid at CMB temperature with den-
sities below 1020 m−3 would translate to extremely long simu-
lation run times with today’s computers. In addition, the upper
limit for the mass of super-molecules is mSM,max ≈ 5 × 10−6 M⊕
(see Eq. (40)). Thus, the minimum number of super-molecules
Ntot,min = M/mSM,max is ∼2× 105, 6.5× 107, 6.5× 1010 for simu-
lating an Earth, Jupiter, and Sun mass, respectively. For that rea-
son, for the time being we content ourselves to studying systems
up to total mass comparable to the Earth mass.

4.6.1. Planetoid formation

Three simulations were run at a temperature of T = 10 K, which
is above the critical temperature of He and below that of H2, and
thus in a similar regime as the B simulations. Two simulations
have a total mass equal to the Moon, with n ≈ 1027 m−3 which is
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Fig. 18. Snapshots and comet-size distributions of the simulations
SSM01, SSM02, and SSE04. The slice selects in depth 20% of the
super-molecules. The squares in the two lower left frames are the same
size as the next upper frame.

above the ideal gas Jeans criterion and in the unvirializable do-
main, and n ≈ 1026 m−3, which is below the Jeans criterion, and
one has a total mass equal to the Earth and with n ≈ 1024 m−3,
which is above the criterion. The simulation parameters are given
in Table 1.

Figure 18 shows the snapshot and comet-size distribution
of the three simulations after the formation of a planetoid. The
fluid of SSE04 is above the ideal gas Jeans criterion and we ob-
serve the formation a He-planetoid, surrounded by H2, similar to
Sect. 4.2.1. The evolution of simulation SSM02, which is below
the ideal gas Jeans criterion, leads to the formation of a rocky H2

planetoid, similar to Sect. 4.2.2.
In the case of SSM01, the density lies in the unvirializable

domain, resulting in a formation of many H2-grains that are
heavier than the He-atoms from the very beginning. This leads
to the formation of a H2-planetoid similar to Sect. 4.3.1.

5. Conclusions

In our first article, FP2015, we studied the gravitational instabil-
ity of a fluid in a phase transition. We extrapolated the results to
the ubiquitous H2 and showed that the formation of cold, mostly
undetectable comet- and even planet-sized rocky H2 clumps is
very possible. The use of only one component gives a good
first impression, but in cosmic gases, there is a mass fraction
of w ≈ 25 ± 2% He atoms.

In the present work, we studied binary fluid mixtures ana-
lytically and via numerical simulations. The results show that,

depending on the circumstances, either He or H2 planetoids can
form.

5.1. Analytic results

The stability of a multicomponent fluid mixture has already been
studied in the literature, mostly to study fluid binaries consisting
of baryonic and dark matter. The wave number below which a
fluid mixture is unstable is the sum of the Jeans wave-numbers
of each component. Since the Jeans wave number is inversely
proportional to (∂P/∂ρ)−1

s , which is equal to zero in the case of a
phase transition, a fluid mixture is unstable as soon as one of
its components is in a phase transition. Physically what hap-
pens is that when one species is in a phase transition, an over-
density only increases its condensed phase fraction at constant
pressure, instead of increasing pressure and producing no global
force to counter gravity. The transformation from the gas to the
condensed phase continues until the species is fully condensed.

We studied the evolution of unstable fluid mixtures with the
widely used Lennard-Jones intermolecular potential, which re-
produces the H2 phase transition very well (but it reproduces the
He transition, which is not essential in this work, less well). We
showed, using the virial analysis of Lennard-Jones fluid mix-
tures, that there is a unvirializable density-domain D within
which the attractive forces dominate the repulsive forces for any
total mass M and no virial equilibrium is possible. These states
can be reached in strongly dynamical situations (e.g. during col-
lapses) and are able to produce condensed comets particularly
quickly. Dynamical friction is important to separate species and
condensed comets. For instance, if H2 is in a phase transition, the
formed H2 comets are heavier than the He-molecules, and pre-
cipitate in a gravitational field, producing almost pure H2 bodies.

There are three reasons to concentrate on plane-parallel ini-
tial collapses, as described in more detail in Appendix B:

1. In typical cosmic conditions, the fastest collapsing geometry
is sheet-like, not filament- or point-like.

2. The adiabatic matter compression during collapse leads to
the least heating in sheet-like geometry: in a sheet-like adia-
batic collapse the gravitational energy released to the fluid is
finite and amounts to a maximum increase of temperature by
only a factor of about two, while in filament-like collapses
the temperature diverges logarithmically as a function of fil-
ament radius, and in point-like collapses the temperature di-
verges as the inverse sphere radius.

3. Radiative cooling is the easiest in sheet-like collapse. Indeed
the absorption probability in sheet-like geometry remains al-
most unchanged for any compression, and an initially trans-
parent medium remains transparent, whereas the probability
converges to one in filament-like and point-like geometries.
Therefore, radiative cooling is barely slowed down in sheet-
like collapses and, unlike in spherical or filament collapses,
opacity is unable to prevent density from reaching high val-
ues. This is a crucial point for this study, as the ISM con-
ditions are commonly thought to be far away from the H2

phase transition conditions.

5.2. Simulations

As in FP2015, we used super-molecules to combine the Lennard-
Jones intermolecular potential together with the gravitational
potential in numerical simulations. Several binary fluid mix-
tures were studied using two components: α and β. Their re-
spective properties (the most important being mα/mβ < 1 and
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Tc,α/Tc,β > 1) were chosen to mimic a H2-He fluid, but the gen-
eral properties of the fluids were made molecule independent.

Three temperature domains can be defined: (A) above both
critical temperatures; (B) between the critical temperatures; and
(C) below both critical temperatures. In all three cases, the
molecular fraction was varied and the fluids were simulated
above and below the Jeans criterion. We used different numbers
of molecules to test the scaling of the simulations. The precise
number of super-molecules is not important for dynamical pro-
cesses, but we found a weak dependence for segregation effects
in the sense that coarser simulations exaggerate these effects.

In case (A), both components are gaseous and an introduced
perturbation does not grow when the gravitational potential is
below the Jeans criterion. When above the Jeans criterion, the
fluid collapses and forms a gaseous planetoid. The β-molecules
are twice as massive as the α-molecules, and fall faster into
the planetoid. For that reason, the planetoid consists mostly of
β-molecules, surrounded by an α-atmosphere. This is indepen-
dent of the molecular fraction xα, even at very high xα-values,
the planetoids consists mostly of β-molecules.

In case (B) and (C), the number density of the fluids was
chosen so that the α-component is in a phase transition for all
xα > 0. In fact, both cases are very similar since in both cases
the β-component is not in a phase transition. When the fluids
are below the Jeans criterion, an instability happens because of
the phase transition of the α-component, which leads to the for-
mation of H2 comets and ultimately a rocky α-planetoid. This
planetoid is surrounded by a β-atmosphere, which is getting
more important with increasing gravitational potential. As in
case (A), the molecular fraction xα does not matter, even at very
low xα-values, the planetoid still consists almost exclusively of
α-molecules.

A suprising observation occurs for cases (B) or (C) above
the Jeans criterion. In that case, there is a race between the for-
mation of small α-grains owing to the phase transition and the
exponential growth of the perturbation. The heaviest bodies are
decelerated faster and fall into the forming planetoid first. When
the α-component is either gaseous or only forming very few
and small comets, a β-planetoid forms. On the other hand, if
the α-component forms many grains that are heavier than the
β-molecules, an α-planetoid forms. We showed in the simula-
tions that this race between α and β is linked with the unviri-
alizable density domain D. If a fluid reaches this domain, the
α-component wins, otherwise the β-component wins.

5.2.1. Solar system abundances

In addition to the above-mentioned simulations, fluids with so-
lar system abundances and Moon or Earth mass were simulated.
As shown in Fig. 17, a fluid with Earth mass cannot be below
the Jeans criterion and still in a phase transition, but with Moon
mass, this is possible. In that case, a rocky H2 planetoid results.
With a mass as low as the Moon, the fluid needs to be very dense
to be above the Jeans criterion. In fact, the fluid would lie in
the unvirializable density-domainD and, thereby, a H2-planetoid
forms. For a fluid with Earth mass, on the other hand, even a
relatively low-density fluid is still above the Jeans criterion. The
result is a gaseous He planetoid with a H2 atmosphere.

5.3. Instability in H2-He fluid

Figure 19 shows different possible planetoid and comet forma-
tions due to gravitational instability for a fluid with Jupiter mass.

Fig. 19. Gravitational instabilities at different temperatures and densi-
ties for a fluid with Jupiter mass.

A fluid is gaseous if it is below the phase transition domain and a
fluid is solid or liquid if above. When the density is in the phase
transition, it can rise without an increase of pressure.

There can be no formation below the Jeans criterion if the
fluid is not in a phase transition. Most of the planetoids due to
an ideal gas Jeans collapse consist of gaseous He, but if the fluid
is in the unvirializable domain D, then a H2 planetoid forms.
This H2 planetoid can be solid/liquid or gaseous depending on
its temperature. If gaseous, He is able to percolate down, slowly
transforming it into a He planetoid.

If the fluid is in a phase transition, we have to distinguish be-
tween a collapse above the ideal Jeans criterion, which leads to a
gaseous He planetoid except in the unvirializable domain, where
it becomes a rocky H2 planetoid, and in a collapse below the
ideal Jeans criterion, which also leads to a rocky H2 planetoid.

The usual average density domain of molecular clouds lies
between 108 and 1012 H2/m

3 and, with such a density, a H2

phase transition is only possible at temperatures below ∼5 K.
However, molecular clouds are observed to follow a fractal mass
distribution over a minimum of 4–6 orders of magnitude in col-
umn densities, so the average density is not a quantity to char-
acterize molecular clouds properly. Since we know that stars
form with densities ∼1029 H2/m

3, by continuing this argument,
intermediate states covering all this density interval have to
exist.

Fluids with a high total mass, especially with stellar mass or
above, reach the ideal gas Jeans criterion very quickly leading to
gaseous He-planetoids. Fluids with lower total mass, however,
as for example the cold globules observed in the Helix nebula,
especially with Earth mass and below, have the ideal gas Jeans
criterion at much higher densities and are in the phase transition
domain before being above the ideal gas Jeans criterion.

5.4. Perspectives

This and the previous FP2015 study show that the cold ISM
physics is much richer than previously imagined. The forma-
tion of substellar gaseous or rocky condensed bodies by the
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H2 phase transition combined to gravity, appears natural once
we recognize that collapses proceed most of the time along the
sequence pancake, filament, and point, and in the first sheet-
like phase high densities allowing a H2 phase transition can be
reached if the initial medium temperature is below ∼15 K. This
temperature limit would be even higher if radiative cooling had
been considered. In the isothermal case this limit is ∼33 K.

Most of the ISM cold gas must therefore pass over molecular
cloud lifetimes (∼106−108 yr) through such brief (∼102−104 yr)
singular sheet-like collapses where density diverges but not tem-
perature. Observationally, such events are difficult to detect be-
cause of the limited increase of temperature, opacity, and column
density all along the collapse, while reaching high volume den-
sities. When seen edge-on such sheet-like collapses would look
like filaments.

The simulations we were able to perform are still very lim-
ited in total mass. Including He is necessary but this provides a
number of complications with respect to the pure H2 case, and
widens the general picture found in FP2015. Combining the ac-
cumulated experience of large-scale gas phase simulations by
other authors (e.g. Renaud et al. 2013; Butler et al. 2015), we
can easily extrapolate what larger simulations should produce
with micro-AU resolution. Instead of one planetoid per simu-
lation box, pc-sized sheet-like collapses should show filaments
with longer lifetimes, which would funnel H2 condensed bodies
and produce a spectrum of planetoids, comets, and occasionally
stars. The leftover condensed cold substellar bodies should then
start to evaporate according to the ambient radiation flux and
depth of their gravitational potential. The lifetime of such bod-
ies should be short near the centre of galaxies, but much longer
at the periphery of galaxies, or even in intergalactic space, es-
pecially in cosmic filaments. One can postulate that, especially
at the periphery of disk galaxies where the radiation heating is
low, some fraction of the dark baryons can be trapped in the form
of such condensed bodies. We plan to pursue further simulation
work to deepen our understanding of the processes associating
phase transition with gravitational dynamics.
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Appendix A: Jeans instability

We first recall the classical Jeans criterion for a one-
component fluid, and then we show how the same approach
can be used to find the solution of a two-component fluid.
See Grishchuk & Zeldovich (1981) for the solution of an n-
component fluid.

A.1. One component

The equations for conservation of mass and momentum and for
the gravitational potential of a fluid are written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (A.1)

∂ρu

∂t
+ ∇ · (ρuu) + ∇P + ρ∇Φ = 0, (A.2)

∇ · ∇Φ − 4πGρ = 0. (A.3)

Following Jeans (1902), we supersede these equations with per-
turbation terms in the x direction ρ = ρ0 + δρ, P = P0 + δP,
Φ = Φ0 + δΦ and u = u0 + δu with δu = (δv, 0, 0)T , linearizing

the equations and setting δP =
(
∂P
∂ρ

)

s
δρ, i.e.

∂ δρ

∂t
+ ρ0∇ · δv = 0, (A.4)

ρ0

∂ δv

∂t
+

(

∂P

∂ρ

)

s

∇δρ + ρ0∇δΦ = 0 , (A.5)

∇ · ∇δΦ − 4πGδρ = 0. (A.6)

This system of partial differential equations is transformed to
an algebraic system of linear equations in the Fourier space:

δA =
∫

dk Â(k) exp[i(kx − ωt)], where A represents ρ, v, and Φ.
The passage to Fourier space transforms the differential opera-
tors ∂/∂t and ∂/∂x to multiplications by −iω and ik, respectively,

−iω ρ̂ + ik ρ0v̂ = 0, (A.7)

−iωρ0v̂ + ik

(

∂P

∂ρ

)

s

ρ̂ + ik ρ0Φ̂ = 0, (A.8)

−k2Φ̂ − 4πGρ̂ = 0, (A.9)

which can be written in matrix form A · x = 0,





ω kρ0 0
k (∂P/∂ρ)s ωρ0 k ρ0

−4πG 0 −k2




·




ρ̂
v̂

Φ̂




=





0
0
0




. (A.10)

Non-trivial solutions for x require that the determinant of A
vanishes,

det(A) = k2ρ0

[

ω2 + 4πGρ0 − k2

(

∂P

∂ρ

)

s

]

, (A.11)

which is the case for either k = 0, or

ω2 = k2

(

∂P

∂ρ

)

s

− 4πGρ0· (A.12)

A fluid is unstable if ω2 < 0, which is the case if

k2 < k2
J ≡

4πGρ0

(∂P/∂ρ)s

· (A.13)

A.2. Two components

Having two components α and β, the mass and momentum con-
servation have to be fulfilled for each component as follows:

∂ρα

∂t
+ ∇ · (ραuα) = 0, (A.14)

∂ρβ

∂t
+ ∇ · (ρβuβ) = 0, (A.15)

∂ραuα

∂t
+ ∇ · (ραuαuα) + ∇Pα + ρ∇Φ = 0, (A.16)

∂ρβuβ

∂t
+ ∇ ·

(

ρβuβuβ
)

+ ∇Pβ + ρ∇Φ = 0, (A.17)

∇ · ∇Φ − 4πG
(

ρα + ρβ
)

= 0. (A.18)

Superseding, as in Appendix A.1, these equations with perturba-
tion terms Aα = Aα0 + δAα and Aβ = Aβ0 + δAβ in the x direction
and linearizing them yields

∂ δρα

∂t
+ ρα∇ · δvα = 0, (A.19)

∂ δρβ

∂t
+ ρβ∇ · δvβ = 0, (A.20)

ρα
∂ δvα

∂t
+

(

∂Pα

∂ρα

)

s

∇δρα + ρα∇δΦ = 0, (A.21)

ρβ
∂ δvβ

∂t
+

(
∂Pβ

∂ρβ

)

s

∇δρβ + ρβ∇δΦ = 0, (A.22)

∇ · ∇δΦ − 4πG(δρα + δρβ) = 0, (A.23)

which transform into a linear equation system in Fourier space,

−iω ρ̂α + ik ρα0v̂α = 0, (A.24)

−iω ρ̂β + ik ρβ0v̂β = 0, (A.25)

−iωρα0v̂α + ik

(

∂Pα

∂ρα

)

s

ρ̂α + ik ρα0Φ̂ = 0, (A.26)

−iωρβ0v̂β + ik

(
∂Pβ

∂ρβ

)

s

ρ̂β + ik ρβ0Φ̂ = 0, (A.27)

−k2Φ̂ − 4πG(ρ̂α + ρ̂β) = 0. (A.28)

This can be written in the matrix form A · x = 0, defining c2
α =

(∂Pα/∂ρα)s and c2
β
= (∂Pβ/∂ρβ)s as follows:





ω 0 kρα0 0 0
0 ω 0 kρβ0 0

k c2
α 0 ωρα0 0 k ρα0

0 k c2
β

0 ωρβ0 k ρβ0

−4πG −4πG 0 0 −k2





·





ρ̂α
ρ̂β
v̂α
v̂β
Φ̂





=





0
0
0
0
0





. (A.29)

In order to simplify, we set Γα = 4πGρα0 and Γβ = 4πGρβ0 and
find the following determinant:

det(A) = k2ρα0ρβ0
[

ω4 +
(

Γα + Γβ − k2(c2
α + c2

β)
)

ω2

+k2
(

−Γβc2
α − Γαc2

β + k2c2
αc

2
β

)]

. (A.30)

Again, to have a non-trivial solution, its determinant must be
zero, which, in the case of k , 0, is

ω4 +
(

Γα + Γβ − k2(c2
α + c2

β)
)

ω2 − k2

×
(

Γβc
2
α + Γαc

2
β − k2c2

αc
2
β

)

= 0, (A.31)
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with the following solution for ω2:

(ω2)1,2 = −
1

2

(

Γα + Γβ − k2(c2
α + c2

β)
)

±
√

1

4

(

Γα + Γβ − k2(c2
α + c2

β
)
)2
+ k2

(

Γβc2
α + Γαc

2
β
− k2c2

αc
2
β

)

.

(A.32)

Setting ω2 = 0 in Eq. (A.31) yields

k2
(

−Γβc2
α − Γαc2

β + k2c2
αc

2
β

)

= 0, (A.33)

with the following solution:

k2
GZ ≡

Γα

c2
α

+
Γβ

c2
β

, (A.34)

a fluid is unstable for ω2 < 0 or ω2 ∈ ℑ, which is the case for
k2 < k2

GZ
.

A.2.1. Phase transition

In the case of a phase transition, one of the pressure derivatives
is equal to zero. Setting cα = 0 in Eq. (A.31) we get

ω4 +
[

Γα + Γβ − k2c2
β

]

ω2 − Γαk2c2
β = 0, (A.35)

and its solutions is written as

ω2=−1

2

(

Γα+Γβ−k2c2
β

)

±
√

1

4

(

Γα+Γβ−k2c2
β

)2
+Γαk2c2

β
. (A.36)

Setting ω2 = 0 in Eq. (A.35), only the trivial k = 0 is a solution.
Since

(

Γα+Γβ − k2c2
β

)2
<

(

Γα + Γβ − k2c2
β

)2
+ 4Γαk

2c2
β, (A.37)

the upper sign solution of Eq. (A.36) is always positive and the
lower sign solution is always negative for any k. Therefore one
ω-solution of Eq. (A.36) is always negative and thus unstable,
independent of the strength of either Γα or Γβ.
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Appendix B: Energy and radiation transfer during

the contraction of a sphere towards an ellipsoid

We consider a non-rotating sphere of radius r initially in unsta-
ble equilibrium, which contracts at constant mass as an ellipsoid
with semi-principal axes a, b, and c (see Fig. B.1). In a sheet-
like collapse, two semi-axes remain the same (a = b = r) while
one is decreasing (c = εr), leading to an oblate spheroid. In a
filament-like collapse, one semi-axis remains the same (a = r),
while two are decreasing together (b = c = εr), leading to a
prolate spheroid. In a point-like collapse, all the three semi-axes
decrease together (a = b = c = εr), remaining a sphere. Dur-
ing compression, density increases by a factor Z = n/n0. Since
the ellipsoid volume is Vell = 4/3 πabc, compression changes as:
εoblate = Z−1, εprolate = Z−1/2, and εsphere = Z−1/3.

B.1. Gravitational energy

The gravitational energy difference between the initial sphere
and subsequent ellipsoids must be released as additional thermal
energy. The gravitational energy of a revolution ellipsoid, with
EG,0 = EG,sphere(r) = −(3/5)GM2/r (Landau & Lifshitz 1975),
is written as

Eoblate(Z)

EG,0

=
arccos

(

Z−1
)

√
1 − Z−2

=
π

2
− Z−1 + O(Z−2), (B.1)

Eprolate(Z)

EG,0

=
arcosh

(√
Z
)

√
1 − Z−1

= log(2
√

Z) + O

(

log(Z)

Z

)

, (B.2)

Esphere(Z)

EG,0

= Z1/3. (B.3)

Sheet-like contraction leads to infinite densities with finite tem-
perature increase, which is much more favourable for reach-
ing condensation conditions that filament-like or point-like
contractions.

Fig. B.1. Collapsing geometries.

We show now that the maximum relative temperature in-
crease of an initial perfect gas sphere initially in equilibrium is
bounded. State 0 is the initial (unstable) equilibrium sphere case,
and state 1 is any later, denser case that is not necessarily in equi-
librium. Since in equilibrium, the initial state respects the virial
condition,

EG,0 + 2 Ekin,0 = 0, (B.4)

where Ekin,0 is the kinetic energy. Since at rest, the initial sphere
kinetic energy consists only of microscopic motion, and is pro-
portional to the initial temperature T0.

The initial and later total energies are,

Etot,0 = EG,0 + Ekin,0, (B.5)

Etot,1 = EG,1 + Ekin,1. (B.6)

Taking into account possible radiative cooling, we suppose
Etot,1 ≤ Etot,0, which leads to, using the initial virial condition,

T1

T0

≤ Ekin,1

Ekin,0

≤ 2
EG,1

EG,0

− 1. (B.7)

The first inequality takes into account that state 1 is not neces-
sarily in equilibrium; some kinetic energy may be attributed to
macroscopic motion.

Thus, using the above potential energy ratios, in the case of
an oblate spheroid contraction,

T1

T0

≤ π − 1 − 2Z−1 + O(Z−2), (B.8)

that is, the final temperature cannot exceed π− 1 ≈ 2.1 times the
initial temperature. In the case of a prolate spheroid contraction,
temperature is logarithmically bounded as Z increases,

T1

T0

≤ log(4Z) − 1 + O

(

log(Z)

Z

)

, (B.9)

while in a spherical contraction, temperature is bounded by the
cubic root of compression,

T1

T0

≤ 2Z1/3 − 1. (B.10)

B.2. Radiative cooling

Energy lost by radiation lowers temperature, but if opacity in-
creases during contraction at some point the radiative cooling
rate drops below the heating rate as a result of gravitational en-
ergy conversion, thereby slowing down the collapse. Here we
show with simple arguments how opacity changes when con-
tinuously contracting an initial sphere towards denser, smaller
spheres, or towards denser revolution of oblate or prolate kinds
of ellipsoids, keeping the longest axes constant and assuming
uniform densities at any stage and constant absorption cross sec-
tions.

B.2.1. Optical depth

The optical depth τ in the cumulated absorption over a pho-

ton path ℓ: τ ≡
∫ ℓ

0
σ n dℓ , where σ is the absorption cross

section of individual atoms with number density n. The cen-
tral optical depth, calculated from the centre to the ellipsoid
edge along some direction, is a first order estimator of the av-
erage optical depth. We compare the optical depth τ0 = rσ n0
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Fig. B.2. Absorption probability in contracting spheroids as function of
compression Z > 1 calculated by Monte Carlo simulation. At Z = 1
all cases are spherical. The photons start either at the centre only or
anywhere inside the ellipsoid in random directions. Different cases are
represented where the initial sphere optical depth τ0 is indicated.

for the initial sphere with the later spheres. For revolution el-
lipsoids, where a and c are the semi-long and short axes, re-
spectively, the distance from the centre to some point on the

edge is ℓ(θ) = ac/
√

a2 sin2 θ + c2 cos2 θ for oblate spheroids and

ℓ(θ) = ac/
√

a2 cos2 θ + c2 sin2 θ for prolate spheroids. The angle
θ vanishes at the spheroid equator. Since the ellipticity ε = c/a
varies as Z−1, Z−1/2, and Z−1/3 in the oblate, prolate, and spher-
ical cases, respectively, the optical depth ratios as functions of
compression Z and θ are found to be

τoblate

τ0

=
1

√

sin2 θ + Z−2 cos2 θ
, (B.11)

τprolate

τ0

=
Z1/2

√

cos2 θ + Z−1 sin2 θ
, (B.12)

τsphere

τ0

= Z2/3 . (B.13)

Thus, in the oblate case the central optical depth ratio does not
change along the poles and at high compression remains barely
increased over most directions. In the prolate case it increases
least along the equator, but is proportional to the square root of
compression. In the spherical case it increases most rapidly as
a power 2/3 of compression. Thus sheet-like compression pro-
vides the least optical depth increase and spherical compression
compression the most.

B.2.2. Global absorption

One can refine the previous estimate for cooling by calculating,
for any point inside an ellipsoid, the probability for a photon to
be absorbed. For a given optical depth τ the absorption prob-
ability is p = 1 − exp(−τ). The global probability of absorp-
tion must be calculated for all solid angles for all points. These
4- or 5-dimensional integrals for bi- or tri-axial ellipsoids does
not seem to be solvable analytically, and straightforward numer-
ical quadratures would be expensive. Thus we resort to a Monte
Carlo draw to estimate these quantities. We pick randomly and
uniformly a number of points inside the ellipsoid and a random,
uniform directional unit vector n, and find the two distances ℓ1,
ℓ2, to the edge of the ellipsoid, allowing us to calculate two op-
tical depths τ1, τ2, and the corresponding absorption probabili-
ties p1, p2 for each point. Knowing the starting position x inside
the ellipsoid (a, b, c) and the direction vector n, we find the two
signed distances to the ellipsoid edge by solving the quadratic
equation (x + ℓnx)/a2 + (y + ℓny)

2/b2 + (z + ℓnz)
2/c2 = 1 for

ℓ. Explicitly, noting α = a−2, β = b−2, γ = c−2, for each point
x = [x, y, z] the procedure becomes

A = αn2
x + βn

2
y + γn

2
z , (B.14)

B = αxnx + βyny + γznz , (B.15)

C = αx2 + βy2 + γz2 − 1 , (B.16)

D =
√

B2 − AC, (B.17)

ℓ1 = −(D + B)/A, ℓ2 = (D − B)/A . (B.18)

For each set of ℓi, average absorption probabilities can be found
for a range of σs. The two absorption probabilities pi = 1 −
exp(σn|ℓi|), i = 1, 2, provide two distinct probabilities for each
point. Each set of pis should converge towards a similar average
value. The difference allows us to check the error obtained with
a finite number of points. Between 2 × 104 (sphere case) and
3 × 107 points (oblate spheroid case) were drawn such that the
log10 pi between the two sets differ by at most 0.01. The result is
shown in Fig. B.2. The error bars are comparable or smaller than
the thickness of the curve.

The sphere and prolate spheroid cases quickly become opti-
cally thick, increasing as Z2/3 and Z1/2, respectively, in the op-
tically thin regime. In contrast, the absorption of a contracting
optically thin oblate spheroid increases logarithmically until it
reaches Zτ0 ∼ 1 beyond which it remains approximately con-
stant; in other words if the initial state is optically thin, it remains
so even after infinite compression. The emission signature of a
collapsing sheet should therefore remain observationally barely
noticeable, since both temperature and optical thickness increase
by very modest factors in comparison with the other geometries.

Figure 2 shows how an initial sphere at T = 10 K, P =
10−12 Pa would change its temperature and pressure when con-
tracting adiabatically, changing its gravitational energy into ther-
mal energy. Clearly the sheet-like collapse is the most favourable
geometry for reaching the H2 phase transition regime. Including
radiative cooling, which is the fastest in sheet-like geometry, can
only help in this regard.
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Appendix C: Additional figures

(a) A75 with γJ = 1.5 (b) B75 with γJ = 1.5

Fig. C.1. Time sequence of the simulations A75 and B75. On the left side, the slice shows in depth 20% of the super-molecules. On the right side,
Ncomet is the number of super-molecules in one comet and f (NB) is the comet size distribution function.
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(a) B75 with γJ = 0.5 (b) B75 with γJ = 0.8

Fig. C.2. Time sequence of the simulation B75. On the left side, the slice shows in depth 20% of the super-molecules. On the right side, Ncomet is
the number of super-molecules in one comet and f (NB) is the comet size distribution function.
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Fig. C.3. Time sequence of the simulation C75 with γG = 1.5. On the left side, the slice shows in depth 20% of the super-molecules. On the right
side, Ncomet is the number of super-molecules in one comet and f (NB) is the comet size distribution function.
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